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Abstract

Networks with transshipments facilitate the efficient transportation of freight. The re-

alization of high fill rates is essential to remain competitive as a carrier. We concentrate

on operational order consolidation in networks with transshipments, such as intermodal

networks. We introduce a k-shortest path matching algorithm to consolidate less-than-

truckload orders in a dynamic setting. Based on an enumerative leg-expansion procedure,

multiple high-quality routes are generated and stored for each order. For each incoming

order, we aim to combine one of the k best routes for the order at hand with open orders

that have been scheduled, but not yet delivered. We identify overlap in the utilized legs,

thereby taking into account idle capacity, time restrictions, handling operations and char-

acteristics of the various transport means. Based on these properties, we determine the

combination of orders that yields the highest cost reduction. It is expected that good routes

yield the best consolidation opportunities. We therefore only assess k routes per order for

consolidation opportunities, as such limiting the size of the search space. The algorithm

takes into account the time schedules and available capacity on all legs in the routes. Ex-

periments on various virtual problem instances show cost savings up to 14%. Experiments

using a data set of a leading logistics service provider based in the Netherlands show a 29%

improvement in the average fill rate compared to the case where only the best routes are

considered for consolidation purposes, achieving a cost reduction of 9% for the orders that

were consolidated.

1 Introduction

Freight transportation via networks with transshipments is becoming an increasingly impor-

tant alternative to direct transportation. Developments in real-time information provisioning,

planning systems, governmental regulation, and more consideration to external costs, make

transportation via networks with transshipments both increasingly relevant and competitive.

In this paper, we consider the case in which the logistics coordination in an intermodal setting

is in the hands of a Logistic Service Provider (LSP). This is a central agent that does not neces-

sarily own transport resources, but instead matches incoming orders to contracted transporters,

i.e., carriers. An order is defined as a request by a shipper to transport a certain load from a

specified pickup location to a specified delivery location. Time windows specify at what times
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the order can be picked up and must be delivered. In an intermodal setting, multiple routes

between the pickup location and the delivery location can be constructed by combining various

route segments (legs), each operated by a separate vehicle. We distinguish between two sorts

of legs. Main legs are fixed connections between two hubs, and are operated by one modality

type. The modalities may operate following a timetable. Free legs are connections between

any two points in the network, and are operated by trucks that can be commissioned at any

desired time. Vehicles on free legs generally have high flexibility, short travel distance, and small

capacity when compared to trains and barges. Therefore, vehicles operating on the free legs

generally charge higher transportation costs per kilometer than their counterparts operating on

main legs.

The multitude of potential leg combinations in even moderate-sized networks allows the

generation of many distinct routes. Both financial and non-financial goals (e.g., minimizing

emission and duration) can play a role in selecting the most suitable route. Transshipments

between vehicles take place at transfer hubs. Also, the reallocation of goods – i.e., splitting

or merging loads – can be performed at these hubs. In a typical intermodal setting, a load is

picked up by a truck at the customer, transshipped at a transfer hub, then transported via one

or more legs – which can be operated by any type of transport means – and finally distributed

by truck from the final transfer hub towards its destination location.

For the LSP, the financial attractiveness of intermodal transport depends on a high fill

rate of the utilized transport means (e.g., truck, train, barge), provided that the decrease in

marginal costs is sufficiently reflected in the price charged by the carrier. Direct road transport

from pickup to delivery location generally results in a shorter travel distance than intermodal

transport does. However, due to the opportunity to bundle orders at the transfer hub, the

transport means operating on the main legs may be able to utilize their capacity more efficiently.

Transfers taking place at the hubs require transshipment costs and possibly storage costs. To be

financially competitive to direct road transport, these costs should at least be compensated in

terms of lower transportation costs (Trip and Bontekoning, 2002). Furthermore, high penalties

for lateness can be detrimental to the financial competitiveness of intermodal transport. Besides

financial costs, an LSP may also explicitly consider external costs. Such external costs could

for example be incorporated in a multi-criteria analysis on which routing decisions are based,

or by quantifying external costs in monetary units. Such an analysis is outside our scope, but is

likely to be more favorable towards intermodal transport than a purely financial approach. In

this study, we solely assess the potential cost reduction for the LSP by means of consolidation.

