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Introduction

In the last decade, the research in signal analysis was dominated by models that
encompass nonstationarity as an important feature. The workshop held in
Grodek—Poland in February 2013 was dedicated to investigation of cyclostation-
ary signals, that is, signals that exhibit some strict and/or approximate periodicity.
The main objective is to highlight the strong interactions between theory and
applications of cyclostationary signals with the use of modern statistical tools.
In our opinion, the methods like bootstrap, subsampling, or Fraction-of-time
(FOT) model approach will revolutionize the signal analysis in many applied
engineering areas. A special focus was made on applications in vibro-mechanical
signals. Important features of the signals are studied in the time and frequency
domains. In the time domain, the relevant objects are first- and second-order
moment characteristics, whereas in frequency domain one wants to study spectral
density, spectral coherencies, and spectral kurtosis. The proper perspective of
studying time and spectral characteristics of nonstationary and repeatable signals is
using almost periodically correlated models since this allows proper identification
of relevant frequencies, estimation of time characteristics, and more advanced
statistical studies.

One has to state very clearly that without a good mathematical and statistical
formalism, one can hardly cope with the simplest signal processing procedures as
identifying frequencies for a nonstationary or cyclostationary signal. Without a
good quantitative model, many practical procedures are heavily dependent on
particular choices of experimental designs, sizes of smoothing windows, etc.
Therefore, the fundamental research is of utmost importance to provide reliable
tools for researchers. An important application of cyclostationary signals is the
analysis of mechanical signals generated by a vibrating mechanism. Cyclosta-
tionary models are important to perform basic operations on signals in both time
and frequency domains. One of the fundamental problems in diagnosis of rotating
machine is the identification of significant modulating frequencies that contribute
to the cyclostationary nature of the signals. Classical statistical methods for
frequency identification in cyclostationary signals were based on the assumption of
gaussianity of the signal and on the assumption of some linear structure of the

vii



signal. Our aim is to show that there are modern tools available for analyzing
cyclostationary signals without the assumption of gaussianity. These methods are
based on the ideas of bootstrap, subsampling, and Fraction-of-time (FOT) models.

The book is organized into two parts. Part I is dedicated to pure theory on
cyclostationarity.

Applications are presented in Part II including several mechanical systems such
as bearings, gears, … with or without damages.

viii Introduction



Part I
Theory of Cyclostationarity



Time-Angle Periodically Correlated Processes

Jérôme Antoni, Dany Abboud and Sophie Baudin

Abstract Cyclostationary processes have now become an essential mathematical
representation of vibration and acoustical signals produced by rotating machines.
However, to be applicable the approach requires the rotational speed of the machine
to be constant, which imposes a limit to several applications. The object of this
chapter is to introduce a new class of processes, coined time-angle periodically
correlated, which extends second-order cyclostationary processes to varying regimes.
Such processes are fully characterized by a time-angle autocorrelation function and
its double Fourier transform, the frequency-order spectral correlation. The estimation
of the latter quantity is briefly discussed and demonstrated on a real-world vibration
signal captured during a run-up.

1 Introduction

During the last two decades, several research works have highlighted the benefits
gained from modeling some mechanical signals as cyclostationary processes (Anto-
niadis and Glossiotis 2001; Antoni 2009; Leśkow 2012; Raad et al. 2008; Randall
et al. 2001). This is especially true for vibration or acoustical signals produced
by rotating machinery, since they are intrinsically linked to some periodic mech-
anisms. Some typical examples are vibrations of gears which are essentially first-
order cyclostationary (Capdessus et al. 2000), at least as far as modal vibrations are
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4 J. Antoni et al.

concerned, and vibrations of rolling element bearings, which are essentially
second-order cyclostationary (Antoni 2007a; Cioch et al. 2013), also referred to
as periodically-correlated. In this context, the cyclostationary framework has been
found extremely useful not only for formally describing the signals of interest, but
also for solving theoretical problems which were hardly tractable otherwise (Antoni
2009); blind extraction or separation of signals are such examples, but not only.
Indeed, as far the detection and extraction of weak repetitive mechanical signa-
tures is of concern—a situation relevant to many types of incipient faults in rotating
machines—the cyclostationary approach is difficult to compete with (Borghesani et
al. 2013a).

The cyclostationary framework is large enough to include periodic signals, sta-
tionary random signals, and some non-stationary random signals with hidden peri-
odicities in the form of periodic modulation of stationary random carriers. This is
wide enough to represent most signals from rotating machines, provided that the
machines are operating under a “stationary” regime. In the strict sense, this means
time-cyclostationarity (i.e. some statistics are periodic with respect to the time vari-
able) is produced only if the rotation speed of the mechanism is either (i) constant or
has possible (ii) stationary or (iii) cyclostationary random fluctuations (small enough
to maintain a positive speed)—see (Antoni et al. 2004) for a discussion of this point.
Unfortunately, the assumption of a stationary regime, even if classical in numerous
research works, is limitative in several respects (Borghesani et al. 2013b). One rea-
son is that some rotating machines cannot be locked to a constant regime, such as
windturbines or crushers, which are constantly subjected to strongly varying loads.
Another reason is that the information of interest (e.g. the mechanical signature of
a fault) is sometimes revealed during a transient regime, such as the run-up of an
engine. In such scenarii, the cyclostationary approach may fall short.

It is the object of this chapter to propose an extension of the cyclostationary frame-
work to signals that undergo non-stationary speed regimes. This will naturally drive
the reader outside the cyclostationary sphere towards a larger class of non-stationary
signals. The main difficulty in doing so is to arrive at a formalism that still enjoys
enough properties to be of practical usefulness and to permit rigorous statistical def-
initions (in particular of estimators) (Napolitano 2012). For the sake of simplicity
but also of practical interest, only second-order statistics will be considered here;
the corresponding processes are commonly referred to as “periodically correlated”
(Dehay 1994; Hurd 1989, 1991; Yavorsky et al. 2011).

The rest of the chapter is organized as follows. Section 2 reviews the time and
angle description of periodically correlated processes, two alternative views of the
same reality which are frequently contrasted when speed fluctuations is of concern.
Next, Sect. 3 proposes a definition of a certain class of processes that extend the peri-
odic correlation property to non-stationary regimes. The corresponding processes
will be referred to as time-angle periodically correlated. Then, Sect. 4 introduces the
order-frequency spectral correlation, which fully describes such processes. Estima-
tion issues are also addressed in the same section. Finally, an example of application
on real-life signals is provided in Sect. 5.
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2 Time Versus Angle Periodicity

2.1 Problem Statement

When concerned with signals produced by rotating machines, a fundamental issue is
to choose between a description in terms of the temporal or the angular variable (it
is likely that similar issues arise in other fields of application). The angular variable
reflects the rotation of a given shaft of reference (e.g. the primary shaft) in the
machinery and, as such, all periodic mechanisms resulting from the rotation of the
mechanical elements should be expressed with respect to it. This is referred to as
angle-periodicity. Time t and angle θ are related by the rotation speed

θ̇ = dθ

dt
, (1)

where it is assumed that θ̇ > 0 (i.e. there is no backlash). Obviously, if the speed
was constant, then time and angle would be linearly related and angle and time-
periodicities completely equivalent. When applied to the statistics of a stochastic
process, the same conclusion would hold about angle and time-cyclostationarity.
However, when speed is not constant—which is the situation addressed in this
chapter—the angle-periodicity of a rotating machine still holds, but not its time-
periodicity. Yet this does not mean the resulting signals (e.g. the radiated noise or
generated vibrations) are angle-cyclostationary in general. The reason is because such
signals are related to physical phenomena which are described by time-dependent
dynamical characteristics, such as temporal differential equations. Therefore, time-
dependence will interfere with angle-periodicity and, ultimately, will make it col-
lapse. Two simple examples of this dilemma are as follows.

(a) Angle-periodic amplitude modulation

Let us consider a zero-mean, white, stationary, random process, ε(t), and an angle-
periodic function p(θ) = p(θ +ξ), where ξ stands for the angular period (typically
ξ = 2π). Then, an elementary model for an angle-periodically modulated process is

X (t) = p (θ(t)) ε(t), (2)

as would occur for instance when the rotation of a blade modulates a steady flow of
fluid. The time-domain autocorrelation function of X (t) reads

R2X (t, τ )
def= E {X (t) X (t − τ)} = p (θ (t))2 σ 2

ε δ (τ ) ◦= R2X (t + T, τ ) (3)

with σ 2
ε the variance of ε(t). This clearly is not periodic in general since there does

not exist a non-zero period T such that p (θ (t)) = p (θ (t + T )) for all values of
time t , except in the particular case with constant speed, θ = 	t . Alternatively, when
expressed with respect to the angular variable, the autocorrelation function reads
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R2X (θ, φ)
def= E {X (t (θ)) X (t (θ − φ))} = p (θ)2 σ 2

ε δ (φ) θ̇ ◦= R2X (θ + ξ,φ)

(4)

which again is not periodic since θ̇ (θ) ◦= θ̇ (θ + ξ) in general.

(b) Angle-periodic frequency modulation

Let us now consider a zero-mean, white, stationary, random process, ε(t), that is
input to a time-homogeneous differential equation,

Ẍ(t) + c · Ẋ(t) + k(θ(t)) · X (t) = ε(t) (5)

with angle-periodically varying stiffness k(θ). This provides a simple model to any
linear angle-periodic system excited by a stationary force, such as encountered in
rotating machines. In this case, the time-domain autocorrelation function of solution
X (t) is returned by the implicit equation

(
∂2

∂τ 2 + c
∂

∂τ
+ k(θ(t + τ))

⎛
R2X (t, τ ) = σ 2

ε δ (τ ) ⇒ R2X (t, τ ) ◦= R2X (t + T, τ )

(6)
and the angle-domain counterpart by

(
∂2

∂φ2 + c
∂

∂φ
+ k(θ)

⎛
R2X (θ, φ) = σ 2

ε δ (φ) θ̇ ⇒ R2X (θ, φ) ◦= RX (θ + ξ,φ) .

(7)
For the same reasons as before—i.e. k(θ(t + τ)) ◦= k(θ(t + T + τ)) and

θ̇ (θ) ◦= θ̇ (θ + ξ)—none of these functions is periodic in general, in either the time
or the angular domain.

2.2 Time-Angle Autocorrelation Function

The previous section has demonstrated that neither the time-domain nor the angle-
domain representation can lead to the periodic correlation property under non-
stationary regime. Indeed, the dilemma of having to choose between one or the
other representation has been a subject of controversy for some time. A main contri-
bution of this chapter is to demonstrate that both domains should be used conjointly
and not oppositely. This leads to the idea of a time-angle autocorrelation function,
R2X (θ, τ ), defined as

R2X (θ, τ )
def= E {X (t (θ)) X (t (θ) − τ)} . (8)

Note that in the above, the unit of datum θ is radian whereas that of time-lag is
second. By doing so, periodicity is locked to the angular position, whereas dynam-
ics is still governed by time as dictated by physical phenomena describing wave
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propagation. Coming back to the previous two examples, one has

R2X (θ, τ ) = p (θ)2 σ 2
ε δ (τ ) = R2X (θ + ξ, τ) (9)

for the angle-periodic amplitude modulation and

(
∂2

∂τ 2 + c
∂

∂τ
+ k(θ)

⎛
R2X (θ, τ ) = σ 2

ε δ (τ ) ⇒ R2X (θ, τ ) = R2X (θ + ξ, τ)

(10)
for the angle-periodic frequency modulation. In both cases, one now has perfect
angle-periodicity. The question now arises to which class of processes does this
generalization of cyclostationarity apply?

3 Models of Time-Angle Periodically Correlated Processes

Various generative models to cyclostationary processes have proposed in the liter-
ature, some with physical origins (George et al. 1992) and other with grounds in
telecommunication engineering (Gardner 1990). Three equivalent models are pro-
posed in this section, which are motivated by their relevance to mechanics. The first
two models are inspired from the theory of linear systems, and the last one from the
Fourier series description of stochastic processes.

(a) Angle-varying differential equation

From a direct generalization of example (a), a time-angle periodically correlated
process X (t) may be modeled as the solution of a linear time-domain differential
equation with angle-varying coefficients subjected to a stationary random input ε(t),
viz, ⎝∑

k

ak(θ(t))

(
d

dt

⎛i
)

X (t) = ε(t). (11)

Such a form should find a direct correspondence with many mechanical models,
e.g. with angle-varying stiffness or inertia.

(b) Angle-varying impulse response

By denoting h (θ(t), t − τ) the impulse response of a system governed by the dif-
ferential equation (11), at angle θ due to an impulse at time τ , one has directly

X (t) =
⎞

h(θ(t), τ )ε(t − τ)dτ. (12)

Note this is a generalization of the angle-periodic amplitude modulation of exam-
ple (a), where an infinity of modulations are applied on delayed versions of process
ε(t) and summed up.
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(c) Angle-dependant Fourier series

The last model results from expanding h (θ, t − τ) in Eq. (12) into its Fourier series
with respect to θ . It then comes

X (t) =
∑
k∈A

e j2π kθ
ξ ck(t), (13)

where, in general, {ck(t); k ∈ A} is a family of mutually correlated stationary ran-
dom processes. In words, a time-angle periodically correlated process has a Fourier
series whose basis functions are expressed in the angle-domain and whose Fourier
coefficients are stationary random processes in the time-domain. This form has the
advantage of evidencing an explicit separation of the time and angle variables. Note
that the particular case of periodically correlated processes is immediately recov-
ered by setting θ = 	t (Javorskyj et al. 2011). Furthermore, the periodicity of the
time-angle autocorrelation function,

R2X (θ, τ ) = R2X (θ + ξ, τ) , (14)

is readily proved from Eq. (13).
It is important, at this juncture, to insist on the fact that model (13)—or its counter-

part (11) or (12)—still lies in a property framework, which is essential to unambigu-
ously define new statistical tools dedicated to the analysis of time-angle periodically
correlated processes. This is the object of the next section.

4 The Frequency-Order Spectral Correlation

4.1 Definitions

Just as for periodically correlated processes, the time-angle autocorrelation function
is a core statistics from which other specialized tools can be devised, such as the
cyclic autocorrelation function, the angle-frequency Wigner-Ville spectrum, and the
frequency-order spectral correlation (Antoni 2007b). Only the latter is investigated
in this chapter due to its prominence in mechanical applications.

The frequency-order spectral correlation is defined as the following double Fourier
transform,

S2X (v, f ) = lim
�→∞

1

�

⎞
�

∞⎞
−∞

R2X (θ, τ )e− j2πvθ/ξe− j2π f τ dτdθ, (15)

where f stands for the classical frequency in Hz and v for “order” (that is the number
of events per rotation of ξ radians) without unit. Therefore, S2X (v, f ) is able to



Time-Angle Periodically Correlated Processes 9

characterize both the frequency content of phenomena described by time-domain
dynamics—i.e. the carrier frequency f —and periodicity linked to angle-domain
kinematics—i.e. the modulation frequency v. An alternative definition that is more
suited to estimation purposes results from the change of variable θ → t , viz

S2X (v, f ) = lim
W→∞

1

W

⎞
W

∞⎞
−∞

R2X (θ(t), τ )θ̇(t)e− j2πvθ(t)/ξe− j2π f τ dτdt, (16)

where W is the time interval corresponding to the angular span �. A notable partic-
ularity of this definition is the weighting by θ̇ (t) which assigns more importance to
high-speed regimes. Definition (16) can be shown equal to the following limit

S2X (v, f ) = lim
W→∞

1

W
E

⎠
FW {X (t)}∗ FW

⎠
X (t)θ̇(t)e− j2πvθ(t)/ξ

}}
, (17)

where FW {X (t)} denotes the Fourier transform of process X (t) over a time interval
of length W . This last form forces one to revisit the interpretation of the frequency-
order spectral correlation as the correlation of two different versions of the process,
X (t) and X (t)θ̇(t)e− j2πvθ(t)/ξ, at frequency f . Only when speed is constant is this
equivalent to the classical interpretation of correlation between spectral components
of the process at two disjoint frequencies, f and f + α with α = v · 	/ξ.

4.2 Estimation Issues

The estimation of the frequency-order spectral correlation follows the usual lines
of spectral analysis (Dehay 1994). Let us consider the discrete time setting where
signal x(t) is replaced by the discrete sequence x [n] , n = 0, . . . , L − 1, and where
unit sampling frequency is assumed for simplicity. One trivial estimator is returned
by the smoothed periodogram, which reads

Ŝ2X (v, f ) = 1

L − 2M

L−M−1∑
n=M

M∑
τ=−M

g [τ ]x [n] x [n − τ ] θ̇ [n] e− j2πvθ [n]/ξe− j2π f τ ,

(18)
with g [τ ] = g [−τ ], g [0] = 1 ≥ g [τ ], an 2M + 1 long symmetric lag-window that
decreases slowly towards zero as |τ | approaches M . Less obvious is the averaged
periodogram estimator. A simple way to introduce it is to decompose the discrete
time signal as

x [n] =
K−1∑
k=0

wk[n]x [n] , (19)
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where {wk[n] = w[n − k�]; k = 0, . . . , K − 1}, 0 < � < N , is a family of N—
long shifted and overlapping data windows such that

K−1∑
k=0

wk[n] = 1. (20)

Inserting into Eq. (17) and ignoring cross-terms, one arrives at

Ŝ2X (v, f ) = 1

K ‖w‖2

K−1∑
k=0

DFTN {wk [n]x [n]}∗ DFTN

⎠
wk [n]x [n] θ̇ [n] e− j2πvθ[n]/ξ

}

(21)
where DFTN stands for theN-long discrete-time Fourier transform and where the
division by L has been replaced by K ||w||2 for proper power calibration (one can
readily check that K ||w||2 ∼ L). The importance of meeting condition (20) to avoid
“cyclic leakage” was demonstrated in (Antoni 2007b). The averaged periodogram
estimator makes possible an important simplification when the speed variation is
slow enough as compared to the data window length; in this case,

Ŝ2X (v, f ) � 1

K ‖w‖2

K−1∑
k=0

	kDFTN {wk [n]x [n]}∗ DFTN

⎠
wk [n]x [n] e− j2πvn	k/ξ

}

(22)
where 	k stands for the average speed value in the time interval k� ≤ n < k�+ N .
Equation (22) boils down to a weighted average of products of DFTs, with more
weight being assigned to high speed intervals, and a frequency shift v	k/ξ that is
updated in each time interval k.

Being based on a formal time-angle definition of the autocorrelation function,
these estimators show minor differences with and improve upon the heuristic defin-
itions first proposed in (D’Elia et al. 2010).

5 Example of Application

The application of the frequency-order spectral correlation is illustrated to detect the
presence of an outer-race fault in a rolling-element bearing. In the particular case
addressed here the fault could hardly show up during a constant regime because of
the very low load applied to the bearing, so that the machine had to be tested dur-
ing a run-up by rapidly increasing the rotation speed from 0 to 60 Hz within 25 s.
The speed profile and the corresponding vibration signal captured by the accelerom-
eter are shown in Fig. 1.

The characteristics of the rolling element bearing are as follows: ball diameter =
7.94 mm, pitch diameter = 33.50 mm, number of elements = 8. This returns an
expected ball-pass-frequency on the outer-race (BPFO) at 3.05 orders, that is 3.05
times the rotation speed. The classical spectral coherence (i.e. power-normalized
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Fig. 1 a Speed profile of the machine and b vibration signal
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Fig. 2 Classical spectral coherence, � f = 100 Hz, �α = 1 Hz

version of the spectral correlation) estimated over the speed interval [25 Hz; 60 Hz]
is displayed in Fig. 2 (the averaged periodogram with a hanning window and 66 %
overlap was used with imposed spectral resolution � f = 100 Hz). Spectral lines
at the fault frequency and its harmonics are hardly seen above f = 9 kHz around
α =125, 250, 375 and 500 Hz—which roughly corresponds to 3 times an average
speed of 42 Hz—because they are blurred by the speed variation.

Next, the frequency-order spectral coherence was estimated according to formula
(21) with similar settings as before. The result shown in Fig. 3 now evidences sharp
spectral lines above f = 6 kHz at multiple of order 3.05, as expected from an outer-
race fault. A slight modulation at order 1 due to input shaft rotation is also noticeable,
as sometimes happens with this kind of fault.
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6 Conclusion

The generalization of cyclostationary processes to a wider class of non-stationary
conditions is a current and challenging topic of research. In particular, the analysis
of non-stationary operating conditions of rotating machines is one field where the
subject finds considerable interest. This chapter has shown that one way to tackle the
issue is to consider the time and angle domains jointly instead of oppositely. This
makes possible to extent significantly the applicability of cyclostationary processes.
The present work has addressed only the second-order case (i.e. periodically corre-
lated processes), but there is no doubt that similar lines can be followed on higher-
orders. One limitation of the proposed approach is that it does not assume explicit
dependence on the rotation speed (although such dependence is implicit in the rela-
tionships between angle and time). This precludes the analysis of speed-dependant
modulations, such as resonances due to the passage of critical speeds. Yet, the authors
believe the proposed approach is the first step towards the consideration of more gen-
eral scenarii, including the latter one.

Appendices

A.1 Proof of Eq. (17)

The key point is to carefully rewrite the interval of integration over τ as
[t − W/2; t + W/2] when W grows to infinity. Thus,

S2X (v, f ) = lim
W→∞

1

W

W/2⎞
−W/2

t+W/2⎞
t−W/2

E {X (t)X (t − τ)}θ̇ (t)e− j2πvθ(t)/ξe− j2π f τ dτdt
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= lim
W→∞

1

W

W/2⎞
−W/2

W/2⎞
−W/2

E {X (t)X (u)}θ̇ (t)e− j2πvθ(t)/ξe− j2π f (t−u)dudt

= lim
W→∞

1

W
E

⎧⎪⎨
⎪⎩

W/2⎞
−W/2

X (u)e j2π f udu

W/2⎞
−W/2

X (t)θ̇(t)e− j2πvθ(t)/ξe− j2π f t dt

⎫⎪⎬
⎪⎭

= lim
W→∞

1

W
E

⎠
FW {X (t)}∗ FW

⎠
X (t)θ̇(t)e− j2πvθ(t)/ξ

}}
(A1)

A.2 Symmetric Statistics

A symmetric version of the time-angle autocorrelation function is as follows

R2X (θ, τ )
def= E {X (t (θ) + τ/2) X (t (θ) − τ/2)} , (A2)

which has the advantage of returning an even function of τ . This does not change
definition (15) of the frequency-order spectral correlation, yet the counterpart of
Eq. (17) requires an approximation. Indeed,

S2X (v, f ) = lim
W→∞

1

W

W/2⎞
−W/2

W−2|t |⎞
−W+2|t |

E

⎠
X
(

t + τ

2

)
X
(

t − τ

2

)}
θ̇ (t)e− j2πv θ(t)

ξ e− j2π f τ dτdt

= lim
W→∞

1

W

W/2⎞
−W/2

W/2⎞
−W/2

E {X (v)X (u)}θ̇
(

u + v

2

⎛
e− j2π v

ξ
θ( u+v

2 )e− j2π f (v−u)dvdu

which cannot be factored into the product of two integrals, unless the speed variation
is small enough as compared to the correlation length of the process so that

θ̇

(
u + v

2

⎛
e− j2π v

ξ
θ( u+v

2 ) �
⎜

θ̇ (u) θ̇ (v)e− j2π
v(θ(u)+θ(v))

2ξ (A3)

over the whole domain where E {X (v)X (u)} is significantly different from zero.
Therefore,

S2X (v, f ) � lim
W→∞

1

W
E

⎟
FW

⎠
X (t)θ̇(t)

1
2 e jπvθ(t)/ξ

}∗
FW

⎠
X (t)θ̇(t)

1
2 e− j2πvθ(t)/ξ

}⎢
.

(A4)
Because of the assumption required in (A3), one may prefer the exact asymmetric

form (17) to the approximate symmetric form (A4).
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Bootstrap for Maximum Likelihood
Estimates of PARMA Coefficients

Anna E. Dudek, Harry Hurd and Wioletta Wójtowicz

Abstract In this chapter we use bootstrap techniques to estimate empirical
distributions of parameter estimates for PAR sequences determined by maximum
likelihood techniques. The parameters are not the periodic autoregression parame-
ters, but are the coefficients in the Fourier series representing the parameters. We
compare two different bootstrap techniques, IID and GSBB, applied to the residuals
of the maximum likelihood estimation. The IID method seems a little better, which
is not a surprise since the conditions for the GSBB are not completely satisfied. We
expect these method to also work satisfactorily for full PARMA estimations, where
both PMA and PAR terms are present in the model.

1 Introduction

Let {X (t), t ◦ Z } be a PARMA (p, q) (periodic autoregressive-moving-average)
time series with the known period of the length T i.e.

Xt =
p∑

j=1

φ j (t)Xt− j +
q∑

k=1

θk(t)ξt−k + σ(t)ξt , (1)

where φ j (t) = φ j (t +T ), θk(t) = θk(t +T ), σ(t) = σ(t +T ) for all j = 1, . . . , p,

k = 1, . . . , q are periodic coefficients, and ξt is mean zero white noise with variance
equal to one.
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Examples of PARMA times series can be found e.g. in Hurd and Miamee (2007).
Several methods have been proposed for the estimation of the parameters in

the PARMA model (1). The first seems to have been the method of Maximum
Likelihood introduced by Vecchia (1985) and more recently a method using the
innovations algorithm introduced by Anderson et al. (2007). We have concen-
trated on the maximum likelihood method applied not to the parameters themselves
{φ j (t), j = 1, ..., p; θk(t), k = 1, ..., q; σ(t)} for t = 0, 1, ..., T − 1, but the
coefficients in their Fourier transforms. Since, for the maximum likelihood method,
the estimates are not expressed directly in terms of the data, computation of estima-
tion error is not straightforward. However, sample distributions of estimates can be
computed via bootstrap in a rather straightforward way.

An alternative parametrization that uses Fourier representation was introduced by
Jones and Brelsford (1967) to reduce the number of parameters required to represent
PARMA model.

φ j (t) = a j,1 +
⇒T/2∈∑
m=1

a j,2m cos(2πmt/T ) +
⇒T/2−1∈∑

m=1

a j,2m+1 sin(2πmt/T ), j = 1, ..., p,

θk(t) = bk,1 +
⇒T/2∈∑
m=1

bk,2m cos(2πmt/T ) +
⇒T/2−1∈∑

m=1

bk,2m+1 sin(2πmt/T ), k = 0, ..., q,

where θ0(t) = σ(t). The transformation is one-to-one when parameters are unre-
stricted but provides a simple, and sometimes physically motivated, way to reduce
the number of parameters by restricting the the number of frequencies in the Fourier
series of φ j (t), θk(t), σ (t). Maximum likelihood estimates are made of the restricted
model parameters (some subset of the unrestricted {a j,m, bk,m}) and finally the solu-
tion can be transformed to {φ j (t), θk(t)}.

2 Bootstrap Methods

In the sequel we propose to use two different bootstrap methods to obtain the con-
fidence intervals for the parameters {a j, m, bk, m}. The main reason that bootstrap is
of interest here is that estimates (at least the maximum likelihood estimates) of the
parameters are made indirectly i.e. by maximizing a likelihood calculation, not by
a direct expression of the data. The first considered method is based on the idea of
bootstrap of residuals for ARMA time series (for more details see e.g. Lahiri 2003).
The latter one is using the Generalized Seasonal Block Bootstrap (GSBB) of Dudek
et al. (2014). Below we describe both techniques.

Let X (1), . . . , X (n) be a sample from PARMA (p, q) time series. To apply any
of bootstrap algorithms first the estimates of {a j, m, bk, m} coefficients need to be
calculated. As a result we get the residuals ε̂i for i = 1, . . . , N , where N = n −
(p + q).
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Since for ARMA time series to generate the valid approximation of the asymptotic
distribution the residuals need to be centered, we expect that PARMA model also
requires this condition. Thus, we define the centered residuals by

ε̃i = ε̂i − εN , (2)

where εN = (N )−1 ∑N
i=1 ε̂i .

Method 1-IID bootstrap:

1. For i = 1, . . . , n let
ε
→(1)
i = ε̃ki ,

where ki is iid from a discrete uniform distribution

P (ki = s) = 1

N
for s = 1, . . . , N .

2. Joining selected residuals we get the bootstrap sample
(
ε
→(1)
1 , . . . , ε

→(1)
n

)
.

Method 1 assumes the the residuals ε̃i (i = 1, . . . , N ) are at least approximately
independent, so selecting each of them separately we do not destroy the dependence
structure in the sample. But in practical cases this condition may not hold. For
example one may choose to fit the model of lower rank that the true one. Then, the
residuals are no longer independent. Moreover, they may reflect the periodic structure
of the original data.

GSBB is the new block bootstrap technique for periodic data. It is the general-
ization of two known block bootstrap methods i.e. the Seasonal Block Bootstrap of
Politis (Politis 2001) and the Periodic Block Bootstrap of Chan et al. (2004). Dudek
et al. (2014) used it for the overall mean and the seasonal means of the periodically
correlated (PC) time series. Moreover, they showed GSBB consistency for triangular
row-wice periodically correlated arrays with growing period. The wide spectrum of
possible GSBB applications encouraged us to apply it in the considered problem.

To simplify the presentation of GSBB algorithm we assume that the sample size
n is an integer multiple of the block length b (n = bl) and also is an integer multiple
of of the period length T (n = wT ). Each of these conditions can be easily omitted
(for more details see Dudek et al. 2014). Moreover, we present the circular version
of GSBB i.e. we treat the sample as wrapped on the circle. Whenever the index t of
any chosen observation is greater than N we take t − N instead.

Method 2-GSBB:

1. Choose a (positive) integer block size b(<N ).
2. For t = 1, b + 1, 2b + 1, . . . , (l − 1)b + 1, let

(
ε
→(2)
t , ε

→(2)
t+1 , . . . , ε

→(2)
t+b−1

)
= (̂

εkt , ε̂kt +1, . . . , ε̂kt +b−1
)
,
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where kt is iid from a discrete uniform distribution

P (kt = t + vT ) = 1

w
for v = 0, 1, . . . , w − 1.

Since we consider the circular version of GSBB, when t + vd > N we take the
shifted observations t + vT − N .

3. Join the l blocks (ε̃kt , ε̃kt +1, . . . , ε̃kt +b−1) to get the bootstrap sample.

Finally, the bootstrap version
(

X→( j)
1 , . . . , X→( j)

n

)
of the original sample (X1, . . . ,

Xn) is obtained using the estimates of {φ j (t), θk(t)} and the bootstrap error variables(
ε
→( j)
1 , . . . , ε

→( j)
n

)
. The superscript j denotes the chosen bootstrap method. It is

equal to 1 for IID bootstrap and 2 for GSBB.
In the next section we present some simulation study results in which we construct

the bootstrap pointwise equal-tailed confidence interval for coefficients {a j, m, bk, m}.
The actual coverage probabilities (ACPs) are calculated to compare the performance
of both considered bootstrap algorithms. Although, we do not have any theoretical
results confirming the consistency of the proposed bootstrap methods, the preliminary
simulation results indicate the validity of our procedures.

3 Simulation Study

Our aim is to check the performance of the proposed bootstrap algorithms in the
problem od estimating confidence intervals for PARMA model coefficients. In this
section we consider a few examples of PARMA time series and calculate the bootstrap
equal-tailed pointwise confidence intervals for the coefficients {a j, m, bk, m} for j =
1, . . . , p, k = 0, . . . , q and m = 1, . . . , T . In our study we use procedures
first implemented by Hurd (2007) and now available as R package ‘perARMA’
(Comprehensive R Archive Network reference Dudek et al. 2013).

To reduce the number of parameters that needs to be estimated and decrease the
time of computation we restricted our study only to PAR time series. The following
examples are considered:

PAR2: the nonzero coefficient are a1,1 = 0.8, a1,2 = 0.3, a2,1 = −0.4 and
b0,1 = 1;

PAR1: the nonzero coefficient are a1,1 = 0.8, a1,2 = 0.3 and b0,1 = b0,2 = −0.5.

Note that PAR2 model has the constant σ(t) function (equal to 1) in contrary to the
PAR1 case, where σ(t) is periodic. The names PAR2 and PAR1 indicate that these
are PAR(1) and PAR(2) time series, respectively. This particular choice was caused
by the fact that we wanted to restrict the number of parameters and simultaneously
investigate the influence of function σ(t) on our results.

Unfortunately, σ(t) is not the only important factor. Much bigger impact can
have the choice of the model fitted to the data. Each practitioner will decide to take
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Table 1 Actual coverage probabilities for simulated PAR2 series

Method n ACP
E1 E2
a1,1 a1,2 a1,3 a2,1 a2,2 b0,1 b0,2 a1,1 a2,1 b0,1

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

IID 120 92.2 92.2 95.2 92.0 93.4 92.2 93.2 89.6 93.4 89.4
Bootstrap 240 94.4 94.0 93.6 93.6 94.0 94.4 91.8 87.2 92.0 82.6
GSBB 120 89.0 91.2 89.4 87.0 91.0 86.8 87.0 89.2 91.8 84.8

240 87.8 89.4 89.6 88.8 89.8 91.2 88.2 89.6 91.6 84.6

Columns 1–7 refer to E1 case and 8–10 to E2. Rows 1–2 and 3–4 contain results for IID bootstrap
and GSBB, respectively. For both methods ACPs for two sample sizes n = 120 and n = 240 are
presented

the model of lower order if according to some criteria it is comparable to more
complicated one. Having this in mind we decided consider the following cases

E1: PAR2 estimating 7 coefficients i.e. a1,1, a1,2, a1,3, a2,1, a2,2 and b0,1, b0,2;
E2: PAR2 estimating 3 coefficients i.e. a1,1, a1,2 and b0,1;
E3: PAR1 estimating 6 coefficients i.e. a1,1, a1,2, a1,3 and b0,1, b0,2, b0,3;
E4: PAR1 estimating 2 coefficients i.e. a1,1 and b0,1.

As a result, in E1 and E3 cases we estimate more coefficient than are nonzero in
reality, while in E2 and E4 we always have one less coefficient of each type.

To simulate E1-E4 ‘makeparma’ procedure provided by ‘perARMA’ package
was used. This function enables to construct a PARMA type sequence of required
length for inputed matrices of coefficients. Two different sample lengths n were
taken 120 and 240. As presented approach is based on Fourier representation of
model coefficients, we use also ‘ab2phth’ and ‘phth2ab’ procedures that enable to
transform matrices of coefficients to their Fourier representation and conversely. For
each simulated series we fit PAR model using ‘parmaf’ procedure. The function
returns estimates of parameters {a j, m, bk, m} as well as series of residuals of fitted
model. Next for residuals we apply one of two proposed bootstrap method: IID
bootstrap or GSBB. The number of generated bootstrap samples B was 300. In
a case of GSBB method we also need to comment the choice of block length b.
Since so far, there is no method of optimal block length choice we decided to take
b = ⇒ 3

∞
n∈ and b = T . The period length T is equal to 12. Taking b = T we wanted

to check how the performance of GSBB changes when the longer block is taken.
Moreover, b = T is a case when GSBB reduce to SBB. Since the results in both
cases were comparable in the sequel we only discuss b = ⇒ 3

∞
n∈ case. Finally, to

calculate the bootstrap equal-tailed pointwise confidence intervals bootstrap version
of coefficients {a j, m, bk, m} were calculated (using ‘makeparma’ function). The 95 %
confidence level was taken. The whole procedure was repeated 500 times and the
ACPs were calculated. The results for E1-E2 are presented in Tables 1 and 2 and for
E3-E4 in Tables 3 and 4.
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Table 2 Average lengths of confidence intervals for PAR2 model

Method n Average length of CI
E1 E2
a1,1 a1,2 a1,3 a2,1 a2,2 b0,1 b0,2 a1,1 a2,1 b0,1

IID bootstrap 120 0.3323 0.4693 0.3862 0.3247 0.4796 0.2403 0.3552 0.3332 0.3282 0.2531
240 0.2323 0.3280 0.2667 0.2314 0.3330 0.1734 0.2498 0.2349 0.2328 0.1828

GSBB 120 0.3127 0.4472 0.3656 0.3179 0.4627 0.2289 0.3403 0.3214 0.3106 0.2515
240 0.2218 0.3187 0.2566 0.2265 0.3277 0.1658 0.2479 0.2389 0.2501 0.1863

Columns of values 1–7 refer to E1 case and 8–10 to E2. Rows 1–2 and 3–4 contain results for
IID bootstrap and GSBB, respectively. For both methods ACPs for two sample sizes n = 120 and
n = 240 are presented

Table 3 Actual coverage probabilities for simulated PAR2 series

Method n ACP
E1 E2
a1,1 a1,2 a1,3 b0,1 b0,2 b0,3 a1,1 b0,1

(%) (%) (%) (%) (%) (%) (%) (%)

IID bootstrap 120 88.6 90.2 92.8 59.4 70.4 94.8 59.0 24.0
240 90.0 90.4 90.6 78.6 70.4 99.0 36.2 5.8

GSBB 120 87.0 88.0 88.0 72.4 80.8 84.4 58.6 21.0
240 86.9 87.3 88.3 72.7 82.6 88.1 31.2 4.4

Columns 1–6 refer to E3 case and 7–8 to E4. Rows 1–2 and 3–4 contain results for IID bootstrap
and GSBB, respectively. For both methods ACPs for two sample sizes n = 120 and n = 240 are
presented

Table 4 Average lengths of confidence intervals for PAR2 model

Method n ACP
E3 E4
a1,1 a1,2 a1,3 b0,1 b0,2 b0,3 a1,1 b0,1

IID bootstrap 120 0.3343 0.3308 0.4965 0.3186 0.4782 0.3407 0.1973 0.2278
240 0.2076 0.2067 0.3181 0.2010 0.2901 0.1863 0.1334 0.1648

GSBB 120 0.3276 0.3358 0.4772 0.2747 0.4141 0.2369 0.1852 0.2056
240 0.3248 0.3287 0.4680 0.2735 0.4116 0.2411 0.1210 0.1589

Columns of values 1–6 refer to E3 case and 7–8 to E4. Rows 1–2 and 3–4 contain results for IID
bootstrap and GSBB, respectively. For both methods ACPs for two sample sizes n = 120 and
n = 240 are presented

When the number of estimated parameters is big enough i.e. in E1 case IDD
bootstrap definitely outperforms GSBB. In fact it is exactly what one may expect
as in these examples the residuals are approximately independent and IID method
is the most appropriate. The ACPs for all coefficients are about 2–3 % lower
than the nominal confidence level independently on the sample size n. For GSBB
the corresponding values are even 6 % lower. Similar conclusions can be taken
in E3 case for a type parameters, although all ACPs are definitely lower than
for E1. Surprisingly, IID bootstrap is not working well for b type coefficients.



Bootstrap for Maximum Likelihood Estimates of PARMA Coefficients 21

For b0,1 and b0,2 the ACPs are about 35 % lower than the nominal coverage probabil-
ity for n = 120 and about 15–25 % for n = 240. Let us recall that b0,1 and b0,2 were
the nonzero coefficients. Additionally, for b0,3 which in reality is equal to zero IDD
bootstrap seems to produce too wide confidence intervals. For n = 120 the ACP is
almost perfectly equal to 95 % but for n = 240 it is close to 1. On the other hand,
GSBB provides constantly too low ACPs independently on n, but they are higher
compering to IID bootstrap and seem to converge slowly to the nominal coverage
probability.