Although the concept of freight consolidation is strongly embedded in the classic vehicle

routing problem, attention for consolidation in networks with transshipments remains limited.

In this paper, we aim to contribute to this knowledge domain, more specifically the operational

planning of consolidated routes in a dynamic environment. We present a scheduling algorithm

that is able to efficiently identify and plan consolidated routes for networks with transshipments.

We adopt a financial perspective for the evaluation of the algorithm, focusing on the reduction

of total transportation costs. The key tradeoff we consider is between the reduction in trans-

portation costs and joint transshipment operations on the one hand, and increasing costs due

to detours and additional handling on the other hand. We illustrate our approach using a case
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study at a leading LSP based in the Netherlands, that is active in the European transportation

market.

The remainder of the paper is structured as follows. We provide a literature review in

Section 2, assessing studies on several topics that are relevant to our work. In Section 3, we

outline our problem setting and the corresponding approach, followed by a description of the

consolidation algorithm in Section 4. We conduct experiments on several networks, measuring

the performance of our algorithm under a variety of circumstances (Section 5). We finish with

conclusions in Section 6.

2 Literature review

In this study, we assess the consolidation of goods in an intermodal transportation setting.

Intermodal transportation is formally defined as the transportation of goods via at least two legs

that are operated by distinct transport means, with transshipments taking place at transfer hubs

(Dewitt and Clinger, 2000; Crainic et al., 2006). Examples of such hubs are rail yards, harbors,

inland terminals, and airports (Bektas and Crainic, 2007). Commonly, the scope in intermodal

transportation literature is limited to container transport. Due to their ease of handling and

seamless fit with various types of transport means, containers are particularly suitable for

intermodal transport. However, the concept is widely applied to other forms of transportation

as well (Crainic et al., 2006). In Less-than-Truckload (LTL) transport, intermodal principles are

fully incorporated. The use of different transport means for pickup, line-hauling, and delivery

is common in this field (Powell, 2003), although distinct types of transport means are not

necessarily involved. Another example of multimodality is found in urban logistics, where hubs

embedded in one-tier or two-tier networks are used to transfer goods to city freighters. Despite

the increasing number of applications of networks with transshipments, Veenstra and Zuidwijk

(2010) point out that serious knowledge deficits exist in the research fields of multi-modality,

network design and operational planning.

The key benefit of intermodal transport is that it facilitates the convergence of many low-

volume, low-frequency transport flows into a small amount of high-volume, high-frequency

streams. Generally, these high-volume streams take place over a longer distance; this practice

is also known as line-hauling (Janic, 2007). In its basic form, the transformation of transport

streams is achieved by collecting the goods at a transfer hub (bundling), transporting the com-

bined goods by utilizing the same transport means, and distributing the goods via another hub

(unbundling). The collection of goods before the first hub and the distribution from the last hub

are also known as drayage or first/last-mile logistics, and often take place with smaller vehicles

(Macharis and Bontekoning, 2004). In our research, we consider line-hauling to take place on

the main legs, while free legs account primarily for transport over shorter distances. Due to the

practice of bundling and unbundling, intermodal transport allows for a high service frequency

and better utilization of transport capacity, the latter resulting in lower marginal costs. The

drawback is that the travel distance is increased and more transshipments are required. To be a

viable alternative for direct road transport, the higher transshipment costs and possible storage

costs of intermodal transport should at least be less than the reduction of transportation costs
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(Konings, 1996; Trip and Bontekoning, 2002).

In the context of this paper, a transportation unit is the resource used by a single truck to

contain goods, e.g., a container or trailer. For illustrational purposes, henceforth we will always

refer to a transportation unit as a container. Based on the observations of Crainic et al. (2006),

we distinguish between two container operations at the transfer hub. A transshipment entails

moving a container from one transport means to another, and handling considers moving goods

from one container to another. The latter allows combining different orders for part of a route,

such that goods can be consolidated even when they have geographically distant origins and/or

destinations. A common feature in intermodal transportation is the use of fixed timetables,

particularly in railroad- and waterway transportation (Macharis and Bontekoning, 2004). To

incorporate departure times based on timetables in an operational planning problem, two main

approaches exist. The first is to create a time-expanded graph, where each arc is characterized

by a time component (Ford Jr and Fulkerson, 1958; Köhler et al., 2002). A distinct leg is

generated for each departure time in the timetable, allowing to include specific properties such

as the realized fill rate on the vehicle. The major drawback of a time-expanded graph is that it

can become very large, although this disadvantage is partially mitigated by the need to consider

the graph only over a limited time interval. Furthermore, potentially many geographically

identical routes are generated, differing only in their departure times. The alternative approach

is to consider a time-dependent graph (Ding et al., 2008; Delling and Wagner, 2009). The graph

itself is then defined only in space; time-dependent leg characteristics are taken into account by

applying a function with the departure time as input. In this paper, we restrict ourselves to the

case where the only time-dependent characteristic is the departure time itself, i.e., properties

such as travel times and cost functions remain unaltered. Although the time-dependent graph

provides a denser representation than the time-expanded graph, it may be more difficult to

incorporate the same level of detail.

Macharis and Bontekoning (2004), Caris et al. (2008), and SteadieSeifi et al. (2014) provide

overviews of the research done on intermodal transport, all indicating that only few studies

have been performed on operational planning. We mention some notable ones. Boardman et al.

(1997) make use of a k-shortest path algorithm to perform intermodal planning, evaluating

multiple routes before selecting the route that best fits the established criteria. By coupling a

vector of path length estimates to each vertex and using these estimates as a criterion whether

or not to evaluate a route, the authors keep computational time limited. Ziliaskopoulos and

Wardell (2000) explicitly take into account timetables and transfer times in their planning

algorithm, making use of Bellmans optimality principle while working backwards from the

destination vertex to the origin vertex. While these works focus on the transportation of single

orders only, elements of their approaches are applied in this study.

Additional insights can be obtained from the conceptually closely-related fields of dial-a-

ride and ride-sharing problems. In these fields, the combination of picking up and dropping off

persons with the fixed schedules of public transport is assessed, as well as transfers between

different transport means. The subclass with fixed timetables is generally referred to as the

integrated version of the problem. Horn (2004) provides a leg-expansion approach for this

integrated problem. He starts by generating routes consisting of only a single leg, and gradually
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increases the number of legs in a route while simultaneously establishing upper bounds. He

states that this procedure generally leads to an optimal schedule quickly, because good routes

tend to contain only few legs. An intuitive explanation for this is that each transshipment

increases handling costs, while it is likely that the travel distance and travel time increase as

well. This result could be formalized by, e.g., applying a branch-and-bound algorithm; for

a certain amount of handling costs it becomes impossible to financially compete with direct

transportation, regardless of the reduction in transport costs that may be achieved. Horn

(2004) compares the costs of the best constructed multi-leg route to the costs of the direct

route from origin to destination; from these two the least expensive route is selected.

Whereas the literature described so far focuses on optimizing the transportation of a single

order (or person) through an intermodal network, we are interested in minimizing the total

transportation costs of all orders combined from the viewpoint of the LSP. As we are dealing

with LTL orders, these objectives are not equivalent. Routing decisions made at a certain point

in time have an impact on the profitability of later orders (Powell, 1987). Factors such as

container capacity and departure times that are fixed in current routing decisions may impede

consolidation opportunities for orders arriving at a later time, such that the sum of costs for

all optimal routes for single orders is unlikely to be the lowest attainable global solution. In

Figure 1, we illustrate how routing decisions affect consolidation opportunities. Although in the

bottom panel a detour is made for both order 1 and order 2, the total travel distance is reduced

by consolidating on the first main leg. Would we have fixed the shorter route for order 1 in

advance (upper panel), finding an improving consolidation opportunity when order 2 arrived

later would have been unlikely. According to Kotzab et al. (2012), LSPs tend towards self-

interest when having conflicting interests with their shippers. Following the associated line of

reasoning, they may decide to compromise the quality of individual routes to the benefit of the

full schedule. However, the goals of shippers and the LSP will often be mutual; the reduction of

transportation and handling costs can be beneficial to both parties. The shipping fees charged

by the LSP are outside the scope of this research.