Finally, E2 and E4 provide the evidence how destructive influence of the too small
set of estimated parameters can be. In fact the performance of the both bootstrap
techniques is good for E2 and the differences between those methods are small. E2
is a case, where the shocks are constant. The ACPs are similar comparing to E1 for
coefficient of a type and decrease about 5 % for b0,1. The noticeable problems appear
in E4 example. For both methods and n = 120 the ACPs are very low to became
extremely small for n = 240. This may indicate that bootstrap is inconsistent in
this problem. Let us recall that estimating only b0,1 we treat the rest of bs as zeros,
which means that σ(t) is a constat function. As a result the residuals are definitely
dependent.

Although we are aware that we did not provide any theoretical confirmation of
validity of the bootstrap methods in the considered problem, the simulation study
results seem to be very encouraging. They indicate the consistency of bootstrap.
Moreover, probably the practitioner will not be able to use the universal method
independently on the PARMA series structure. IDD bootstrap seems to be the best
choice when the shocks are constant, while block bootstrap is more appropriate in
the opposite case. Additionally, one needs to be extremely careful choosing the size
of parameters set that need to be estimated. Despite the longer time of computation,
the larger set should be taken to avoid the bootstrap inconsistency.
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Science and Higher Education and AGH local grant.
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EM-Based Inference for Cyclostationary Time
Series with Missing Observations

Christiana Drake, Oskar Knapik and Jacek Leśkow

Abstract Periodically correlated (or cyclostationary) time series are becoming more
and more popular in many areas (see Gardner et al. 2006). However, in many prac-
tical situations data that can be modeled with such time series is incomplete. Some
preliminary results on that problem have been presented in a previous work by Drake
et al. (2013) by the authors. In this chapter we propose a new ECM-type algorithm
based on conditional likelihood and profile likelihood to extend estimation to the
case when observations are missing completely at random.

1 Second-Order Cyclostationary Time Series

Let us assume that a zero-mean second-order cyclostationary time series {yt, t ◦ N}
is observed. More precisely, if BY (t, τ ) = Cov (yt, yt+τ ) denotes the autocovariance
function of {yt} , then this function is periodic in t.

Some classes of second-order periodically correlated time series can be approxi-
mated as amplitude-modulated time series in the following form:

yt = xt · ct, (1)

C. Drake
Department of Statistics at University of California at Davis, Davis, USA
e-mail: drake@wald.ucdavis.edu

O. Knapik (B)

CREATES, Department of Economics and Business at Aarhus University, Aarhus, Denmark
e-mail: oknapik@creates.au.dk

J. Leśkow
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In this model (1) it is assumed that:

AS1 The deterministic sequence ct > 0 ⇒t ◦ {1, . . . , T}.
AS2 xt is a zero-mean stationary Gaussian sequence with a bounded and continuous
spectral density.

Assumption (AS1) assures that the distribution of yt is not degenerate at zero.
In this research, we assume that {xt} is an AR(p) process:

xt −
p∑

i=1

φixt−i = εt (2)

where {εt} is a sequence of independent Gaussian zero-mean random variables with
finite variance σ 2.

The deterministic sequence ct is assumed to be a known, periodic function of a
finite dimensional unknown parameter vector λ = (λ1, . . . , λm). A possible repre-
sentation of such a periodic function ct is given by:

ct = exp

⎛
⎝ k∑

j=1

(
λ1j cos ωjt + λ2j sin ωjt

)
⎞
⎠ , t = 1, . . . , T . (3)

We will assume that k is known, all frequencies are known and of the form
ωj ◦ (0, π ], i = 1, . . . , k : ωj = 2πr

P for some r = 1, . . . , P∈
2 , where P∈ = P − 1

for P odd, P∈ = P for P even and P is a known period. Our model parameters are
identifiable because the ct are uniquely determined and there is no scale ambiguity.

Missing data analysis of cyclostationary time series occurs in many time series
such as economic time series, mechanical signals and also ocean signals (Stefanakos
and Athanassoulis 2001). The aim of this chapter is to provide ECM-based statistical
procedures in the situation when complete observation of the periodically correlated
time series is not available and data is missing at random. Stefanakos and Athanas-
soulis (2001) proposed some nonstatistical approach to dealing with missing data.
Niu (1996) proposed integration over the missing observations in the case when λ

is known. In Drake et al. (2013) the authors have presented a preliminary statistical
approach to estimation with missing data. This chapter is a continuation of the pre-
vious work and proposes to use ECM-type algorithms adapted to periodic processes
to handle missing data problems in cyclostationary models.

This chapter is divided into four sections. Section 2 presents results on condi-
tional likelihood-based inference for cyclostationary time series. Section 3 presents
two ECM type algorithm developed and Sect. 4 presents simulations studies investi-
gating the convergence properties of the method and a comparison to the maximum
likelihood estimators for the complete data model.
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2 Likelihood Based Inference for Cyclostationary Time Series

Likelihood based inference for our model (1) can be conducted in two ways using
full likelihood or conditional likelihood function. The purpose of this section is to
introduce conditional likelihood function approach while the full likelihood approach
was presented in our previous chapter (see Drake et al. 2013). Relevant references
corresponding to likelihood-based inference can be found in Hamilton (1994).

In order to present the form of conditional likelihood function and subsequent
transformations we will need the following notation. In the sequel the matrix CT−p

is an (T − p) × (T − p) diagonal matrix with diagonal vector (cT , . . . , cp+1). The
symbol ./ denotes the element by element matrix division. For example let A = [aij]
and B = [bij] denote two matrices of the same dimension, then A./B = [aij/bij]. Let
also θ = (φ, λ, σ 2)T be the vector of all unknown parameters and suppose that we
have T = n + p observations.

We have the following

Proposition 2.1. The log-likelihood for a vector of observations y = (yT , . . . ,

yp+1)
T corresponding to the model (1) conditional on the first p observations is

given by:

lc(θ) = log fyT ,...,yp+1|yp,...,y1

(
yT , . . . , yp+1

∣∣yp, . . . , y1 ; θ
)

= − log
(∣∣det(CT−p)

∣∣)+ log fxT ,...,xp+1|xp,...,x1

⎧
yT
cT

, . . . ,
yp+1
cp+1

∣∣∣ yp
cp

, . . . ,
y1
c1

; θ
⎪

= − log
(∣∣det(CT−p)

∣∣)− T−p
2 log (2π) − T−p

2 log
(
σ 2
)+

−
T⎨

t=p+1

1
σ 2

⎩
yt
ct

−
p⎨

i=1
φi

yt−i
ct−i

⎫2

.

(4)
For the conditional log likelihood function (4) we obtain the following results.

The form of the conditional maximum likelihood estimate of σ 2 given φ and λ is

σ̂ 2
ML = 1

T − p

T∑
t=p+1

⎬
yt

ct
−

p∑
i=1

φi
yt−i

ct−i

⎭2

. (5)

The form of the conditional maximum likelihood estimate of φ given σ 2 and λ is

φ̂ML =
[
(Y ./C)T (Y ./C)

]−1
(Y ./C)T (y./c) , (6)

where c = (cp+1, . . . , cT
)T , y = (yp+1, . . . , yT

)T , Y and C are (T − p)× p Toeplitz
matrices

Y =
⎛
⎜⎝

yp . . . y1
...

. . .
...

yT−1 · · · yT−p

⎞
⎟⎠ ; C =

⎛
⎜⎝

cp . . . c1
...

. . .
...

cT−1 · · · cT−p

⎞
⎟⎠ . (7)
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The conditional maximum likelihood estimate of λ, for fixed σ 2 and φ is given
by

λ̂ML = arg max
λ

lc (λ) , (8)

where

lc (λ) = − log
(∣∣cp+1 · . . . · cT

∣∣)− T − p

2
log

⎩
1

T − p
(y./c)T P∈

1 (y./c)

⎫
, (9)

where P1 and P∈
1 are projection matrices defined as

P1 = (Y ./C)
[
(Y ./C)T (Y ./C)

]−1
(Y ./C)T , P∈

1 = I − P1, (10)

where I is the (T − p)-dimensional identity matrix. Proof of this result is presented
in the Appendix at the end of this chapter.

From Proposition 2.1. it is clear that the most difficult task is to obtain λML . In order
to bypass this difficulty we will apply the following step-wise estimation procedure
using a profile likelihood approach. Under (AS1), (AS2) the profile likelihood-based
estimates for the model under consideration are consistent. The conditional likelihood
in this case belongs to the exponential family. For the details see Theorem 9.8 by
Pawitan (2001).

The estimates are given by:

Step 1: Estimate λ using formula for λ̂ML.

λ̂ML = arg max
λ◦Λ

lc
⎧

y, λ, φ̂ML, σ̂ 2
ML

⎪
.

Step 2: Use λ̂ML from the previous step to obtain ML estimates of φ.
Step 3: Get σ 2 using λ̂ML and φ̂ML .

The following example where {xt} is an AR(1) will illustrate the algorithm.

Example 1. The steps for this process are as follows:

Step 1: Obtain λ̂ML as

λ̂ML = arg max
λ◦Λ

lc
⎧

y, λ, φ̂ML, σ̂ 2
ML

⎪
= arg max

λ◦Λ

(term1(λ) + term2(λ)) .
(11)

where
term1 = − log (|det(CT−1)|) ,

term2 = −T−1
2 log

⎩
1

T−1

T⎨
t=2

⎧
yt
ct

− φ̂ML
yt−1
ct−1

⎪2⎫
.
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Step 2: Using the formula from Step 1, taking λ = λ̂ML one obtains

φ̂ML =
T∑

t=2

⎛
⎝ yt

ct

⎧
λ̂ML

⎪ yt−1

ct−1

⎧
λ̂ML

⎪
⎞
⎠⎢ T∑

t=2

⎛
⎝ yt−1

ct−1

⎧
λ̂ML

⎪
⎞
⎠

2

.

Step 3: Using ML estimates of λ and φ one obtains

σ̂ 2
ML = 1

T − 1

T∑
t=2

⎛
⎝ yt

ct

⎧
λ̂ML

⎪ − φ̂ML
yt−1

ct−1

⎧
λ̂ML

⎪
⎞
⎠

2

.

In our proposed algorithm we take advantage of the linear model theory with closed
and known forms of conditional maximum likelihood estimators of φ and σ 2 given
other parameters for AR(p) processes. By profiling out the “nuisance parameters” σ 2

and φ we reduce the dimension of the nonlinear optimization problem by p + 1. Addi-
tional advantages combining conditional likelihood and profile likelihood estimation
will be presented in the section on ECM-type inference where the new algorithm will
be presented.

3 ECM-Type Algorithms in Likelihood-Based Inference
for Second-Order Cyclostationary Time Series
with Missing Observations

The expectation-maximization (EM) algorithm is an iterative procedure that can
be used for computing the maximum likelihood estimator for data sets with missing
observations (Dempster et al. 1977). For the model under consideration, there are sev-
eral possible approaches to the EM algorithm. It can be used with the full likelihood
function which in this case is a well-known problem of inference for incomplete
data within the multivariate normal distribution (Schaffer 1997). The conditional
likelihood function leads to a modified EM algorithm in the linear regression setting
with normal errors. The structure of the model imposes a special EM algorithm to
estimate our model with incomplete time data. The algorithms are relatively easy to
implement but are not trivial to describe.

The conditional maximum likelihood approach enables the use of the ECM
(expectation conditional maximization) algorithm which replaces the M-step of the
EM algorithm by several computationally simpler conditional maximization (CM)
steps. A CM-step may be in closed form or it might itself require iteration. However
the CM maximizations are over smaller dimensional spaces, so they are simpler,
faster and more stable than the corresponding full maximization called for in the M-
step of the EM algorithm, especially when iterations are required. The proposed new
ECM algorithms can be seen as a nice example of applications of those methods in
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the time series context, when the joint distribution of the observations is multivariate
normal.

We propose two ECM type algorithms based on the conditional maximum like-
lihood function in our model. We propose to extend Rubin’s approach for an AR(p)

process to our model conditionally on λ. Assuming that λ is known, conditional on
the first p observations we can express the maximum likelihood estimates of φ and
σ 2 as functions of a vector of sufficient statistics S. Taking advantage of the AR(p)

representation of xt = yt
/

ct, the EM inference can be based on a modification of the
sufficient statistics S(t) (see Little and Rubin 2002). Expressing estimates of φ(S)

and σ 2(S) as functions of those statistics and using modified sufficient statistics we
obtain conditional EM estimates φ̂

(t+1)
EM and σ̂ 2

EM
(t+1).

ECM-type algorithm

Start with θ(t) = (λ(t), φ(t), σ 2(t))

E-step Calculate Q(θ |θ(t)) = Eθ(t) (l(y, λ, φ, σ 2)|yobs) with possible approximation
of Q(θ |θ(t)) → l(ŷ, λ, φ, σ 2) where

ŷ(i)
t =
{

yt, if yt is present
E
(
yt |yobs; θ(i)

)
, if yt is missing.

(12)

CM-steps

1. Obtain estimate of φ that is φ̂
(t+1)
EM .

2. Use φ̂
(t+1)
EM to obtain σ̂ 2

EM
(t+1)

.

3. Use φ̂
(t+1)
EM and σ̂ 2

EM
(t+1)

to obtain estimate of λ as

λ̂
(t+1)
EM = arg max

λ◦Λ

Q
⎧
λ|λ(t), φ̂

(t+1)
EM , σ̂ 2

EM
(t+1)
⎪

.

Repeat the steps above until convergence is obtained.
We illustrate this algorithm with the following example.

Example 2. Let us consider the special case of model (1) when {xt} is an AR(1)

process. Let θ(t) = (λ(t), φ(t), σ 2(t)
) be a vector of starting values.

In the E-step we calculate Q(θ |θ(t)) = Eθ(t) (l(y, λ, φ, σ 2)|yobs). To calculate
Q(θ |θ(t)) one may use a method proposed by Brockwell and Davis (2002). In this
method, we take advantage of the fact that joint distribution of (y2, . . . , yT ) is a
multivariate normal distribution. Therefore, it is possible to approximate Q(θ |θ(t))

using l(ŷ, λ, φ, σ 2) where

ŷ(i)
t =
{

yt, if yt is present
E
(
yt |yobs; θ(i)

)
, if yt is missing.

(13)

Next we look at the conditional maximization steps of our algorithm. It can be
seen assuming that λ is known, conditional maximum likelihood estimates for σ 2
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and φ can be expressed using the following complete-data sufficient statistics S =
(s3, s4, s5)

s3 =
T∑

t=2

y2
t

c2
t
, s4 =

T∑
t=2

y2
t−1

c2
t−1

, s5 =
T∑

t=2

yt−1yt

ct−1ct
.

Conditional maximum likelihood estimates from a previous example given λ can be
expressed as

φ̂ML = s5s−1
4 ,

and
σ̂ 2

ML =
[
s3 − φ̂2

MLs4

]/
(T − 1).

Two of the conditional maximization (CM) steps will be performed to get con-
ditional maximum likelihood estimates of (φ, σ 2) given λ when there are missing
data. Let

(
φ(t), σ 2(t)

)
be estimates of

(
φ, σ 2
)

at iteration t. This step of the algorithm
calculates

(
φ(t+1), σ 2(t+1)

)
from the complete-data sufficient statistics S replaced by

estimates S(t) from the E step.

It is worth mentioning that for a given λ the E step computes S(t) =
⎧

s(t)
3 , s(t)

4 , s(t)
5

⎪
,

where

s(t)
3 =

T∑
t=2

⎡
⎣
⎬

ŷ(t)
t

ct

⎭2

+ c(t)
ii

⎤
⎦, s(t)

4 =
T∑

t=2

⎡
⎣
⎬

ŷ(t)
t−1

ct−1

⎭2

+ c(t)
i−1,i−1

⎤
⎦,

s(t)
5 =

T∑
t=2

[
ŷ(t)

t−1

ct−1

ŷ(t)
t

ct
+ c(t)

i−1,i

]
, (14)

ŷ(t)
t =
{

yt, if yt is present,
E
(
yt
∣∣yobs; θ(t)

)
, if yt is missing

(15)

and

c(t)
ij =
{

0, if yi or yj is present,
1

cicj
Cov
(
yi, yj
∣∣yobs; θ(t)

)
, if yi and yj are missing.

(16)

Using modified sufficient statistics one obtains:

φ̂
(t+1)
EM = s(t)

5

⎧
s(t)

4

⎪−1
,

and

σ̂ 2
EM(t + 1) =

⎩
s(t)

3 −
⎧
φ̂

(t+1)
EM

⎪2
s(t)

4

⎫⎢
(T + 1).

Using θ(t) one obtains EM estimates of φ, σ 2 conditional on λ.
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Then substituting those conditional EM estimates of φ, σ 2 into the modified log-
likelihood function one obtains

Q
⎧
θ |θ(t)
⎪

→ lc
⎧

ŷ, λ, φ̂
(t+1)
EM , σ̂ 2

EM
(t+1)
⎪

= − log (|det(CT−1)|) − T − 1

2
log
⎧
σ 2

EM
(t+1)
⎪

−
T∑

t=2

1

σ 2
EM

(t+1)

⎬
ŷ(t)

t

ct
− φ̂

(t+1)
EM

ŷ(t)
t

ct−1

⎭2

Then the conditional maximization (CM) (t + 1)th step for λ is given as

λ̂
(t+1)
EM = arg max

λ◦Λ

Q
⎧
λ|λ(t), φ̂

(t+1)
EM , σ̂ 2

EM
(t+1)
⎪

.

The function above has to be maximized numerically.
The procedure above should be repeated until convergence is obtained.
We also consider a different ECM-type algorithm and refer directly to the idea of

the profile likelihood approach presented in the previous section.

ECM-type algorithm (second type)

Start with θ(t) = (λ(t), φ(t), σ 2(t))

E-step Calculate Q(θ |θ(t)) = Eθ(t) (l(y, λ, φ, σ 2)|yobs) with possible
approximation of Q(θ |θ(t)) → l(ŷ, λ, φ, σ 2) where

ŷ(i)
t =
{

yt, if yt is present
E
(
yt |yobs; θ(i)

)
, if yt is missing.

(17)

CM-steps

1. Obtain the estimate of λ as

λ̂
(t+1)
EM = arg max

λ◦Λ

Q
⎧
λ|λ(t), φ̂

(t)
EM (λ) , σ̂ 2

EM
(t)

(λ)
⎪

.

2. Use λ̂
(t+1)
EM to obtain φ̂

(t+1)
EM

3. Use λ̂
(t+1)
EM and φ̂

(t+1)
EM to obtain σ̂ 2

(t+1)

EM

Repeat the steps above until convergence is obtained.
The difference between those two algorithms is obtained by making, in the sec-

ond algorithm, the CM-step corresponding to estimates of λ the first CM-step and
representing the EM-based estimates of φ and σ 2 as a function of λ, which has to be
maximized numerically.
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The ECM preserves the appealing convergence properties of the EM
algorithm, such as its monotone convergence (see Meng and Rubin 1993; McLachlan
and Krishnan 2008). The ECM algorithm converges typically more slowly than the
EM algorithm in terms of number of iterations, but can be faster in total computer
time.

The simulation study for comparison of different estimation procedures will be
presented in the next section.

4 Simulation Study

We focus on the following model

yt = ctxt,

where xt = φxt−1 + εt , {εt} ∞ N(0, σ 2) and

ct = exp

⎩
λ1 cos

⎩
2π

20
t

⎫
+ λ2 sin

⎩
2π

20
t

⎫⎫
.

For the model under consideration, the values of the parameters were chosen φ = 0.5,
σ 2 = 1, λ1 = 0.4 and λ2 = 0.5.

In our study we consider a sample size of n = 100 observations. The amount of
missing observations is 5, 10, 15 %, and finally 20 % of the total number of observa-
tions. For each case the simulation was repeated Ns = 100 times. Using our results
from above we calculate the Mean Squared Error (MSE) using the following formula

MSE
⎧
θ̂
⎪

= E

⎩∥∥∥θ̂ − θ

∥∥∥2
⎫

,

where ∗x∗ is the L2 norm of the vector x.
The average number of iterations to reach the convergence was calculated to give

some idea of the speed of convergence of the algorithms under consideration.
We have also calculated the average distance between EM-type or ECM-type

algorithm based estimates and the conditional maximum likelihood estimates for the
complete data.

The simulation scheme was the following. Firstly, we simulate n observations from
our model and estimate the unknown vector of parameters θ using the conditional
maximum likelihood approach for the complete sample. Then we choose nm% of
observations to be missing. For each method we have the same observations to be
missing and the same starting points being the true parameters. For the incomplete
data case, we estimate unknown parameters using missing data techniques like EM
and ECM algorithm.

The results of the simulations study are presented in the Tables 1, 2, 3 and 4 below:
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Table 1 Results of conditional ML, EM algorithm-based and ECM algorithm-based estimation,
n = 100, 5 % of missing observations

Method MSE(θ̂ ) MSE(λ̂) MSE(φ̂, σ̂ 2) Average distance Average number
of iterations

Conditional ML 0.4676363 0.02699937 0.27355
EM 0.4717652 0.03034568 0.264452 0.009119588 13.21
ECM 0.4771919 0.03054908 0.2680076 0.01148294 11.88
ECM2 0.4717618 0.03034477 0.2644503 0.00911772 9.84

Table 2 Results of conditional ML, EM algorithm-based and ECM algorithm-based estimation,
n = 100, 10 % of missing observations

Method MSE(θ̂ ) MSE(λ̂) MSE(φ̂, σ̂ 2) Average distance Average number
of iterations

Conditional ML 0.4806782 0.0281276 0.2712334
EM 0.4689554 0.03338665 0.2485643 0.01955335 15.85
ECM 0.5315 0.03314359 0.2996184 0.01653104 13.07
ECM2 0.4689547 0.03338656 0.2485639 0.01955304 11.84

Table 3 Results of conditional ML, EM algorithm-based and ECM algorithm-based estimation,
n = 100, 15 % of missing observations

Method MSE(θ̂ ) MSE(λ̂) MSE(φ̂, σ̂ 2) Average distance Average number
of iterations

Conditional ML 0.4674685 0.02830395 0.2706489
EM 0.5349602 0.03903968 0.2973513 0.06677665 31.03
ECM 0.5944072 0.03857192 0.3513506 0.04578313 16.39
ECM2 0.531812 0.03901023 0.2942177 0.06298165 18.93

Table 4 Results of conditional ML, EM algorithm-based and ECM algorithm-based estimation,
n = 100, 20 % of missing observations

Method MSE(θ̂ ) MSE(λ̂) MSE(φ̂, σ̂ 2) Average distance Average number
of iterations

Conditional ML 0.4470226 0.02800964 0.2644081
EM 0.9342054 0.03711569 0.6753449 0.369395 103.97
ECM 0.7046426 0.03668786 0.4434781 0.1047571 20.56
ECM2 0.9529035 0.03717287 0.6939518 0.3871174 45.8

There are several comments to be made. Firstly, the most unexpected result is the
smallest MSE for θ̂ is obtained using EM and ECM (second type) algorithms, even
smaller than the MSE for θ̂CML . This result is an extension of results obtained for the
case of autoregressive processes by Noomene (2007).
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The classical ECM algorithm does not perform better than the EM algorithm in
terms of MSE. However we refer directly to the idea of profile likelihood and extend
it to ECM-type algorithms (second type) which leads to a slightly lower MSE than
in the EM algorithm case. Therefore, in our model this method gives better results
than the EM algorithm. Moreover, both proposed new algorithms are more stable
and converge faster than the classical EM algorithm.

Let us summarized the obtained results. Estimating the parameters of the model
under consideration should be sometimes (when there is small amount of missing
observations in the data) made using EM or ECM (second) algorithms. The proposed
ECM (second type) algorithms outperforms existing in the literature on cyclosta-
tionary time series EM algorithm in each situation. The main advantage of the new
method is in terms of lower MSE, higher stability and faster convergence than the
classical EM algorithm.
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Knapik gratefully acknowledges the Kosciuszko Foundation for financial support for this research.

5 Appendix

Proof of Proposition 2.1

The starting point is the observation that

fy (y) = |det C|−1fx
⎧

C−1y
⎪

.

Using that fact and properties of the process (see [8]) the joint density for the complete
data set can be written as

fyt |yt−1,...,yt−p (y; θ) = ∣∣det CT−p
∣∣−1 ·

T∏
t=p+1

fxt |xt−1,...,xt−p

⎩
yt

ct

∣∣∣∣yt−1

ct−1
, . . . ,

yt−p

ct−p

⎫

taking the logarithm we have
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lc(θ) = log fyT ,...,yp+1|yp,...,y1

(
yT , . . . , yp+1

∣∣yp, . . . , y1 ; θ
)

= − log
(∣∣det(CT−p)

∣∣)+ log fxT ,...,xp+1|xp,...,x1

⎩
yT

cT
, . . . ,

yp+1

cp+1

∣∣∣∣yp

cp
, . . . ,

y1

c1
; θ

⎫

= − log
(∣∣det(CT−p)

∣∣)− T − p

2
log (2π) − T − p

2
log
⎧
σ 2
⎪

+

−
T∑

t=p+1

1

σ 2

⎬
yt

ct
−

p∑
i=1

φi
yt−i

ct−i

⎭2

(18)

Criterion lθ is quadratic w.r.t. φ. Thus, its minimization over φ can be carried out
analytically. The ML estimate of φ is, for given λ and σ 2, obtained as

φ̂ML =
[
(Y ./C)T (Y ./C)

]−1
(Y ./C)T (y./c) , (19)

where c = (cp+1, . . . , cT
)T , y = (yp+1, . . . , yT

)T , Y and C are (T − p)× p Toeplitz
matrices

Y =
⎛
⎜⎝

yp . . . y1
...

. . .
...

yT−1 · · · yT−p

⎞
⎟⎠ ; C =

⎛
⎜⎝

cp . . . c1
...

. . .
...

cT−1 · · · cT−p

⎞
⎟⎠ . (20)

Setting the partial derivative of lc(θ) w.r.t. σ 2 to 0 yields, for given λ and φ, the ML
estimate of σ 2

σ̂ 2
ML = 1

T − p

T∑
t=p+1

⎬
yt

ct
−

p∑
i=1

φi
yt−i

ct−i

⎭2

. (21)

The likelihood function as a function of λ given φ and σ 2 is highly nonlinear.
Therefore, an analytical solution can not be obtained. The maximization should be
performed numerically. The form of the objective function comes from the work of
Ghogho and Garel (1999).
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Subsampling for Weakly Dependent
and Periodically Correlated Sequences

Elżbieta Gajecka-Mirek

Abstract In 1999 a new type of dependence in time series—weak dependence (see
Dedecker et al. 2008) was introduced. This gives tools for the analysis of statisti-
cal procedures with very general data generating processes. One of such statistical
procedures is subsampling. It can be used if statistical inference for dependent data
based on asymptotic distributions is complicated or it fails. For independent data and
stationary time series subsampling procedures are well investigated. Our research is
focused on non-stationary—periodically correlated time series. In this chapter the
subsampling consistency of self-normalized statistics for the generalization of the
model introduced by McElroy and Politis (2007) is expanded.

1 Introduction

Many real life phenomena are characterized by a seasonal behavior. Popular methods
that can be used to describe seasonal behavior are periodically and almost period-
ically correlated processes considered in Hurd (1991). On the other hand in many
applications of time series analysis one is confronted with heavy tailed behavior.
Such behavior is characterized by large probabilities of extremal events. Finally,
contemporary time series modeling and statistical inference should take account of
long range dependence. Therefore, in this chapter one will simultaneously be deal-
ing with three features of time series: periodic non-stationarity, heavy tails and long
memory. In such a framework, resampling procedures will be used to estimate the
mean function Politis et al. (1999). The main goal is to show consistency of subsam-
pling procedure in estimating a mean function for time series that are: periodically
correlated, with heavy tails and long memory. From this perspective this work can
considered as an extension of the results Jach et al. (2012).
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The starting point of this chapter is the model considered in McElroy and Politis
(2007) and defined as:

Zt = vtNt + η, (1)

where vt and Nt are independent, vt is the i.i.d. sequence of α−stable random variable
(α ◦ (1, 2)) and Nt is the stationary Gaussian mean zero process with the long
memory. Observe that in the model (1) EZt = η because vt and Nt are independent
and Nt is mean zero. η denotes the constant that to be estimated. Moreover E(σt) ⇒= 0.

It is easy to see that the model (1) is stationary.
The long memory property can be characterized as

Definition 1. Brockwell and Davis (1991) The process {Xt}t◦Z is said to have a long
memory if its autocovariance function γ satisfies

∑
0<|h|<n

γ (h) ∈ Cnβ, and
∑

0<|h|<n

|γ (h)| = O(nβ)

where γ is autocovariance function, β ◦ [0, 1), and C > 0.

We mark this condition: LM(β).

Additionally it is assumed that the Gaussian mean zero process Nt is purely
nondeterministic with the finite variance.

The α−stability is defined as follow:

Definition 2. Samorodnitsky and Taqqu (1994) Random variable X has a stable
distribution if there exist parameters: 0 < α → 2, −1 → β → 1, σ > 0 and μ ◦ R
such that characteristic function ϕ(·) of X has the form:

ϕ(t) =
⎛

exp{−τα|t|α(1 − iβ sgn(t)πα
2 ) + iμt}, α ⇒= 1

exp{−τ |t|(1 + iβ 2
π

sgn(t) ln |t|) + iμt}, α = 1

α is the stability index, β is the skewness parameter, τ is the scale parameter and μ

is the location parameter.

From Guégan (2001) it is known that in the Gaussian long memory process the
special type of time series dependence need to be considered—the weak dependence.

Definition 3. Dedecker et al. (2008) Let (E, ∞ · ∞) be a normed space. We assume
that a function h : Ew −∗ R belongs to the class L = {h : Ew ∗ R, ∞ h ∞≥→
1, Lip(h) < ≥}, where Lip(h) = supx ⇒=y

|h(x)−h(y)|
∞x−y∞1

and ∞ x ∞1= ⎝w
i=1 ∞ xi ∞,

w ◦ N .

A sequence {Xn}n◦N of random variables taking values in Ew is called (ε,L ,Ψ )−
weakly (ε−weakly) dependent if there exists Ψ : L × L × N∗ × N∗ ∗ R
(N∗ = N ∼ {0}) and a sequence {εr}r◦N (εr ∗ 0) such that for any (f , g) ◦ L ×L ,

and (u, v, r) ◦ N∗2 × N

|Cov(f (Xi1, ..., Xiu), g(Xj1 , ..., Xjv))| → Ψ (f , g, u, v)εr
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Fig. 1 AR(1) process with Bernoulli innovations with parameter s = 0.3

whenever i1 < i2 < · · · < iu → r + iu → j1 < j2 < · · · < jv.
The following distinct functions Ψ yield θ weak dependence coefficients:

if Ψ (f , g, u, v) = vLip(g) then ε(r) = θ(r).

The notion of weak dependence gives us tools for the analysis of statistical proce-
dures with very general processes (e.g.: Bernoulli shifts or Markov processes driven
by discrete innovations).

In what follows, the model (1) is extended into the time series with periodically
correlated autocovariance, according to the definition below.

Definition 4. Time series {Xt}t◦Z is Periodically Correlated (PC) if the mean
μX(t) = E(Xt) = μX(t + T) and the autocovariance function
BX(t, h) = cov(Xt, Xt+h) = BX(t + T , h), for all h ◦ Z.

Example 1 Bernoulli shift: Xn = H(ξn, ξn−1, ...) (with H(x) = ⎝≥
k=0 2−(k+1)xk)

is not mixing but is weakly dependent.
Xn =⎝≥

k=0 2−(k+1)ξn−k, where ξn−k is the kth digit in the binary representation
of the uniformly chosen number Xn = 0. ξnξn−1... ◦ [0, 1]. Such Xn is deterministic
function of X0, so the event A = (X0 → 1

2 ) belongs to the σ− algebras: σ(Xt, t → 0)

and σ(Xt, t ≥ n). From definition: α(n) ≥| P(A ≤ A) − P(A)P(A) | = 1
2 − 1

4 = 1
4 .

The {Xn} is weakly dependent, because:

Lemma 1 Dedecker et al. (2008) Bernoulli shifts are θ−weakly dependent with
θ(r) → 2δ[r/2], where {δr}r◦N is defined by: E | H(ξt−j, j ◦ Z) − H(ξt−j1|j|→r, j ◦
Z) |.
Example 2 Example of the model which satisfied weak dependence definition (but
not fulfilled mixing conditions) is AR(1) model defined as: Xt = aXt−1 + εt, where
|a| < 1 and innovations {εt} are i.i.d. Bernoulli variables with parameter s = P(εt =
1) = 1 − P(εt = 0) (illustration—Fig.1).

The extension of the model (1) investigated in this chapter is:
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Fig. 2 PAR(1)—AR(1) process multiplied by periodical function f (t) = 2cos(2π t/10)

Xt = σtGt + ηt,

where σt and Gt are independent, σt, is i.i.d. mean μ different from zero and has the
marginal distribution of an α−stable random variable. Moreover Gt is periodically
correlated time series with known period T and can be written as Gt = ftNt for
a long memory, stationary mean zero Gaussian process Nt, and ft− bounded and
scalar periodic sequence ft = ft+T , EXt = ηt(= η(t)) is deterministic and periodic
function with the same, known period T as ft (Fig. 2).

It is easy to see that above model is periodically correlated. It is shown in Sect. 2.
One of the statistical methods to analyze a time series are resampling methods.

The resampling procedures for independent data and stationary time series are well
developed. But there is still not enough of research in field of nonstationary models,
although some results being published (e.g. Dudek 2011; Lenart 2008).

For the model (2) the subsampling (one of the resampling methods) is considered
to approximate an asymptotic distribution of a self-normalized sample mean’s vector.

The idea of subsampling is as follows: the statistic ϑn(ϕ̂n −ϕ) is recomputed over
“short”, overlapping blocks of length b (b depends on n, where n is the length of the
sample, ϕ̂n is the estimator of unknown parameter ϕ).

n − b + 1 statistics ϑb(ϕ̂n,b,t − ϕ̂n) are obtained where ϕ̂n,b,t are subsampling
versions of the estimator ϕ̂n.

Then empirical distributions Ln,b(x) = 1
n−b+1

⎝n−b+1
t=1 1{ϑb(ϕ̂n,b,t−ϕ̂n)→x} are used

to approximate the asymptotic distribution J(x) of the estimator ϑn(ϕ̂n − ϕ).

2 The Model

Let the time series {Xt}t◦Z be defined as:

Xt = σtGt + ηt, (2)
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where

1. σt and Gt are independent,
2. Let σt = √

εt, where εt are i.i.d. and have the marginal distribution of an
α/2 − stable random variable with skewness parameter 1, scale parameter
τ = (cos(πα/4))2/α, and location parameter zero,

3. E(σt) = μ different from zero,
4. Gt is periodically correlated time series with period T and can be written as

Gt = ftNt for a long memory, purely non-deterministic, stationary mean zero
Gaussian process Nt, and ft− bounded and scalar periodic sequence ft = ft+T ,

5. Gt is a long memory with parameter β ◦ (0, 1),

6. EXt = ηt(= η(t)) is deterministic and periodic with the same period T as the
function ft .

Proposition 1 The model (2) is periodically correlated.

Proof

BX(t + T , h) = ft+T ft+T+hBZ(t + T , h)

= ft+T ft+T+hBZ(h) = ft ft+hBZ(t, h) = BX(t, h),

BX(t, h) and BZ(t, h) are the autocovariance functions of respectively the model
(2) and the model (1). �

Xt has symmetric and α−stable marginal distribution with the scale parameter
ft
√

γN (0)/2, (γN is autocovariance function of Nt from definition of model (2)) for
t = 1, 2, ..., NT and the mean of σt exists and is equal to μ (see Samorodnitsky and
Taqqu 1994).

It is obvious, from the definition of the model (2), that autocovariance function
Cov[Xt, Xt+h] = BX(t, h) = BX(t + T , h) is infinite for h = 0 but for h ⇒= 0,

Cov[Xt, Xt+h] = μ2EGtGt+h = ft ft+hBZ(h) = μ2ft ft+hBN (h) = μ2ft ft+hγN (h).

3 Central Limit Theorem

To apply subsampling method we must know: if a non-degenerate asymptotic distri-
bution of the statistic exists and if subsampling method is consistent. In this section
we will focus on the first of above conditions and introduce generalization of CLT
of McElroy and Politis (2007).

Consider X̄N (s) as an estimator of ηs = ηN (s):

η̂N (s) = X̄N (s) = 1

N

N−1∑
p=0

Xs+pT , s = 1, 2, ..., T ,



42 E. Gajecka-Mirek

where T is the period, constant.
Let: N(X̄N (s)− ηN (s)) =⎝N−1

p=0 Ys+pT , s = 1, 2, ..., T where Yt = Xt − η(t) =
σtGt .

Define
ζ = max{1/α, (β + 1)/2}.

α is a tail parameter and β is a long memory parameter.
In this chapter it is assumed that the number of observation is NT . From the

definition of the model (2)
⎝

0<|h|<NT |γN (h)| = O((NT)β). It follows that⎝
0<|h|<N |γN (hT)| → ⎝0<|h|<NT |γN (h)| = O((NT)β) = O(Nβ), since T is

constant.

Theorem 1. Suppose the assumptions 1.–6. from Sect.2 hold, and assume that the
long memory condition LM(β) holds for β ◦ [0, 1) with the same β for each s =
1, 2, ..., T . Then

N−ζ
N−1∑
p=0

Ys+pT
d−∗

⎞

S(s) if 1/α > (β + 1)/2
V (s) if 1/α < (β + 1)/2
S(s) + V (s) if 1/α = (β + 1)/2.

(3)

d−∗ denotes convergence in distributions. S(s) is a SαS variable with zero loca-
tion parameter, and scale fs

√
γN (0)/2, s = 1, .., T . V (s) is a mean zero Gaussian

variable with variance C̃(s)μ2/(β + 1). Moreover S(s) and V (s) are independent.

Sketch of proof in Appendix

First theorem concerns convergence of the sample means. Observe that if we extend
Theorem 1 and take α = 2 and β = 0 we obtain the classical central limit theorem.

In the second theorem joint asymptotic behavior for normalized sample means
and sample variances is introduced.

Theorem 2. Suppose the assumptions 1.–6. from Sect.2 hold, and assume that the
long memory condition LM(β) holds for β ◦ [0, 1) with the same β for each s =
1, 2, ..., T . Then the sample first and second moments of the {Yt} series, normalized
by Nζ , converge jointly to absolutely continuous random variables.

⎠
N−ζ

N−1∑
p=0

(Xs+pT − ηN (t)), N−2ζ
N−1∑
p=0

(Xs+pT − XN (s))2)

d−∗

⎞

(S(s), U(s)) if 1/α > (β + 1)/2
(V (s), 0) if 1/α < (β + 1)/2
(S(s) + V (s), U(s)) if 1/α = (β + 1)/2.

(4)



Subsampling for Weakly Dependent and Periodically Correlated Sequences 43

S(s), V (s) are defined as in Theorem 1. U(s) is α/2 stable with zero location para-
meter, skewness one, and scale proportional to τ f 2

s γN (0), for s = 1, 2, ..., T . V (s)
is independent of U(s), but S(s) and U(s) are dependent.