Crainic et al. (2006) define consolidation in an intermodal setting as a system where one

vehicle or convoy serves to move freight for different customers with possibly different initial

origins and final destinations. Bontekoning and Kreutzberger (1999) identify several forms of

consolidation networks, differing primarily on the points of bundling and unbundling and the

number of tiers. Consolidation in first and last mile logistics is well-studied, as it is the basis

of many less-than-truckload (LTL) vehicle routing problems. In particular, the pickup-and-

delivery problem (see Savelsbergh and Sol, 1995) is relevant in this setting. Objectives such

as minimizing the total costs or the number of vehicles tend to result in schedules with high

utilization of vehicle capacity. Consolidation on liner services (i.e., the main legs) on the other

hand, is a subject that has not received much attention from the academic community. Partially,

this deficit may be attributed to the common focus on container transport, which often entails

full truckloads without reallocations or order combinations at intermediate hubs. Also, research

on intermodal transport in general tends to focus on strategic and tactical problems rather

than operational planning. To the best of our knowledge, generally accepted models for LTL

transport in networks with transshipments do currently not exist.
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Figure 1: Example of the consolidation of two orders. The top panel illustrates the individually
least expensive routes for both orders. The bottom panel shows how consolidation reduces the
total travel distance, but introduces additional handling operations as well.

Crucial to the attractiveness of consolidation on the main legs is the cost of transportation.

We discuss the topic from the carrier point of view, allowing to distinguish between costs

and prices at the carrier level. Note that the price function used by the carrier is the cost

function for the LSP. Powell (2003) distinguishes between three forms of pricing performed by

carriers: static pricing, contract pricing and spot pricing. Static prices are standard market

rates set for transporting freight on a given lane; these prices are not affected by the state

of the system. Contract prices are prefixed price agreements between shippers and carriers

based on the expected volume to be transported over a given period of time. Finally, spot

prices are determined for a specific order at a specific time, based on the prevailing state of

the system. According to Caplice (2007), the vast majority of carriers set prices based on

static pricing principles, utilizing a fixed price function per shipment or per lane. For LTL

transport, it is common to let prices in some way depend on the fill of the container. However,

Neumann (2007) states that loads in LTL transport are heterogeneous; loads can be pallets,

boxes, unpacked items, etc. Consequently, it is difficult to apply a uniform measure on the size

of LTL loads, such as weight, volume, or loading meters.

Berwick and Dooley (1997) and Krajewska and Kopfer (2006) mention economies of utiliza-

tion (i.e., lower costs due to higher utilization of assets) as an opportunity for carriers to reduce

transportation costs. This is because fixed asset costs can then be allocated across more units

of output. If this decreasing cost function for the carrier is properly reflected in the prices they

charge, the LSP would be able to benefit from higher utilization as well. However, prices agreed

upon between shippers and carriers do not necessarily reflect the actual costs that are made

to provide the service. Precise cost allocation may be difficult, as operational transportation

costs depend on many factors (Yan et al., 1995). A cost function may, amongst others, depend
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on average fill rate, haul length, shipment size, percentage of LTL traffic, and composition of

output (Spady and Friedlaender, 1978). Such factors might only partially be reflected in the

prices charged by the carrier. In container transport, for example, it is common to charge a flat

rate per container rented, regardless of its fill rate. Clearly, such price functions give the LSP a

strong incentive to attain a high fill rate. On the other end of the spectrum, the rates charged

by parcel services usually are insensitive to volume (Klausner and Hendrickson, 2000). The

associated price function, which is linear in the number of packages, would make an LSP almost

indifferent about consolidating. In LTL, linear price functions starting with a certain minimum

tariff and setting a maximum fill rate (e.g., 80%) after which a container is considered to be full,

are more common. A price function used primarily in theory is the logarithmic price function,

reflecting monotonically decreasing marginal costs. As each carrier may adopt a unique price

function, it is possible that an LSP faces multiple price functions on a single route. Clearly, the

larger the cost reduction when combining loads into the same container, the more beneficial it

becomes for the LSP to actively consider consolidation opportunities.

In this study, we expand on the intermodal planning literature in two ways. First, we

present an algorithm to schedule the transport of LTL freight via intermodal networks, thereby

contributing to the limited amount of studies focusing on operational planning. Second – by

combining the k-shortest path principle with a leg-expansion approach – we present an efficient

method to identify consolidation opportunities in a limited state space.

3 Problem demarcation and solution approach

The problem that we are concerned with is a dynamic planning problem. In this context,

dynamic planning means that an order is planned immediately upon becoming known. On the

other hand, static planning entails waiting for a certain time period before jointly planning the

orders that arrived during the passed time period. Our choice to consider dynamic planning

instead of static optimization (over a rolling horizon) is motivated by experience. Typically, the

time between pickup and delivery in an intermodal setting spans several days. When modalities

with low travel speed or low departure frequencies are considered, a delay of the actual planning

moment might exclude routes of longer duration. This eliminates certain opportunities for

consolidation. Furthermore, planners at an LSP generally want to be able to directly quote the

expected pickup and delivery times to a shipper. For these reasons, we plan orders immediately

when the shipper poses a request. An order can be replanned when consolidation opportunities

arise, which typically happens when new orders arrive.

We make a number of key assumptions. First, we only address consolidation opportunities

on the main legs. Nonetheless, VRP models could be well integrated into our algorithm to allow

for consolidation on the free legs. Particularly for first-mile and last-mile logistics, the added

value of vehicle route planning can be readily appreciated. More generally, based on the slack

in departure times on a free leg, a VRP could be run at any planned free leg to see whether

consolidation is achievable within the time constraints. The consequence of running VRPs in

parallel with the planning for liner services is that waiting policies become more complex, as

this requires making a tradeoff between (1) consolidation on the long haul and (2) collection
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and distribution. This aspect is beyond our current research scope, as it diverts attention

from the consolidation process on the main legs. Our second key assumption is that all travel

times and transshipment times are deterministic. This assumption effectively eliminates the

need to consider timeliness of delivery and advanced waiting policies. In addition, we assume

that transshipments with handling and without handling take the same amount of time. A final

simplifying assumption is that handling costs are independent of the size of the set of orders that

is moved from one container to the other, such that it is irrelevant which orders are reallocated.

Our proposed solution to the described planning problem is to keep multiple routing oppor-

tunities open until the time of departure, or until a consolidated solution has been scheduled.

For all these routes, a feasible departure window is attached to each transfer hub, allowing to

identify orders that may depart on the same time. The marginal cost savings achieved on the

joint legs could then justify replacing the best individual solutions by a route set yielding lower

overall costs. The route set contains one route per order; every order (if more than one) shares at

least one container on one leg with another order for which a corresponding route is in the route

set. The implication of such a set is that consolidating on one leg potentially affects all routes in

the set, we discuss the route set in more detail in Section 4.3. Once the final decision to combine

routes has been made, the determined routes can no longer be altered. Further expansion of

the combined route set remains an option, as well as adjustments to the departure windows for

the sake of consolidation. However, it is not possible to undo a consolidated schedule in terms

of routing. Decomposition of routes might require re-optimizing the schedule of other orders in

the set, which would essentially involve generating a new static schedule at each order arrival.

In a dynamic planning environment, such a procedure would be too computationally intensive.

To incorporate timetables in our model, we make use of a time-dependent graph, considering

the case in which the departure time is the only varying component (e.g., travel times and

costs remain constant). Time-expanded graphs may require a large value for k in order to

maintain sufficient diversity in the routes, although the unique legs would allow for quicker

evaluation. In a time-expanded graph, consolidation opportunities could already be assessed

during route generation, i.e., the costs on a leg may be conditioned to its current fill rate.

However, the time-dependent graph allows for a more generic approach towards our planning

problem. Particularly when departures are frequent, the time-dependent graph provides a more

compact representation than the time-expanded graph. The main reason for choosing time-

depending graphs is that the departure windows allow for flexibility in the departure time even

after consolidating. To realize this, we apply a mapping function which generates a set of feasible

departure times based on the corresponding timetable, if such a table exists. The mapping

function only needs to be applied when mutual legs with overlapping departure windows are

identified. Such an evaluation is somewhat more complex than for a time-expanded graph, but

allows a more efficient search.