Sketch of proof in Appendix

Observe that in the case 1/α > (β + 1)/2 the sample variances can be used to
studentize the X̄N (s). While 1/α < (β + 1)/2 another normalization needs to be
found.

Let us define

⎧LM(ρ, s) = ⎪⎪
[Nρ ]∑
|h|=1

1

N − |h|
N−|h|∑
p=0

(Xs+pT Xs+pT+hT − X̄2
N (s))
⎪⎪1/ρ

,

where ρ ◦ (0, 1) s = 1, 2, ..., T .

As in the chapter McElroy and Politis (2007) we will use⎧LM(ρ, t) as an additional
normalization of our sample means.

Next theorem investigates asymptotic behavior of⎧LM(ρ, t).

Theorem 3. Suppose the assumptions 1.–6. from Sect.2 hold, and assume that the
long memory condition LM(β) holds for β ◦ [0, 1) with the same β for each s =
1, 2, ..., T . Let ρ ◦ (0, 1). Then̂LM(ρ, s) converges in probability to a constant at
rate Nβ. In particular,

N−β̂LM(ρ, s)
P−∗ μ2/ρC(s)1/ρ.

Proof in Appendix

Main result—Theorem 4 is conclusion of Theorems 1, 2 and 3.

Theorem 4. Central Limit Theorem
Suppose the assumptions 1.–6. from Sect.2 hold, and assume that the long memory
condition LM(β) holds for β ◦ [0, 1) with the same β for each s = 1, 2, ..., T . Let
ρ ◦ (0, 1). Then the following joint weak convergence holds:

⎠
N−ζ

N−1∑
p=0

(Xs+pT − ηN (s)), N−2ζ
N−1∑
p=0

(Xs+pT − X̄N (s))2, N−2ζ+1̂LM(ρ, s)
)

d−∗

⎞

(S(s), U(s), 0), if 1/α > (β + 1)/2
(V (s), 0, μ2/ρC(s)1/ρ), if 1/α < (β + 1)/2
(S(s) + V (s), U(s), μ2/ρC(s)1/ρ), if 1/α = (β + 1)/2.

(5)

The normalized statistic also converges weakly. Define PN (s) by
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PN (s) =
√

N(X̄N (s) − ηN (s))⎨
1
N

⎝N−1
p=0 (Xs+pT − X̄N (s))2 +̂LM(ρ, s)

and an absolutely continuous random variable Q(s) by

Q(s) =

⎞

S(s)/
√

U(s), if 1/α > (β + 1)/2
V (s)/μ1/ρC(s)1/2ρ, if 1/α < (β + 1)/2
(S(s) + V (s))/

⎩
U(s) + μ2/ρC(s)1/ρ, if 1/α = (β + 1)/2.

Then
PN (s)

d−∗ Q(s). (6)

Proof in Appendix

4 Consistency of the Subsampling

From the Central Limit Theorem we know that a non-degenerate asymptotic dis-
tribution of the normalized statistic exists. Provided the subsampling estimator is
consistent, the subsampling method can be used to estimate the vector of the means.

Assume that for the model (2) the following seven conditions hold:

1. The statistic⎫ηN (s) is an estimator of unknown parameter ηN (s), with studentiza-

tion PN (s) =
√

N(⎫ηN (s)−ηN (s))⎫σN (s) , s = 1, 2, ..., T , where

⎫σN (s) =
⎨

1
N

⎝N−1
p=0 (Xs+pT −⎫ηN (s))2 +⎧LM(ρ, s).

2. The statistics PN (s), s = 1, 2, ..., T converge weakly to the limit random vari-
ables with the cumulative distribution functions L(s).

3. The empirical distribution functions LN (s), are computed from the subsamples
{Xs+pT }, (s = 1, 2, ..., T , p = 0, ..., N − 1) of the length N from the sample
of the length NT , where Xt = ftZt is PC and ε—weakly dependent with the
weak dependence parameters εr (by the Proposition 1 of Jach et al. (2012) {Zt}
is θ—weakly dependent), Zt is strictly stationary time series.

4. LN (s)(x) ∗ L(s)(x) if N ∗ ≥, s = 1, 2, ..., T .

5.
√

N(⎫ηN (s) − ηN (s)) converge weakly to Z(s), for all s = 1, 2, ..., T . Z(s) are
random variables and ⎫ηN (s) converge weakly to W (s), s = 1, 2, ..., T where
W (s), are positive random variables with the probability 1.

6. b
N ∗ 0, if b ∗ ≥ and N ∗ ≥.

bN = b is the length of subsampling subseries: Xs+qT , Xs+(q+1)T ...,

Xs+(q+b−1)T , q = 0, 1, ..., N − b.

7.
⎝≥

r=0 ε(r)
2
3 < ≥, limn∗≥ b

N (1 ∨ (
L(b)4

b )
1
3 ∨ (

L(b)
b )

2
3 ) = 0, ε(r) is the weak

dependence parameter.
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a ∨ b is the maximum of the numbers a, b ≥ 0. L(b) = LipZN,b,q(s), where

ZN,b,q(s) = √
b(⎫ηN,b,q(s) − ηN (s))/⎫σN,b,q(s)

⎫ηN,b,q(s) = b−1
s+qT+b−1∑

l=s+qT

Xl,

⎫σ 2
N,b,q(s) = b−1

s+qT+b−1∑
l=s+qT

(Xl −⎫ηN,b,q(s))
2 +⎧LMN,b,q(ρ, s),

⎧LMN,b,q(ρ, s) = |
[bρ ]∑
|h|=1

1

b − |h|
s+qT+b−1−|h|∑

l=s+qT

(XlXl+h − (⎫ηN,b,q(s))
2)|1/ρs ,

ρ ◦ (0, 1).

Theorem 5. Consistency of the subsampling estimator
Under the above seven conditions we have:

1. If x is the point of the continuity L(s)(x), then LN,b(s)(x)
p−∗ L(s)(x)

2. If L(s) is continuous then supx |LN,b(s)(x) − L(s)(x)| p−∗ 0.

3. If L(s) is continuous in c(1 − p), then if N ∗ ≥

P(
√

N(⎫ηN (s) − ηN (s))/⎫σN (s) → cN,b(1 − p)) ∗ 1 − p.

Proof in Appendix

5 Conclusions

In this chapter the model of the periodically correlated, long memory and heavy
tailed time series was described. Estimator of the vector sample means of this par-
ticular model was introduced and Central Limit Theorem was proved. Furthermore,
consistency of chosen method of estimation, the subsampling, was investigated. The
question to be answered in further research is the extension of the model (2) to the
class almost periodically correlated processes.
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Appendix

In the appendix the proofs of some results are presented.

Proof Theorem 1. (sketch)
The proof follows as in McElroy and Politis (2007) and is almost repetition of it,
hence only main points will be repeated.

Let E be the σ−field: E = σ(ε)=σ(εt, t ◦ Z). Let G be the σ−field: G =
σ(G) = σ(Gt, t ◦ Z). From the assumption 1. in the definition of the model (2) the
σ−fields E and G are independent with respect to the probability measure P.

Let assume that β = 0, it follows LM(0). The characteristic function for the
normalized sum is

Eexp{ivN−1/α
N−1∑
p=0

Ys+pT } = E[E[exp{ivN−1/α
N−1∑
p=0

σs+pT Gs+pT }|E ]]

where v is any real number and s = 1, 2, ..., T . Let investigate the inner conditional
characteristic function. From the properties of Gaussian characteristic function

E[exp{ivN−1/α
N−1∑
p=0

σs+pT Gs+pT }|E ]

= exp{− (vN−1/α)2

2

N−1∑
p,q=0

σs+pT σs+qT fs+pT fs+qTγN (T(p − q))},

s = 1, ..., T .

The double sum is divided into the diagonal and off-diagonal terms:

N− 2
α
⎠ N−1∑

p=0

σ 2
s+pT γG(0) +

∑
p ⇒=q

σs+pT σs+qT γG((p − q)T)
)

(7)

The second part of (7) tends to 0 in probability (see McElroy and Politis (2007)).
So off-diagonal part of (7) tends to zero in probability by the Markov inequal-
ity and hence, as it is known, in distributions. The characteristic function of
the first term of (7) is the characteristic function of a sαs variable with scale√

γG(0)/2 = fs
√

γN (0)/2, for s = 1, 2, ..., T (McElroy and Politis 2007; Billingsley
1995; Samorodnitsky and Taqqu 1994).

In the case 1/α > (β + 1)/2 the second term of (7) is O(N1−2/αNβ) which tends
to zero as N ∗ ≥. The rest of the proof is identical as in the case β = 0.

In the case 1/α < (β + 1)/2 the formula (7) becomes
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N−(β+1)
⎠ N−1∑

p=0

σ 2
s+pT γG(0) +

∑
q ⇒=p

σs+pT σs+qT γG((p − q)T)
)
. (8)

The first term is OP(N2/α−(β+1)) and tends to zero as N ∗ ≥.

The limiting characteristic function of the second (Lemma 1 McElroy and Politis
2007, Lemma 3.1 of Taqqu 1975) is

Eexp{−v2

2

C̃(t)μ2

β + 1
} = exp{−v2

2

C̃(s)μ2

β + 1
}

which is characteristic function of a mean zero Gaussian with variance C̃(s)μ2/

(β + 1).

The case 1/α = (β + 1)/2 is the combination of the two above cases. From
the Slutsky’s Theorem we get weak convergence the sum of two independent ran-
dom variables. The characteristic function is in the form: Eexp{− v2

2

⎠
γG(0)ε≥ +

C̃(t)μ2/(β + 1)
)} = exp{−|v|α(γG(0)/2)α/2} · exp{− v2

2
C̃(s)μ2

β+1 }, and indeed this is
a characteristic function of the sum of a stable S and a normal V variables. �

Proof Theorem 2. (sketch)
The proof follows as in McElroy and Politis (2007) and is almost repetition of it,
hence only main points will be repeated.

N−1∑
p=0

(Xs+pT − X̄N (s))2 =
N−1∑
p=0

(Ys+pT − ȲN )(s)2 =
N−1∑
p=0

Y2
s+pT − NȲ2

N (s), s = 1, ..., T

The second term is, by Theorem 2, bounded in probability of order N2ζ−1. Therefore

N−2/α
N−1∑
p=0

(Xs+pT − X̄N (s))2 = oP(1) + N−2/α
N−1∑
p=0

Y2
s+pT .

In the proof the joint Fourier/Laplace Transform of the first and second sample
moments (see Fitzsimmons and McElroy 2006) is considered. For any real θ and
φ > 0,

Eexp{iθN−ζ
N−1∑
p=0

Ys+pT − φN−2ζ
N−1∑
p=0

Y2
s+pT }

= E[exp{−1

2
N−ζ

N−1∑
p,q

σs+pT σs+qT γG((p − q)T)(θ +⎩2φWs+pT )

(θ +⎩2φWs+qT )}].
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The sequence of random variables Ws is i.i.d. standard normal, and is independent
of the Ys series. The information about Ws is denoted by W . The double sum in the
Fourier/Laplace Transform is broken into diagonal and off-diagonal terms.
The off-diagonal term is

N−2ζ
N−1∑
|h|>0

N−|h|∑
p=0

σs+pT σs+pT+hT (θ +⎩2φWs+pT )(θ +⎩2φWs+pT+hT )γG(hT) (9)

In the case 2/α > β + 1 absolute expectation of (9) is

E[E[N−2/α
⎪⎪⎪

N−1∑
|h|>0

N−|h|∑
p=0

σs+pT σs+pT+hT (θ +⎩2φWs+pT )

×(θ +⎩2φWs+pT+hT )γG(hT)

⎪⎪⎪|W ]]

→ μ2(E|θ +⎩2φW |)2N1−2/αK2
N−1∑
|h|>0

(1 − |h|/N)|γN (hT)|

The summation over h is O(Nβ) by the long memory assumption: LM(β). Hence
right side of above inequality is O(Nβ+1−2/α) and tends to zero as N ∗ ≥. By
the Markov inequality the off-diagonal term tends to zero in probability. (K is the
limitation of periodic function fs.)

In the case 2/α < β + 1 (9) can be rewritten as

N−(β+1)
N−1∑
|h|>0

N−|h|∑
p=0

(σs+pT σs+pT+hT − μ2)(θ +⎩2φWs+pT )(θ +⎩2φWs+pT+hT )

×γG(hT) + μ2N−(β+1)
N−1∑
|h|>0

N−|h|∑
p=0

γG(hT)(θ +⎩2φWs+pT )(θ +⎩2φWs+pT+hT ).

The first term of (9) by the Lemma 1 McElroy and Politis (2007) and the Strong
Law of Large Numbers is bounded in probability of order N−(β+1)+β+δ+1/α which
tends to zero for small enough δ. The absolute expectation the second term of (9) is
O(N−(β+1)+β+1/2) and it tends to zero (McElroy and Politis 2007). The first term
tends to constant (see the proof of Theorem 1 McElroy and Politis (2007)).

In the case 2/α = β+1, we see that the off-diagonal terms converge in probability

to C̃(t)μ2θ2

β+1 I2/α→β+1. For fixed s = 1, 2, ..., T the off-diagonal terms tend to a
constant.

The characteristic function of the diagonal terms is examined separately (by Dom-
inated Convergence Theorem and above fact). Let Vs+pT = θ + √

2φWs+pT
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E[exp{−1

2
γG(0)N−2ζ

N−1∑
p=0

σ 2
s+pT V 2

s+pT }]

= E[exp{−(γG(0)/2)α/2N−αζ
N−1∑
p=0

|Vs+pT |α}|.

While 2/α < β+1 the sum N−αζ
⎝N−1

p=0 |Vs+pT |α p−∗ 0. While 2/α ≥ β+1 (by

the Law of Large Numbers) N−αζ
⎝N−1

p=0 |Vs+pT |α p−∗ E|V |α. By the Dominated
Convergence Theorem, the limit as N −∗ ≥ can be taken through the expectation,
so that E[exp{−(γG(0)/2)α/2N−αζ

⎝N−1
p=0 |Vs+pT |α}] ∗ exp{−(γG(0)/2)α/2E|θ +√

2φN |α12/α≥β+1}. Using the Fourier/Laplace Transform and argumentation as in
McElroy and Politis (2007) we get the proof. �

Proof Theorem 3.
The proof follows as in Jach et al. (2012) and is almost repetition of it.
Using argumentation as in McElroy and Politis (2007) and in Jach et al. (2012) we
obtain for s = 1, ..., T

N−βρ(⎧LM(ρ, s))ρ = oP(1)

+
⎪⎪⎪N−βρ

[Nρ ]∑
|h|>0

1

N − |h|
N−|h|∑
p=0

Ys+pT Ys+pT+hT

⎪⎪⎪ P−∗ μ2C(s).

�
Proof Theorem 4.
The convergence of (5) follows from Theorem 2 and Theorem 3 and Slutsky Theorem.
The convergence of (6) follows from the continuous mapping theorem (denominators
are different from zero). �

Proof Theorem 5.
Lets consider a sequence of statistics ZN (s) = √

N(s)(η̂N (s)−η(s))/σ̂N (s), for fixed
s = 1, 2, ..., T and N = 1, 2, ....

LN (s)(x) = P(ZN (s) → x) is cumulative distribution function of ZN (s).
From Theorem 2 we know that assumption 4 of the Theorem 5 is fulfill, hence

there exist
rN (s) = supx◦R|LN (s)(x) − L(s)(x)| −∗ 0, N ∗ ≥

and ∞ L⇔ ∞≥< ≥.

L⇔ denotes the density of limit distribution.
For overlapping samples the number of subsamples:
Yb,q(s) = (Xs+qT , Xs+(q+1)T ..., Xs+(q+b−1)T ), q = 0, 1, ..., N − b and the number
of subsampling statistics:

PN,b,q(s) = √
b(η̂N,b,q(s) − η̂N (s))/σ̂N,b,q(s) is N − b + 1.
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Above statistics are used to approximate the distributions LN (s)(x) by empirical
distribution functions: LN,b,q(s)(x) = 1

N−b+1

⎝N−b
q=0 I{PN,b,q(s)→x}.

For ZN,b,q(s) let define rough subsampled statistics:

UN,b,q(s)(x) = 1

N − b + 1

N−b∑
q=0

I{ZN,b,q(s)→x}.

From Theorem 11.3.1 Politis et al. (1999) for Heavy Tails it is known that

∀x ◦ R |LN,b,q(s)(x) − UN,b,q(s)(x)| p−∗ 0.

It follows that it is enough to investigate only the variance of UN,b,q(s), s = 1, ..., T .
By the Theorem 2 Doukhan et al. (2011), under Assumptions 4. and 7. we have:

limN∗≥|E[UN,b,q(s)(x) − E[UN,b,q(s)(x)]]2| = 0.

It implies that V ar(UN,b,q(s)(x)) tends to zero, it proves point 1. of the Theorem 5.
To prove the point 2. of the Theorem 5 we also use the Theorem 2 Doukhan et al.

(2011).
limN∗≥supx◦R|UN,b,q(s)(x) − L(s)(x)| = 0,

in probability. The proof of point 3. given 1. and under assumption of model (2) is
very similar to the proof of 3. in the Theorem 11.3.1 of McElroy and Politis (2007).

�
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Structure of PC Sequences and the 3rd
Prediction Problem

Andrzej Makagon and Abolghassem Miamee

Abstract Founders of prediction theory formulated three prediction problems:
extrapolation problem, interpolation problem, and the problem of positivity of the
angle between the past and the future. The third one is strictly related to the question
of representing the predictor as a series of past values of the process. All three have
been solved in the case of stationary sequences, however, as far as we know in the
case of periodically correlated sequences only the first prediction problem has been
studied. The purpose of this chapter is to overview the third prediction problems.

1 Introduction

A second order stochastic sequence (x(n)) is a sequence of zero-mean finite variance
complex random variables indexed by the set of integers Z . At the expense of
ignoring the probabilistic properties of (x(n)), we adopt a slightly more general
definition: a (stochastic) sequence (x(n)) is a sequence in some complex, separable
Hilbert space H . By a complex, separable Hilbert space H , we understand a vector
space under the field of complex numbers C equipped with an inner product (·, ·)
and such that admits a countable orthonormal basis.

Given a sequence (x(n)) in H , the following subspaces of H will be of interest:

Mx = sp{x(m) : m ◦ Z }, Mx (n) = sp{x(m) : m ⇒ n}, Jx (n) = sp{x(m) : m ∈= n},
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where sp{N } stands for the closed linear subspace of H spanned by linear combina-
tions of vectors from N . A sequence (x(n)) is called regular, if

⋂
n Mx (n) = {0}, and

is called J-regular if
⋂

n Jx (n) = {0}. If M is a closed subspace of H and x ◦ H ,
then (x |M) will denote the orthogonal projection of x onto M ; more precisely (x |M)

is the unique vector in M such that x = (x |M) + e and e → M .
The 1st Prediction Problem deals with regularity of a sequence (x(n)) and describ-

ing the projections (predictors) x̂(n) = (x(n)|Mx (n − 1)) and their errors (pre-
diction errors) σn = ||x(n) − x̂(n)||. This can be accomplished by finding the
innovation of (x(n)). Given a sequence (x(n)), the innovation of (x(n)) is the
sequence zn = x(n) − x̂(n), n ◦ Z . It is clear that if (x(n)) is regular then
x̂(n) = (x(n)|Mx (n − 1) =⎛n−1

j=−∞ a j (n)z j and the prediction error is σn = ∗zn∗.
Note that the predictor is given in terms of innovations. The natural question is there-
fore: Is it possible express x̂(n) as a convergent series x̂(n) = ⎛n−1

k=−∞ αk x(k) of
past values of (x(n))? Unfortunately, the answer to this question is not always, and
below is a simple example in this matter.

Example 1 Let (ξn) be an orthonormal sequence inH , and let x(n) = ξn −ξn−1,
n ◦ Z . The sequence (x(n)) is stationary (see Sect. 3) and regular. First we will
show that (ξn) is the innovation for (x(n)). The inclusion Mx (n) ≥ Mξ (n), n ◦ Z ,
is obvious. To show the opposite inclusion, fix n and note that for every m < n,
ξn − ξm = x(n) + x(n − 1) + · · · + x(m + 1) ◦ Mx (n). Therefore for each positive
integer N

uN = ξn − 1

N

N⎝
k=1

ξn−k = 1

N

N⎝
k=1

(ξn − ξn−k) ◦ Mx (n).

Consequently limN uN = ξn ◦ Mx (n), which shows that Mξ (n) ≥ Mx (n), n ◦ Z .
Since (ξn) is the innovation of (x(n)), the projection x̂(n) = (x(n)|Mx (n − 1) is
equal x̂(n) = −ξn−1. Suppose now that there is a sequence (αk) such that

x̂(n) = −ξn−1 =
n−1⎝

k=−∞
αk x(k) =

n−1⎝
k=−∞

αk(ξk − ξk−1).

Multiplying the above by ξ j , j = n − 2, n − 3, . . . , we obtain that

−(ξn−1, ξ j ) =
n−1⎝

k=−∞
αk((ξk , ξ j ) − (ξk−1, ξ j )) = (α j − α j+1)||ξ j ||2 = α j − α j+1 = 0,

i.e. αn−1 = αn−2 = αn−3 = · · · = α. Convergence of the series
⎛n−1

k=−∞ αk x(k)

implies that ||αk x(k)|| = √
2|αk | ∼ 0 as k ∼ −∞, and hence α = αn−1 = αn−2 =

αn−3 = · · · = 0, which leads to a contradiction.
We elaborate for a while on this example and look at the 2nd prediction problem:

the problem of J -regularity and predicting a value x(n) given all other values x(m),
m ∈= n, of the sequence. The sequence (x(n)) in Example 1 admits an exact prediction
because for this sequence Jx (n) = Mx for all n ◦ Z . To see this suppose that y ◦ Mx



Structure of PC Sequences and the 3rd Prediction Problem 55

is orthogonal to each x(m), m ∈= n, i.e. (y, ξm − ξm−1) = 0 for every m ∈= n. Since
(ξk) is an orthonormal basis for Mx , y = ⎛∞

j=−∞ c j (y)ξ j . Multiplying the last
equality by ξm − ξm−1, m ∈= n, we obtain that

∞⎝
j=−∞

c j (y)(ξ j , ξm − ξm−1) = cm(y) − cm+1(y) = 0 for every m ∈= n.

Therefore all ck(y), k ◦ Z , are equal, and because the series
⎛∞

j=−∞ c j (y)ξ j

converges, all must be equal 0. Hence y = 0.
In fact, not the lack of J -regularity but the fact that the angle between the past and

the future for this sequence is zero, is the real reason of absence of autoregressive
representation for the predictors. This bring us the the 3rd prediction problem: the
question of positivity of the angle between the past and the future. Given two nonzero
closed subspaces P and F of a Hilbert space H , the cosine of the angle between P
and F is defined as

cos ∠(P, F) = sup{|(x, y)| : x ◦ P, y ◦ F, ||x || = ||y|| = 1} (1)

If cos ∠(P, F) = 1 then the angle ∠(P, F) between P and F is said to be 0, otherwise
we say that the angle between P and F is positive. It is easy to see that ∠(P, F) = 0
iff there is a positive constant δ > 0 and two sequences pN ◦ P and fN ◦ F such
that for sufficiently large N , ||pN || ≥ δ, || fN || ≥ δ, and ||pN − fN || ∼ 0. This
follows readily from the Law of Cosines

∗x − y∗2 = ∗x∗2 + ∗y∗2 − 2≤(x, y) ≥ ∗x∗2 + ∗x∗2 − 2|(x, y)|. (2)

Let P0 = sp{x(k) : k ⇒ 0} and F0 = sp{x(k) : k > 0} be the past and present and
the future of (x(n)) with regard to the a time moment t = 0. We will show that for
the sequence x(n) = ξn − ξn−1 from Example 1, the angle between P0 and F0 is 0.
Since x(0) ◦ Jx (0), there is a sequence SN of finite linear combinations of vectors
x(m), m ∈= 0, that converges to x(0) as N ∼ ∞

SN =
⎝
m ∈=0

cN ,m x(m) =
⎝
m<0

cN ,m x(m) +
⎝
m>0

cN ,m x(m) −∼ x(0).

Denoting the sums above by S−
N and S+

N , respectively, we obtain that S+
N − (x(0) −

S−
N ) ∼ 0, which in particular implies that ||S+

N ||−||(x(0)−S−
N )|| ∼ 0. Since (x(n))

is regular, ||x(0) − S−
N || ≥ ||x(0) − x̂(0)|| = 1 > 1/2 for all N , and hence also

||S+
N || > 1/2 for sufficiently large N . Therefore the sequences pN = (x(0) − S−

N )

and fN = S+
N satisfy the conditions of the above criterion, and hence the angle

between P0 and F0 is 0. The reader has probably noticed that we made the proof
more complicated than it is. Repeating the argument used at the beginning of the



56 A. Makagon and A. Miamee

Example 1, we see that ξ0 belongs to both P0 and F0, so clearly ∠(P0, F0) = 0.
However, there exist examples for which ∠(P0, F0) = 0 although P0 ∩ F0 = {0}. �

The chapter has three parts. In Sect. 2 we review some facts about angles and bases.
Section 3 contains a sketch of the theory of periodically correlated (PC) sequences.
Our presentation is different than the standard (as presented for example in Hurd
and Miamee 2007) and is based on a description of the structure of PC sequences
which is given in Theorem 3.2. In Sect. 4 we give a certain sufficient condition for a
periodically correlated sequence to be of positive angle.

2 Angles and Bases

We will have to talk about linear operators on a Hilbert space H . A mapping A :
H ∼ H is called an operator (or linear operator) if it satisfies A(ax + by) =
a A(x) + bA(y), for all scalars a, b and vectors x, y ◦ H . It is customary to skip
parentheses around (x), so we often write Ax instead of A(x). An operator A is
continuous in the topology induced by a norm on H if and only if A is bounded,
that is

∗A∗ = sup{∗Ax∗; ∗x∗ ⇒ 1} < ∞

Hence A is continuous (= bounded) iff there is a constant C < ∞ such that ∗Ax∗ ⇒
C∗x∗, for all x ◦ H . The smallest C above is of course equal to ∗A∗. The Closed
Graph Theorem states that A is bounded iff its graph graph(A) = {(w, Aw) : w ◦
H } is a closed subset of H × H , that is iff for every sequence wn in K the
following implication is true: if wn ∼ w and Awn ∼ u, then u = Aw. If H0 is a
linear dense subset ofH and A is a linear function A : H0 ∼ H such that there is a
C < ∞ with the property that ∗Ax∗ ⇒ C∗x∗ for every x ◦ H0, then A has a unique
extension to a bounded operator on H . This is a consequence of completeness of
H . A linear function c : H ∼ C from H to the set of complex number C is
called a linear functional. A linear functional c is continuous iff it is bounded, that
is iff there is a constant C < ∞ such that |c(x)| ⇒ C∗x∗ for all x ◦ H . The Riesz
Representation Theorem states that c is a bounded linear functional on a Hilbert
space H iff there is a unique h ◦ H such that c(x) = (x, h), x ◦ H .

We start with angles.

Proposition 2.1 Let M and N be two nonzero subspaces of H such that sp{M +
N } = H . The following conditions are equivalent:

1. ∠(M, N ) > 0,
2. there exists a constant C < ∞ such that for every x ◦ M and y ◦ N, ∗x∗ ⇒

C∗x + y∗,
3. every w ◦ H can be in the unique way written as w = x + y where x ◦ M and

y ◦ N (this property says that M + N = H .)
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Moreover, the smallest constant C satisfying inequality in condition 2. equals 1/(2−
2ρ) where ρ = cos ∠(M, N ).

Proof The proof is a textbook linear algebra.
(1. ∨ 2.) First suppose that ∠(M, N ) = ρ > 0. Let x ◦ M and y ◦ N . The
inequality is true if x = 0. Assume for a moment that ∗x∗ = 1 and write y = az,
where ∗z∗ = 1. Then from (2) it follows that ∗x +az∗2 ≥ 1+|a|2 −2|a|ρ = f (|a|).
The minimum of the quadratic function f (t) = 1 + t2 − 2tρ, t ◦ R, is attained at
t = ρ and is equal 1 − ρ2. Hence ∗x + y∗2 ≥ 1 − ρ2. If ∗x∗ ∈= 1, then

∗x + y∗ = ∗x∗∗(x/∗x∗) + (y/∗x∗)∗∗x∗ ≥ ∗x∗
√

1 − ρ2,

Therefore we obtain that ∗x∗ ⇒ C∗x + y∗ with C = √1/(1 − ρ2). Note that
∗y∗ = ∗y + x − x∗ ⇒ ∗y + x∗ + ∗x∗ ⇒ (C + 1)∗x + y∗, so also ∗y∗ ⇒ C∗x + y∗,
for some (possibly different) C < ∞.
(2. ∨ 3.) The inequality 2. implies that M ∩ N = {0}. Indeed, if v ◦ M ∩ N , then
∗v∗ = C∗v + (−v)∗ = 0, so v = 0. Let w ◦ H . Since sp{M + N } = H , there
there exist sequences xn ◦ N and yn ◦ M , such that w = limn(xn + yn). Therefore
wn = xn + yn is Cauchy. By 2. both (xn) and (yn) are Cauchy and hence converge
to, say, x and y, respectively. Since both N and M are closed, x ◦ N and y ◦ M .
Therefore w = x + y. The representation is unique since, if w = x + y = u + v,
x, y ◦ N , y, v ◦ M then x−y = v−y belongs to both N and M , so x−y = v−y = 0.
(3.∨ 1.) Suppose that for every every w ◦ H there are unique x ◦ M and y ◦ N
such then w = x + y. Then the mapping PM (w) = x is well defined linear operator
from H into H . The operator PM has a closed graph. To show this suppose that
wn = xn + yn ∼ w = x + y, x ◦ M , y ◦ N , and that PM (wn) = xn ∼ u ◦ M .
Consequently yn = wn − xn ∼ v = w − u ◦ N . Hence w = x + y = u + v, and
from the uniqueness of the decomposition of w, we conclude that u = x = PM (w).
From the Closed Graph Theorem it therefore follows that PM is bounded, that is
∗PM (x + y)∗ = ∗x∗ ⇒ C∗x + y∗, for all x ◦ M and y ◦ N , where C = ∗PM∗.
To show that ∠(M, N ) > 0, suppose on the contrary that ∠(M, N ) = 0. From the
Low of Cosines (2) it follows that there exist sequences xn ◦ M and ym ◦ M with
∗xn∗ = ∗yn∗ = 1 such that ∗xn − yn∗ ∼ 0. The boundedness of PM , however,
implies that ∗xn∗ ⇒ C∗xn − yn∗ ∼ 0. This contradicts the fact that for every n,
∗xn∗ = 1. We skip the proof on the moreover part. �

The operator PM (x + y) = x , x ◦ M , y ◦ N , defined in the proof above is
called the projection onto M along N . We just have proved that PM is bounded iff
∠(M, N ) > 0.

Definition 2.1 Let (x(n)) be a sequence in H and let for every n ◦ Z the past and
present Pn and the future Fn of the sequence (x(n)) at a time moment n be defiend
as

Pn = Mx (n) = sp{x(t) : t ⇒ n} and Fn = sp{x(t) : t > n}. (3)

We say that (x(n)) is of positive angle if sup(cos ∠(Pn, Fn)) < 1.
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From Proposition 2.1 it follows that (x(n)) is of positive angle iff for every n there
is Cn such that ∗x∗ ⇒ Cn∗x + y∗ for all x ◦ Pn and y ◦ Fn (Lemma 2.1). If (x(n))

is of positive angle and all x(n) ∈= 0, then (x(n)) must be linearly independent;
otherwise we would find n0 < n1 < · · · < n p and nonzero ak , k = 1, . . . , p,
such that x(n0) = ⎛p

k=1 ak x(nk) and the vector x(n0) then would belong to both
Pn0 and Fn0 . Also note that if (x(n)) is of positive angle then for every two sets
Δ1 and Δ2 such that Δ1 ≥ (−∞, n] and Δ2 ≥ (n,∞) for some n ◦ Z , the
angle between Mx (Δ1) = sp{x(k) : k ◦ Δ1} and Mx (Δ2) is positive, provided
that both are nonzero. Less obvious is the fact that if (x(n)) is of positive angle
then for every m ⇒ n the angle between Mx ((m, n)) and Mx ((m, n)c) is positive,
provided Mx ((m, n)) ∈= {0}. To see this let us assume that x ◦ Mx ((m, n)) and
y ◦ Mx ((m, n)c). Because ∠(Mx ((−∞, m)), Mx ((n,∞)) > 0, from Proposition
2.1 it follows that y = u + v, where u ◦ Mx ((−∞, m)) and v ◦ Mx ((n,∞)). Since
x ◦ Pn and v ◦ Fn we have ∗x∗ ⇒ Cn∗x + v∗; furthermore, since x + v ◦ Fm−1 and
u ◦ Pm−1, we have ∗x+v∗ ⇒ Cm−1∗x+v+u∗. Hence ∗x∗ ⇒ CnCm−1∗x+v+u∗ =
Cm,n∗x + y∗. This implies that if (x(n)) is of positive angle and all x(n) ∈= 0, then all
projection Pm,n onto Mx ((m, n)) along Mx ((m, n)c), m ⇒ n, are uniformly bounded.

The last property of sequences with positive angle links us with the notion of a
basis.

Definition 2.2 A sequence (x(n)), n ◦ Z , in a Hilbert space H is called a
(Schauder) basis for H if for every x ◦ H there is a unique sequence of scalars
(cn(x)), such that

x =
∞⎝

n=−∞
cn(x)x(n), (4)

A basis (x(n)) is called unconditional if the series (4) converges unconditionally (i.e.
for every permutation of Z or, equivalently, for any sequence of signs ± in front of
coefficients cn).

Here
⎛∞

n=−∞ cn(x)x(n) = limM∼−∞,N∼∞
⎛N

n=M cn(x)x(n). Every orthonor-
mal basis for H is an unconditional Schauder basis for H . Note that the fact that
the sequence (cn(x)) is unique implies that x(n) ∈= 0 for every n ◦ Z , and that the
coefficients cn(x) are linear functions of x .

The proposition below belongs to Banach and is the starting point to the vast
theory of Schauder bases.

Proposition 2.2 (E.g. Lindenstrauss and Tzafiri (1997), Prop 1.a.3) Let (x(n))

be a sequence in H . Then (x(n)) is a basis for H iff the following three conditions
hold:

1. x(n) ∈= 0 for all n,
2. sp{x(k) : k ◦ Z } = H ,
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3. there is a constant K > 0 such that for any choice of scalars (an) and for any
integers −∞ < p ⇒ m ⇒ n ⇒ q < ∞

∥∥∥∥∥
n⎝

k=m

ak x(k)

∥∥∥∥∥ ⇒ K

∥∥∥∥∥∥
q⎝

k=p

ak x(k)

∥∥∥∥∥∥ , (5)

For the proof please see Lindenstrauss and Tzafiri (1997) or Heil (2011). If (x(n))

is a basis for H then by taking n = m in (5) we obtain that each cn(x) in (4) is
a continuous linear functional on H . The Riesz Representation Theorem implies
that there exist a sequence (h(n)) in H such that cn(x) = (x, h(n)), n ◦ Z .
The sequence (h(n)) is unique because cn(x) are so. From the uniqueness of the
representation (4) it also follows that cn(x(k)) = (x(k), h(n)) = δk,n , that is for every
n ◦ Z , h(n) → Jx (n). Sequences (x(n)) and (h(n)) such that (x(k), h(n)) = δk,n

are called biorthogonal. Here is a summary of our findings.

Corollary 2.1 Suppose that x(n) ∈= 0 for all n. The following three statement about
the sequence (x(n)) are equivalent.

1. (x(n)) is of positive angle.
2. (x(n)) is a basis for Mx .
3. There is a sequence (h(n)) in Mx biorthogonal to (x(n)) such that for every

x ◦ Mx .

x =
∞⎝

n=−∞
(x, h(n))x(n). (6)

Moreover, if (x(n)) is a basis for Mx , then (h(n)) is also a basis for Mx .

Proof (1. ⇔ 2.) If x(n) ∈= 0, n ◦ Z , then Mx ((m, n)) is nonzero for every m ⇒ n
and, as we have already noticed, all projections projections Pm,n are well defined
and uniformly bounded, which is exactly the necessary and sufficient condition 3.
for (x(n)) to be a basis in Mx . Conversely, let n ◦ Z and let v = x + y, where
x ◦ Pn and y ◦ Fn . Let xm and ym be a sequences of finite linear combinations
of x(k), k ⇒ n and x(k), k > n, respectively, that converge to x and y. From (5) it
follows that that there is a constant K < ∞, which does not depend on n, such that
for ∗xm∗ ⇒ K∗xm + ym∗ for all m. Therefore ∗x∗ ⇒ K∗x + y∗. Relation established
in Proposition 2.1 implies that for every n ◦ Z , cos ∠(Pn, Fn) < 1 − 1/2K < 1.

(2. ⇔ 3.) The existence of (h(n)) has already been mentioned. For converse
we only need to show that the representation (6) is unique. Suppose that x =⎛∞

n=−∞ cn x(n). Then, because of biorthogonality, (x, h(k)) = ⎛∞
n=−∞ cn(x(n),

h(k)) = ck . For the proof of the moreover part we refer to Heil (2011). �

None of the results above sections are new. Facts about Schauder basis are from
Lindenstrauss and Tzafiri (1997); Heil (2011), facts about angles can be found in
Helson and Szegö (1960) or Pourahmadi (2001). For another approach to the problem
of basis please see Miamee (1991, 1993).
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In a process of studying prediction problems, a series of related properties of a
sequence (x(n)) have been singled out. Here are some of them. A sequence (x(n))

in a Hilbert space H is said to be:

regular (r), if
⋂

n Mx (n) = {0};
full rank regular (frr) if its regular and for every n ◦ Z , x(n) /◦ Mx (n − 1);
J-regular (Jr) if

⋂
n Jx (n) = {0};

J-full rank regular (Jfrr) if its J-regular and for every n ◦ Z , x(n) /◦ Jx (n);
a basis (b) if (x(n)) is a Schauder basis for Mx ;
of positive angle (pa) if it satisfies the conditions of Definition 2.1.

Moreover (x(n)) is said to have a moving average representation (ma) if there is an
orthonormal sequence (ξn) in H such that for every n ◦ Z there exists a sequence
θk(n), k = 0, 1, . . . , such that

x(n) =
∞⎝

k=0

θk(n)ξn−k; (7)

and is said to have an autoregressive representation (ar) if (x(n)) is regular and for
every n ◦ Z there exists a unique sequence φk(n), k = 1, 2, . . . such that

x(n) = zn +
∞⎝

k=1

φk(n)x(n − k),

where (zn) is the innovation of (x(n)).
Being of positive angle is the strongest of the above properties.

Proposition 2.3 Suppose that for all n ◦ Z , x(n) ∈= 0. Then

(pa) ⇔ (b) ∨ (Jfrr) ∨ (frr) ∨ (r) ⇔ (ma) (8)

(pa) ∨ (ar) (9)

None of the one-sided implications in (8) can be reversed.

Proof Most of the implications are either obvious or have already been proved.
(pa) ⇔ (b) is included in Corollary 2.1. To prove the implication (b) ∨ (Jfrr) note
that by Corollary 2.1, the vectors h(n) are in Mx � Jx (n) and they form a basis
for Mx . To see that (Jfrr) ∨ (frr) note that Mx (n) ≥ Jx (n), so (Jr) implies (r). If
additionally x(n) /◦ Jx (n), then x(n) /◦ Mx (n) ≥ Jx (n). The other implications are
obvious. Fallacy of implication (r) ∨ (Jr) is exhibited in Example 1. The fallacy of
(Jmr) ∨ (b) was pointed by Babenko (1948). We do not know whether (ar) implies
(pa). �
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3 Structure of Periodically Correlated Sequences
and Its Consequences

If (x(n)) is a sequence in a Hilbert space H , then the covariance function Rx of
(x(n)) is the function on Z × Z defined by Rx (n, m) = (x(n), x(m)), where (·, ·)
is the inner product in H . Two sequences (x(n)) and (y(n)), in possibly different
Hilbert spaces H and K , are said to be unitary equivalent if Rx (m, n) = Ry(m, n)

for every m, n ◦ Z . Unitary equivalent sequences will be identified. This identifica-
tion makes the spaceH where the values of (x(n)) are physically located completely
irrelevant.

Before we proceed we need to say a few words about groups, measures, and
unitary operators. The set of integers Z is an additive group. The set Ẑ of all
homomorphisms from Z into the multiplicative group {z ◦ C : |z| = 1} is called
the dual of Z . Under the operation of composition, the dual Ẑ is a group itself.
The group Ẑ can be identified with the interval [0, 2π) with addition modulo 2π ; in
the future when we write [0, 2π) we would always think about it as the dual of Z .
A measure μ on [0, 2π) is a complex σ -additive set function defined on the Borel
σ -algebra B of [0, 2π). A measure μ is nonnegative if μ(Δ) ≥ 0 for all Δ ◦ B.
If μ is a nonnegative measure on [0, 2π) then L2(μ;C d) will denote the set of all
C d -valued μ-measurable functions on [0, 2π) such that

⎞ 2π

0 ∗ f (t)∗2μ(dt) < ∞.
Equipped with the inner product

( f, g) =
⎠ 2π

0
f (t)g(t)∗μ(dt),

L2(μ;C d) becomes a Hilbert space. Here and in the sequel an element a ◦ C d

will be represented as a row-vector and a∗ will stand for a column-vector whose
coordinates are complex conjugates of the coordinates of a. A measure μ on [0, 2π)

is called absolutely continuous if there is an integrable function f such that for
every Δ ◦ B, μ(Δ) = ⎞

Δ
f (t)dt , where dt denotes the Lebesgue measure. The

function f (t) (if exists) is called the density of μ and will be denoted dμ
dt (t) or μ′(t).

A mesure μ on [0, 2π) is called a-invariant, a ◦ [0, 2π), if μ(Δ + a) = μ(Δ) for
every Δ ◦ B.

Given two Hilbert spaces H and K , a linear continuous transformation U :
H ∼ K is called an unitary operator if U is onto and for every x, y ◦ H ,
(U x, U y) = (x, y). Note that two sequences (x(n)) and (y(n)) are unitary equivalent
iff there is a unitary Φ : Mx ∼ My such that Φ(x(n)) = y(n), n ◦ Z . The Spectral
Theorem says that if U is a unitary operator from a Hilbert space H onto itself, then
there exists a unique set function E defined on B such that for every x, y ◦ H ,
(E(·)x, y) is a measure, E(Δ) is an orthogonal projection in H , E(Δ1)E(Δ2) =
E(Δ1 ∩ Δ2), and such that for every n ◦ Z
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U n x =
⎠ 2π

0
e−iun E(du)x, x ◦ H . (10)

The measure E is called a resolution of identity of U .

3.1 Stationary Sequences

The simplest periodically correlated sequences are stationary. A sequence (x(n))

is said to be stationary, if Rx (m + 1, n + 1) = Rx (m, n) for every m, n ◦ Z .
Stationary sequences have a very simple structure.

Theorem 3.1 (Structure od a Stationary Sequence) (x(n)) is stationary iff there is
a Hilbert space K ⊇ Mx , a unitary operator U in K , and x ◦ K , such that

x(n) = U n x, n ◦ Z . (11)

This theorem is a starting point to a diverse and beautiful prediction theory of station-
ary sequences as developed Kolmogorov, Wiener, Helson, Szego, Masani, Rozanow,
Urbanik and others. First note that from (10) it follows that every stationary sequence
has an integral representation x(n) = ⎞ 2π

0 e−inu E(du)x , n ◦ Z . Consequently

Rx (m, n) =
⎠ 2π

0
e−i(m−n)uγ (du), where γ (du) = (E(du)x, x). (12)

The nonnegative measure γ above is uniquely determined by Rx and is called the
spectral measure of a stationary sequence (x(n)). If γ is absolutely continuous with
respect a nonnegative measure μ and h ◦ L2(μ,C ) is such that dγ

dμ
(t) = |h(t)|2,

dt−a.e., then from (12) it follows that the sequence ( f (n)) of functions in L2(μ,C )

defined as f (n)(u) = e−inuh(u), n ◦ Z , has the same covariance function as (x(n))

and hence the sequences (x(n)) and ( f (n)) are unitary equivalent. This functional
representation of (x(n)) connects the prediction problem with Harmonic Analysis,
and in particular with the theory of invariant subspaces, Helson (1964).

All three prediction problems are solved for stationary sequences. A concise sum-
mary of prediction theory of stationary sequences, including solutions to prediction
problems, can be found in last chapters of Pourahmadi (2001). The prediction the-
ory was extended to finite dimensional stationary sequences (Makagon and Weron
1976; Masani 1960, 1966; Wiener and Masani 1957, 1958), and then to infinite
dimensional stationary sequences (see Makagon and Salehi 1989 for summary and
references). However, in the multidimensional case only the 2nd prediction problem
has satisfactory solution (Makagon 1984), the other two have only partial solutions.

A T -dimensional stationary sequence is a family (xk(n)), k = 1, . . . , T , of T
stationary sequences which are stationary cross-correlated, that is such that for every
n, m ◦ Z and k, j = 1, . . . , T
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R j,k(m, n) := (x j (m), xk(n)) = (x j (m + 1), xk(n + 1)) = R j,k(m + 1, n + 1).

The past of a T -dimensional stationary sequence is defined as Mx (n) = sp{xk(m) :
m ⇒ n, k = 1, . . . , T }. All components of a T -dimensional stationary sequence
have the same shift operator U , that is xk(n) = U n xk(0) for all n ◦ Z and k, j =
1, . . . , T . Consequently for each k, j = 1, . . . , T there exists a measure γ j,k m on
[0, 2π) such that

R j,k(m, n) =
⎠ 2π

0
e−i(m−n)tγ j,k(dt), m, n ◦ Z .

The T ×T - matrix measure Γ (Δ) whose ( j, k) entry is γ j,k(Δ) is called the spectral
measure if a T -dimensional stationary sequence (x(n)).

3.2 Periodically Correlated Sequences

Let T be a positive integer. A sequence (x(n)) is called periodically correlated (PC)
with period T , or simply T -PC, if Rx (m+T, n+T ) = Rx (m, n) for every m, n ◦ Z .

Following the development of the prediction theory for stationary sequences, we
start with a description of the structure of T -PC sequences.

Theorem 3.2 (Structure of a T-PC Sequence) A sequence (x(n)) is T -PC iff there
is a Hilbert space K ⊇ Mx , unitary operators U and V in K such that V T = I
and V U = e−2π i/T U V , and an x ◦ K such that

x(n) = (1/T )

T −1⎝
j=0

e−2π i jn/T U n V j x, n ◦ Z . (13)

A noticeable difference between structure of a stationary sequences and the struc-
ture of T -PC sequences (with T > 1) is that in Theorem 3.1 the space K could be
chosen to be Mx , while in Theorem 3.2 the space K is larger than Mx . The proof is
a straightforward application of Mackey’s inducing construction (cf. Folland 1995,
Chapter 6). Also it can be found between lines of Makagon (2011), although in the
latter chapter the theorem is stated in a different way.

Proof It is clear that if (x(n)) satisfies (13) then Rx (n + T, m + T ) = Rx (n, m),
so (x(n)) is T -PC. Conversely, suppose that (x(n)) is T -PC. The sequence (x(n))

generates the the unitary operator W in Mx (so called T -shift) via the equation
W x(k) = x(k + T ), k ◦ Z . Let K = M⊕T

x . Define two operators U and V in K
by
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U (x1, x2, . . . , xT ) = (x2, x3, . . . , W x1),

V (x1, x2, . . . , xT ) = (x1, x2e2π i/T , . . . , xT e2π i(T −1)/T )

Then UV(x1, x2, . . . , xT ) = (x2e2π i/T , . . . , xT e2π(T −1)i/T , W x1), while VU(x1,

x2, . . . , xT ) = V (x2, . . . , xT , W x1) = (x2, . . . , xT e2π i(T −2)/T , W x1e2π i(T −1)/T ).
Hence VU = e−2π i/T UV and more generally

V jU n = e−2π in j/T U n V j . (14)

Clearly V T (x1, x2, . . . , xT ) = (x1, x2ei2π , . . . , xT ei2π(T −1)) = (x1, x2, . . . , xT ).
Also note that

⎛T −1
j=0 V j (x1, x2, . . . , xT ) = ⎛T −1

j=0 (x1, x2e2π i j/T , . . . , xT e2π

i(T − 1) j/T ) = (T x1, 0, . . . , 0).
Let x = (x(0), x(1), . . . , x(T − 1)). From the above equality, the commutativity

property (14), and the fact that U n x = (x(n), x(n + 1), . . . , x(n + T − 1)) we
conclude that

(1/T )

T −1⎝
j=0

e−2π i jn/T U n V j x = (1/T )


⎧T −1⎝

j=0

V j

⎪
⎨U n x = (x(n), 0, . . . , 0), (15)

the latter being obviously unitary equivalent to (x(n)). �

The Eq. (13) implies that each T -PC sequence can be written in the form x(n) =
U n p(n), where p(n) = (1/T )

⎛T −1
j=0 e−2π i jn/T V j is a T -periodic sequence in K .

The fact that each T -PC sequence is a unitary deformation of a periodic function is
known and was first proved by Hurd. The representation x(n) = U n p(n) is, however,
not unique in general. An advantage of our representation (13) is that U , V and x
are unique up to unitary equivalence.

Proposition 3.1 Suppose that

xk(n) = 1

T

T −1⎝
j=0

e−2π i jn/T U n
k V j

k xk, n ◦ Z , k = 1, 2,

where Uk and Vk are unitary operators in Kk such that V T
k = I , VkUk =

e−2π i/T Uk Vk, and xk ◦ Kk , k = 1, 2. Assume additionally that Kk = sp{V j
k U n

k xk :
j, n ◦ Z }, k = 1, 2. Then the sequences (x1(n)) and (x2(n)) are unitary equivalent
iff there exists a unitary operator Φ : K1 ∼ K2 such that Φx1 = x2, ΦU1 = U2Φ

and ΦV1 = V2Φ.

Proof Denote Rk(n + r, r) = (xk(n + r), xk(r)), and let ak
p(n) = ⎛T −1

r=0

e−2π i pr/T Rk(n + r, r), k = 1, 2. For every n ◦ Z , the sequence ak
p(n), p ◦ Z , is

a discrete Fourier transform of the T -periodic sequence Rk(n + r, r), r ◦ Z , and
hence R1 = R2 iff a1 = a2. The commutation relation implies that
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Rk(n + r, r) = 1

T 2

T −1⎝
j=0

T −1⎝
p=0

e−2π ir( j−p)/T (V j
k U n

k xk, V p
k xk),

and hence for every n, q ◦ Z

ak
q(n) = 1

T 2

T −1⎝
j=0

T −1⎝
p=0

⎩
T −1⎝
r=0

e−2π ir( j−p+q)/T

⎫
(U n

k xk, V p− j
k xk) = (U n

k xk, V q
k xk).

In particular, for every m, n, p, j ◦ Z and k = 1, 2 we have that

(U m
k V p

k xk, U n
k V j

k xk) = e2π i(m−n)p/T ak
j−p(m − n). (16)

If (x1(n)) and (x2(n)) are unitary equivalent, then R1 = R2, a1
r (n) = a2

r (n) for every
r, n ◦ Z , and hence the inner product above does not depend on k. Consequently

the mapping Φ
⎬
(U n

1 )V j
1 x1

⎭
= U n

2 V j
2 x2 is well defined and extends linearly to an

isometry from K1 onto K2. This proves the “only if” part. The “if” part is obvious.
�

Note that due to canonical commutation relation, the Eq. (13) can be written as

x(n) =

⎧ 1

T

T −1⎝
j=0

V j

⎪
⎨U (n)x = P0 y(n), n ◦ Z ,

where P0 = (1/T )
⎛T −1

j=0 V j is the orthogonal projection in K = M⊕T
x onto the

first coordinate and y(n) = U (n)x is a stationary sequence in K . Hence, as a
by-product, we have constructed an explicit dilation of a T -PC sequence to a sta-
tionary sequence.

If U , V are two unitary operators in a Hilbert spaceK and V T = I , then the pow-
ers U n , n ◦ Z , and V j , j = 0, . . . , T −1, form unitary representations ofZ , and the
quotient group ZT = Z /TZ = {0, . . . , T −1}, respectively. The spectral theorem
for unitary group representations implies that there exist a resolution of identity E on
[0, 2π) and a resolution of identity P on ẐT = {0, 2π/T, 4π/T, . . . , 2(T −1)π/T }
(which is regarded as a subgroup of the circle [0, 2π), i.e. the addition in ẐT is mod-
ulo 2π ) such that

U n =
⎠ 2π

0
e−iun E(du), n ◦ Z (17)

V j =
T −1⎝
k=0

e2π ik j/T Pk, j = 0, . . . , T − 1, (18)
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where Pk = P({2πk/T }). Since the sum in (18) is finite, it implies that for every
k ◦ Z

1

T

T −1⎝
j=0

e−2π ik j/T V j = P〈k〉. (19)

Let (x(n)) be T -PC, R be its covariance function, and let as before

a j (n) :=
T −1⎝
r=0

e−2π i jr/T Rx (n + r, r), j ◦ Z . (20)

Furthermore let K , U, V and x satisfy the conditions of Theorem 3.2. As in the case
of stationary sequences the representation (13) yields the existence and a descrip-
tion of the spectra of T -PC sequences. This follows from the following simple
observation.

Lemma 3.1 Under the above notations

a j (m) = (U m x, V j x), (21)

R(m + r, r) = (U m x, P〈r〉x), (22)

x(n) =
⎠ 2π

0
e−iu G(du), (23)

where G is a K -valued measure given by G(Δ) = 1

T

T −1⎝
j=0

E(Δ − 2π j/T )V j x.

Proof Relation (21) has been already proved in Proposition 3.1, just substitute
p = 0 and n = 0 in formula (16). The relation (22) now follows from (21) and (19)

R(m+r, r) = 1

T

T −1⎝
j=0

e2π i jr/T a j (m) = 1

T


⎧Um x,

T −1⎝
j=0

e−2π i jr/T V j x

⎪
⎨ = (Um x, P〈r〉x).

To prove (23) note that the commutativity condition U n V j = e2π in j/T V jU n

together with (19) and (17) imply that

x(n) = P0U n x =
⎠ 2π

0
e−iun P0 E(du)x, n ◦ Z .

Hence (23) holds true with

G(Δ) = P0 E(Δ)x = 1

T

T −1⎝
j=0

V j E(Δ)x = 1

T

T −1⎝
j=0

E(Δ − 2π j/T )V j x
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The last equality above follows from the commutation property U n V j = e2π i jn/T U n

V j and (17), which imply that

⎠ 2π

0
e−inu E(du)V j = V j

(⎠ 2π

0
e−in(u−2π j/T ) E(du)

⎜
=
⎠ 2π

0
e−inu V j E(du + 2π j/T ),

and hence that V j E(Δ) = E(Δ−2π j/T )V j . Obviously G is anK -valued measure,
since E is so. In general G is not orthogonally scattered, but many values of G are
so. In particular, if Δ and D are such that (Δ − 2π j/T ) ∩ (D − 2πk/T ) = ∅ for all
j, k ◦ Z , then (G(Δ), G(D)) = 0. Recall that subtraction above is modulo 2π . �

Substituting (17) into (21), we obtain that

a j (n) = (U n x, V j x) =
⎠ 2π

0
e−iun(E(du)x, V j x).

Denoting γ j (Δ) = (E(Δ)x, V j x), we just gave yet another proof of the following
well known theorem which defines the spectrum of a PC sequence.

Corollary 3.1 (Gladyshev 1961) Suppose that (x(n)) is T -PC, R is its correlation
function, and a j (n) are defined by (20). Then there exist a family of measures γ j ,
j = 0, . . . , T − 1, such that for every n ◦ Z

a j (n) =
⎠ 2π

0
e−imtγ j (dt). (24)

Measures γ j , j = 0, . . . , T −1, are referred to as the spectral measures of the T -PC
sequence (x(n)).

An essential fact in the prediction theory of stationary sequences is the observa-
tion that if h ◦ L2(μ,C ) is such that dγ

dμ
(t) = |h(t)|2, μ−a.e., then the sequence

( f (n)) of functions in L2(μ,C ) defined as f (n)(u) = e−inuh(u), n ◦ Z is unitary
equivalent to (x(n)). Recently an analogues theorem has been proved by the authors
for PC sequences. Obviously one has to start with defining of a “suqare root” of the
family γ j .

Theorem 3.3 (Makagon and Miamee 2013, Theorems 3.3 and 3.4) (I.) A family of
measures γ j , j = 0, . . . , T −1, is a spectrum of a T -PC sequence if and only if there
exist a 2π/T -invariant non-negative measure μ and a function h ◦ L2(μ,C T ) such
that for every j ◦ Z

dγ j

dμ
(t) = (1/T )h(t)h(t + 2π j/T )∗, μ − e.a. (25)

(II.) Let (x(m)) be a T -PC sequence, γ j , j = 0, . . . , T − 1, be its spectral mea-
sures, and μ be a 2π/T invariant measure on [0, 2π). Suppose that h ◦ L2(μ,C T )
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satisfies (25) above. Then the L2(μ,C T ) valued sequence ( f (m)) defined by

f (m)(u) = 1

T

T −1⎝
j=0

e−im(u+2π j/T )h(u + 2π j/T ), u ◦ [0, 2π), m ◦ Z . (26)

is unitary equivalent to the sequence (x(m)).
Moreover, if all γ j , j = 0, . . . , T − 1, are absolutely continuous with respect to

the Lebesgue measure, then the measure μ in parts I and II can be chosen to be the
Lebesgue measure.

We want to emphasize that h isC T valued, so in fact comprises of T scalar functions.
Moreover, neither μ nor h above are unique. The proof of this theorem is too long
to be stated here.

Corollary 3.2 Suppose that (x(n)) is T -PC. Then there exist a 2π/T -invariant
measure μ on [0, 2π) such that the pair (U, V ) in representation (13) is unitary
equivalent (in the sense explained in Proposition 3.1) to the pair (M, T ) of operators
in some subspace of L2(μ,C T ), where Mg(u) = e−iu g(u) and T g(u) = g(u +
2π/T ), i.e. M is multiplication by e−iu and T is translation by 2π/T .

Proof From Theorem 3.3, II, it follows that f (n) = 1
T

⎛T −1
j=0 e−2π in j/T MnT j h

and that ( f (n)) and (x(n)) are unitary equivalent. Hence from Proposition 3.1 we
conclude that the pairs (U, V ) and (M, T ) are unitary equivalent if restricted them
to cyclic subspaces generated by x and h, respectively. �

The representation (13) give rise to a T -dimensional sequence X (n) = [Xk(n)]
defined as

Xk+1(n) = U n V k x, n ◦ Z . (27)

The T -dimensional sequence X (n) = [Xk(n)] defined above is called the induced
sequence. Proposition 3.1 shows that any two sequences induced by the same
T -PC sequence (x(n)) are unitary equivalent. The induced sequence shares predic-
tion properties of (x(n)). Additionally, the relations between spectral measures of a
T-PC sequence (x(n)) and the spectrum of its induced sequence is quite simple. The
induced sequence was introduced and thoroughly studied in Makagon (2011). Here
are some properties of the induced sequence.

Proposition 3.2 Let (x(n)) be T -PC, and let (X (n)) be the sequence induced by
(x(n)). Then:

1. (X (n)), n ◦ Z , is a T -dimensional stationary sequence.
2. Rk+1, j+1(m, n) = (Xk+1(m), X j+1(n)) = e2π i(m−n)ka j−k(m − n), k, j =

0, . . . , T − 1.
3. Γ k+1, j+1(Δ) = γ〈 j−k〉(Δ + 2πk/T ), k, j = 0, . . . , T − 1.
4. (x(n)) is regular iff (X (n)) is regular.
5. Rank of (x(n)) is equal to the rank of (X (n)).
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Although proofs can be extracted from Makagon (2011), we sketch them below.

Proof From the definition and relations (14) and (21) we see that

(Xk+1(m), X j+1(n)) = (U m−n V k x, V j x) = e2π i(m−n)ka j−k(m − n),

which gives 2. and also shows that X (n) is stationary. Substituting n = 0 and using
(24) we obtain that

(Xk+1(m), X j+1(0)) = e2π imka j−k(m) =
⎠ 2π

0
e−imsγ j−k(ds + 2πk).

Since, on the other hand, (Xk+1(m), X j+1(0)) = ⎞ 2π

0 e−ims Fk+1, j+1(ds), this
proves 3. If K , U , V , and x = (x(0), x(1), . . . , x(T − 1)) are as in the proof
of Theorem 3.2, then we obtain that

1

T

T −1⎝
j=0

e−2π i(r+n) j/T X j+1(n) = 1

T

T −1⎝
j=0

e−2π i(r+n) j/T Un V j x =

⎧ 1

T

T −1⎝
j=0

e−2π ir j/T V j

⎪
⎨Un x

= P〈r〉(x(n), x(n + 1), . . . , x(n + T − 1)) = (0, . . . , 0, x(n + r), 0, . . . , 0).

This shows that MX (n) = sp{X j+1(m) : m ⇒ n, k = 0, . . . , T − 1} = Mx (n) ⊕
Mx (n +1)⊕· · ·⊕ Mx (n +1) and hence 4. To see 5. note that the space MX (n +1)�
MX (n) consists of vectors (x1, x2, . . . , xT ) in M⊕T

x such that xk ◦ Mx (n + k) �
Mx (n+k −1), k = 1, . . . , T . Since each Mx (n+k)� Mx (n+k −1) is of dimension
at most 1, the dimension of MX (n+1)�MX (n) is T iff all Mx (n+k)�Mx (n+k−1),
k = 1, . . . , T , are nonzero. �

4 An Application to the 3rd Prediction Problem

In this section we apply the theory outlined above and a known result of Wiener and
Masani (1958) to obtain a certain sufficient condition for a PC sequence to be a basis
for Mx . Let (x(n)) be a T -PC sequence and γ j , j = 0, . . . , T − 1, be its spectral
measures. Suppose that all γ j ’s are absolutely continuous. Let γ ′

j denote the density

of γ j , γ ′(t) = dγ j
dt (t), and let Γ ′(t) be the T × T matrix whose k + 1, j + 1 entry

is equal to [Γ ′(t)]k+1, j+1 = γ ′〈 j−k〉(t + 2πk/T ), k, j = 0, . . . , T − 1, that is
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Γ ′(t) =

⎟
⎢⎢⎢⎢⎢⎢

γ ′
0(t) γ ′

1(t) γ ′
2(t) . . . γ ′

T −1(t)

γ ′
T −1(t + 2π

T ) γ ′
0(t + 2π

T ) γ ′
1(t + 2π

T ) . . . γ ′
T −2(t + 2π

T )

γ ′
T −2(t + 4π

T ) γ ′
T −1(t + 4π

T ) γ ′
0(t + 4π

T ) . . . γ ′
T −3(t + 4π

T )

...
...

...
...

...

γ ′
1(t + 2(T −1)π

T ) γ ′
2(t + 2(T −1)π

T ) γ ′
3(t + 2(T −1)π

T ) . . . γ ′
0(t + 2(T −1)π

T )


⎡⎡⎡⎡⎡⎡⎣

Theorem 4.1 Suppose that (x(n)) is a T -PC sequence and that all spectral measures
γ j , j = 0, . . . , T − 1, of (x(n)) are absolutely continuous. Let γ ′

j be the density of
γ j , and let Γ ′(t) be the T ×T matrix defined above. Let ρ(t) and λ(t) be the smallest
and the largest eigenvalues of Γ ′(t). If there are numbers ρ > 0 and λ < ∞ such
that for dt-almost all t ◦ [0, 2π)

0 < ρ ⇒ ρ(t) and λ(t) ⇒ λ < ∞, (28)

then (x(n)) is a basis for Mx .

Proof Let X (n) be the sequence induced by (x(n)). From Proposition 3.2 it folows
that Γ ′(t) is the density of the spectral measure of X (n). From Wiener and Masani
(1958), Sect. 5, we conclude that the sequence (z(n)) made form X (n) by listing all
elements Xk(n), k = 1, . . . , T, n ◦ Z , of X (n) in a linear order, i.e. z(nT +k−1) =
Xk(n), form a basis for MX . Note that, by (15), x(k) = 1

T

⎛T −1
j=0 e−2π ik j/T z(kT + j),

and hence

q⎝
k=p

ak x(k) =
q⎝

k=p

T −1⎝
j=0

(
1

T
ake−2π ik j/T

⎜
z(kT + j) =

qT +T −1⎝
l=pT

cl z(l). (29)

for properly defined cl ’s. Since (z(n)) is a basis, by Proposition 2.2 there exists a
universal constant K such that for every −∞ < p ⇒ m ⇒ n ⇒ q < ∞.

∥∥∥∥∥
nT +T −1⎝

l=mT

cl z(l)

∥∥∥∥∥ ⇒ K

∥∥∥∥∥∥
qT +T −1⎝

l=pT

cl z(l)

∥∥∥∥∥∥ .

This and (29) above imply that for any choice of scalars (an) and for any integers
−∞ < p ⇒ m ⇒ n ⇒ q < ∞

∥∥∥∥∥
n⎝

k=m

ak x(k)

∥∥∥∥∥ ⇒ K

∥∥∥∥∥∥
q⎝

k=p

ak x(k)

∥∥∥∥∥∥ .

Hence (x(n)) is a basis for Mx . �

Since (ba) ∨ (ar), an immediate corollary of Theorem 4.1 is that
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Corollary 4.1 Suppose that (x(n)) is a T -PC sequence satisfying the assumptions
of Theorem 4.1. Then for every n ◦ Z there exists a unique sequence φk(n), k =
1, 2, . . . such that

(x(n)|Mx (n − 1)) =
∞⎝

k=1

φk(n)x(n − k).

Moreover, for every k = 1, 2, . . . the sequence φk(n) is T -periodic in n ◦ Z .

The moreover part follows from the uniqueness of the coefficients φk(n) and
from the fact that if W is the T -shift of (x(n)), then W (x(n)|Mx (n − 1)) = (x(n +
T )|Mx (n + T − 1)).
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Methods of Periodically Correlated Random
Processes and Their Generalizations

I. Javors’kyj, R. Yuzefovych, I. Kravets and I. Matsko

Abstract The results obtained by authors in the area of theory and methods of
statistical analysis of periodically correlated random processes and their generaliza-
tions are presented in this article. The main methods for estimation of their correlation
and spectral characteristics: coherent, component, least square method and linear fil-
tration method are analyzed. The ways of generalization of these methods to the
case of unknown a priori period of non-stationarity are considered and the possible
algorithms of its estimation are presented.

1 Introduction

Both rough recurrence and stochastic are characteristic feature of time changeability
of many physical processes. Recurrence of the oscillations property—rhythmic can
be caused by both the effect of external forces (forced oscillations) on a given system
and results from the internal interrelations (eigen oscillations) existing in systems.
Rhythmical processes are encountered in many spheres of science and engineering
including radiophysics, geophysics, oceanology, meteorology, climatology, vibrodi-
agnostics, hydroacoustics, biology, seismology, economics, telecommunication etc.

Processes which are caused by astrophysical factors should be noted among all the
diversity of forced oscillations occurring in nature. These are: the annual and diumal
oscillations of geophysical, oceanological and meteorological quantities (Dragan et
al. 1987), which are the result of the earth’s revolution around the sun and rotation
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of earth round its axis of the equator; the tidal oscillations of the sea level, the earth’s
crust, sea currents, internal waves whose polyrhythmic are caused by the polyhar-
monic character of the potential of tideforming forces. Among the autooscillation
processes we should note the oscillations in auto-generators of various physical nature
(Gudzenko 1959; Malakhov 1968; Rytov 1976), signals of geomagnetic pulsations
(Mikhailyshyn et al. 1990), vibrations (Mikhailyshyn et al. 1990; Antoni 2009) and
oscillations in biological systems (bio-rhythmic) (Aschoff 1981).

A certain model of mathematical oscillations is the methodological base for inves-
tigation of the oscillation processes structure on the basis of experimental data. In the
pioneering investigations of rhythmic, the evident advantages were given to deter-
ministic conception which is based on models in the form of periodical functions.
The aspiration to take into account random features of oscillations encouraged the
development of probabilistic methods that consider phenomena as stationary ran-
dom processes. Within the framework of such an approach, rhythmic features of
physical processes manifest themselves in an oscillatory behavior of correlogram
and existence of several peaks of the estimates of the spectral density. However,
these characteristics describe the average properties of processes and do not provide
information on their temporal structure, which can be determined, though in an ide-
alized form, with use of deterministic models. Natural combination and development
of these two approaches give rise to a concept that represents probabilistic models
as periodically correlated random processes (PCRP) and PCRP-related processes
(bi-,poly-,and almost periodically correlated). Such models generalize the notion of
the recurrence to situations where stochasticity plays a significant role. These models
provide an opportunity to describe the structure of rhythmic variations more thor-
oughly and objectively and include the above mentioned models as particular cases.
The PCRP model allow us not only to analyze processes using special methods char-
acteristic of each model, but also to investigate the different phenomena in common
terms for all models.

In this chapter we consider probabilistic characteristics of periodically non-
stationary probabilistic models, analyze the properties of such models and develop
the general approach for the estimation of such characteristic from the empirical data.
We analyze the methods of statistical estimation and present radically new results of
the investigation of hidden periodicities.

The manuscript presents a survey of results of the authors investigations realized at
Karpenko Physico-Mechanical Institute of National Academy of Sciences of Ukraine
in Lviv and at University of Technology and Life Sciences in Bydgoszcz.

2 Periodically Correlated Random Processes and Their
Generalizations as Probabilistic Model of Stochastic
Oscillations

The methods of periodically correlated random processes and their generalizations
extend our capabilities for understanding the regularities of stochastic oscillations.
These methods provide additional opportunities associated with the description of the
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properties of oscillations in terms of time-varying probabilistic characteristic. Within
the framework of the second order theory, the hidden periodicity of physical processes
is manifested as periodic temporal variations of the mean and the correlation function:

m(t) = Eθ (t) ,

b (t, u) = E
◦
θ (t)

◦
θ (t + u) = b (t + T, u) ,

◦
θ (t) = θ (t) − m (t) . (1)

The properties of (1) define the class of PCRP. Apparently, the first mathemati-
cally correct definition of PCRP was given by Koronkevich (1957). This definition
is applicable to the description of the properties of solutions for differential equa-
tions with periodic coefficients and random right-hand sides. The adequate mod-
els of communications signals PCRP are discussed in Bennet (1958) and Franks
(1969). The possibility of using such processes to describe stochastic oscillations
was also mentioned by Stratonovich (1961). Several papers (Papoulis 1983; Kozel
1959; Myslovich et al. 1980; Tikhonov 1956) consider transformations of period-
ically nonstationary and periodically correlated signals. Correlation and spectral
properties of PCRP were studied by Rytov (1976), Gladyshev (1959), Gudzenko
(1959), Ogura (1971), Papoulis (1983), Gardner and Franks (1975), Gardner (1985,
1986, 1994) and Hurd (1969, 1989). Gudzenko employed PCRP to analyze fluctua-
tions in autooscillation systems. Rytov (1976) indicated the possibility for applying
PCRP to study noise in cyclic remagnetization. Romanenko and Sergeyev (1968)
pointed to the adequacy of employing the PCRP methods to describe a turbulent
flow of water near a ship screw propeller and to investigate temporal variations in
the electric-power consumption and physiological changes. Dragan (1969, 1970,
1975, 1978, 1980) developed the fundamentals of the PCRP theory with a lim-
ited average power. In collaboration with K.S. Voichishin. Dragan also applied the
PCRP model to formulate certain general properties of the stochastic model of rhyth-
mic (Dragan 1985; Voichishyn and Dragan 1971; Dragan 1972). Voichyshyn (1975)
made the first attempts for using this model to analyze daily rhythmic variations
in certain geophysical processes. Dragan and Javors’kyj extended this approach to
study the properties of wind waves (Dragan and Javors’kyj 1975). In both cases,
the estimates of the mean and variance were analyzed. Note that, in earlier stud-
ies, the PCRP model, which was understood even in a more comprehensive sense
(with use of histograms and estimates of the correlation function), was applied to
investigate daily variations in the temperature and humidity of the air and the soil tem-
perature (Zhukovsky 1969; Kiselyeva and Chudnovsky 1968; Mamontov 1968a,b;
Mishchenko 1960, 1966). An analogous modification of this model was used to
study diurnal and seasonal changes in meteorological processes (Zhukovsky 1969).
Groisman (1977) considered the periodic correlation of precipitation series.

However, the systematic application of the PCRP model for analysis of rhythmic
signals was limited mainly because of the absence of an appropriate procedure of
data processing (Kolyesnikova and Monin 1965). Chapters (Dragan et al. 1987;
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Mikhailyshyn et al. 1990; Javorskyj et al. 2006, 2007, 2010; Jaworskyj et al. 2011a,b;
Kravets 2012) were devoted to the development of such a procedure and application
of this method for the investigation of the structure of rhythmic variations in physical
processes.

Within the framework of the PCRP model of rhythmic, the mean describes the
regular periodical oscillations, the variance characterizes the periodicity of the power
of fluctuations around this regular behavior and the correlation function describes
the character of periodic changes in correlations between the values of fluctuating
parameters at various moments of time separated by equal time intervals.

If we assume that the PCRP mean and the correlation function are absolutely
integrable within the interval [0, T ], then these characteristics can be represented in
Fourier series:

m (t) =
∑
k∈Z

mkeik 2ε
T t ,

b (t, u) =
∑
k∈Z

Bk (u) eik 2ε
T t , (2)

where |mk | → 0 and |Bk (u)| → 0 as k → ∞. The coefficients mk and Bk (u) (the
latter coefficients are referred to as correlation components) quantitatively character-
ize the waveforms of the periodic curves representing the mean and the correlation
function. The correlation components Bk (u) satisfy the equations:

Bk (−u) = Bk (u) eik 2ε
T u,

Bk (u) = B−k (u). (3)

The zero-th correlation component is an even B0 (−u) = B0 (u) and positive-
definite function. In other words, this component has all the properties of the corre-
lation function of a stationary random process.

The representation of the PCRP in terms of stationary connected components
(Dragan et al. 1987; Ogura 1971; Hurd 1989; Dragan 1969):

θ (t) =
∑
k∈Z

θk (t) eik 2ε
T t (4)

is important for understanding the structure of PCRP as a model of stochastic oscil-
lations. As can be seen from expression (4), PCRP can be represented as a sum
of amplitude and phase-modulated harmonics, whose frequencies are multiple of
the fundamental oscillation frequency ξ0 = 2ε

T . Comparing (2) and (4), we find that
the components mk coincide with the mean of stationary random processes θk (t). The
autocorrelation functions of these processes Dkk (u) = E θ◦

k (t + u) θ◦
k (t) determine

the PCRP zero-th correlation component:

B0 (u) =
∑
k∈Z

Dkk (u) eik 2ε
T u . (5)
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The cross-correlation functions of components whose numbers are shifted by l
determine the l th correlation components:

Bl (u) =
∑
k∈Z

Dk−l,k (u) eik 2ε
T u . (6)

As can be seen from the representation (4), the PCRP model covers various simpler
models of rhythmic variations, including the additive model θ (t) = π (t) + f (t),
where π (t) is a stationary random process and f (t) is a periodic function; the
multiplicative model θ (t) = π (t) f (t); and the additive-multiplicative model
θ (t) = g (t) + π (t) f (t), where g (t) is a periodic function. The first model is
often used in hydro-meteorological studies. The second and third models are mainly
applied to describe variations in the variance, that is, in the power of fluctuation
oscillations (Gruza 1982; Poljak 1978).

The PCRP variable spectral density f (ξ, t) is a complex function: f (ξ, t) =
Re f (ξ, t) − i Im f (ξ, t). Its real part is determined by the cosine transform of the
even part of the correlation function:

Re f (ξ, t) = 1

2ε

∞∫
0

bs (t, u) cos ξudu, (7)

whereas the imaginary part is given by the sine transform of the odd part of the
correlation function:

Im f (ξ, t) = 1

2ε

∞∫
0

bc (t, u) sin ξudu, (8)

where b (t, u) = bs (t, u) + bc (t, u), bs (t, u) = −bs (t,−u) and bc (t, u) =
bc (t,−u).

The real and imaginary parts of the spectral density are even and odd functions
of the frequency, respectively:

Re f (−ξ, t) = Re f (ξ, t) ,

Im f (ξ, t) = −Im f (−ξ, t) .

Since

b (t, u) = 2

∞∫
0

[Re f (ξ, t) cos ξu − Im f (ξ, t) sin ξu]du,

for u = 0 we have:
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b (t, 0) = 2

∞∫
0

Re f (ξ, t)dξ. (9)

This formula allows us to provide a physical interpretation of the function
Re f (ξ, t). Since b (t, 0) characterizes the instantaneous power of the process.
Re f (ξ, t) describes the distribution of this power in the (ξ, t) plane. The inte-
gration of this quantity with respect to all the relevant frequencies yields the value of
the power at a given moment of time t . However, we cannot interpret this quantity as
the power spectral density because this quantity is not necessarily non-negative for all
(ξ, t), although, similarly to the spectral density of a stationary random process, this
function is even. For b (t, 0) = const, expression (9) is reduced to the well-known
relation for stationary random processes. Then Re f (ξ, t) = f (ξ) is the power
spectral density. This function can be interpreted in terms of energy characteristics
for the so-called quasi-stationary random process, when the rate of the variation of
the correlation function, due to the lag is much higher than the rate of temporal vari-
ation of this correlation function. Such a quasi-stationary behavior may also occur in
the case of PCRP. Then, we have Re f (ξ, t) ≥ 0, and we can consider this function
as the power spectral density. Generally, we cannot use this physical interpretation.
As can be seen from the formula bc (t, u) = 1

2 [b (t, u) − b (t − u, u)] , if the cor-
relation function rapidly decays with the growth in the lag and displays only small
variations in the argument t within the interval [t − u, t] , then bc (t, u) is small.
Hence, the function bc (t, u) can be used to characterize transient processes, and
Im f (ξ, t) describes the properties of such processes in the frequency domain.