Having set the scope of our research and motivated our solution approach in this section,

we proceed to outline our algorithm in the Section 4.
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4 Consolidation model

In this section, we describe our consolidation algorithm. In Section 4.1, we provide an intro-

duction to the network setting, the planning problem, and a global concept of our solution

approach. Subsequently, we outline the three key steps of our algorithm: planning k individual

routes for an incoming order (Section 4.2), constructing a decision tree with all the consolidation

possibilities per leg (Section 4.3), and verifying the feasibility of solutions (Section 4.4).

4.1 Network and planning problem

Our representation of the intermodal network is as follows. Let G = {V,A} be a directed graph

with V the set of vertices and A the set of arcs, henceforth called legs. The subset H ⊂ V

represents the transfer hubs in the network. The remaining vertices signify the subset of order

origins, O ⊂ V \ H, and the subset of order destinations, D ⊂ V \ H. The set of legs can be

divided into a subset of free legs and a subset of main legs. The free legs connect every vertex

pair in the graph, and are operated by vehicles without time schedules. Free legs can therefore

be used to link origins and destinations either to each other or to transfer hubs, but can also

facilitate transport between hubs. The counterparts of the free legs are the main legs. These

main legs are predetermined connections between vertices of the subset H, operated by specific

transport means and possibly operating on a timetable. There can be multiple legs between the

same hub pair, for example representing various modalities or carriers.

Each leg l ∈ A in the network is described by the tuple (vl, v
′
l,ml, µl), where vl ∈ V is the

starting vertex of the leg, v′l ∈ V is the end vertex of the leg, ml represents the mode that

is utilized, and µl is the deterministic travel time (based on the transport means operating

the leg). Denoting the set of modes operating in the network as M, the mode ml ∈ M is in

turn a doublet (cml
, pml

(f)). Here, cml
∈ N is the capacity of the vehicle expressed in FTLs

(in this paper, an FTL equals the capacity of a container). pml
(f) is a function providing the

transportation costs per km, depending on the fill rate of the container 0 < f ≤ 1.

Let i, j ∈ N, i 6= j be order indicators, with order i representing an order that just became

known, and order j an open order (i.e., an order that has not yet arrived at its destination).

Let I be the set of all open orders, excluding order i. Each order i can be described by a tuple

(vorii , vdesi , tarri , tmin
i , tmax

i , fi). Here, vorii ∈ O is the origin vertex and vdesi ∈ D the destination

vertex. Order i becomes known at the arrival time tarri (i.e., the LSP receives the request from

the shipper), and is tentatively scheduled at that point. The order has an earliest pickup time

tmin
i ; from this time onwards the order can be retrieved from the origin vorii . Furthermore, it has

a strict deadline tmax
i ; the order must arrive at its destination vdesi at or before this time. The

time parameters are subject to tarri ≤ tmin
i < tmax

i . Finally, the order has a size fi expressed

in terms relative to the container capacity required, i.e., 0 < fi ≤ 1. A vehicle may have a

capacity cml
> 1, i.e., the vehicle may be able to carry more than one shipping container.

We now briefly explain the general idea behind our matching algorithm. The algorithm

is triggered by every new order arrival. First, a large preset number of unconsolidated routes

is generated for the order i, of which the k best are stored. For each hub in these routes, a

departure window is given, indicating all feasible departure times. Subsequently, for each of the
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k routes, we construct a decision tree that combines all possible consolidation opportunities on

the various main legs. This tree allows to evaluate the effect of all consolidation decisions in

conjunction. From the routes corresponding to open orders, we select all matching main legs,

i.e., having mutually feasible departure times and sufficient capacity in the container. Each

distinct consolidation opportunity is represented by a node in the decision tree, while each path

represents a unique combination of consolidation opportunities. The combination of routes

yielding the largest savings is then updated in terms of departure windows and fill rates. If the

solution being assessed contains more than one main leg, this procedure also verifies whether

the solution is feasible. Feasible combinations of orders on different legs do not necessarily yield

a feasible route, e.g., due to timing restrictions. This check is performed after constructing the

decision tree, such that evaluation is only required until the best feasible solution is identified. A

preliminary check would reduce the size of the decision tree, but requires more time to construct

the tree, as every path needs to be verified before inclusion. When a solution is both improving

and feasible, it is tentatively scheduled, with the best solution being fixed after solving the

decision trees for all k routes. The main structure of the algorithm is described in the flowchart

in Figure 2. Throughout this section, we make use of a running example to illustrate the working

of the algorithm. The pseudocode for the consolidation algorithm can be found in Appendix A.