The variable spectral density f (ξ, t) is a periodic function of time. The ampli-
tudes of harmonics of this function determine the spectral component fk (ξ):

f (ξ, t) =
∑
k∈Z

fk (ξ) eik 2ε
T .

These components are defined by means of the Fourier transform of the correlation
components:

fk (ξ) = 1

2ε

∞∫
0

Bk (u) e−iξudu. (10)

If the correlation components are absolutely integrable, then fk (ξ) is continuous
for all ξ ∈ R and | fk (ξ)| → 0 as ξ → ±∞.

Using expressions (3) we derive:

f−k (ξ) = fk (−ξ),

fk (−ξ) = fk

(
ξ + k

2ε

T

)
.
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The zero-th spectral component f0 (ξ) is a real even function and f0 (ξ) ≥ 0 for
all ξ ∈ R. This conclusion is rather natural because f0 (ξ) is the Fourier transform
of the zero-th correlation component B0 (u), which coincides with the correlation
function corresponding to the stationary approximation of PCRP. The zero-th spectral
component describes the frequency distribution of the average power of oscillations,
whereas higher order spectral components characterize frequency properties of cross-
correlations θk (t) of modulating processes:

fk (ξ) =
∑
l∈Z

fl−k,l (ξ − lξ0).

Vector PCRP are natural probabilistic models of rhythmic variations of vector
physical quantities. The mean of vector PCRP are described by periodic vectors
mv (t) = mv (t + T ). whereas correlation functions dv (t, u) and spectral densi-
ties fv (ξ, t) are given by periodic dyad tensors. Similarly to vector stationary ran-
dom processes (Dragan et al. 1987; Bjelyshev et al. 1983), the properties of vector
PCRP can be described in terms of the invariants of tensors bv (t, u) and fv (ξ, t)
(Javors’kyj 1987). These invariants unambiguously characterize the correlation and
spectral structure of vector random processes regardless of the choice of the coordi-
nate frame.

More sophisticated models of rhythmic variations are based on bi-and poly-PCRP
(Dragan 1972) which describe both the interference and nonlinear interaction of
oscillations with different periods. To analyze modulation effects in the PCRP model,
we should represent a PCRP as a series (4). Then, the interaction of two rhythms
gives rise to a process:

θ (t) =
∑
j,k∈Z

θk, j (t) eiτk j t ,

where τk j = k 2ε
T1

+ j 2ε
T2

. The mean and the correlation function of such process,
which is referred to as the bi-PCRP, are written as:

m (t) =
∑
j,k∈Z

mkj e
iτk j t , b (t, u) =

∑
j,k∈Z

mkj (u)iτk j t .

The mixed components of the mean mkj and the correlation function Bkj (u)

characterize the modulation interaction of the kth and j th harmonics. The structure
of matrices representing these quantities is indicative of the presence of bi-rythmic
variations of a certain type.

Generalizing the model of bi-PCRP to additive-multiplicative interaction involv-
ing many rhythms, we arrive at the notion of poly-PCRP, which can be represented
in the following form:
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θ (t) =
∑

l1, ..., lN ∈Z

θl1, ..., lN (t) e
it

N∑
j=1

l j τ j

.

Components θl1,...,lN (t) characterize modulation interactions of N rhythms with
periods Tj . Poly-PCRP, in their turn, form a subclass of almost-PCRP. which can be
represented as

θ (t) =
∑
j∈Z

θ j (t) eiξ j t ,

where θ j (t) are the stationary connected processes. Almost-PCRP are reduced to
poly-PCRP if the Fourier exponents ξ j , can be written as:

ξ j =
N∑

k=1

r jkτk, (11)

where r jk are integers. In this case, the basis
{
τk, k = 1, N

}
is referred to as finite and

integer basis of the set M = {ξk, k ∈ Z} . If the set M is an arithmetic progression,
i.e., ξ j = jξ0, ξ0 = const is the difference of this progression, then the class of
almost-PCRP is reduced to the class of PCRP. We can describe the latter class using
the invariance of its characteristics with respect to shifts by T = 2ε/ξ0.

In contrast to the subclasses that include poly-and bi-PCRP models, the general
model of rhythmic oscillations in the form of almost-PCRP allow us to investigate
only the interference of rhythms with frequencies ξ j . We can reveal nonlinear proper-
ties of the relevant processes and phenomena by studying the structure of elementary
oscillations in greater detail with the use of relationship (11), which is satisfied for
bi- and poly-PCRP models.

3 Estimation of Probabilistic Characteristics of Oscillations

As can be seen from the aforesaid, the requirements to the model of rhythmic vari-
ations in the form of PCRP and their generalizations are formulated in terms of
the type of temporal variations of probabilistic characteristics. Importantly, these
requirements are also applicable to the second-order moment functions. Within the
framework of such an approach, we should abandon the assumption that rhythmic
variations are reduced to a visible recurrence of values, and perturbations distort a
strictly periodic pattern. This assumption provides the basis for a wide use of the
additive model for the description of seasonal rhythmic variations of geophysical
processes. However, processes that occur in the atmosphere and ocean are essen-
tially nonlinear. Therefore, it is doubtful whether we could represent the temporal
variations of the quantities under consideration as mutually independent regular sea-
sonal changes and random fluctuations. The PCRP model is based on the assumption
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that the relevant processes are interdependent. Obviously, the substantiation of the
concept related to this model should be based on empirical data, and we should exam-
ine PCRP methods of statistical analysis adequate to the problem under study. Initial
approaches to this problem were indicated by Gudzenko (1959, 1961), who demon-
strated that it is possible to estimate the mean and the correlation function either
by evaluating appropriate Fourier components or by analyzing the counts sampled
through a time interval equal to the correlation period. The first method is referred
to as component and the second is called coherent. Dragan (1972) thoroughly inves-
tigated the properties of PCRP sequences of counts. Based on the periodicity on the
average, Dragan also substantiated the applicability of such sequences for statistical
estimation of PCRP characteristics (Dragan 1972). Subsequent stages in the devel-
opment of the methods of PCRP statistics (Dragan et al. 1987; Mikhailyshyn and
Javors’kyj 1990; Javorskyj et al. 2007, 2011, 2012; Yavors’kyi et al. 2009) involved
the solution of problems of estimation theory in the context of the systematic devel-
opment of the means for statistical analysis of empirical data.

Evidently, the coherent and component methods of estimation can be deduced
from the periodicity of the probabilistic characteristics of PCRP. Coherent estimates
for the mean and the correlation function are written as:

m̂ (t) = 1

N

N−1∑
n=0

θ (t + nT ) ,

b̂ (t, u) = 1

N

N−1∑
n=0

[
θ (t + u + nT ) − m̂ (t + u + nT )

][
θ (t + nT ) − m̂ (t + nT )

]
.

Component estimates for the mean and the correlation function are based on the
estimates for the components of the relevant Fourier series, i.e.:

m̂ (t) =
N1∑

l=−N1

m̂le
il 2ε

T t , (12)

b̂ (t, u) =
N2∑

l=−N2

B̂l (u) eil 2ε
T t , (13)

where:

m̂l = 1

σ

σ∫
0

θ (t) e−il 2ε
T t dt, (14)

B̂l (u) = 1

σ

σ∫
0

[
θ (t) − m̂ (t)

][
θ (t + u) − m̂ (t + u)

]
e−il 2ε

T t dt. (15)
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In formulas (12) and (13), N1 and N2 are the numbers of components estimated
for the mean and the correlation function, respectively. The estimates for the mean
and the correlation function of PCRP based on coherent averaging of the counts
sampled with a time interval equal to the correlation period T employ only one value
of the process within the period. Statistics (12) and (13) are based on all the values of
the relevant continuous realization. Therefore, if the correlation function of a PCRP
displays considerable changes within the interval equal to the correlation period,
then, for a given the realization length, component estimates are characterized by a
smaller variance that coherent estimates. This advantage of component estimates is
especially important if the number of components of characteristics being evaluated
is small because the variance of the component estimate increases with the growth
of this number.

Coherent and component methods of estimation of probabilistic PCRP character-
istics can be considered as particular cases of a more general method of estimation—
the method of linear filtration (Dragan et al. 1987; Javors’kyj 1987; Yavorskyj et al.
2012):

m̂ (t) =
σ∫

0

θ (t − δ)h (δ ) dδ, (16)

b̂ (t, u) =
σ∫

0

◦
θ (t + u − δ)

◦
θ (t − δ) h (δ ) dδ. (17)

If the condition:

σ∫
0

h (δ ) e−ik 2ε
T δ dδ = 1, k = −N1, N1 (18)

is satisfied, then Em̂ (t) = m (t) , i.e., (16) provides an unbiased estimate. Suppose
that h (δ ) is a periodic function, h (δ + T ) = h (δ ) . Then, we can write:

h (δ ) =
∑
i∈Z

hle
i 2ε

T δ .

Hence, with allowance for (17) with σ = N T, we find that hl = σ−1. Expressions
(16) and (17) in this case are transformed into the formulae for coherent estimates.
If the number of harmonics is finite, the function h (δ ) describes the impulse response
a component filter. Thus, the class of estimates described by (16) and (17) with a
periodic weight function h (δ ) is completely covered with coherent and component
estimates.

The frequency characteristics of the coherent and component comb filters are
given by:
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H (ξ) = e−i ξT
2 (N−1) sin ξ

N

2
T

(
2ε N sin

ξT

2

)−1

and

H (ξ) = 1

2ε

M∑
k=−M

e
−i

(
ξ−k 2ε

T

)
σ
2 sin

(
ξ − k

2ε

T

)
σ

2

[(
ξ − k

2ε

T

)
σ

2

]−1

,

respectively. The component filter is characterized by a lower level of side lobes
as compared with the coherent filter and by a finite number of transmission bands.
The number of these bands is determined by the number M of components being
estimated. The above-specified properties of the filters mainly account for a higher
reliability of component estimates. The difference between component and coherent
estimates vanishes as M → ∞.

Component estimates are parametric estimates: they are based on the unknown
parameters m̂k and B̂k (u) of trigonometric polynomial. We may use least squares
technique for their estimation (Javors’kyj 1988; Mikhailyshyn and Javors’kyj 1990;
Zabolotnyj et al. 2000; Yavorskyj et al. 2011). The least squares estimates are esti-
mated by minimizing the functionals:

F1

(
m̂0, m̂c

1, . . . , m̂s
N1

)
=

σ∫
0

[
θ (t) − m̂ (t)

]2
dt,

F2

(
B̂0 (u) , B̂c

1 (u) , . . . , B̂s
N1

(u)
)

=
σ∫

0

[ ◦
θ (t)

◦
θ (t + u) − b̂ (t, u)

]2

dt,

where m̂ (t) and b̂ (t, u) are obtained from (12) and (13), here m̂k = 1
2

[
m̂c

k − i m̂s
k

]
,

B̂k (u) = 1
2

[
B̂c

k (u) − i B̂s
k (u)

]
. The bias of least squares estimates does not depend

on the realization length σ . And under condition lim
u→∞ b (t, u) = 0 are convergent.

If the realization length σ = N T the component and least squares estimates match.
The better quality of component and least squares estimates is due to the use of

apriori data concerning the number of components of characteristics being estimated.
One can employ apriori data concerning the correlation structure of the PCRP to find
more efficient estimates. One of the possible ways to improve the estimation effi-
ciency is to choose optimal linear filter (Mezentsev and Javors’kyj 1988; Yavorskyj
et al. 2012). In particular, the minimum, on the average, variance of estimates can
be achieved with the use of a linear invariant filter, and the minimum variance for an
arbitrary moment of time is achieved by means of a filter with periodically varying
parameters.

For a detail analysis of PCRP structure the estimation method based on the station-
ary components extraction (Yavorskyj et al. 2011) should be used. These methods
use the harmonic series representation of PC process, that is the generalization of
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Fourier series for periodic functions in the sense that Fourier coefficients are replaced
by jointly stationary processes. In order to extract stationary components the spectral
region is divided into the bands [(k − 0.5) ξ0, (k + 0.5) ξ0], k ∈ Z . First method
consists in shifting of each band on kξ0 value and low-band filtration in the interval
[−ξ0/2, ξ0/2]. The second method filtrates each part and uses the Hilbert trans-
form for components estimation. Probability characteristics of these components are
determined by the probability characteristics of PC process. They are jointly station-
ary random processes, which spectral density functions are located in the interval
[−ξ0/2, ξ0/2], that is extracted stationary components have finite spectrum. If PC
process is narrow band one, namely it is formed by harmonic components, which are
modulated by low band stationary random processes, then extracted components are
very close to these ones which form the PC process. If modulated stationary processes
are wide band processes, then extracted components will have characteristics, which
are formed as result of shifting, filtration and superposition of first ones. Note, that
PC processes harmonic series representation through stationary components with
finite or infinite spectra is equivalent in the meaning of PC process probability char-
acteristics. It allows us to use combing filtering method for PC process probability
characteristics calculation. Developed method deals with the structure of a process
(we know which stationary component pairs have nonzero correlations and may eas-
ily build the model of the process) as opposed to coherent, component and least
squares methods which deal only with integral characteristics of the process. Such
approach simplifies the properties parameterization of estimated correlation func-
tion and is very effective for vibration diagnostics (Bjelyshev et al. 1983; Gudzenko
1961), because of the probabilities of extracted stationary components are directly
connected to the faults of mechanical rotary systems. Also this idea can be put as
a base for PC process parametric modeling development (Kravets 2012). Properly
speaking, the mixture of the harmonic series representation and vector autoregressive
moving average parametric model is the alternative method to periodic autoregres-
sive moving average parametric model in the field of parametric spectral analysis,
modeling and forecasting.

The spectral properties of the PCRP are characterized by a two-frequency spectral
density. For the considered class of processes, the spectral density is concentrated
only along the straight lines ξ2 = ξ1 − k 2ε

T . Therefore, we can reduce the empir-

ical spectral analysis of PCRP to the estimation of components f̂k (ξ) or the vari-
able spectral density f̂ (ξ, t) whose Fourier expansion involves these components
(Dragan et al. 1987).

We can form the statistics of the variable spectral density and spectral components
using expressions (7), (8), and (10). Similarly to the spectral analysis of stationary
random processes, we can derive consistent estimates by smoothing correlograms:
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f̂ (ξ, t) = 1

2ε

um∫
−um

b̂ (t, u) k (u) e−iξudu,

f̂k (ξ) = 1

2ε

um∫
−um

B̂k (u) k (u) e−iξudu (19)

The correlation window k (u) is an even function k (−u) = k (u) and k (0) = 1.
For |u| ≥ um , where um is the point of correlogram truncation k (um) = 0. For a
given realization length σ , the variances of the estimates (19) decrease with the nar-
rowing of the correlation window. Fluctuation components of estimate biases should
display a similar behavior. However, by increasing um we can reduce the bias com-
ponents that determine the resolving power of spectral analysis. Such contradictory
tendencies in variations of estimate characteristics impede the choice of parameters
σ and um . For PCRP with known or preset characteristics, we can ensure a sub-
stantiated choice of these parameters from evaluated characteristics of the statistical
accuracy of estimation. The employed approach allows us to provide recommenda-
tions for processing PCRP realizations of specific types. This approach is favorable
for revealing general properties of spectral estimates. Note that the results of compre-
hensive investigations of the properties of spectral estimates for stationary random
processes provide the basis for the empirical spectral analysis of PCRP at the initial
stage of studies.

The methods of coherent and component estimation are also suitable for the
statistical analysis of PCRP-related processes, such as vector-PCRP, bi-PCRP.
and poly-PCRP (Javors’kyj 1986, 1987). However, generally, characteristics of
bi- and poly-PCRP can be estimated only with using of the component method.
Coherent averaging is applicable only when data sampling is performed with a small
time interval that contains an integer number of periods of other rhythms. If this
condition is not satisfied, then we can employ coherent data sampling, where the
realization length cannot be matched with time scales of variations in probabilis-
tic characteristics, only to estimate additive components. If we can separate time
intervals that include a sufficient number of smaller periods and temporal variations
of characteristics corresponding to the larger period are insignificant within these
intervals of time, then coherent averaging within such time intervals allow us to eval-
uate sliding estimates for the characteristics of bi-and poly-PCRP with a satisfactory
accuracy. Such an estimation procedure assumes that these generalizations of PCRP
can be represented as PCRP with slowly varying characteristics.

Both coherent and component estimates of the characteristics of polyrhythmic
processes are biased, and their biases are determined, to a great extent, by the dif-
ference of the relevant correlation periods. If this difference is small, then, to ensure
the required resolving power, we should choose the processed realization fragment
in such a way that its length should be much greater than that required to ensure the
smallness of biases when each rhythm is processed separately. It is not always the
case that we can meet this requirement. Then, we encounter an urgent problem of
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using processing methods with a higher selectivity (Javors’kyj 1988; Mikhailyshyn
and Javors’kyj 1990; Zabolotnyj et al. 2000; Yavorskyj et al. 2011), in particular, the
least-squares method.

Above, we considered the properties of continuous estimates of probabilistic char-
acteristics. In the overwhelming majority of problems of practical importance, we
deal with time series that consist of discrete sequences of values θ (nh) where h is
the sampling interval. We should analyze the influence of the sampling interval on
the estimation quality both from the viewpoint of revealing reliable changes in the
estimates for the mean, correlation function, and the spectral density in time domain
and in the context of the possibility to make reliable conclusions concerning the
dependences of the correlation function and correlation components on the lag and
the sensitivity of spectral characteristics to the frequency. To obtain intermediate
time-domain estimates with using the coherent method, it would be appropriate to
employ a trigonometric interpolation (Javors’kyj 1987). Interpolated estimates are
unbiased if the sampling step h satisfies the condition h ≤ T/ (2M + 1), where are
the numbers of higher order components of characteristics being evaluated. Simulta-
neously, this condition ensures the unbiasedness sample estimates for the components
(Javors’kyj 1985). If this condition is not met component estimates are perturbed by
the effect of overlapping. The variances of estimates depend on the correlation prop-
erties of PCRP. The sampling interval should be chosen in such a manner as to ensure
the smallness of the differences between the reliability of discrete estimates and the
reliability of the corresponding continuous estimates.

If the correlation period is not multiple of the sampling interval h, then we should
apply the component method of estimation, because coherent data sampling in such
a situation would result in the accumulation of errors. The use of the component
method simultaneously solves the interpolation problem. For h ≤ T/ (2M + 1), the
relation between the qualities of coherent and component discrete estimates is close
to that characteristic of continuous processing (Isayev and Javors’kyj 1995).

If the sampling interval is not matched properly with the temporal structure of a
PCRP, then the sample estimates of spectral components are also distorted. In this
case, the estimates of the components fl (ξ) take the values fl+q L (ξ), q ∈ Z ,
L = T/h. The estimation of the spectral components can be also accompanied by
additional errors due to the overlapping of the values of the same component at the
frequencies ξ ± 2εk/	u, where 	u is the lag discretization interval. To reduce these
errors, we should choose the corresponding step 	u. These errors are insignificant
if 	u is reduced to such an extent that the values of the spectral components at the
frequencies ξ ± 2εk/	u are sufficiently small. The step 	u also influences the
variance of the estimates. If the values of the spectral characteristics are large outside
the interval [−ε/	u, ε/	u] than the statistical accuracy of discrete estimates is
considerably lower continuous estimates.

To eliminate overlapping errors arising when we process time series using the
bi-PCRP methods, we should match the sampling step with the numbers of highest
order components for both correlation periods. Naturally, evaluating the estimates for
the mean and the correlation function, we should satisfy different requirements to the
samplings step. If this step is such that h ≤ T1/ (2N1 + 1) and h ≤ T2/ (2N2 + 1)
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where Ni are the numbers of highest order components for each of the periods, then
the errors that arise when continuous averaging is replaced by discrete averaging are
determined by the difference between the relevant integral transforms of the corre-
lation components and the corresponding integral sums for the given sample step.

In many situations that occur in reality, time intervals that separate different values
of series of empirical data are not only variable but also random. This circumstance
necessitates the construction and investigation of PCRP statistics in the case of sto-
chastic discretization. Analysis of such series can be based on the modified coherent
and component methods (Javors’kyj 1985; Kostjukov et al. 1987). If the values of a
time series are obtained in the so-called stationary discretization regime, then both
of these methods provide estimates whose quality is only slightly lower than the
quality of estimates evaluated from equidistant time series. In such a situation, the
component method displays a higher sensitivity to the deviations of the properties
of discretization flows from the stationary flow.

4 Detection of Hidden Periodicities

To apply the methods of statistical analysis based on PCRP and their generalizations,
we should preliminarily determine the correlation periods for the processes under
investigation. In many cases, we can make a decision concerning the values of these
periods based on the analysis of the physical nature of the phenomenon under study.
Specifically, when studying daily and annual variations of geophysical processes, we
can find an obvious solution to the problem associated with the correlation period.
Astronomical factors determine a poly-rhythmic character of tidal oscillations of the
sea level, sea currents, and internal waves. In this case, the correlation periods are
determined from the well-known poly-harmonic representation of the potential of
tide-generating forces. When we investigate rhythmic variations of stochastic intrin-
sic oscillations that occur in various dynamical systems, the problem of determining
the correlation period ceases to be trivial. In such situations, to solve this problem,
we should develop methods of estimation that would be adequate to the accepted
models (Javors’kyj 1984, 1985; Javors’kyj and Mikhailyshyn 1996).

The problem of the detection of hidden periodicities, which is a classical problem
of mathematical statistics of random processes, was formulated back in the nineteenth
century (Serebrjennikov and Pervozvansk 1965; Yaglom 1981). Initially, the solution
of this problem was reduced to the evaluation of parameters of a periodic or nearly
periodic deterministic function. Subsequently, the detection of hidden periodicities
was transformed into the problem of searching for reliable peaks of the power spectral
density for stationary random processes.

In terms of the PCRP model, hidden periodicities do not necessarily manifest
themselves as peak values of the spectral density (Dragan et al. 1987; Yaglom 1981).
Within the framework of the PCRP model, the detection of periodicities is formulated
as a problem of determining the period of temporal variations in the estimates of
probabilistic characteristics of stochastic oscillations, such as the mean, correlation



88 I. Javors’kyj et al.

function and variable spectral density. Such an approach separates the search for
the period of regular oscillations from the determination of the recurrence period of
correlations.

Based on the representation (4), we can reduce the problem of the determination
of the PCRP correlation period to the problem of parametric estimation. In the case
of a Gaussian PCRP, we can employ the maximum likelihood method. The corre-
sponding estimate can be represented in the form of a power series in a certain small
parameter φ.

T̂ = T0 + φT1 + φ2T2 + · · · (20)

In the first-order approximation for φ, this estimate is unbiased, and the variance of
this estimate coincides with the variance of the efficient estimate. If we increase the
realization length being processed, the parameter φ decreases simultaneously with
the accuracy of the first-order approximation. Therefore, the maximum-likelihood
estimate of the period is asymptotically unbiased and asymptotically efficient. The
efficiency of this estimate is due to the use of apriori data concerning the probabilis-
tic structure of the PCRP. At the initial stage of investigation, such data are usually
lacking, which makes us employ less efficient methods that do not require any apri-
ori information. Development of such methods can be based on the concepts of the
above-considered methods of coherent and component estimation. Both coherent and
component statistics are characterized by certain resonant properties with respect to
the correlation period. These statistics reach their extreme at points T that asymptot-
ically tend to the true values of the period. Specifically, the functionals of the mean
can be written as:

m̂ (t) = 1

2N + 1

N∑
n=−N

θ (t + nδ), (21)

{
m̂c

k
m̂s

k

}
= 1

σ

σ∫
0

θ (t)

{
cos
sin

}
τk tdt, τk = k2ε/δ, (22)

m (t, δ ) =
N1∑

n=−N1

m̂k (δ ) eiτk t . (23)

Analogously to relations (21)–(23), we can also define the functionals of the
correlation function (Drabych et al. 2000). Similarly to the maximum likelihood
method, the estimates of the period are determined from the nonlinear equation:

dS (δ )

dδ
+ φ

dN (δ )

dδ
= 0,

where S (δ ) and N (δ ) are the regular and fluctuation components of the functionals
(21)–(23) respectively and φ is a small parameter. Solutions to this equation can
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be represented in the form (20). If the correlation function decreases with the
growth in the lag, then the small parameter, which is defined by the expression

φ =
√[

EN 2 (T )
]
/S (T ) , tends to zero as σ → ∞. Therefore, the estimates of the

period are asymptotically unbiased and consistent.
The advantage of the statistics (21)–(23), similarly to the statistics of correla-

tion characteristics defined by analogy with (21)–(23), is associated with the fact
that, in addition to the correlation period, these statistics allow us to simultaneously
determine the characteristics of PCRP.

The developed procedure for the detection and analysis of hidden periodicities was
employed in the investigation of wind waves, swell, Wolf number series, geomagnetic
pulsations Pel and Pc3, annual and interyearly rhythmic variations of hydrometeo-
rological processes and vibroacoustic signals. Based on this procedure, we revealed
qualitatively new features of the probabilistic structure of rhythmic variations of the
above-specified processes (Dragan et al. 1987; Mikhailyshyn et al. 1990; Dragan and
Javors’kyj 1982; Yavorskyj et al. 2012; Gudzenko 1961).

The results of our studies clearly demonstrate that the methods for the detection
of hidden periodicities based on functionals (21)–(23) allow us also to make con-
clusions concerning the applicability boundaries of models of rhythmic variations
in the form of PCRP and their generalizations. The proposed approach naturally
extends the problem of hidden periodicities searching on the basis of a more logical
and comprehensive notion of rhythmic of stochastic oscillations, which, apart from
other advantages, removes a severe limitation associated with the requirement that
the considered oscillation process should be stationary.

5 Conclusions

Relying on the results of the performed investigations, we developed, in collabora-
tion with our colleagues, the fundamentals of the theory of the statistical analysis of
rhythmic signals on the basis of models in the PCRP form and their generalizations.
Within the framework of the spectral-correlation theory of nonstationary random
processes of these classes, we substantiated a general approach to the investigation
of the stochastic recurrence in phenomena of different nature. It is shown that, using
the first-and second-order characteristics of such processes, we can reveal substan-
tial and closely interrelated features of rhythmic variations, such as the periodicity
and randomness. Eventually, these features reflect stochastic amplitude and phase
modulation of signals. We developed and investigated the methods for the estima-
tion of probabilistic characteristics of PCRP and their generalizations, including the
coherent and component methods, the least-squares method and methods of linear
filtration. We developed a general approach to the problems of estimation and con-
struction of optimal estimates for PCRP characteristics. On the basis of the PCRP
model, we developed methods for the detection and analysis of hidden periodicities.
We also created software for the statistical processing of signals with the stochastic
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recurrence. With the use of these means, we revealed previously unknown properties
of rhythmic variations of several physical processes that occur on the Earth, in the
atmosphere, in the ocean, in the ionosphere and in various technological systems.
The proposed parametric models of stochastic oscillations provide the background
for the performing and designing of experimental statistical investigations, simu-
lation and forecasting of various processes and recognition and diagnostics of the
states of dynamic systems that generate these processes.
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Simulation Comparison of CBB and GSBB
in Overall Mean Estimation Problem
for PC Time Series

Anna E. Dudek and Paweł Potorski

Abstract In the chapter the performance comparison in the simulation study of
the block bootstrap methods that can be used in the problem of the overall mean
estimation of a PC time series is presented. Two block bootstrap techniques are
considered: the Circular Block Bootstrap and the circular version of the General-
ized Seasonal Block Bootstrap. The actual coverage probabilities of the bootstrap
equal-tailed confidence intervals are calculated for a wide range of the block length
choices and a few sample sizes. Moreover, the optimal values of the block lengths
are pointed. In the most of the considered cases performance of CBB and GSBB is
very comparable.

1 Introduction

Periodically correlated (PC) time series are frequently used to model data with
periodic structure in many different fields like climatology (Bloomfield et al. 1994,
1995), economy (Dudek et al. 2013) and mechanical signals (Antoni 2009). Time
series {X (t), t ◦ Z } is called PC if it has periodic mean and covariance functions

E (X (t + d)) = E (X (t)) and Cov (X (t + d), X (s + d)) = Cov (X (t), X (s)) ,

where d is the known period length. For more details we refer the reader to the book
of Hurd and Miamee (2007).

The important subgroup of PC processes are PARMA (p, q) (periodic auto-
regressive-moving-average) processes, which are of the form
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Fig. 1 First and second column: ACPs (black lines) for M1 for b ◦ {1, 2, . . . , 79, 80, 90, 100}
together with nominal coverage probability (grey line) for CBB and GSBB, respectively. Third
column: differences between ACPs for CBB and GSBB. Rows 1–3 correspond to the sample size
n = 120, n = 480 and n = 1920, respectively

X (t) =
p∑

j=1

φ j (t)X (t − j) +
q∑

k=1

θk(t)ξ(t − k) + σ(t)ξ(t), (1)

where φ j (t) = φ j (t + T ), θk(t) = θk(t + d), σ(t) = σ(t + d) for all j = 1, . . . , p,

k = 1, . . . , q are periodic coefficients, and ξ(t) is mean zero white noise with
variance equal to one.

In the sequel we use an alternative parametrization introduced by Jones and
Brelsford (1967) to reduce the number of parameters required to represent PARMA
model.

φ j (t) = a j,1 +
⇒d/2∈∑
m=1

a j,2m cos(2πmt/d) +
⇒d/2−1∈∑

m=1

a j,2m+1 sin(2πmt/d), j = 1, ..., p,

θk(t) = bk,1 +
⇒d/2∈∑
m=1

bk,2m cos(2πmt/d) +
⇒d/2−1∈∑

m=1

bk,2m+1 sin(2πmt/d), k = 0, ..., q,

where θ0(t) = σ(t).
The reduction of the number of parameters can be obtained by restricting the num-

ber of frequencies in the Fourier series. Then, the estimates of the Fourier coefficients
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Fig. 2 First and second column: ACPs (black lines) for M2 for b ◦ {1, 2, . . . , 79, 80, 90, 100}
together with nominal coverage probability (grey line) for CBB and GSBB, respectively. Third
column: differences between ACPs for CBB and GSBB. Rows 1–3 correspond to the sample size
n = 120, n = 480 and n = 1920, respectively

are calculated using the maximum likelihood method. Since the above transformation
is one-to-one the solution can be transformed to {φ j (t), θk(t)}.

The overall mean estimation problem for PC time series is quite well described
in the literature. The resampling techniques are often used to construct the confidence
interval for the parameter. So far the consistency of a few block bootstrap methods
was proved. The first result was obtained by Synowiecki (2007) for the Moving
Block Bootstrap Method (MBB). Although, MBB is a very well known and widely
applicable it does not respect the periodic structure of the considered data. As a result
it cannot be used for example in the problem of the seasonal means estimation.
To address this issue the block bootstrap methods that preserve the periodicity of the
original data were proposed. In Politis (2001) and Chan et al. (2004) the Seasonal
Block Bootstrap (SBB) and in the Periodic Block Bootstrap (PBB) were introduced,
respectively. The consistency of SBB for the overall mean was shown in Synowiecki
(2008). Unfortunately, PBB turned out to be inconsistent unless the period length is
growing together with the sample size (for more details see Leśkow and Synowiecki
2010). Finally, Dudek et al. (2014) proposed the Generalized Seasonal Block Boot-
strap (GSBB), which is the generalization of PBB and SBB. In contrary to those PBB
and SBB, GSBB allows for quite arbitrary choice of the block length. Moreover, the
method is consistent for the overall mean and the seasonal means.
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Fig. 3 First and second column: ACPs (black lines) for M3 for b ◦ {1, 2, . . . , 79, 80, 90, 100}
together with nominal coverage probability (grey line) for CBB and GSBB, respectively. Third
column: differences between ACPs for CBB and GSBB. Rows 1–3 correspond to the sample size
n = 120, n = 480 and n = 1920, respectively

The aim of this chapter is to compare the performance of MBB and GSBB used
for construction of the pointwise confidence intervals for the overall mean of the
PC time series. It is known that MBB has the maximal degree of overlap among
blocks and GSBB has (almost) full overlap in its successive blocks (see Dudek et al.
2014). On the other hand, the practitioner would like to use one method to perform
all necessarily calculations. In this case the advantage of GSBB is noticeable as for
example it provides the simultaneous confidence intervals for the seasonal means
(Dudek et al. 2014).

2 Block Bootstrap Methods

In this section we recall the idea of MBB and GSBB. We decide to restrict only to
the circular versions of these methods to avoid the edge effects. The circular version
of MBB called the Circular Block Bootstrap (CBB) was introduced in Politis and
Romano (1992).

Let X (1), . . . , X (n) be a sample from PC time series. By Bi we denote the block of
observations that has the length b and starts with X (i) i.e. Bi = (X (i), . . . , X (i + b − 1)).
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Fig. 4 First and second column: ACPs (black lines) for M4 for b ◦ {1, 2, . . . , 79, 80, 90, 100}
together with nominal coverage probability (grey line) for CBB and GSBB, respectively. Third
column: differences between ACPs for CBB and GSBB. Rows 1–3 correspond to the sample size
n = 120, n = 480 and n = 1920, respectively

If any time index i is greater than the sample size n we take the observation i − n
instead.

Moreover, without loss of generality and to simplify the notation we assume that
the sample size n is an integer multiple of the block length b (n = lb) and is an integer
multiple of the period length d (n = wd).

CBB Algorithm:

1. Choose a (positive) integer block size b(< n).
2. For t = 1, b + 1, 2b + 1, . . . , (l − 1)b + 1, let

(
X→(t), . . . , X→(t + b − 1)

) = Bkt ,

where kt is iid from a discrete uniform distribution

P (kt = s) = 1

n
for s = 1, . . . , n.

This means that we are choosing randomly with the replacement l blocks of
the length b. Each block is selected with probability 1/n.

3. Join the l blocks Bkt to get the bootstrap sample.
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Fig. 5 First and second column: ACPs (black lines) for M5 for b ◦ {1, 2, . . . , 79, 80, 90, 100}
together with nominal coverage probability (grey line) for CBB and GSBB, respectively. Third
column: differences between ACPs for CBB and GSBB. Rows 1–3 correspond to the sample size
n = 120, n = 480 and n = 1920, respectively

Circular GSBB Algorithm:

1. Choose a (positive) integer block size b(< n).
2. For t = 1, b + 1, 2b + 1, . . . , (l − 1)b + 1, let

(
X→(t), . . . , X→(t + b − 1)

) = Bkt ,

where kt is iid from a discrete uniform distribution

P (kt = t + vd) = 1

w
for v = 0, 1, . . . , w − 1.

3. Join the l blocks Bkt to get the bootstrap sample.

If the condition n = lb does not hold it is enough to select an additional block
(independently of the chosen algorithm) and cut it to get the bootstrap sample of
the same size as the original sample. Moreover, if n ∞= wd some of the blocks in
GSBB will have higher probability of being chosen than others.

In the next section we present results of the performed simulations.



Simulation Comparison of CBB and GSBB 101

0 20 40 60 80 100

0.7

0.8

0.9

1.0

0 20 40 60 80 100

0.7

0.8

0.9

1.0

20 40 60 80 100

20 40 60 80 100

20 40 60 80 100

0.05

0.05

0.10

0.15

0.20

0.25

0 20 40 60 80 100

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100

0.80

0.85

0.90

0.95

1.00

0.05

0.05

0.10

0.15

0.20

0.25

0.80

0.85

0.90

0.95

1.00

0.80

0.85

0.90

0.95

1.00

0.05

0.05

0.10

0.15

0.20

0.25

Fig. 6 First and second column: ACPs (black lines) for M6 for b ◦ {1, 2, . . . , 79, 80, 90, 100}
together with nominal coverage probability (grey line) for CBB and GSBB, respectively. Third
column: differences between ACPs for CBB and GSBB. Rows 1–3 correspond to the sample size
n = 120, n = 480 and n = 1920, respectively

3 Simulation Study

Our aim is to compare the performance of CBB and GSBB used to construct the boot-
strap equal-tailed pointwise confidence intervals for the overall mean of PC time
series. We consider a few examples of time series with periodic structure and calcu-
late the actual converge probability (ACP) in each case. Moreover, for each example
we take three values of the sample size n, namely 120, 480, 1920. The period length
d is always equal to 12 and the number of bootstrap samples is B = 500. The
nominal coverage probability is 95 % and to calculate the ACPs 1000 iterations are
performed. The considered set of block length values is {1, 2, . . . , 79, 80, 90, 100}.
The considered PC time series are of the form:

M1: X (t) = 0.5X (t − 1) + sin (2π t/d) ε(t),
M2: X (t) = cos (2π t/d) + 0.5X (t − 1) + sin (2π t/d) ε(t),
M3: X (t) = 0.5 sin (2π t/d) X (t − 1) + sin (2π t/d) ε(t),
M4: X (t) = cos (2π t/d) − 0.3 sin (2π t/d) ε(t − 1) + sin (2π t/d) ε(t),
M5: X (t) = −0.3 sin (2π t/d) ε(t − 1) + sin (2π t/d) ε(t),
M6: X (t) = 10 sin (2π t/d) + 0.45X (t − 1) + 10 sin (2π t/d) ε(t),
M7: X (t) = −2 sin (2π t/d) + 10 sin (2π t/d) Y (t),
M8: PARMA(2,1) with the nonzero coefficients: a1,1 = 0.8, a1,2 = 0.3, b0,1 =

−0.7 and b0,2 = −0.6,
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Fig. 7 First and second column: ACPs (black lines) for M7 for b ◦ {1, 2, . . . , 79, 80, 90, 100}
together with nominal coverage probability (grey line) for CBB and GSBB, respectively. Third
column: differences between ACPs for CBB and GSBB. Rows 1–3 correspond to the sample size
n = 120, n = 480 and n = 1920, respectively

M9: PARMA(2,1) with the nonzero coefficients: a1,1 = 0.4, a1,2 = 0.6, b0,1 =
−0.5 and b0,2 = −0.2,

M10: PARMA(1,1) with the nonzero coefficients: a1,1 = 0.4, a1,2 = 0.6 and
b0,1 = −0.5,

where {ε(t)}t∗1 is a sequence of independent standard normal distribution random
variables. The initial observations in each model are generated as standard normal
random variables. Moreover, Y (t) in M7 is a zero-mean stationary sequence of
the form Y (t) = 0.45Y (t − 1) + ε(t). Three PARMA time series (M8–M10) were
obtained using ‘makeparma’ procedure provided by the R package ‘perARMA’ (see
Dudek et al. 2013). We chose M1–M10 for our consideration because these types
of PC models can be met in many different applications. For example PARMA time
series were used for climatology data in Bloomfield et al. (1994) and (1995).
The results are presented in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. For each case we provide
ACP curve and additionally we calculate the differences between the ACPs obtained
with CBB and GSBB. In Table 1 we present the optimal block length choices together
with the ACP values obtained in these cases. If the same performance was observed
for a few different block lengths we list them all.

One may note that for M1 and M8 values of ACP are too low for n = 120 and n =
480. For M8 independently of the block bootstrap method the highest value of ACP is
about 10 % and 5 % too low for n = 120 and n = 480, respectively. For all other cases
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Fig. 8 First and second column: ACPs (black lines) for M8 for b ◦ {1, 2, . . . , 79, 80, 90, 100}
together with nominal coverage probability (grey line) for CBB and GSBB, respectively. Third
column: differences between ACPs for CBB and GSBB. Rows 1–3 correspond to the sample size
n = 120, n = 480 and n = 1920, respectively

the optimal block length choices presented in Table 1 provide ACP very close or equal
to nominal one. For n = 120 ACPs obtained with CBB are often higher than those for
GSBB. This can be observed in the third columns of Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The
curve of differences in ACP is more often positive than negative. This effect usually
vanishes for higher values of n. Interestingly, sometimes ACP for CBB presents a
strong periodic structure (see results for M2, M4, M6). The curve has local minima
for b equal to integer multiple of d. This fact results in high variability in ACP values.
Slight change in the chosen b value can provide a big difference in ACP. M2 and M4
where created by adding a periodic component to M1 and M5, respectively. In M6 a
very strong periodic component was added and additionally the error term was also
multiplied by it to check how this affects results. Since GSBB preserves the periodic
structure of the original data ACP curves are much flatter and such variability is
not observed. The optimal block length choices for CBB (Table 1) for n = 1920 are
usually higher than for GSBB, but for smaller values of n such dependence no longer
holds.

Values of ACP for the optimal block length choices (Table 1) are very comparable
for CBB and GSBB independently on the chosen model when n = 480 or n = 1920.
For n = 120 CBB often outperforms GSBB (see results for M1–M3, M6 and M9).
The highest difference can be found for M2 when ACP for CBB is equal to 95.2 %
and for GSBB 90.1 %.
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Fig. 9 First and second column: ACPs (black lines) for M9 for b ◦ {1, 2, . . . , 79, 80, 90, 100}
together with nominal coverage probability (grey line) for CBB and GSBB, respectively. Third
column: differences between ACPs for CBB and GSBB. Rows 1–3 correspond to the sample size
n = 120, n = 480 and n = 1920, respectively

0 20 40 60 80 100

0.7

0.8

0.9

1.0

0 20 40 60 80 100

20 40 60 80 100

20 40 60 80 100

20 40 60 80 100

0.04

0.02

0.02

0.04

0 20 40 60 80 100

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100

0.04

0.02

0.02

0.04

0.80

0.85

0.90

0.95

1.00

0.7

0.8

0.9

1.0

0.80

0.85

0.90

0.95

1.00

0.80

0.85

0.90

0.95

1.00

0.04

0.02

0.02

0.04

Fig. 10 First and second column: ACPs (black lines) for M10 for b ◦ {1, 2, . . . , 79, 80, 90, 100}
together with nominal coverage probability (grey line) for CBB and GSBB, respectively. Third
column: differences between ACPs for CBB and GSBB. Rows 1–3 correspond to the sample size
n = 120, n = 480 and n = 1920, respectively
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Table 1 Optimal block length choice for M1–M10 together with ACP for optimal b values

Model n CBB GSBB
Optimal block ACP (%) Optimal block ACP (%)

length length

M1 120 7 91.0 16 89.7
480 10, 11 94.2 20 94.5

1920 63, 72 95.0 24 95.0
M2 120 18 95.2 7 90.1

480 11, 43 95.0 17 94.0
1920 51, 69 95.1 35, 37 95.0

M3 120 1, 5 93.6 1 91.7
480 10, 15 94.8 19 95.3

1920 20, 51 95.0 18, 19 95.0
M4 120 11 95.1 4 94.8

480 12 95.1 17, 33 94.9
1920 24 95.2 20, 29 95.0

M5 120 8 94.9 4 95.3
480 23 95.0 8 95.0

1920 58 95.0 11, 35, 53 95.0
M6 120 12 94.8 9 91.4

480 16 94.4 10 94.4
1920 52, 57 95.1 40 95.0

M7 120 4 93.8 6 93.2
480 11, 16 94.7 12 95.0

1920 3, 58 95.0 12 95.0
M8 120 15 85.5 13 85.9

480 37 90.8 42 91.0
1920 65 94.7 48 94.8

M9 120 1 93.5 1 92.4
480 15 94.7 16 94.7

1920 15 93.9 9 93.9
M10 120 11 95.0 6, 8 95.2

480 24 95.1 25 95.3
1920 50, 65, 70 95.0 48, 57, 62, 64 95.0

Rows refer to considered models. Columns 3, 4 and 5, 6 contain results for CBB and GSBB,
respectively. For both methods optimal block lengths for three sample sizes n = 120, n = 480 and
n = 1920 are presented

It seems that GSBB definitely can be used instead of CBB for longer datasets. For
the shortest considered sample size CBB provides ACPs for optimal b choices closer
to the nominal coverage level. On the other hand, sometimes a periodic variability in
ACP curve for CBB can be observed. As a result small change in b value can provide
a big change in coverage probability value, which is not the case for GSBB. Thus,
the choice of the bootstrap method needs to be done very carefully for short samples,
especially that so far no method of the optimal block length choice for the PC time
series is known.
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Applications of Cyclostationarity



Modeling of Gear Transmissions Dynamics
in Non-stationary Conditions

Fakher Chaari and Mohamed Haddar

Abstract Dynamic behavior of gear transmissions running under non-stationary
operating conditions is extremely different from that operating in stationary condi-
tions. The main feature that makes this difference is the variability of speed. Three
main cases where it is possible to observe speed variation: start-up, shut down and
time varying loading conditions. In this chapter, these three regimes will be dis-
cussed using dynamic modeling of gear transmission. Both amplitude and frequency
modulations are observed in vibration signatures. The case study of wind turbine
transmission is presented at the end of the chapter showing clearly this phenomenon.

1 Introduction

Gears are commonly used in several aerospace, automotive, and heavy industry
mechanical systems. They are characterized by their ability to transmit large torques
with an extreme amount of efficiency. However vibration levels, dynamic loads atten-
uation and control remain a key concern for researchers. Despite the improved nowa-
days technologies for design and manufacturing of gear systems, operating conditions
such as variable speed and load, repetitive start-up and shut downs can be a source of
malfunction giving rise to defects and undesirable noise and vibration. The so-called
non-stationary regimes should be well characterized in order to help diagnosing gear
systems in such conditions. Non-stationarity for a gear transmission is mainly related
to speed variation. Start-up and shut down are the main typical examples. Critical
dynamic loads may occur during these phases. If the starting load is higher than
normal operating conditions, and the gear system is started and stopped frequently,
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failures can occur. Time varying loading conditions can be at the origin of fluctuating
speeds. In fact, external load are often not constant. Real machines are subjected to
real operating conditions, which generally are variable.

In the last decades, due to the rapid growth of computational power, novel model-
ing and simulation techniques were introduced. Since then, model based investiga-
tions for complex gearbox systems have been used very often. It is clear that, because
of the cost of experiments and safety reasons, model based approach is the most fea-
sible form in order to describe dynamic behavior of gearboxes in non-stationary
conditions.

This chapter will give an overview about modeling techniques used to describe
dynamic behavior of gear systems in non-stationary operating condition. Examples
of start-up, shut down and time varying loading conditions will be discussed.

2 Overview on Gear Dynamics Modeling

Gearboxes are mainly used to provide speed and torque transform from a driving
machine to a driven or connected mechanical device. Internal excitation source for
gear system is caused by the time varying mesh stiffness considered as the main
source of excitation of the system and at the origin of the observed noise and vibrations
(Chaari et al. 2008, 2009). The evolution of the mesh stiffness is similar to rectangular
pulse wave (Fig. 1). For a contact ratio less than 2, the maximum value of stiffness
corresponds to the mesh of two teeth pairs whereas the minimum value corresponds
to the mesh of only one pair (Chaari et al. 2006).

Fluctuation of the input velocity and torque caused by the motor at its transient
regime and variable loading conditions are the main external excitation sources to a
gear set. Sika et al. (2008) studied the backlash and backstrike effect and the influence
of gear tooth geometry as well as shaft and gear-shaft-bearing casing positioning on
the dynamic behavior of a gear system. Start-up of gear system powered by an electric
motor was also investigated by Hugues (1993) and Khabou et al. (2011).
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Defects can alter the dynamic behavior of gearboxes. They can be divided into
three categories: manufacturing, assembly and running defects (Bartelmus et al.
2009b). Modeling of manufacturing errors such as profile or eccentricity errors can
be achieved by adding a displacement function on the line of action (Bartelmus
et al. 2010). Running errors which usually occur in teeth like cracks or breakage are
modelled by a reduction in the mesh stiffness according to the severity of the defect
(Chaari et al. 2009).

Bartelmus et al. (2010) studied the effect of time varying loading conditions on
the dynamic behavior of a two stage gearbox and planetary gearbox in presence of
distributed faults and shows that an increase in the vibration levels is observed when
load increases. Bartelmus and Zimroz (2009a, b) noticed that variable load frequency
and carrier rotational frequency are the main frequency components responsible of
vibration modulations.

Walha et al. (2009) studied the effect of backlash on the dynamic response of a two
stage gearbox. It was observed that tooth separation occurs at the transient regime
with increase in the vibration level. Chaari et al. (2012) showed that load variation
induces speed variation, which causes a variation in the gearmesh stiffness period.
Bartelmus et al. (2010) presented models based on two mechanical systems used
in the mining industry with original transmission error function expressing changes
in technical condition and load variation. Khabou et al. (2011) studied the dynamic
behavior of a single stage spur gear reducer in transient regime such as start up and
acyclism.

3 Modeling of Non-stationary Operating Conditions

3.1 Start-Up of a Gear Transmission

Figure 2 shows a model of a single stage spur gear system. Eight degrees of freedom
are considered (Khabou et al. 2011). The pinion has Z1 and wheel have Z2 teeth.
Moments of inertia I11, I12, I21 and I22 corresponds respectively to driving motor,
pinion, wheel and driven machine. The motor develops a driving torque Cm and the
driven machine opposes a load CL . The gear mesh stiffness km(t) is modelled by
linear spring acting on the line of action of the meshing teeth.
Transmission error can be expressed by (Velex 1988):

θ (t) = (x1 − x2) sin ε + (y1 − y2) cos ε + ξ12rb12 + ξ22rb21. (1)

x1, y1 and x2, y2 are the translations of driving and driven shafts. ξ11,ξ12,ξ21 and
ξ22 are the rotational degrees of freedom of driving motor, pinion, wheel and driven
machine. ε is the pressure angle. The base radius of the pinion and the wheel are
respectively rb12 and rb21.

The mesh period is expressed by
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Fig. 2 Single stage spur gear
system modeling (Khabou
et al. 2011)
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where N1 is the rotational speed of motor.
Taking into account Lagrange formalism, the differential equation of motion of

the adopted system is:

[M] {q̈} + [C] {q̇} + [K (t)] {q} = {Fext (t)} . (3)

q is the vector of the degrees of freedom given by:

q = {x1, y1, ξ11, ξ12, x2, y2, ξ21, ξ22}T (4)

Expressions of mass matrices M, damping matrix C, the time varying stiffness matrix
K(t) and the external applied forces vector can be found in Khabou et al. (2011)

During the start-up phase of an electric motor driving the transmission, the tran-
sient regime shown by zone (A) in Fig. 3 is characterized by an increasing rotational
speed. This regime is followed immediately by the steady state regime (zone B) with
nominal rotational speed πn of the motor.

Figure 4 shows the evolution of the mesh stiffness during the transient regime with
non-periodic evolution explained by the fact that the speed is growing from zero to
nominal speed.

Figure 5 shows the evolution of the transmission error computed after solving the
equation of motion (3).

It is well observed that start-up is characterized by high vibration level explained
by the fact that the system is excited at its eigenfrequencies. A more stable regime
follows with lower vibration levels.
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3.2 Shut Down of a Gear Transmission

In this case, the single stage spur gear system is connected to a disc brake system in
order to stop the system at a desired instant (Fig. 6). The expression of the braking
torque in this case is given by:

Cb = 4μNτ

3 sin(
τ
2 )

(
R1 + R2

2

) [
1 − R1 R2

(R1 + R2)2

]
(5)

where R1, R2, τ are the geometrical characteristics of the brake, N is the normal
force applied on the pads and μ is the friction coefficient.

The stop phase will be characterized by a fall in the speed until reaching 0. So,
mesh stiffness evolution will be characterized by an increase of its period following
the decrease of the speed of the gear set.

Figure 7 shows the evolution of the transmission error.
We note maximum amplitude of the error at the braking moment. The introduction

of the sudden braking moment is at the origin of this amplitude amplification.

3.3 Time Varying Loading Conditions

The torque developed by a synchronous induction motor varies with its speed when
it accelerates to reach its nominal operating speed (Wright 2005).
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Let us consider an asynchronous motor driving the gearbox presented in Sect. 3.1.
When energized, the motor torque Cm must always exceed the torque absorbed

by the load CL since the excess torque Cnet = Cm − CL is necessary to accelerate
the system to its steady running speed for which Cnet = Cm = CL (Fig. 8).

The motor driving torque for a squirrel cage electric motor can be expressed by:

CM = Cb(
1 + (sb − s)2 ( a

s − bs2
)) (6)

sb and Cb are the slip and torque at break-down (at maximum torque), a and b are all
constant properties of the motor and s is the proportional drop in speed given by:

s = (Ns − nr)/Ns (7)
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where Ns is the synchronous speed and nr is the motor rotational speed. As the load
torque increase the motor should provide the necessary torque to continue driving
the mechanism but the speed will be decreased following the characteristic given in
Fig. 8.

If we consider a load applied to the transmission fluctuating in a saw-tooth shape as
presented in Fig. 9 and in order to continue transmitting power, the rotational speed
of the motor will change which will induce a variation in the gear mesh stiffness
period. If load increase, speed decrease and mesh period increase and vice versa.

Figure 10 shows the acceleration simulated on the pinion bearing and Fig. 11
shows its spectrum.

High amplitude modulation in time responses is observed. Amplitudes of acceler-
ation signal increases when load increases and vice versa. Spectrum shows multiple
sidebands around mesh frequency and harmonics. Such results may lead to erroneous
diagnosis of the gear transmission (it can be seen as tooth local fault), if loading con-
ditions are not well identified. So for non-stationary operating conditions separated
time and frequency analysis is not suited for dynamic analysis and diagnosis.

Joint time frequency analysis can be a good alternative to characterize frequency
content and localize speed variation caused by load variation. It consists in a three-
dimensional time, frequency and amplitude representation of a signal very useful
to detect transient behavior in a signal. Short-time Fourier transform (STFT) is the
most popular time frequency representation defined by for a given time signal x(t)
as:

STFT (t,ω) =
∫ +◦

−◦
x (t)w (t − τ) e−j ω tdt (8)

where w(t) is the window function, commonly a Hann window or Gaussian “hill”
centered around zero.
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Fig. 9 Evolution of load and relation to gearmesh stiffness function (Chaari et al. 2013)

STFT of the acceleration on pinion is presented in Fig. 12.
From Fig. 12 one can note a sawtooth shapes of mesh frequency evolution and

its harmonics with a same period of load. Mesh frequency harmonics vary from
a minimum value (corresponding to the maximum applied load) to a maximum
value (corresponding to the minimum applied load). Dark red in mesh frequency
fluctuation indicates the vicinity of some eigenfrequencies. So, sidebands noticed
in spectral analysis are caused by non-stationary operating condition and not by the
presence of a defect.

Several experimental works showed similar evolutions (Randall 1982; Bartel-
mus 1992, 2001; Bartelmus et al. 2009a). In fact, both amplitude and frequency
modulation exist in the signal if gearbox works under time varying operating condi-
tions which makes diagnosis process complicate if loading conditions are not well
identified.

4 Case Study: Wind Turbine Modeling

Wind turbines are considered as one of the most promising mechanical devices to
produce so called renewable energy. Transmission systems used in such devices are
subjected to very hard operating conditions depending mainly on the wind variability.
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spectrum (Chaari et al. 2012)

Experience coming from commercial monitoring systems and recent communication
regarding their reliability show that there is a need to improve both design, and diag-
nostics techniques used in order to extend wind turbine lifetime. For wind turbines,
model/characteristics of input is unknown and rather stochastic than deterministic,
gearbox systems are working as multiplicators (they increase speed and decrease
torque) and electric generator is used as receiving machine. These differences are
crucial for dynamics of transmissions and their degradation processes.
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Wind turbine system can be divided into three subsystems

• System converting wind to input torque (including blades and input shaft)
• Gear transmission to multiply rotational speed and reduce torque. Two solutions

can be adopted : three stages parallel axis gear or three stages gear system including
planetary gear

• receiving machines i.e. asynchronous electric power generator

As a case study we will take the example of a wind turbine including three stages
gearbox. The first stage is a planetary gearbox (PG). The second and third ones are
parallel shafts gearboxes. The input component which is directly connected to the
turbine is the carrier of the PG. The output component connected to the generator
is the wheel of the third stage gearbox (Fig. 13). For the first stage, the sun (s), the
ring (r), the carrier (c) and the N planets (p) are considered as rigid bodies. The
bearings are modelled by linear springs. Gearmesh stiffness is modelled by linear
springs acting on the lines of action. Each component has three degrees of freedom,
two translations xi, yj and one rotation wj, where wj = rj θj ( j = c, r, s, 1, . . .N), rj
is the base radius of the gears (sun, ring, planet) and the distance between the centre
of the sun and the planets’ rotation centre. Damping is introduced as modal viscous
damping. Radial and tangential coordinates xp, yp describe planet deflections and
esp represents respectively the transmission error on the sun-planets gearmesh and
on the planets-ring gearmesh, induced by wear. Translations are measured relative to
the frame (O,⇒i,⇒j, ⇒k) fixed to the carrier and rotating with constant angular speed σC
relative to a stationary reference frame. Circumferential planet positions are specified
by fixed angles ϕp measured relative to the rotating frame with ϕ1 = 0.
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Fig. 13 Model of 3 stage transmission in wind turbine

kjx, kjy, kjw represent respectively the bearing stiffness along x and y directions
and kjw are the torsional stiffness (j = c, r, s). The three degrees of freedom kpx, kpy
are the bearing stiffness of each planet.

The first stage is connected to the second stage by a shaft modelled by a torsional
spring kθ1and a damping c1. The second stage is modelled by 6 DOF which are
the translations of pinion 1(x1, y1) and wheel 1 (x2, y2) along x (horizontal) and y
(vertical) directions and the rotations (θ1, θ2) of pinion1 and pinion 2.

The second stage is connected to third stage by a shaft modelled by a torsional
spring kθ2. The third stage is modelled by 6 DOF which are the translations of pinion
2 (x3, y3) and wheel 2 (x4, y4) along x (horizontal) and y (vertical) directions and
the rotations (θ3, θ4) of pinion 2 and wheel 2.

The third stage is connected to the generator by a shaft modelled by the torsional
stiffness kθ2. To the generator is assigned the DOF θ4.

Bearings supporting the second stage are modelled by linear springs kx1 and ky1
acting along x and y axis. Bearings supporting intermediate shaft are modelled by
linear springs kx2 and ky2. Bearings supporting third stage are modelled by linear
spring kx3 and ky3.

The time varying mesh stiffness is chosen to be a step function. In the first stage,
two kind of mesh stiffness are considered: stiffness between sun and each planet-p
ksp(t) and stiffness between each planet-p with the ring krp(t). Two mesh stiffness
functions ke(t) are introduced between pinion 1 and wheel 2 (second stage) and
between pinion 2 and wheel 2 (third stage).
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Fig. 14 Evolution of wind speed (a) and the output speed on the generator (b)

The following inertia are considered: Jc for the carrier, Js for the sun, Jr for the
ring Jp for each planet, J1 for the pinion 1, J2 for wheel, J3 for pinion 2, J4 for wheel
2 and J5 for the generator.

The system has 21 + 3 ∈ N degrees of freedom (DOF).
An input torque Cm is applied to the carrier resulting from the produced torque

on turbine. A resisting torque Cr is opposed by the load represented by the generator.
Damping is introduced in parallel of each stiffness.

In order to compute the input torque and relate it to input turbine speed we have
to know the power produced by the wind. It can be expressed as (DNV/RISO 2002):

P = 0.5 δ V 3 A C p (9)

where: P is the output power, ρ is the air density, V is the free wind speed A is the
rotor area and Cp is the efficiency factor

Starting from a known wind speed evolution presented in Fig. 14, it is possible to
compute the output power. If it is divided by the instantaneous angular velocity of
the turbine, the input torque Cm can be obtained.

Introducing the speed evolution and the input torque and computing the different
mesh stiffness functions allows obtaining the general equation of motion to solve.

Figure 15a shows the time response on the input stage bearing i.e. the carrier
bearing and Fig. 15b shows the response on output shaft bearing.

It is well observed the modulation on signals induced by the change of speed and
torque developed on the turbine.

In order to better understand the frequency content evolution, it is necessary to
compute a time frequency analysis. Figure 16 presents the STFT of time response
given in Fig. 15a.

It is well observed the time evolution of the mesh frequency harmonics which
indicate a frequency modulation in addition to the amplitude modulation observed
in time responses. Such result was obtained experimentally
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Similar results was obtained from experimental data measured on wind turbine
by Zimroz et al. (2011) shown by using STFT that the vibration signal from the
wind turbine gearbox is non-stationary in terms of amplitude and frequency content
(Fig. 17). He noticed impulsive disturbance that causes both vibration and speed
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Fig. 17 Time Frequency
representation of wind turbine
gearbox vibration according
to Zimroz et al. (2011)

profile variable concluding that time-varying operating conditions influence both the
frequency content and amplitudes of harmonics.

5 Conclusion

In this chapter, the dynamic behavior of gear transmission in non-stationary condi-
tions is investigated. The main excitation of the transmission is the mesh stiffness
fluctuation which is considered as the source of the observed noise and vibration.
Three cases of non-stationary operating conditions were studied: start-up, shut down
and time varying loading conditions where speed variation is observed. Dynamic
behavior showed a deep amplitude and frequency modulation. Spectral analysis is
unable to detect speed variation and can lead to an erroneous diagnosis of the trans-
mission. Time frequency techniques should be used in this case in order to describe
the frequency content variation. The case study on wind turbine gear transmission
dynamics confirms this fact. For a gear transmission and in order to diagnose its
health, it is than necessary to take into not also eventual defects but also operating
conditions.
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Effects of Satellite Motion on the Received
Signal in GPS

Antonio Napolitano and Ivana Perna

Abstract In this chapter, the effects of the relative motion between a GPS
satellite and a stationary receiver on the Earth are addressed. An analysis of the
satellite motion is carried out to justify the assumption of constant relative radial
speed within observation intervals adopted in the applications. It is shown that the
transmitted cyclostationary signal is still cyclostationary at the receiver but with dif-
ferent cycle frequencies and cyclic features. Moreover, the transmitted and received
signals are not jointly cyclostationary but, rather, jointly spectrally correlated. The
implications of this statistical characterization on synchronization and parameter
estimation problems are discussed.

1 Introduction

The Global Positioning System (GPS) is one of the most popular Global Navigation
Satellite Systems (GNSS). GNSS are an essential tool for positioning and navi-
gation in many key sectors, including aeronautics, ground and sea transportation,
and infrastructure monitoring. In several of these sectors, a challenging problem is
counteract the effects of disturbance signals that produce significant performance
degradation.

In the last two decades, cyclostationarity properties of signals have been suc-
cessfully adopted to significantly improve performances of signal processing algo-
rithms due to their capability to counteract the effects of noise and interference.
In particular, since almost-all modulated signals adopted in communications, radar,
sonar, and telemetry are cyclostationary or, more generally, almost-cyclostationary,
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cyclostationarity-based algorithms have been exploited in weak-signal detection,
minimum mean-squared error (MMSE) filtering, parameter estimation, synchroniza-
tion, and source location (Gardner et al. 2006). The gain in performance with respect
to classical algorithms based on a wide-sense stationary model for signals is due to an
accurate characterization of the signal nonstationarity. Since the signal transmitted
by a GPS satellite is cyclostationary (Napolitano and Perna 2013a), the advantages of
cyclostationarity-based techniques can be potentially adopted in GPS receivers, for
example, to counteract the effects of unintentional and intentional jammer, provided
that the received signal is in turn cyclostationary and jointly cyclostationary with the
transmitted one.

The relative motion between transmitter (TX) and receiver (RX) modifies the
nonstationarity kind of the transmitted signal since it experiences a time-varying
delay. In particular, several Doppler channels encountered in practice, modify
the (almost-)cyclostationarity properties of the transmitted signal into more gen-
eral kind of nonstationarity (Napolitano 2012, Chap. 7). Moreover, also the joint
(almost-)cyclostationarity of transmitted and received signals is lost.

In the case of constant relative radial speed between TX, RX, and/or surround-
ing scatterers, the joint almost-cyclostationarity property of transmitted and received
signals is preserved provided that the so-called narrow-band condition is satisfied,
that is, provided that the product of signal bandwidth and data-record length is
much smaller than the ratio of the medium propagation speed and the radial speed
(Napolitano 2012, Sect. 7.5; Van Trees 1971, pp. 339–340).

The necessity to satisfy the narrow-band condition to preserve a useful and pow-
erful mathematical model for the received signal and for the joint characterization
of transmitted and received signals puts a limit on the maximum data-record length
that can be adopted in cyclostationarity-based signal processing algorithms. This
limit, in turn, puts a limit on the minimum signal-to-noise ratio (SNR) and signal-
to-interference ratio (SIR) for which satisfactory performance can be achieved.

In order to overcome such a lower bound for SNR and SIR, larger data-record
lengths should be adopted, leading to scenarios where the narrow-band condition
is not satisfied. In such a case, the Doppler effect cannot be modeled as a simple
frequency shift of the carrier and higher fidelity models should be considered for the
received signals. In (Napolitano 2012, Sects. 4.2.4, 7.7) it is shown that the spectrally
correlated processes are an appropriate model in several cases of interest.

In this chapter, the effects of satellite motion on the received signal in GPS are
analyzed. A simplified analysis is carried out assuming a circular orbit for the satellite.
This simplifying assumption on the orbit, however, will not lead to a simplified model
for the received signal. In fact, in order to specify the model for the received signal,
what is necessary is just to quantify the order of magnitude of the relative radial
speed between satellite and receiver and the width of time intervals such that the
radial speed can be assumed constant. The order of magnitude of the radial speed
does not vary if an elliptic orbit instead of a circular one is considered. Similarly,
corrections to the orbit due to relativistic effects do not involve rapidly time varying
phenomena and can be neglected. Thus, time intervals where the radial speed of the
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circular orbit can be assumed constant are also such that the effective radial speed
can be assumed constant.

In this chapter, it is shown that the relative radial speed between satellite and
ground receiver can be considered constant in time intervals of interest in the appli-
cations, even when such time intervals assume their maximum values as in the case
of strong contaminating jammer or indoor applications (Seco-Granados et al. 2012).

For a single-path Doppler channel, the received GPS signal is shown to be still
cyclostationary, but with different cycle frequencies and cyclic features (cyclic auto-
correlation functions and cyclic spectra) with respect to those of the transmitted one.
In contrast, the transmitted and received signals are, in general, jointly spectrally
correlated and they can be modeled as jointly cyclostationary only if the data-record
length is such that the narrow-band condition is satisfied.

The derived analytical model for the cyclic statistics of the received signal and
of the cross statistical characterization of transmitted and received signals is not
influenced by the simplifying assumptions made on the satellite orbit. In contrast,
the values of the parameters involved in the model depend of the effective orbit of
the satellite. Thus, the derived model turns out to be useful when these parameters
are estimated starting from the received signal.

Starting from the model of received signal developed in this chapter, in (Napoli-
tano and Perna 2013b) a synchronization algorithm is presented that significantly
outperforms the classical one based on the maximization of the magnitude of the
narrow-band cross ambiguity function when the data-record length is augmented in
order to counteract noise and interference.

The chapter is organized as follows. In Sect. 2, a simplified model for the satellite
orbit is presented and the resulting propagation channel is derived in Sect. 3. In
Sect. 4, the transmitted signal is described. The statistical characterization of the
received signal is derived in Sect. 5. Conclusions are drawn in Sect. 6.

2 Satellite Orbit

Consider an orthogonal coordinate system whose origin OOO is at the center of the Earth
and whose z axis coincides with the oriented line from South pole to North pole. Such
a system is referred to as Earth-fixed Earth-centered (EFEC). It can be made inertial
by freezing the reference frame at the instant of time when the signal acquisition
process is started. Let SSS(t) denote the satellite position in this system and rrr(t) be the
time-varying vector SSS(t) − OOO . Under the assumption of Earth with spherical shape
and uniform mass density, the gravitational force acting on the satellite in SSS is given
by the Newton’s universal law of gravitation

FFF = −G
m M

r3 rrr (1)
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where G = 6.672 × 10−11m3 kg−1s−2 is the universal gravitation constant, M =
5.974 × 1024 kg is the mass of the Earth, m is the satellite mass, and r = ◦rrr◦. Thus,
the second law of dynamic m (d2rrr/dt2) = FFF leads to

d2rrr

dt2 = − μ

r3 rrr (2)

where μ ∠ GM = 3.986 × 1014 m3s−2.
According to Kepler laws, the orbit of a satellite is an elliptic trajectory within

a plane. The ellipse has a maximum extension at the apogee and a minimum at the
perigee. The satellite moves more slowly in its trajectory as the distance from the
Earth increases. A more accurate model for the satellite’s orbit should account for
the fact that the Earth is not spherical and has not a uniform distribution of mass and,
moreover, there are additional forces and perturbations acting on the satellite.

In the following, the satellite orbit is modeled as circular and the satellite motion
as uniform circular. This simplified kinematic model will not influence the accuracy
of the model for the received signal. In fact, as shown in Sects. 3 and 5, in order to
properly model the received signal, what is important is not an accurate description
of the relative radial speed and acceleration laws, but, rather, their order of magnitude
and the order of magnitude of their variations with time within observation intervals
of interest in the applications. Of course, the values of the parameters in the model of
the received signal will depend on the parameters of the kinematic model. However,
this is not a problem in applications where such parameters are estimated.

For a uniform circular motion with radius r and (constant) angular speed ω0, the
magnitudes of the velocity vector drrr/dt (tangent to the circular trajectory) and of
the acceleration vector d2rrr/dt2 are

v = ω0 r a = ω2
0 r (3)

respectively. Accounting for (2), we have a = ω2
0 r = μ/r2. Thus,

v = ω0 r =
√

μ

r
ω0 = v

r
=

√
μ

r3 (4)

and the satellite revolution period is

Tsat = 2π

ω0
= 2π

√
r3

μ
. (5)

Let RE = 6378.13 km be the average Earth radius and h the satellite altitude with
respect to the Earth’s surface. Thus, r = RE + h = constant for a circular orbit
(Fig. 1). From (5) it follows that the satellite revolution period depends only on r ,
that is, on the altitude h of the satellite with respect to the Earth surface.
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Fig. 1 Velocity vector and satellite radial speed in the Earth–satellite geometry

For a GPS satellite a typical value for the altitude is h = 20182 km. Consequently,
v = ⇒

μ/r = 3.874 km s−1 and Tsat ∈ 11h 58 m, that is, one half sidereal day.
Let PPP a stationary point on the Earth surface where the receiver is located. Since r

is constant, the satellite position can be univocally determined by two of the following
angles (Fig. 1) (Maral and Bousquet 2009, Sect. 2.1.6):

• Elevation angle E(t), that is, the angle between the local horizon at the fixed point
PPP and the satellite position vector SSS(t) measured in the plane containing the point
PPP , the Earth center OOO , and the satellite SSS(t). For an ascending satellite, E(t) ranges
from 0 to π/2 as t increases: Ė(t) > 0, where Ė denotes time derivative of E ; for
a descending satellite, E(t) ranges from π/2 to 0 as t increases: Ė(t) < 0.

• Nadir angle θ(t) → (0, π/2), that is, the angle at the satellite between the direction
rrr(t) of the satellite with respect to the Earth center OOO and the direction SSS − PPP .

• Earth central angle φ(t). For an ascending satellite, φ(t) ranges from π/2 to 0
as t increases: φ(t) = −ω0 t ; for a descending satellite, φ(t) ranges from 0 to π/2
as t increases: φ(t) = ω0 t .

Only two of these angles are sufficient since (Fig. 2)

E(t) + φ(t) + θ(t) = π

2
(6)

In addition, from the Earth–satellite geometry (Fig. 2) we have

R(t) cos E(t) = r sin φ(t) = ◦SSS(t) − PPP ∞(t)◦ (7)

tan E(t) = ◦PPP − PPP ∞(t)◦
◦SSS(t) − PPP ∞(t)◦ = r cos φ(t) − RE

r sin φ(t)
= cos φ(t) − ρ

sin φ(t)
(8)
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Fig. 2 Earth–satellite
geometry

R(t) = ◦SSS(t) − PPP◦ = ◦SSS(t) − PPP ∞◦
cos E(t)

= (RE + h)
sin φ(t)

cos E(t)
(9)

where ρ ∠ RE/r . Therefore, under the assumption of uniform circular motion and
descending satellite we have

φ(t) = ω0 t (10)

E(t) = tan−1
(cos(ω0 t) − ρ

sin(ω0 t)

)
(11)

Let θR(t) be the angle between the velocity vector (tangent to the circular trajec-
tory) in SSS(t) and the direction SSS(t) − PPP (Fig. 1). Using (6) it results

θR(t) = π

2
− θ(t) = E(t) + φ(t) (12)

and the relative radial speed of the satellite SSS(t) with respect to the receiver in PPP is
given by

vR(t) = v cos θR(t) = v cos
[
ω0 t + tan−1

(cos(ω0 t) − ρ

sin(ω0 t)

)]
. (13)

Furthermore, the relative radial acceleration is

aR(t) = d

dt
v cos θR(t)

= − v
.

θ R(t) sin θR(t)

= − v ω0 ρ
ρ − cos(ω0 t)

1 − 2ρ cos(ω0t) + ρ2 sin
[
ω0 t + tan−1

(cos(ω0 t) − ρ

sin(ω0 t)

)]
(14)

In Fig. 3, the case of a descending satellite is considered. In Fig. 3a, angles E(t),
φ(t) and θR(t), as functions of time measured in hours are reported. The considered
time interval is such that the elevation angle E(t) ranges from 90.00 to 5.1603
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Fig. 3 Descending satellite:
a Elevation angle E(t), earth
central angle φ(t), and radial
angle θR(t), in degrees, as
functions of time; b distance
R(t) as function of time;
c radial speed vR(t) as
functions of time
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degrees which is the minimum elevation angle such that the satellite can be considered
observable. In Fig. 3b, R(t) is reported as function of time. According to these
behaviors and expression (13), in Fig. 3c, the relative radial speed vR(t) is reported
as function of time.

The length of the observation intervals of interest in the applications varies form
1 ms for the first coarse acquisition (Tsui 2000, Chap. 6, pp. 135–149) to hundreds
of milliseconds for indoor applications (Seco-Granados et al. 2012). From Fig. 3c
it is evident that within these observation intervals the relative radial speed can
be considered constant. Consequently, the relative radial acceleration is negligible.
Analogous results are obtained for an ascending satellite.

3 Propagation Channel

The propagation channel will be derived under the following assumptions.

1. Moving TX and stationary RX.
2. Free-space propagation and far-field condition (Napolitano 2012, Sect. 7.1.1).
3. Wide-band transmit and receive antennas (Napolitano 2012, pp. 383–386).
4. Constant relative radial speed within the observation interval (see Sect. 2).
5. Relativistic time dilation between clocks in relative motion due to Lorentz trans-

formations neglected. Relativistic effect due to the different gravitational potential
between TX and RX neglected. [In order to compensate both these effects, in the
GPS system the satellite clock frequency in adjusted to 10.22999999543 MHz
prior to launch (Kaplan and Hegarthy 2006, Sect. 7.2.3, pp. 306–308). Conse-
quently, the frequency observed by the user at sea level is 10.23 MHz.]

6. Relativistic correction due to the so–called Sagnac effect, also known as Earth
rotational effect, neglected assuming an inertial reference frame (Kaplan and
Hegarthy 2006, Sect. 7.2.3, pp. 306–308).

7. Atmospheric perturbations due to the presence of the troposphere and ionosphere
not taken into account. [In the GPS system, in the case of single–frequency
receiver, models of the ionosphere are employed to correct the ionospheric delay
and scintillation on the pseudo–range measurements (GPS Directorate 2013). The
correction parameters are broadcast with the Navigation Message and periodically
updated by the monitor stations of the control segment.]

Under assumptions 1–3, for a transmitted signal zTX(t) , the received signal is

zRX(t) = A(t) zTX(t − D(t)) (15)

where D(t) is the time-varying delay which is linked to the time-varying distance
R(t) = ◦SSS(t)−PPP◦ by c D(t) = R(t − D(t)) (Napolitano 2012, Sect. 7.1.5) and A(t)
is a time-varying amplitude that can be considered constant under mild conditions
(Napolitano 2012, pp. 387, 396, 403).
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Let
zTX(t) = Re

[
x(t) e j2π fct

]
(16)

be the transmitted signal with carrier frequency fc. Under the assumption of constant
relative radial speed within the observation interval (assumption 4) the time-varying
delay is a linear function of time. Consequently we have

zRX(t) = Re
[

y(t) e j2π fct
]

(17)

with
y(t) = b x(st − d) e j2πvt (18)

where b is the complex gain, s the time-scale factor, v the frequency shift, and d
the delay. For a moving TX and stationary RX, s = c/(c + vR), v = (s − 1) fc,
d = R(0)/(c + vR) (Napolitano 2012, Sect. 7.3.3).

From (18) it follows that the Doppler effect produces a time stretch of the trans-
mitted signal. If the so-called narrow-band condition is satisfied, that is, if

B T ∗ 1/|1 − s| ∈ c/|vR | (19)

where B is the signal bandwidth, T the observation interval, and c ∈ 3 × 108m s−1

the medium propagation speed, then the time-scale factor s can be considered unit
in the argument of x(·) (but not in the complex exponential) and the Doppler effect
reduces just to a frequency shift of the carrier, which is a well known and widely
adopted model (Napolitano 2012, Sect. 7.5; Van Trees 1971, pp. 240–242).

If the simplifying assumptions 5–7 are not satisfied, the model for the received
signal is still (18). In fact, the relativistic time dilation is an affine transformation and
all other corrections to the satellite motion do not modify the constant characteristic
of the radial speed within observation intervals of interest in the applications, that is,
up to hundreds of milliseconds. Of course, the values of s, v, d, and b are different
with respect to those for the ideal case of moving TX with circular orbit and stationary
RX. Therefore, in estimation procedures based on model (18), also the effects of lack
of validity of the simplifying assumptions 5–7 are accounted for. Moreover, also the
case of moving RX can be described by model (18) (Napolitano 2012, Sect. 7.3.1).

4 Transmitted Signal

4.1 Signal Model

The continuous-time GPS-L1 signal (GPS Wing 2010, Sects. 3.2–3.3, pp. 3–17),
(Kaplan and Hegarthy 2006, Chap. 4, pp. 113–116) is a quadrature phase-shift keying
(QPSK) signal
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zTX(t) = ⇒
2 A d(t) c(t) cos(2π fL1t + φ0)

+ A d(t) p(t) sin(2π fL1t + φ0) (20)

where fL1 = 1575.42 MHz is the L1 carrier frequency. In (20):

(1) d(t) is the navigation message. It is obtained by interleaving two periodic com-
ponents with periods Tframe (frame period) and Tpage = 5Tframe (page period),
respectively, two binary pulse-amplitude-modulated (PAM) signals with bit
period Tb such that Tframe = 300Tb; the two PAM signals are multiplied by
periodic signals with periods Tpage and Tframe (GPS Wing 2010, Sect. 20.3, pp.
68–122).

(2) c(t) is the coarse acquisition (C/A) code signal which is the ranging signal for
civil applications. It is a relatively short code to enable a rapid acquisition. The
signal c(t) is the periodic replication with period TCA = NcTc of a fixed Gold
sequence with chip period Tc and Nc = 1023 chips that identifies the satellite
(GPS Wing 2010, Sect. 3.3, pp. 26–30). It results Tc = 0.9775μs, TCA = 1 ms,
and Tb = 20NcTc.

(3) p(t) is the precision P(Y) code signal. It is a periodic signal with period equal to
1 week obtained by periodic replication of a fixed pseudo-noise (PN) sequence
(GPS Wing 2010, Sect. 3.3, pp. 18–25). It is modeled as a binary PAM signal with
i.i.d. symbols and bit period Tp = Tc/10 within realistic observation intervals.

4.2 Second-Order Cyclostationarity

Due to the presence in (20) of periodic replication operations and PAM signals, in
(Napolitano and Perna 2013a), it is shown that the complex envelope signal associated
to zTX(t)

x(t) = ⇒
2 A d(t) c(t) − j A d(t) p(t) (21)

is second-order wide-sense cyclostationary. That is, its expected value and auto-
correlation function are periodic functions of time. The analytical expression of
(conjugate) cyclic autocorrelation functions and (conjugate) cyclic spectra of x(t)
are derived in (Napolitano and Perna 2013a). These expressions are very complicate
due to the complex structure of the GPS-L1 signal (20). In (Napolitano and Perna
2013a), it is shown that different signal models should be considered depending on
the length T of the observation interval. Consequently, different cyclic features are
evidenced depending on the value of T .

(1) Let T = TCA = 1 ms, that is, the length of the observation interval is coinci-
dent with the width TCA of the coarse acquisition interval. This is the minimum
observation interval during the first step of the L1 signal acquisition to synchro-
nize the C/A code with a replica locally generated by the receiver and aimed
at identifying the satellite and estimating the Doppler shift (Borre et al. 2007,
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Chap. 5, pp. 69–72; Pi and Huang 2010; Tsui 2000, Chap. 7, pp. 135–149). In
this case, assuming that d(t) = 1 and no data-bit transition is present within the
observation interval, the signal model for the GPS-L1 signal is

x(t) = ⇒
2A c(t) − jA p(t) (22)

where the C/A code signal c(t) must be modeled as a binary PAM signal with bit
period Tc since no replication (with period TCA) of this signal can be observed
within an observation interval T = TCA. Thus, this signal model for c(t) exhibits
cyclostationarity at cycle frequencies α = k/Tc, k integer. The signal p(t) is
a PAM signal with period Tp = Tc/10. It has cycle frequencies α = k/Tp,
k integer, which are a subset of the cycle frequencies α = k/Tc. The cycle
frequencies α = k/Tc are pure second-order cycle frequencies (Gardner and
Spooner 1994). Removing the periodic component with period TCA has no sense
since the observation interval is coincident with this period. Therefore, the signal
x(t) should be modeled as cyclostationary with period Tc.

(2) Let be T = 20TCA = Tb = 20 ms. This is the observation interval for the second
step of the L1 signal acquisition, the tracking phase to synchronize the navigation
bit (Borre et al. 2007, Chap. 5, pp. 72–73; Tsui 2000, Chap. 9, pp. 193–198), or
the observation interval for dual frequency GPS L1/L2C receivers (Qaisar and
Dempster 2011). If the observation interval is such that no data-bit transition is
present, then the model for the GPS-L1 signal is that in (22), where, unlike the
case T = TCA, the signal c(t) must be modeled as the periodic replication with
period TCA of a deterministic signal uc(t). The signal exhibits cyclostationarity
with cycle frequencies α = k/Tc = k Nc/TCA which, in such a case, are impure
second-order cycle frequencies (Gardner and Spooner 1994) and disappear if the
additive periodic component (the expected value) is removed from x(t) before
computing the cyclic statistics. Therefore, the signal x(t) should be modeled as
cyclostationary with period Tc while the signal x(t) with the periodic component
removed is cyclostationary with period Tp.

(3) Let be T = 400 TCA = 20Tb = 400 ms. This value of coherent integration time
can be adopted to improve performance in indoor environment (Seco-Granados
et al. 2012). Since the modulation of d(t) must be considered in both in-phase
and in-quadrature components of x(t), in correspondence of this data-record
length, the model for the GPS-L1 signal does not contain a significant additive
periodic component unlike the case T = 20 TCA = Tb = 20 ms. Therefore, both
x(t) and x(t) with the periodic component removed are cyclostationary with
period Tc.

In all considered cases, the periods of periodic functions or PAM signals are
multiples of Tp, the smallest period equal to the reciprocal of the clock frequency.
Thus, in all cases the signal x(t) is cyclostationary. Let us denote by Tcs the
period of cyclostationarity. Accordingly with the previous discussion, such a value
depends on the signal model which, in turn, depends on the observation interval T .
It results Tcs = Tc if the additive periodic component is not removed from x(t).
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If such a periodic component is removed from x(t), then Tcs = Tc for T = 1 ms and
T = 400 ms and Tcs = Tp for T = 20 ms.

Both autocorrelation function and conjugate autocorrelation function are neces-
sary for a complete second-order characterization in the wide sense of complex-
valued signals (Schreier and Scharf 2003). In the following, notation (≥) will be
adopted for an optional complex conjugation in order to consider, in the same for-
mula, both cyclic statistics and conjugate cyclic statistics. In addition, (−) will be an
optional minus sign linked to (≥).

For the cyclostationary process x(t) the (conjugate) autocorrelation function
(Gardner et al. 2006) is given by

E
{

x(t + τ) x (≥)(t)
}

=
+∞∑

k=−∞
Rk/Tcs

xx (≥) (τ ) e j2π(k/Tcs)t (23)

with

Rα
xx (≥) (τ ) ∠ lim

T ∼∞
1

T

∫ T/2

−T/2
E

{
x(t + τ) x (≥)(t)

}
e− j2παt dt α = k

Tcs
, k → Z

(24)
referred to as (conjugate) cyclic autocorrelation functions. The Loève bifrequency
spectrum is given by

E
{

X ( f1) X (≥)( f2)
}

=
+∞∑

k=−∞
Sk/Tcs

xx (≥) ( f1) δ
(

f2 + (−)( f1 − k/Tcs)
)

(25)

with

Sα
xx (≥) ( f ) ∠

∫
R

Rα
xx (≥) (τ ) e− j2π f τ dτ α = k

Tcs
, k → Z (26)

called (conjugate) cyclic spectra. In (25), δ(·) is Dirac delta and X ( f ) denotes the
Fourier transform defined in a distributional sense (Gel’fand and Vilenkin 1964,
Chap. 6; Napolitano 2012, Sects. 1.1.2, 4.2.1).

5 Received Signal

Assuming for the bandpass GPS-L1 signal an approximate bandwidth B ∈ 1/Tp =
10.23 MHz, where Tp is the width of the narrowest rectangular pulse in the signal
model, we have that T = 1 ms ⇒ BT ∈ 10.23 × 103 and T = 10 ms ⇒ BT ∈
1.02 × 105. By considering |vR | = 0.9 kms−1 (see Fig. 3c) it results c/|vR | ∈
3.3×105 and |1−s| ∈ 3×10−6. Thus, the narrow-band condition (19) is practically
satisfied for T = 1 ms and is not satisfied for T ≤ 10 ms.
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From (18), it follows that if x(t) exhibits cyclostationarity with cycle frequency
α, then y(t) exhibits cyclostationarity with cycle frequency sα. The cyclic autocor-
relation functions and cyclic spectra of x(t) and y(t) are linked by

Rsα
yy≥(τ ) = |b|2e j2πvτ e− j2παd Rα

xx≥(sτ) (27)

Ssα
yy≥( f ) = |b|2e− j2παd 1

|s| Sα
xx≥

(
f − v

s

)
. (28)

respectively. Moreover, if x(t) exhibits conjugate cyclostationarity with conjugate
cycle frequency β, then y(t) exhibits conjugate cyclostationarity with conjugate cycle
frequency sβ + 2v and the conjugate cyclic autocorrelation functions and conjugate
cyclic spectra of y(t) and x(t) are linked by

Rsβ+2v
yy (τ ) = b2 e j2πvτ e− j2πβd Rβ

xx (sτ) (29)

Ssβ+2v
yy ( f ) = b2 e− j2πβd 1

|s| Sβ
xx

(
f − v

s

)
. (30)

respectively.
From (27–30) it follows that results of Sect. 4.2 for the complex signal x(t) can be

applied to the received signal y(t) with the obvious modifications of the (conjugate)
cycle frequencies. Specifically, the received signal exhibits cyclostationarity with
cycle frequencies sk/Tcs, k → Z and conjugate cyclostationarity with conjugate
cycle frequencies sk/Tcs + 2v, k → Z.

Due to the presence of the non unit time-scale factor s in the expression (18) of
the received signal y(t) in terms of x(t), it follows that y(t) and x(t) are not jointly
cyclostationary but, rather, jointly spectrally correlated (Napolitano 2012, Chap. 4).
In fact, accounting for the Fourier transform (defined in a distributional sense) of
both sides of (18)

Y ( f ) = b

|s| X
( f − v

s

)
e− j2π( f −v)d/s (31)

one obtains the Loève bifrequency cross-spectrum of y(t) and x(t)

E
{

Y ( f1) X (≥)( f2)
}

= b

|s| e− j2π( f1−v)d/s

+∞∑
k=−∞

Sk/Tcs

xx (≥)

( f1 − v

s

)
δ
(

f2 − (−)

( k

Tcs
− f1 − v

s

))
(32)

It is constituted by spectral masses concentrated on a countable set of lines with
non unit slope (s = 1).

Starting from (32) one obtains the cross-correlation function of y(t) and x(t)
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E
{

y(t + τ) x (≥)(t)
}

= b e j2πvτ
+∞∑

k=−∞
Rk/Tcs

xx (≥)

(
(s − 1)t + sτ − d

)
e j2π(k/Tcs+v)t . (33)

Due to the presence of the nonunit time-scale factor s in the argument of Rk/Tcs

xx (≥) (·), the
(conjugate) cross-correlation function does not contain any finite-strength additive
sinewave component provided that the functions Rk/Tcs

xx (≥) (·) are summable, that is, in
all those cases where k/Tcs are pure cycle frequencies (see Sect. 4.2). In contrast,
if x(t) contains an additive periodic component, then (33) is the expression of the
(conjugate) cross-correlation function of y(t) and x(t) with its periodic component
removed. In such a case, from (33) it follows that, accordingly with (32), the processes
y(t) and x(t) are not jointly (almost-)cyclostationary.

It is worthwhile to underline that the analytical model of the received signal
(18) is not influenced by the simplifying assumptions made on the satellite orbit in
Sect. 2. Consequently, the expressions (27–30) for the cyclic statistics of the received
signal and of the cross statistical characterization of transmitted and received signals
(32, 33) are not approximate relationships. In contrast, the values of the parameters
b, s, v, and d depend of the effective orbit of the satellite.

In (Napolitano and Perna 2013b), a synchronization technique for the coarse
acquisition code is proposed that models the transmitted and received signals as
jointly spectrally correlated. Performance is evaluated in terms of sample root mean
squared error (rmse) of the estimates of parameters s, v, d, and φ = ∠b. The pro-
posed technique is shown to perform slightly worst than the classical synchroniza-
tion method based on the narrow-band cross-ambiguity function (NB-CAF) when
the data-record length is 1 ms (corresponding to Nb = 1,023 bits of the coarse acqui-
sition code), which is the value adopted in commercial GPS receivers and such that
the narrow-band condition (19) is satisfied. In contrast, when observation intervals
larger than 1 ms are adopted aimed at obtaining a beneficial effect toward noise and
interference, the proposed method provides a significant performance improvement.
A scenario is considered with additive white Gaussian noise (AWGN) with signal-
to-noise ratio (SNR) equal to 0 dB in the bandwidth (− fs/2, fs/2), where fs is
the sampling frequency, and with an interfering binary phase-shift-keying (BPSK)
signal with carrier frequency fL1 and signal-to-interference ratio (SIR) equal to 5
dB. For Nb = 8,184 bits, the rmse of the estimates of v, d, and φ by the technique
proposed in (Napolitano and Perna 2013b) can be up to two orders of magnitude
smaller than those obtained by the NB-CAF at Nb = 1,023 and Nb = 8,184. The
gain in performance is obtained since for Nb = 8,184 the narrow-band condition
(19) is not satisfied and, hence, the NB-CAF method is based on the wrong model
that assumes s = 1 in the argument of the complex envelope x(·) in (18). In contrast,
the technique proposed in (Napolitano and Perna 2013b) benefits of the increased
data-record length and the consistency of the estimators of the involved statistical
functions.
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6 Conclusion

The effects of the satellite motion on the received signal on the Earth are analyzed for
GPS. In time intervals of interest in the applications, the relative radial speed between
satellite and ground receiver can be considered constant. Under these conditions, the
transmitted cyclostationary signal is still cyclostationary at receiver, but with different
cycle frequencies and cyclic features. Moreover, the transmitted and received signals
are jointly spectrally correlated. They can be modeled as jointly cyclostationary
only if the data-record length does not exceeds 1 ms. However, such a data-record
length is not sufficient in indoor applications and in the presence of strong jammer.
Significantly longer data-record lengths can be used by the adoption of the spectrally
correlated model allowing to get significantly better performance in the presence of
severe noise and interference environments.
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Cyclostationary Processing of Vibration
and Acoustic Emissions for Machine
Failure Diagnosis

Cristián Molina Vicuña and David Quezada Acuña

Abstract The use of vibrations and other variables to infere the mechanical
condition of machines is a common practice nowadays. Several equipments for mea-
surement and processing are available. Most of them offer FFT spectrum as the main
tool for analysis, thus allowing the assessment of the stationary part of the signal
only. Although this might be sufficient in some cases, it is certainly inappropriated
in others. Recent advances in signal processing have opened the possibilities for
analyzing a special type of non-stationary signals, called cyclostationary signals. It
has also been shown that the behaviour of machines can be highly cyclostationary
in some cases. Moreover, being stationarity a special case of cyclostarionarity, the
advantages of the cyclostationary approach become evident. Still, even under con-
sideration of these facts, the use of cyclostationarity appears to be still restricted to
the scientific community, being its use in the industry far from being a reality. This
chapter presents the concept of cyclostationarity, its terminology and its relation with
traditional signal processing tools in a descriptive way. Two examples of real data
analysis from the cyclostationary viewpoint are also presented.

1 Introduction

Machine Condition Monitoring (CM) has been used for decades as part of mainte-
nance strategies in different industries. Nowadays, the use of vibration-based CM
systems (off-line and on-line) is wide spread on a large variety of machines. In the
majority of cases, the diagnosis of the machine’s health relies on the assessment of
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the Fourier magnitude spectrum of the measured signals, meaning they are inher-
ently assumed to be stationary. Considering the large quantity of physical processes
occurring inside a machine and all parameters affecting the resulting vibrations, it
is easy to see that strict stationarity is a hard-to-meet property for the signals. In
some cases the vibration produced is, however, mainly stationary (e.g. the vibration
resulting from imbalance and eccentricity). In other cases, the resulting vibrations are
considerably non-stationary (e.g. vibrations from compressors, IC engines, and from
defective bearings). There are also phenomena producing vibrations with one portion
being mainly stationary and other, non-stationary. This is, for example, the case of
gear vibrations, where the low-frequency region is dominated by the stationary part;
whereas the high-frequency region is mostly non-stationary (Antoni and Bonnardot
et al. 2004; Capdessus et al. 2000; Raad and Antoni 2008). In fact, high-frequency
phenomena which repeats in an apparently periodic fashion may very unlikely be
stationary, because their dependence on the interaction of elements at a microscopic
level produce random variations from cycle to cycle. This particularly applies to
Acoustic Emissions (AE), high-frequency structure-borne waves sometimes used
for CM.

Cyclostationarity (CS) is a property of a group of signals whose statistical proper-
ties vary periodically with time—being therefore non-stationary—, including station-
arity as a particular case. CS is of special interest in machine CM, because vibrations
resulting from different machines and processes have CS properties. These include
cases in which periodic modulations of random vibrations occur, or where impact
series exist, as in IC engines (Antoni et al. 2002), high frequency vibrations from
gears (Antoni and Bonnardot et al. 2004), forging machines, etc. and virtually all AE
containing bursts (Vicuna and Hoeweler 2013). The most symbolic case found in the
literature refers to bearings with localized defects, a situation where a succession of
impacts excite the impulse response of the system in an apparently periodic man-
ner, which is actually random due to slip ocurring between the bearing components
(Ho and Randall 2000; Randall 2001; Antoni and Randall 2002).

Despite the rich theoretical background and the promising results that can be
obtained from the CS treatment of vibrations and AE, there is still low usage of
CS signal processing tools for vibration analysis. We present in this work some
applications of CS analysis of machine vibrations and AE, aiming to illustrate some
of the benefits of the CS treatment and assessment of mechanical signals. A brief
overview of the CS theory and terminology is also presented, which is necessary to
understand the discussions of the applications.

2 Cyclostationarity

This section provides an overview of the CS theory, terminology and signal process-
ing tools.
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2.1 Definition and Terminology

Cyclostationary signals are a type of non-stationary signals whose statistical prop-
erties change periodically with time (or angle of rotation). This is in opposition to
stationary signals, whose statistical properties remain constant with time; and to ran-
dom signals, whose statistical properties change (but not periodically) with time.
Cyclostationary signals are generally random in their waveform, but exhibit some
hidden periodicity in its energy flow, which is generated by some periodic process,
whose period is called cycle. Its inverse is called cyclic frequency and is denoted by
the symbol α. Formally, a signal exhibits cyclostationarity if exists a combination of
linear and non-linear transformations that produces periodic components as a result.
It is said that a signal exhibits cyclostationarity at the cyclic frequency α, if there is a
combination of linear and non-linear transformations that produce a pure sinusoidal
with frequency α.

Based on the definition above, the order of cyclostationarity is determined by
the maximum order of the transformations used to obtain periodic components.
According to this (Antoni and Bonnardot et al. 2004):

1. A signal is first-order cyclostationary (CS1) with fundamental cycle T , if only
a linear transformation is sufficient to obtain a periodic signal. In particular, if
the first-order moment is periodic with fundamental period T :

m X (t) � E {X (t)} = m X (t + T ) (1)

CS1 signals show periodic time histories, in which additive random stationary
background noise can be present.

2. A signal is second-order cyclostationary (CS2) with fundamental cycle T , if the
order of the non-linear transformation needed to obtain a periodic signal is two.
In particular, if its second-order moment (i.e. the autocorrelation function, ACF)
is periodic with fundamental period T :

RX X (t1, t2) � E
{

X (t1) X◦ (t2)
} = RX X (t1 + T, t2 + T ) (2)

CS2 signals are stochastic signals undergoing periodic modulations.
3. A signal is n-th-order cyclostationary (CSn) with fundamental cycle T , if the

order of the non-linear transformation needed to obtain a periodic signal is n > 2.
Such signal is also called high-order cyclostationary (Spooner 1994).

A process which is both CS1 and CS2 is called wide-sense cyclostationary;
whereas a process whose moments till infinity are periodic is called strict-sense
cyclostationary.

The definitions 1, 2 and 3 assume the existence of a single periodic process with
fundamental cycle T . However, a signal can contain several hidden periodic processes
with different fundamental cycles. Accordingly, it is distinguished between a signal
which exhibits cyclostationarity and a signal which is cyclostationary at a given order.
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Denoting by A the set of all cyclic frequencies α present in the signal obtained after
the appropriate linear and non-linear transformations:

• A signal exhibits cyclostationarity at a cyclic frequency α, if the set A contains α

and its multiples, among other cyclic frequencies.
• A signal is cyclostationary at a cyclic frequency α, if the set A contains only α

and its multiples.

Moreover, if for a signal which exhibits cyclostationarity, the cyclic frequencies
contained in A are such that they share no integer common factor, the signal is said
to be poly-cyclostationary.

Also from the previous definitions 1, 2 and 3, it is noted that a signal which is
first-order cyclostationary will be cyclostationary at all orders. For example, the ACF
of a periodic signal p (t) is:

RPP (t1, t2) � E
{

p (t1) p◦ (t2)
} = p (t1) p◦ (t2)

= m P (t1) m◦
P (t2) (3)

The ACF in Eq. 3 is periodic, because it depends on the first-order moment m p (t),
which is periodic. The same occurs for higher orders. Hence, all moments of a peri-
odic signal are periodic. However, the periodicity of the moments of order n > 1
is only a result of the periodicity of the first-order moment. Accordingly, a peri-
odic signal is pure cyclostationary at the first order (denoted PCS1), but impure at
higher orders. Distinguishing between pure and impure cyclostationarity is impor-
tant, because a PCS1 signal does not require the cyclostationary approach for its
analysis, since the classical stationary approach suffices.

To discriminate between pure and impure cyclostationarity, the cumulant
functions—instead of the moments—are used. For example, the cumulant func-
tion of second order (i.e. the autocovariance function, ACVF) substracts the impure
terms induced by the first order moment, thus allowing to evaluate the pure second-
order cyclostationary content of the signal. The same holds for higher orders, where
higher-order cumulant functions are used (Spooner 1994; Gardner 1994; Spooner
and Gardner 1994). In the example of the periodic signal, its ACVF reads:

KPP (t1, t2) � E
{
[p (t1) − m P (t1)]

[
p◦ (t2) − m◦

P (t2)
]}

= RPP (t1, t2) − m P (t1) m◦
P (t2) = 0 (4)

This result reflects no cyclostationarity at the second order for the periodic signal
p (t). Accordingly, the ACVF should be preferred instead of the ACF to evaluate if
a process is PCS2.
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2.2 Why Cyclostationarity?

The cyclostationary approach presents several advantages for the fault diagnosis
of mechanical systems through the assessment of variables such as vibrations and
AE. This comes from the fundamental fact that the observed signals hardly meet
the stationary condition, which is inherently assumed when they are processed with
conventional tools such as the Fourier transform or the power spectral density (PSD).
Cyclostationarity encompasses a larger family of signals and, therefore, is a more
general and powerful approach than the stationary approach.

Important results have been obtained in the application of cyclostationarity to
machine CM. For example, in the field of gear diagnosis, it has been found that some
failures like spalling produce periodic modulations in the signal which are well
detected using the cyclostationary approach (Capdessus et al. 2000). Interestingly, it
has been suggested that low-frequency vibrations measured in gears behave as CS1
signals, whereas high-frequency vibrations present PCS2 characteristics. Moreover,
it has been argued that the former is a result of the macro phenomena, and the latter
is a result of the micro-phenomena involved in the gearing process (Antoni and
Bonnardot et al. 2004; Raad and Antoni 2008). This is in perfect accordance with
results from our researches involving AE measurements, as presented in Sect. 3.2.
The field of bearing diagnosis is a classical example of vibration signals that are
mostly stationary—mostly stationary noise—when the bearing suffers no failure,
and are CS2 (or PolyCS2) under the presence of localized faults. A third example
of cyclostationary signals from mechanical systems are the vibrations and sound
observed in reciprocating machines (e.g. compressors, internal combustion engines).
Such systems operate in a cyclic manner, undergoing a series of non-stationarities
produced by different angle-locked events, such as openings and closings of valves.

2.3 Cyclostationary Signal Processing Tools

Cyclostationary signal processing (SP) tools exploit the special properties of cyclo-
stationary signals to reveal their hidden periodicities, thus providing more informa-
tion than the usual stationary SP tools. Again, if a signal is stationary, then no new
information will be obtained by using cyclostationary SP tools.

The key idea of cyclostationary SP tools consists in decomposing the energy flow
of filtered versions of the signal (covering the complete frequency range) not into
constant values—as done in the PSD—, but into periodic values. The obtained time-
frequency representation is called instantaneous power spectrum1 and reveals the
frequency structure of the energy flow in time. A natural step forward is the evalua-
tion of the periodicities of the instantaneous power spectrum, which is accomplished
by calculating its Fourier coefficients. Actually, it is this key step which reveals
the hidden periodicities (if existent) of the signal. The collection of Fourier coef-

1 Here we use the nomenclature presented in (Antoni 2009).
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ficients is called cyclic modulation spectrum, and is a frequency-cyclic frequency
representation.

Considering that the envelope of a signal is some function that envelopes the
fluctuations of its energy flow as a function of time, the instantaneous power spectrum
can be interpreted as a collection of envelopes of the band-pass-filtered versions
of the signal. However, the introduction of the filterbank in the definition of the
instantaneous power spectrum makes it a more powerful tool. Indeed, the integral of
the instantaneous power spectrum along the frequency axis f merges the set of all
envelopes into a single waveform similar to the classical envelope. The same relation
is observed between the cyclic modulation spectrum and the envelope spectrum.

The instantaneous power spectrum and the cyclic modulation spectrum are
affected by the uncertainty principle and, therefore, constitute no densities. As such,
they do not conserve energy and are not unique. More advanced signal processing
tools have been developed, which overcome this problem. Basically, they exploit the
property that hidden periodicities produce correlation in the frequency domain. This
property, also called spectral redundancy (Gardner 1991; Spooner 1994), provides
the basis for the development of one of the most powerful cyclostationary SP tools:
the spectral correlation density (SCD). The SCD, mathematically defined as

Sα
xx ( f ) = lim

Δ f ⇒0
lim

T ⇒∈
1

T Δ f

∫
T

xΔ f (t; f + α/2) x◦
Δ f

(t; f − α/2) e− j2παt dt

(5)

is indeed a density, thus overcoming the problems of the cyclic modulation spec-
trum. It is recognized that as a particular case, when α = 0 the SCD becomes the
PSD. Energy normalisation of the SCD results in the spectral coherence (SCoh),
whose squared magnitude takes values only between 0 and 1 and provides a unitless
measurement of the strength of correlation in the frequency domain. The SCoh is
mathematically defined as

γ α
xx ( f ) = Sα

xx ( f )√
S0

xx ( f + α/2) S0
xx ( f − α/2)

(6)

Several estimators of the SCD and SCoh have been proposed, the most spread being
the based in the averaged cyclic periodogram (Antoni 2007).

2.4 Relation with Conventional SP Tools

The relation between the cyclic modulation spectrum and the SCD is that the latter,
being a density, is a fundamental constituent of the former (Antoni 2009). The same
is valid between the instantaneous power spectrum and the quantity known as the
Wigner-Ville spectrum. The Wigner-Ville spectrum is, in turn, related to the SCD in
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the same manner as the instantaneous power spectrum relates to the cyclic modulation
spectrum. Additionally, the Wigner-Ville spectrum is related to the Wigner-Ville
distribution, which is a (more) known time-frequency distribution, being equal to the
mean value of it.

A formal proof of the relation between the SCD and the envelope spectrum is
given in Randall (2001). It states that if the signal is dominated by the stochastic
part (as is usually the case for the high frequencies, in particular for AE signals), the
integral along f of the SCD is equivalent to the Fourier transform of the envelope of
the squared signal, i.e.:

∫
R

Sα
xx ( f ) d f = lim

W⇒∈
1

W

∫
W
E

{
|x (t)|2

}
e− j2παt dt (7)

This important result evidences that the well known envelope signal processing
tool constitutes fundamentally a cyclostationary tool. Equation (7) provides a rich
cyclostationary background to this classical tool. Furthermore, it shows that the
envelope is a particular case of the SCD.

3 Applications of CS to Machine Diagnosis

This section shows two cases of real signals with CS features and how CS analysis
can be used for extracting relevant information for machine condition monitoring.

3.1 Case 1: Faulty Bearing

This case deals with the vibration (acceleration) measured on a test bench with a
bearing in healthy and faulty condition (light localized outer race defect). The outer
race of the bearing is fixed and in both cases the inner race rotates at the same
speed. The mean repetition rate of the impacts in the faulty case is BPFO = 94.8 Hz.
Figure 1 shows the time history of the measured vibrations. At first sight, both signal
look similar, being the increase of →33.7 % in the overall RMS in the faulty case,
the most important difference. Some transients appear to be present, but is dificult
to determine periodicities directly from the signal.

The presented signals are analyzed using the stationary approach. This is done
by calculating the PSD spectrum of both signals (Fig. 2). The magnitude spectra
(not shown) reveals the presence of discrete lines in the low frequency range. These
components are caused by a periodic process in the machine, but are not related to
the defect. There are no lines recognized at the fault frequency. Let us emphasize that
the reason for this is that the vibration produced by the failure is not stationary, and
therefore its presence is not revealed by the magnitude spectrum. Comparing both
PSD spectra, a magnitude increase is observed in the faulty case. Note that the major
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Fig. 1 Time history of the vibration measured without defect (top) and with defect (bottom)
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Fig. 2 Power spectral density of the faulty and non-faulty vibrations

change occurs in the high frequency region, above →6 kHz. This change could be
attributed to the fault and, therefore, it is a common practice to use this information
to filter the signal in this range previous to the calculation of the envelope spectrum.
The result of this methodology is presented in Fig. 3, where the defect is revealed.
Note we have purposely used the α symbol in the horizontal axis of the envelope
spectrum to emphasize that the envelope is a CS quantity. It is actually this feature
which permits to reveal the presence of the defect.

More information can be obtained by using more sophisticated CS tools. For
example, Fig. 4 shows the SCoh calculated from both raw vibrations. It is observed
that for the defect-free case, it presents non-zero components at some α ∞= 0 in a
frequency range from 0 to →6 kHz and around →20 kHz. These components are due
to the periodic part of the signal and are, therefore, impure second-order CS. They
are present because in this case the auto-correlation function instead of the auto-
covariance was used for the calculation of the SCoh. No other indications of second
order CS are present in the signal for the defect-free case.
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Fig. 3 Envelope spectrum for the faulty case computed from the high pass filtered version of the
signal above 6 kHz. Top dashed lines indicate the defect frequency (BPFO) and harmonics

Consider now the SCoh of the faulty case, which is also shown in Fig. 4. Two
important points are observed in this case. First, the defect is clearly identified by the
presence of discrete components in the α axis, at the cyclic frequency of the defect
(i.e. the BPFO) and harmonics, which are indicative of second-order CS related to
the rolling of the bearing elements over the damaged zone. The next observation is
that the second-order CS due to the defect appears in the frequency range between
→14 and →25 kHz. This indicates that this is the optimum range for filtering the
vibration signal previous to the construction of the envelope. Figure 5 shows the
envelope spectrum obtained when filtering in this range. As expected, this results
in a cleaner envelope spectrum, in which the defect is clearly identified. Note in
this case it was not necessary to use the auto-covariance function for calculating the
SCoh, because impure second-order CS components do not appear in the range in
which the second-order CS related to the defect manifests.

At this point one could argue about the real benefits of using the SCoh, considering
that the simpler method based in the comparison of the PSD resulted in an envelope
spectrum in which the defect was, indeed, identified. In this respect, one should keep
in mind, however, that the PSD-based methodology requires a previous measurement
of the healthy case, which might not be available. Note how with the SCD approach
the diagnosis can be effectively done without need of the the healthy signal, but only
relying in the second-order CS features of the faulty signal.

Another alternative for the selection of the optimum filter, when only the faulty
signal is available is the Kurtogram (Antoni 2007). The Kurtogram gives the combi-
nation of central frequency and bandwidth of the filter which maximizes the Spectral
Kurtosis (SK). Figure 6 presents the Kurtogram of the faulty signal, which suggests
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Fig. 5 Envelope spectrum for the faulty case computed from the high pass filtered version of the
signal above 14 kHz. Top dashed lines indicate the defect frequency (BPFO) and harmonics

that the optimum filter is the high pass filter with cutoff frequency of →24 kHz.
Figure 7 shows the envelope spectrum calculated using this information. Note the
result is poorer when compared to the envelope spectrum of Fig. 5. This is because
the range indicated by the Kurtogram is the range in which the maximum SK is
obtained, which can occur due to some isolated impacts on the bearing instead of
the repetitive train of impulses, or even due to some other process present in the
signal with high SK. This can be observed in Fig. 8, where portions of the faulty
signal filtered with the information obtained from the PSD, SCoh and Kurtogram are
respectively presented. Their values of Kurtosis are 2.04, 83.00 and 90.71, respec-
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Fig. 6 Fast Kurtogram for the faulty case
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Fig. 7 Envelope spectrum for the faulty case computed from the high pass filtered version of the
signal above 24 kHz. Top dashed lines indicate the defect frequency (BPFO) and harmonics

tively. As expected, the signal filtered with the information from the Kurtogram gives
the maximum Kurtosis, but it is the signal filtered with the information from the SCoh
map which better isolates the evidence of the defect. Note, however, that in this case
the Kurtogram presents a frequency range in which the SK is not maximum, but
still much higher than the rest, and that this range is in accordance with the range
determined from the spectral coherence map.
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Fig. 8 Filtered versions of the vibration from faulty case. High-pass filter above 6 kHz (top), high-
pass filter above 14 kHz (center) and high-pass filter above 24 kHz (bottom)

3.2 Case 2: Planetary Gearbox

This case relates to the AE measured on a planetary gearbox in two different condi-
tions: non-faulty and with a localized defect on the inner ring of one planet bearing.
Figure 9 shows the time history of the AE measured in both cases. In the non-faulty
case, the signal presents a series of bursts spaced at the gear mesh period, although not
in a strictly periodic way. The bursts from the gear meshing are amplitude-modulated
due to the passing of the planet gears near the sensor position. As will be shown, this
signal is CS of the second order, being the gear mesh frequency the only fundamental
cyclic frequency contained in the signal.

In the faulty case, the signal also presents the bursts due to the gear meshing,
although for an unknown reason in this case they are not as dominant as in the
healthy case. Additionally, the signal contains repetitive bursts with second-order
CS characteristics, due to the bearing fault. Since the bearing fault frequency is
related to the gear mesh frequency in a non-commensurate fashion, the resulting
signal is poly-cyclostationary at the second order.

Figure 10 shows the PSD of the faulty and non-faulty case. In this case, due to
the difference in amplitude of the gear meshing AE, the non-faulty case presents
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Fig. 10 Power spectral density of the faulty and non-faulty AE

higher magnitude in the PSD, so no valuable information can be obtained from these
spectra. Both magnitude spectra (not shown) are broadband, presenting no lines at
the gear mesh frequency and bearing fault frequency and harmonics, meaning the
signals are non-stationary.

Figure 11 shows the envelope spectra calculated from both signals. No filter was
considered, because the bursts appear to protrude significantly from the continuous
part of the signal. As expected, they are dominated by the lines at the gear mesh
frequency (288 Hz) and harmonics, being of higher magnitude in the non-faulty
case. It is not possible to distinguish lines at the expected bearing fault frequency
(89 Hz) and harmonics, nor sidebands around them spaced at the carrier rotating
frequency (4 Hz).

Figure 12 shows the SCD map of the healthy and faulty case in the cyclic fre-
quency range where the gear mesh frequency is contained. The appearence of the
discrete components in the α-axis demonstrate the bursts generated by the gear mesh-
ing produce AE with second-order CS features. A similar picture is observed in the
rest of the harmonics of the gear mesh frequency (not shown). Figure 13 presents the
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Fig. 12 Spectral correlation density map for the non-faulty (left) and faulty case (right), around
the gear mesh cyclic frequency range

SCD map of both cases in the cyclic frequency range of the bearing fault frequency.
The faulty case presents discrete components in the α-axis for the expected fault
frequencies; whereas the healthy case does not. The presence of the discrete com-
ponents in the α-axis at the gear mesh frequency and bearing fault frequency and
harmonics, evidence the poly-CS characteristics of the AE in the faulty case. Note
how in this case, from all the processing tools used, only the SCD map allowed the
correct diagnosis of the fault.

4 Conclusions

There are a number of cases in which the behaviour of mechanical systems can be
highly cyclostationary. The stationary assumption inherently made when analyzing
these systems relying on the FFT of their measured variables is inappropriate in
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Fig. 13 Spectral correlation density map for the non-faulty (left) and faulty case (right), around
the bearing fault cyclic frequency range

these cases. Advances in signal processing during the last years now permit the
cyclostationary assessment of variables measured in mechanical systems without
much effort. Notwithstanding, their analysis from the cyclostationary viewpoint still
seems to be restricted to the scientific community. The reason for this situation
probably relies in the difficulty found by practitioners on grasping the concepts
related to cyclostationarity. It has been the aim of this work to contribute in this
direction, by presenting the cyclostationary theory in a simple manner. The two
cases presented show examples of cyclostationary behaviour of machines and how
the analysis can be made under consideration of this fact.
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Frequency and Sidebands
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Abstract Model tests can be used as a source of information about gearbox
dynamics. Simulation of phenomena occurring in gearboxes allows to identify vibra-
tion signatures related to other failures of gears, bearings and shafts. In the chapter,
the rigid-elastic model of the planetary gear is presented. The model was developed
on the basis of the multi-body dynamics method. To conduct dynamic simulations
specialized software MSC ADAMS was used. The multi-body method merges advan-
tages of CAD modeling and efficient numerical simulations. Developed model allows
to simulate the transmission error generated by a gearbox and forces in planet-sun and
planet-ring meshing. In the tests it was observed that phase relations between mesh-
ing process influence on the sidebands of meshing frequency harmonics. The model
was compared with experimental data on the basis of gears’ meshing frequencies
and modulation sidebands.
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1 Introduction

A gearbox has a crucial influence on the reliability of a power transmission system.
A gearbox is a complex object, which consist of shafts, gears, bearings and housing.
The dynamic interactions that take place in a gearbox have a major effect on the
vibrations and noise generated by the system. Identifying the dynamic phenomena
that take place in gearboxes allows for a proper selection of the design, technological
and operational features at the initial design stage (Łazarz and Peruń 2012).

Two main variants of gears dynamic models can be distinguished; models where
all phenomena occurring in a power transmission system are included and models
which take into account only phenomena inside the gearbox. In the first group,
the dynamics of a motor, couples, gears and working machine are included. The
second group considers physical phenomena occurring only inside the gearbox, and
in these models the meshing stiffness and manufacturing of gears mostly affects the
dynamics (Müller 1986, Bartelmus 1998). To model a gearbox dynamics it is possible
to use lumped parameter models which are used for relatively simple gear systems
(Åkerblom 2001). In the lumped parameter models the laws governing the system
are described by differential equations. A vast review of mathematical models used
in gear dynamics was presented by Özguven and Houser (1988).

It can be stated that the first dynamic model of gears was proposed in 1868 by
Walker (1961). It was based on an empirical dynamic factor (DF). The DF was
defined as a static load divided by a dynamic load. The first spring-mass model was
introduced by Tuplin (1953), the meshing of two gears was modeled by a system
with one-degree freedom. The model in which meshing stiffness varying in time
was presented by Strauch (1953). In this model the changes in meshing stiffness
were due to changing from a single pair to a double pair of teeth in the engage.
In models examined later, the tooth stiffness was the main potential energy-storing
element, as the other elements were rigid or neglected. The model developed by
Bollinger and Bosh and discussed in Dąbrowski et al. 2000 is constructed form
two masses representing gears connected by spring-damper element, the changes of
meshing stiffness depends on number of teeth in engage and kinematic deviations
were considered. More complex model was presented by Müller (1986) it allows to
take into account a backlash and other kinds of geometrical deviations. Müller also
introduced the dynamic model of planetary gear (Müller 1986). In this model the
meshing stiffness, stiffness and dumping of bearings, meshing phase relations and
non-linearity of phenomena occurring in kinematic pairs are considered. Another
modeling approach is based on the apparent interface method and was presented by
Radkowski at al. (1996), Filonik et al. (1998). This method is based on additional
angular displacement of gears in relation to the actual displacement, which causes
apparent overlap of the pinion and gear, the interference is compensated by elastic
deformation of the teeth.

Łazarz et al. presented a model of the system consisting of a motor, shafts, gears
and bearings (Łazarz and Peruń 2006, 2009). The presented models were verified
on a test rig operating in the circulating power system. The presented results can be
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used for analysis of the methods, which can be used to reduce the vibroactivity of
the gearboxes in an early design stage. In the study it was shown that it is important
to analyze the design and the technological factors in gear modeling. The operation
parameters, such as time-varying loading and speed, are crucial for a proper modeling
of the phenomena in gearboxes. In the chapter (Bartelmus et al. 2010) models of
fixed axis and planetary gearboxes, operating under varying load conditions were
presented. In another study (Chaari et al. 2012), a lumped parameter model was
applied to investigate the influence of meshing forces, variable loads and errors
on the dynamics of gearboxes. The time varying operations and teeth faults were
modeled by proper selection of the meshing stiffness function.

The modeling methods based on mathematical description of phenomena in gear-
boxes or multi-body dynamics approach are used increasingly and developed for
modeling more complex gears systems (Inalpolat and Kahraman 2009; Viadero et
al. 2012). The group of models, where a mathematical description of the observations
is used instead of differential equations depicting physical processes are phenomeno-
logical models. A mathematical model describing the modulation mechanisms in a
planetary gear was presented by Inalpolat et al. (2009). A vibration signal generated
by the planetary gear is modeled on the basis of system parameters: the number of
planets, planet position angles, and planet phasing relationships (Vicuña 2012). A
relatively new approach for modeling the dynamics of gearboxes is based on the
multi-body dynamics method. A multi-body system is a model of a real system built
with the assumption that bodies in a real system are rigid or flexible and connected
by joints. The multi-body system allows for time domain integration of the solu-
tion, which captures the non-linear effects of bearing stiffness and clearances, gear
backlash, large rotations and other nonlinear phenomena (Palermo et al. 2010). Spe-
cialized multi-body dynamics software, such as ITI-SIM, SIMPACK, LMS Virtual.
Lab Motion and MSC ADAMS, allow to model three-dimensional gear bodies, tooth
micro-geometry, global and local tooth stiffness. The study describing the multi-body
approach for modeling the vibration of gears was presented by Dresig et al. (2005).
The model allows for dynamic simulations of planetary gearboxes, considering the
stiffness characteristics. A new approach to modeling gear systems was presented
by Ebrahimi and Eberhard (2006). It assumes that the teeth and the body of the gear
wheels are rigid but are connected by elastic elements. The study related to a multi-
body dynamics model developed in MSC ADAMS software were presented in few
publications (Han et al. 2009; Kong et al. 2008; Viadero et al. 2012).

To sum up, lumped parameter models can be used for gear dynamics modeling
or modeling of all gearboxes working in power transmission systems. The literature
presenting this approach for modeling of gears dynamics is vast and still growing, in
many cases models were positively verified in an experiment. The disadvantage of this
approach lies in the modeling difficulty of complex systems. The phenomenological
models allow for relatively simple modeling of vibrations generated by gears, but
require detailed knowledge about all phenomena in gearboxes. Another method that
is useful in modeling complex systems is multi-body dynamics method. It allows to
model a dynamic system on the basis of the geometry of the elements and interacting
forces.
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2 Rigid-Elastic Model of the Planetary Gear

2.1 Multi-Body Method

A multi-body system is a model of the real system, built with the assumption that
bodies in the real system are rigid or flexible and connected by joints, e.g. revo-
lute, translational, cylindrical or spherical joints. The motion of elements is caused
by other kinds of forces and torques. In the multi-body dynamics method mostly
kinematic and dynamic analyses are carried out. The motion of a multi-body sys-
tem is calculated by integration of differential equations. The configuration of a
multi-body system is defined by a set of variables called generalized coordinates
that completely define the location and orientation of each body in the system. Six
independent coordinates (three coordinates describing the location and three the ori-
entation) completely describe the configuration of a rigid body in the space (Shabana
2005). The generalized coordinates of the body reference q are given by the vector

qi =
[
RiT , θ

iT
⎛T

, (1)

where R is the coordinate vector of the origin of the body reference, θ is the vector
with Euler angles, and i represents number of rigid body. The vector describing the
location and orientation of n bodies is given by

q =
[
qT

1 , qT
1 , qT

1 , . . . , qT
n

⎛T
. (2)

To describe the multi-body system configuration in a space with n interconnected
rigid bodies one needs 6n coordinates; these coordinates are not entirely independent
because of the joints.

Derivation of the equations of motion for a multi-body system was particularly
presented by Wojtyra and Frączek (2007). The motion of a multibody system can be
described by set of following formulas

⎝
⎞

Mu̇ − LT
R + εT

RΨ − HT
FF = 03nx1

ṗ − LT
θ + εT

θ Ψ − HT
N N = 03nx1

p − LT
θ = 03nx1

u − Ṙ = 03nx1
ε − θ̇ = 03nx1

⎠
⎧

, (3)

where
u = Ṙ,

ε = θ̇,
(4)

In the equation above ε is the function describing constraints in a multibody system,
L is the Lagrange function given by difference of kinetic and potential energy of
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a system, Ψ is the vector of Lagrange multipliers, M is the mass matrix, p is the
generalized momentum vector, F and N are the vectors containing the external forces
and torques acting on a multi-body system, and HT

N , HT
F are the matrices that allow

the conversion of vectors F and N to the generalized forces. Generalized coordinates
have to satisfy the constraint given by (3), thus for this purpose Eq. (5) should be
used (Wojtyra and Frączek 2007)

ε(q, t) = ε(R,θ, t) = 0mx1. (5)

Assuming that the forces and torques are described by the functions f and n, vectors
F, N can be treated as variables vector

F − f(R,θ, u,ε, F, N, t) = 03nx1,

N − n(R,θ, u,ε, F, N, t) = 03nx1.
(6)

The dynamics of a multi-body system is described by a set of Differential and Alge-
braic Equations (DAEs) (3) and (5–6). Simulations involve the solution of DAEs;
there are two basic types of algorithms to perform the numerical integration; Stiff and
Non-stiff solution methods. The Stiff solution methods use implicit Backward Dif-
ference Formulations (BDF) to solve the DAEs and the Non-stiff solution methods
use explicit formulations to solve Ordinary Differential Equations (ODEs) that are
obtained from the DAEs by way of coordinate partitioning methods (MSC ADAMS
2010).

2.2 Description of the Model

The gears dynamic models are mostly based on analysis of differential equations
describing a system, the lumped parameter models are sometimes insufficient for
modeling complex systems; so for these systems phenomenological models can be
applied, but they require detailed knowledge about all phenomena in gearboxes.
In the multi-body method the gear system is modeled by rigid bodies representing
the gears’ wheel, shafts and gearbox housing as well as elastic elements. The con-
tacts are essential for modeling the vibrations generated by gears in the multi-body
method. Properly defining the contact algorithm and parameters, such as stiffness
and dumping, is crucial for gear mesh modeling. The multi-body method merges the
advantages of CAD modeling and efficient numerical simulations (Dąbrowski et al.
2012, 2013; Dąbrowski and Adamczyk 2012).

In the chapter, the rigid-elastic model of the planetary gear developed on the
basis of the multi-body method is presented. The model was built with following
assumptions; bodies of the gears are rigid, contact surfaces are flexible, damping and
stiffness in the contacts was assumed, ideal involute tooth geometry, gears are made
from steel without any surface treatment and lubrication is neglected. In the study
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Table 1 Basic gears parameters of planetary gear MERCURY 1-A

Parameter Sun gear Planet gear Ring gear

Number of teeth 24 21 66
Outside diameter 55.3 mm 48.9 mm 136.2 mm
Pressure angle 20 deg. 20 deg. 20 deg.

firstly, 3D CAD model of one stage planetary gearbox MERCURY 1-A was built.
The basic gears parameters are presented in Table. 1.

The geometry of the planetary gear was transferred into an ADAMS environ-
ment. In multi-body software the constraints, forces and contacts were modeled. The
contact force defined in ADAMS is composed of two parts; the elastic component
which acts like a nonlinear spring, and the damping force which is a function of the
contact-collision velocity (Kong et al. 2008). The absolute value of the contact force
can be expressed by following formula

F =
⎪

K(x0 − x)e + CSẋ for x < x0
0 for x ◦ x0

⎨
, (7)

S =
⎝
⎞

0 for x > x0

(3 − 2εd)εd2 for x0 − d < x < x0
1 for x ⇒ x0 − d

⎠
⎧ , (8)

where d is the penetration depth, e is the contact force exponent, K is the contact
stiffness and C is the damping coefficient. The contact stiffness between bodies,
according to the Hertzian elastic contact theory, can be described by a pair of ideal
contacted cylindrical bodies (Fisher 1961, Kong et al. 2008). The contact stiffness
of a gear pair can be defined according to the expression

⎝
⎞

K = 4
3 R1/2E∈ = 4

3

⎩
idi cos(ξt) tan(ξ→

t)

2(1+i) cos(πb)

⎫
E∈

1
E∈ = 1−v2

1
E1

+ 1−v2
2

E2

πb = atan(tan(π) cos(ξt))

⎠
⎧

(9)

where R is the equivalent radius of two contacting bodies, E∈ is the equivalent Young’s
modulus, E1, E2 is the Young’s modulus for pinion and gear respectively, v1 and v2
are the Poisson ratio of pinion and gear, ξ→

t is the transverse pressure angle at engaged,
ξt is the transverse pressure angle at standard pitch circle, π is the helical angle at
the pitch and πb is the helical angle at the base circle, i is the gear ratio, and d1 is the
diameter of the standard pitch circle.

In the study, it was assumed that the gears are made from steel with the Young
modulus 2.1 ·1011 Pa and the Poisson ratio 0.3. Contact stiffness calculated from
Eq. (9) is equal to K = 3 ·105 N/mm3/2. Damping coefficient takes a value from
0.1 to 1 % of K, in the study it was assumed C = 3,000 Ns/mm, the force exponent
e = 1.2 and the penetration depth d = 0.3 mm.
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Fig. 1 Model of planetary
gear a CAD model, b dynamic
scheme of model

2.3 Analysis of Simulation Results

To conduct dynamic simulations of the model in the ADAMS following constraints
were applied; fixed joint between the ring gear and ground, the revolute joints between
the satellites and carrier and the carrier and ground. A constant rotation motion was
applied to the sun gear and a constant torque to the carrier. The contacts were modeled
between the planet and the sun gears, and the ring and the planet gears. The geometry
of the planetary gear and dynamic scheme of models are presented in Fig. 1.

In simulations the integrator WSTIFF and the Stabilized Index-2 (SI2) formulation
were used. The presented tests were conducted for a rotation frequency 27 Hz and
torque 50 Nm.

To identify characteristic frequencies generated by the gearbox Gear Meshing
Frequency (GMF) was calculated by following formula

f12 = f23 = f
z1z3

z1 + z3
= 17.6f1, (10)

where f12 and f23 are the meshing frequency for the sun and the planet gear respec-
tively, f1 is the rotational frequency for the input shaft. The modulation frequency in
a planetary gear caused by passing of planet gears trough constant point on a gearbox
housing is given by the following relation

fm = fas = 0.8f1, (11)

where
fa = f1

z1

z1 + z3
= 0.266f1, (12)

In equation above fa is the carrier rotational frequency, s = 3 is the number of planet
gears. Vibrations generated by a gearbox are mostly related to the Transmission Error
(TE). The transmission error is defined as

TE(t) = τ̇1(t) − iτ̇2(t), (13)
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Fig. 2 Transmission error generated by model of planetary gear, a time signal, b spectrum

Fig. 3 Transmission error generated by model of planetary gear for misalignment of sun gear,
a time signal, b spectrum

where τ1 is the input rotational speed, τ2 is the output rotational speed, i is the gear
ratio. The TE represents all interactions occurring in a gearbox system, therefore in
the tests the transmission error generated by the model of the planetary gear was
analyzed.

On the spectrum presented in Fig. 2b one can observe the excitation on frequency
528 Hz and the sidebands. The frequency 528 Hz is related to the meshing frequency
f12 = f23, and the sidebands are caused by the modulation fm = 24 Hz. The examined
planetary gear belongs to the group of planetary gears with equally-spaced planet
gears and in-phase gear meshing processes, because the angle between the positions
of the planet gears is equal to 120 deg., and all meshes are in-phase, which means that
phase difference between vibration generated in the meshing between the i-th planet
gear and the ring gear, as experienced by an observer standing in the carrier plate
must be either zero or a positive integer, this requires z3/s to be a positive integer,
for the examined case it is equal to 33 (Vicuña 2012). That’s why on the spectrum
(Fig. 2b) occur symmetric sidebands with frequency fm.

The most common fault of gearboxes working in the industry is misalignment
(parallel or angular), which can be caused by manufacturing errors as well as bearing
defects. In the next tests the misalignment of the sun gear was simulated; it was
introduced by a vertical and horizontal shift of the sun gear axis about 0.1 mm and
its rotation about 0.5 deg. in x-y plane. In Fig. 3 the transmission error generated by
the model with modified geometry and its spectral analysis are presented.
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(b)

Fig. 4 Transmission error generated by model of planetary gear for misalignment of sun and planet
gear, a time signal, b spectrum

After modification of the assembly the signal of the TE changes character, and the
GMF increases about 10 times; also, amplitude of the sidebands changes, as the right
sideband has a bigger amplitude than the left one. The misalignment of gears result in
changes of the load distribution of a gear pair that results in increasing contacts and
bending stresses, this phenomena reveal in the spectrum by increase of second GMF
and sidebands of meshing frequencies (Randall 2011). The changes of the sidebands
are related to the structure modification, after introduction of the misalignment, there
is no in-phase meshing process between the sun and planet gears.

In the last tests additionally the misalignment of one planet gear were introduced
to the model; the planet gear axis was rotated about 0.2 deg. in x-y plane.

The TE for this model (Fig. 4a) has a two times bigger peak-to-peak value than
for the model without modifications (Fig. 2a); also, the cyclostationary character of
this signal can be observed. The structure of the spectrum for this case (Fig. 4b)
is similar to the spectrum of signals from the group of planetary gearboxes with
unequally-spaced planet gears and out-of-phase meshing processes (Vicuña 2012);
the sidebands are related to the carrier rotational frequency of 8 Hz and its multiples.

3 Comparison of the Model Tests with the Experiment

3.1 The Experiment

The experiment was conducted on the test rig with a planetary gearbox, designed to
perform simulations under varying operations. The test rig consists of the asynchro-
nous motor, one stage planetary gearbox MERCURY 1-A with gear ratio of 3.75,
and electromagnetic particle break. The motor and planetary gearbox are coupled by
an elastic coupling, in turn the planetary gearbox and break are coupled by a rigid
coupling. The Modbus communication protocol allows to control all of the motor
parameters, the torque is controlled by application of the electromagnetic particle
break EMA-ELFA.
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Fig. 5 Measuring system

Table 2 Equipment used in
experiment

Number Name

1 Accelerometer 356A15
2 Laser Tacho Probe MM0360
3 NI sbRIO 9602 Controller
4 NI cRIO 9233 Module

The experiment was conducted in the Laboratory of Mechanical Diagnostics at
the AGH University of Science and Technology in Krakow. Figure 5 presents the
measuring system.

In the experiment acceleration and keyphasor signals were measured by the sbRIO
Controller with cRIO 9233 module. The PC computer was used for a data logging
by the TCP/IP protocol. The equipment used in the experiment is listed in Table 2.

The acceleration signal was measured on the gearbox housing and the keyphasor
signal was measured on the gearbox input shaft. The measurements were conducted
with sampling frequency of 5 kHz. The experiment was conducted in the steady-state
conditions for rotational speed of 27.7 Hz and torque equal to 50 Nm.

3.2 Comparison of the Results

To compare the results from the model tests and experiment the signals were analyzed
in the time and frequency domain. In the experiment the vibration signal was mea-
sured on the gearbox housing, but in the model tests the TE was registered. Figure 6
presents comparison of the signals from the model tests and the experiment.

The cyclostationary character of the analyzed signals is noticeable (Fig. 6a, b). In
Fig. 6c, d the gear meshing frequency harmonics are visible, the location of the GMFs
is related to the geometry of the PG and operation parameters. In the experiment and
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Fig. 6 Comparison of signals from model tests and experiment, a acceleration signal from experi-
ment, b TE from model tests, c power spectrum of acceleration signal from experiment, d spectrum
of TE from model tests, e power spectrum (GMF band) of acceleration signal from experiment,
f spectrum (GMF band) of TE for model

model tests it was observed that the first GMF has the biggest amplitude, and the
odd harmonics are more significant. In the frequency band related to the first GMF
(Fig. 6e, f), one can observe that the main frequency is related to the meshing process
(in experiment 489 Hz and model test 528 Hz) and the sidebands which depend on
the phase relations between the meshing process of the planet gears.

4 Conclusion

The developed model of the planetary gear allows for simulations of the transmis-
sion error and meshing force generated by the planet-sun and planet-ring meshing
process. The gear bodies are connected in meshing points by force elements, which



168 D. Dąbrowski et al.

were modeled on the basis of the contact algorithm. The contact force is a non-linear
function of deformation depth and it depends on the stiffness and damping parame-
ters. A planetary gearbox is a complex object, where vibration signals are generated
by other elements interacting with each other, and they are transmitted by other paths
to a signal receiving point. In the presented study the transmission error generated
by the model of the planetary gear consists of a basic gear meshing frequency har-
monic and sidebands. After introduction of manufacturing error (misalignment) the
meshing phase relations for the planet gears change; the spectrum of the transmission
error is similar to the spectrum of the vibrations generated by the planetary gears
with unequally-spaced planet gears and out-of-phase meshing processes.

Summarizing, on the basis of a preliminary verification, it can be stated that the
presented rigid-elastic model of the planetary gear allows to simulate phenomena
related to the meshing process. It should be noted that the presented study is prelim-
inary and that the proposed model has to be verified in detail with the object. In the
future the test rig will be equipped with high resolution encoders which will allow to
measure the transmission error; also, the model will be developed by flexible bodies
that will allow to model the deflection of teeth and shafts, and taking into account
Coulomb friction and lubrication.
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Filonik R, Mączak J, Radkowski S (1998) Apparent interface method as a way of modelling the
meshing process disturbances. Mach Dyn Prob 19:95–108

Fisher A (1961) Factors in calculating the load-carrying capacity of helical gears. Machinery
98:545–552

Han B, Cho M, Kim C, Lim C, Kim J (2009) Prediction of vibrating forces on meshing gears for a
gear rattle using a new multi-body dynamic model. Int J Autom Technol 4(10):469–474

Inalpolat M, Kahraman A (2009) A theoretical and experimental investigation of modulation side-
bands of planetary gear sets. J Sound Vib 323:677–696

Kong D, Meagher J M, Xu C, Wu X, Wu Y (2008) Nonlinear contact analysis of gear teeth for
malfunction diagnostics. In: IMAC XXVI conference and exposition on structural dynamics,
Orlando-Florida, 4 February 2008
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Periodic Autoregressive Modeling of Vibration
Time Series From Planetary Gearbox Used
in Bucket Wheel Excavator

Agnieszka Wyłomańska, Jakub Obuchowski, Radosław Zimroz
and Harry Hurd

Abstract Vibration signals acquired from machines operating under non-stationary
operations are difficult to process due to their time varying spectral content, sta-
tistical properties, signal to noise ratio etc. In case of damaged machine vibration
analysis, the classical damage detection approach might be defined as informative
and non-informative contents separation. It can be done in many ways, including
model based approaches. One of the most known solutions for constant load/speed
operations exploits autoregressive (AR) modeling of the deterministic high energy
components that often mask the weak impulsive and stochastic part of the signal.
After establishing the model, the residual signal is extracted and further analyzed.
In the case presented here, AR modeling is considered inappropriate because of
the variation of speed/load conditions. To illustrate importance of the problem and
novelty of our approach, a planetary gearbox vibration will be analyzed. The gear-
box operates in a bucket wheel excavator (heavy duty mining machine) subjected to
cyclic load/speed variation due to the digging/excavating process. Due to periodicity
of the excavation process, it seems appropriate to assume a periodic autoregressive
(PAR) model for the deterministic high energy components. In the chapter several
topics will be discussed: real data inspired motivation for PAR modeling, estimation
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details, simulations and PAR based inverse filtering for extraction of the informative
stochastic part of the signal. Finally, we present some comparison of PAR and AR
for modeling the deterministic high energy part.

1 Introduction

Vibration signals acquired from complex mechanical systems (helicopters, wind
turbines, mining machines, etc. (Bartelmus and Zimroz 2009; Samuel and Pines
2005; Urbanek et al. 2013)) usually require advanced signal processing for damage
detection, especially when considering so called early damage detection.

Special and relatively challenging situation for vibration based condition monitor-
ing are time varying operation conditions, i.e. varying load of machine and associated
variation of rotating element speed. It may happen that variation of operating condi-
tion is in fact switching from regime to regime. This simple case may well be treated
as two separated cases with constant load/speed. Another approach initiated in the
last decade is the utilization of the instantaneous variation of operating conditions.
It might be concluded that vibration signals from machine operating under non-
stationary conditions are quite difficult to process due to their time varying spectral
content, statistical properties, signal to noise ratio etc. (Bartelmus and Zimroz 2009;
Combet and Zimroz 2009). A bucket wheel case discussed in this chapter can be a
really good illustration of this problem.

An important idea in damage detection by analysis of machine vibration signals is
the separation of the informative and non-informative parts of the signal. Basically,
the Signal of Interest (SOI) that carries information about the presence of faults might
be defined as low energy, random signal with amplitude modulation, or simpler as
cyclostationary signal (of order 2) (Antoni 2005; Antoni et al. 2004; Makowski and
Zimroz 2013; Obuchowski et al. 2013; Randall and Antoni 2011; Urbanek et al.
2013; Zimroz and Bartelmus 2012). The non-informative part of the signal is the
deterministic high energy part and is the part we wish to remove or suppress by
advanced signal processing methods.

This separation can be realized in many ways, including model based approaches
(Baillie and Mathew 1996; Endo and Randall 2007; Makowski and Zimroz 2011;
Poulimenos and Fassois 2006; Wang and Wong 2002; Zhan et al. 2006; Zhan and
Mechefske 2007). One of the most known solutions for constant load/speed opera-
tions exploits autoregressive (AR) modeling for deterministic high energy compo-
nents (Baillie et al. 1996; Endo et al. 2007; Makowski et al. 2013; Wang et al. 2002
and many others). Typical methodology is: after establishing the model and model
based inverse filter, the residual signal (informative part) is extracted and further
analyzed.

In the case presented here, AR modeling due to variation of speed/load conditions
(affecting spectral contents) is not appropriate or certainly not optimal (Makowski
and Zimroz 2011). To illustrate importance of the problem and novelty of our
approach, a planetary gearbox vibration will be analyzed. The gearbox operates in
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bucket wheel excavator, a heavy duty mining machine subjected to cyclic load/speed
variation due to digging/excavating process. To model such a data, it is proposed to
use special case of AR model with time-varying coefficients (Makowski and Zimroz
2013; Poulimenos and Fassois 2006) and more specifically, due to periodicity of
excavation process affecting the gearbox vibration, a periodic autoregressive model
(PAR) is strongly suggested. In the chapter several topics will be discussed: real data
inspired to PAR modeling, estimation details, simulations and PAR based inverse
filtering for informative signal extraction.

2 Periodic Autoregressive Model

2.1 Basic Definitions and Properties

Definition 1. (Gladyshev 1961) The periodic autoregressive time series {X(t)} of
order p is defined as follows:

X(t) −
p∑

i=1

ai(t)X(t − i) = b(t)Z(t), (1)

where {Z(t)} is a white noise time series and the coefficients {ai(t)} i = 1, 2, . . . , p,

{b(t)} are periodic with the same period T . Usually it is assumed the time series
{Z(t)} is a white noise.

The periodic autoregressive time series (PAR) is a special case of PARMA
sequence (periodic autoregressive moving average), i.e. a time series which is defined
as:

X(t) −
p∑

i=1

ai(t)X(t − i) = b0(t)Z(t) +
q∑

j=1

bj(t)Z(t − i). (2)

In the above definition the sequences coefficients {ai(t)} i = 1, 2, . . . , p, {bj(t)}
j = 0, 1, . . . , q are also periodic with the same period T and the series {Z(t)} is a
white noise.

The PARMA sequence is one of the main time series which can be used as a model
for periodically correlated (or cyclostationary) processes. A sufficient condition for
a PARMA sequence X(t) to be periodically correlated with period T can be obtained
through re-expressing (2) in terms of the vector sequence X(t) formed by blocking
X(t) into successive vectors of length T. Then (2) becomes

θ(B)X(n) = ε(B)ξ(n)

where θ(B) and ε(B) are easily found from the parameters {ai(t)}, i = 1, 2, . . . , p,

{bj(t)} j = 0, 1, . . . , q t = 0, 1, . . . , T − 1. The PARMA sequence X(n) will be
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periodically correlated if and only if X(n) is stationary and a sufficient condition for
this is

det[θ(z)] ◦= 0 for |z| ⇒ 1.

Generally, periodically correlated (PC) random processes of second order are
random systems in which there exists a periodic rhythm in the structure that is
generally more complicated than periodicity in the mean function (Hurd and Miamee
2007). The exact definition of PC processes is as follows:

Definition 2. (Gladyshev 1961) A second order process {X(t)}t∈Z is called period-
ically correlated with period T if for every s, t ∈ Z the following conditions hold:

m(t) = E(X(t)) = m(t + T)

R(s, t) = Cov(X(t), X(s)) = R(s + T , t + T).

And there are no smaller values of T > 0 for which the above conditions hold.
Due to their interesting properties periodically correlated time series have received

much attention in the literature because they provide, for periodically non station-
ary phenomena an alternative to the conventional stationary time series. Examples
occur in hydrology (Vecchia 1985) meteorology (Bloomfield et al. 1994), economics
(Broszkiewicz-Suwaj et al. 2004; Parzen and Pagano 1979) and electrical engineering
(Gardner and Franks 1975).

The PARMA system was also considered in case of infinite variance, see
(Nowicka-Zagrajek and Wyłomańska 2006). In this case the covariance function
cannot be considered as a measure of dependence therefore the cyclostationarity is
expressed in the language of other measures of dependence, like codifference. For
more details please see (Nowicka-Zagrajek and Wyłomańska 2006).

2.2 Estimation

The PAR processes are more common in practice than the general class of PARMA
sequences therefore in this section we focus on the estimation procedure for PAR
time series.

There are many methods that can be used to estimation of PAR coefficients. One
of the methods is so called Yule-Walker method which is a consequence of method
of moments. This method is very often used in practice because of the simple form
of estimators. Let us mention the method can be used in case p < T .

Let us assume the random sample X(1), X(2), . . . , X(NT) comes from the PAR
model with period T and order p. In practice, the parameters T and p may not be
known but can be estimated by using statistical methods; for estimation of T, see
(Hurd and Miamee 2007) and for p, a common method is to use the AIC or BIC
criteria (Brockwell and Davis 2006). In our procedure we assume the period and
order of the PAR model are known. In the first step of the analysis we compute the
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empirical (or sample) periodic mean by:

m̂(v) = 1

N

T−1∑
n=0

X(nT + v), v = 1, 2, . . . , T

Next we subtract the empirical periodic mean to form:

Y(nT + v) = X(nT + v) − m̂(v), n = 1, 2, . . . , N, v = 1, 2, . . . , T

The sequence Y(1), Y(2), . . . , Y(NT) constitutes also a realization of PAR sequence
(1) therefore it satisfies the following equation:

Y(nT + v) −
p∑

i=1

ai(nT + v)Y(nT + v − i) = b(nT + v)Z(nT + v).

Now multiplying Eq. (2) by Y(nT + v − i) for i = 0, 1, . . . , p and taking the
expected value we obtain p + 1 equations which can be written in a matrix form:

πvAv = Rv, v = 1, 2, . . . , T
b2

v = R(v, v) − A→
vRv,

where πv is a square matrix which is defined as follows:

(πv)ij = R(v − i, v − j) = EY(v − i)Y(v − j), i, j = 1, 2, . . . , p

Moreover

Av = [a1(v), . . . , ap(v)]→
Rv = [R(v, v − 1), R(v, v − 2), . . . , R(v, v − p)]→.

The estimators of the parameters Av and bv we can obtain by replacing the theo-
retical covariances by the empirical ones according to the following:

R̂(k, l) = 1

N

N−1∑
n=0

Y(nT + k)Y(nT + l)

The estimators calculated by using the Yule-Walker method under the assump-
tion of Gaussian distribution of the residual series {Z(t)} are consistent and have
asymptotically Gaussian distribution.
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Fig. 1 Theoretical variation of external load in bucket wheel excavator during digging

3 Vibration Data Understanding and Simulation

3.1 Real Data Description

The BWE is one of the largest machines in mining industry. A precise description
of its structure and design probably requires another chapter. From our perspective,
it is important to say that our object is a multistage gearbox (with planetary gear-set
inside) used in drive unit for driving bucket wheel (see Fig. 1, left panel). Due to
digging process (that can be considered as almost periodic) and many factors with
random nature (geology, human factors,. . .), the external load subjected to drive unit
is time varying and looks like sawtooth time series with random amplitudes (strong
variation) and period (relatively small variation), see Fig. 1, right panel.

As a result, the vibration signal acquired from the gearbox operating under such
conditions has time varying (according to load variation) structure, Figs. 2, 3 (Zimroz
et al. 2011; Chaari et al. 2012). Main spectral components, related to meshing phe-
nomena or shaft rotation are frequency modulated with respect to engine output shaft
speed variation and amplitude modulated according to engine torque variation. If one
considers BWE and cyclicity of digging process, it might be concluded that discrete
components in the spectrum are periodically varying. Figure 2 shows spectrogram of
real vibration data example: 3 components related to meshing phenomena in BWE
planetary gearbox presented as horizontal line can be characterized as FM modu-
lated components. Moreover, one of line (in the middle) clearly indicates (marked
by arrow) cyclic amplitude modulation with the same period (varying intensity of
the spectrogram color)It is obvious that AR model with constant coefficients cannot
be used here. AR model with constant coefficient is not able to track variation of
components frequencies. Estimation error of AR model will be proportional to FM
modulation index.

Purpose of this work is to apply PAR model to identify discrete components, build
model-based inverse filter and filter the signal to extract signal of interest. What is
signal of interest here? Structure of the signal showed in Fig. 2 is not complete.
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Fig. 2 Example of time frequency map of planetary gearbox vibration under time varying cyclic
load

Fig. 3 Example of time frequency map of planetary gearbox vibration under time varying cyclic
load with local damage (vertical lines—components to be modeled, horizontal—wideband excita-
tion related to SOI we want to extract)

In case of local damage, apart from set of discrete (narrowband) components, one
will notice cyclic wideband excitation related to cyclic impulsive disturbance in time
signal (Fig. 3). Autoregressive model is not suitable to describe such phenomena,
mentioned wideband excitation will not be included in the model.

During simulation (exciting the AR/PAR model by white noise) horizontal lines
will not appear. Model based inverse filter can be interpreted as set of band stop
filters and will “dump” the signal at mentioned discrete frequencies and “pass” rest
of the signal. In this way, extraction of SOI is possible.
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Fig. 4 Time series of healthy (top panel) and faulty (center panel) signal and SOI of faulty signal
(bottom panel). Three places suspected of local damage occurrence are highlighted

In order to model vibration signal generated by gearbox operating under time
varying conditions (in particular its frequency contents) and use this model for SOI
extraction, we propose to start with simpler synthetic signal to prove efficiency of
our method.

3.2 Signal Simulation

In this section we present a simulated signal that might represent vibration signal
acquired on a planetary gearbox used in a bucket wheel excavator. It consists of
deterministic part represented by sine waves and additive Gaussian noise. When the
gearbox is locally damaged, the noise is amplitude modulated by a pulse train. Usu-
ally, this so called “faulty signal” is not visible in the time domain—the deterministic
signal has much more energy, thus it completely contaminates the amplitude modu-
lated noise. An essential issue related to vibrations of the planetary gearbox operating
in the bucket wheel excavator is a periodical frequency modulation of deterministic
components that is closely related to cyclic operation of the machinery.

Figure 4 presents a part of raw time series representing vibrations of healthy and
damaged planetary gearboxes. In fact, entire signals last 4 s. It consist of 4 sine waves
of 500, 1000, 1500 and 2000 Hz with frequency modulated by a sawtooth wave with
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Fig. 5 Spectrograms of healthy (top panel) and faulty (bottom panel) signal. Note horizontal lines
for faulty data

modulation frequency 6 Hz. In the case of damage the noise amplitude modulation
equals to 30 Hz. As it can be seen, the pulse train is masked by deterministic com-
ponents in the time domain.

A time-frequency representation of the signals is shown in Fig. 5. To preserve
visibility of significant components only the first second of the signals is plotted.
Wide band character of impulsive noise can be seen as horizontal lines. They occur
only in the signal which represents the damaged gearbox.

The essential issue is to remove frequency modulated sine waves while preserv-
ing as much signal of interest as possible. Thus, filtering methods with frequency
characteristics constant in time (e.g. filters based on AR model) might not be optimal.
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4 Data Analysis

In order to show possibility of using PAR model to extract the SOI, order and period
must be specified. As it was mentioned earlier, we assume that the period is known
when frequency modulation is consisted with cyclic operation of the bucket wheel
excavator. Here, the period is equal to 2048 samples.

Once our target is to remove deterministic components, we decided to fit appro-
priate order of autoregression by checking residuals for the presence of frequency
modulated sine waves. Figure 6 presents residuals of the best fitting model, which
order equals to 15 (note the order of PAR << T for considered machine).

In this chapter we do not incorporate best-fitting criteria (Akaike information
criterion, Bayesian information criterion, final prediction error). We determine order
of PAR experimentally and assume that a model is well-fitted if the residual time
series imitates the initial noise. In analyzed cases, the residuals of PAR models with
order 15 definitely look like the initials, especially in the faulty signal, where wide-
band excitations are visible in the whole spectrum (see Fig. 6, bottom panel).

Figure 7 presents envelope spectra for healthy and faulty signals presented in
Fig. 6. The fault frequency of 30 Hz is clearly visible. There are no harmonics related
to frequency which modulated sine waves.

The sample autocorrelation function of residuals’ squares confirms fault frequency
equal to 30 Hz which stands for period of about 273 samples (Fig. 8).

Recall that analyses in this section were performed for residuals obtained by fixing
the periodical variance to 1, i.e. only periodical autoregression coefficients were used
to obtain residuals. In Fig. 9 we present series of estimated periodical variance.

5 AR Versus PAR: Comparison of Residuals

To show indisputably superiority of PAR over ordinary autoregressive model (AR),
with constant coefficients, we have fitted AR models with the same order as PAR to
our simulated signals.

Figure 10 shows time series of residuals. In both cases the series do not look like
set of independent random variables. Spectrograms of these signals clearly illustrate
nature of this behavior (Fig. 11). Energy of sine waves is minimized, but they still
remain in residuals. Looking at envelope spectra of residuals obtained by PAR (Fig. 7)
and AR (Fig. 12) it is clear that residuals obtained using the model with time-varying
coefficients is much more effective.
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Fig. 6 Filtered signals using PAR with order equal to 15. Healthy (first and second panel) and faulty
(third and fourth panel). Observe deterministic components completely removed and wide-band
excitations visible in the whole spectrum
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Fig. 7 Envelope spectra for filtered signal (PAR order = 15). Healthy (left panel) and faulty (right
panel). Peaks on the right panel correspond to fault frequency—30 Hz

Fig. 8 Sample autocorrelation function for squared filtered signal (PAR order = 15). Healthy (left
panel) and faulty (right panel). Peaks on the right panel correspond to fault frequency—30 Hz
(about 273 samples)

Fig. 9 Estimated periodical standard deviation for healthy (left panel) and faulty (right panel)
signal. Peaks on the right panel correspond to 1/(fault frequency)
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Fig. 10 Filtered signals using AR with order equal to 15. Healthy (top panel) and faulty (bottom
panel). Observe not noise-looking shape of the signal between distributions

Fig. 11 Spectrograms of filtered signals using AR with order equal to 15. Healthy (top panel) and
faulty (bottom panel). Observe deterministic components barely removed
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Fig. 12 Envelope spectra of filtered signals using AR with order equal to 15. Healthy (left panel)
and faulty (right panel). Observe harmonics related to 6 Hz frequency modulation of the remains
of deterministic components

6 Conclusions

In this chapter a novel procedure for modeling and processing of vibration signals
focused on damage detection in rotating machinery is proposed. It can be considered
as an extension of known AR approach directed to non-stationary signals with time
varying (cyclic) frequency structure.

To illustrate core of the problem and basis of our solution we refer to vibration data
from bucket wheel excavator, heavy duty machine used in mining industry. During its
operation, the machine is subjected to time varying, cyclic (nearly periodic) variation
of external load. It was shown, that varying load causes varying spectral structure of
vibration generated by planetary gearbox incorporated in drive unit of BWE.

The task for diagnostics is to detect local damage in the gearbox using vibration
signal. Model-based signal processing used in such context was taking advantage of
autoregressive modeling. It is well known, that AR modeling is useful for describ-
ing discrete frequency structure of the signal and from mechanical perspective can
match to shaft, mesh and other predefined frequencies. Local damage in rotating
machine produces impulsive, cyclic excitation that is equivalent to wideband and
cyclic excitation in frequency domain. Such wideband signature is nearly invisible
for AR model (no information about discrete frequency, no information about local-
ization in time). Using AR model one might design inverse filter that “dump” these
discrete frequencies and “pass” rest of the signal.

In case of time varying external load, when spectral content follows variation of
load, using AR with constant coefficients is not reasonable.

AR model will try to match to averaged frequency instead of tracking its instan-
taneous variation. Due to cyclic variation of spectral content, it is proposed to use
periodic AR (PAR). In the chapter we formulated the problem, discussed estima-
tion issues, applied procedure to the data and finally compared to AR with constant
coefficients.

To validate results we used both “healthy” and “faulty” data, comparison covers
analysis of spectrograms (visual inspection) and three other techniques: envelope
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spectra, sample autocorrelation function and periodical standard deviation—all cal-
culated for PAR-based filtered data for healthy and faulty cases.

Further work will focus on validation proposed technique for real data. Here, to
illustrate the idea we used synthetic signal (simulations) only.
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