Generate number 

of routes for order 

i

Store k best routes 

for order i

Construct 

evaluation set 

with all potential 

consolidation 

opportunities

Construct decision 

tree with all 

combinations per 

main leg and 

corresponding 

transportation 

savings

Calculate 

transshipment 

savings and 

handling costs for 

each path 

compared to best 

feasible solution

Feasible 

solution?

Improving 

solution?

Update departure 

windows and fill 

rates

Select best 

solution from the 

decision tree

Delete infeasible 

solution from 

decision tree

New order i 
arrives

Store best     

feasible solution

Yes

Yes

No

No

Yes

No

Generating k routes for 

an incoming order

Construction of 

decision tree
Verifying and updating the 

solution

All k routes 

evaluated?

Select one of the k 
stored routes

Update best 

feasible solution

Figure 2: Flowchart with the main steps of the consolidation algorithm. The algorithmic proce-
dure for each column is outlined in the subsequent sections.

10



4.2 Generating k routes for an incoming order

For each incoming order i, we start by generating routes using a procedure based on iteratively

expanding the number of main legs in a route. We start by generating the direct route from

the origin to its destination via a free leg, i.e., a route without main legs. We then proceed

by constructing routes containing one main leg, two main legs, etc.1 Only time-feasible routes

are incorporated in the solution set. Furthermore, we exclude routes that are too costly. For

this purpose, we set a dynamic threshold on the route costs based on the costs of the least

expensive route obtained so far, multiplied by a factor β > 1. Routes that exceed the threshold

– summing up the costs up to the last main leg of the route, considering both main legs and

connecting free legs – are not included in the solution set and so are not expanded further. We

continue enumerating routes up to a preset maximum (≥ k). Each route description contains

the utilized legs ordered in terms of precedence, the earliest departure time and final possible

departure time at each leg, and the utilized container capacity on the main legs. The first and

final departure times together form the departure window for a given leg. Timetables may result

in slack in the schedule, departure policies determine where this slack will be located. After

generating the routes, the k least expensive routes – not taking into account any consolidation

opportunities yet – are stored. The least expensive route is then tentatively incorporated in the

schedule.

We introduce some mathematical notation to formally describe the properties of a route.

Let Ri denote the set of all k stored routes for order i. A route ri,n ∈ Ri, with n ∈ {1, . . . , k},
is defined as an ordered set of legs (both main legs and free legs) connecting vorii to vdesi . We

define an indicator z ∈ {1, 2, . . . , |ri,n|}, allowing the precedence of the legs in the routes to

be specified. We refer to the zth leg incorporated in ri,n as li,n,z ∈ ri,n. Each leg in the route

is characterized by its departure window; departing at any point in time within this window

ensures that the destination is reached before the delivery deadline, given the remaining legs

in the route. Each leg in the route is characterized by an earliest and latest departure time,

possibly depending on a timetable. To provide the transshipment times between adjacent legs

li,n,z−1 and li,n,z, we define a function δ(li,n,z−1, li,n,z). Recall that handling has no influence

on transshipment time here. We observe that the information about the origin hub, destina-

tion hub and modalities incorporated in the leg description allows the calculation of unique

transshipment times. A container description ql – defined by the doublet (Ωql , fql) – is used

to distinguish between containers transported via a given main leg l. Ωql is the set of orders

currently assigned to the container and fql the currently attained fill rate. The doublet changes

after every consolidation action. For a given modality, there may be multiple vehicles leaving

within the departure window. We allow orders to be placed on any of these vehicles, and change

vehicle if a consolidation opportunity requires this. Therefore, orders are assigned to a specific

container on the main leg rather than to a specific vehicle. Finally, the earliest departure time

tedli,n,z
at each leg li,n,z is given by the earliest departure time at the preceding leg plus the subse-

quent travel time and transshipment time. At the start of the first leg – which in our setting is

1This phase can be completed more efficiently by first pre-processing the network. Based on the geographical
distances between hubs, origin and destination, distant hubs can be removed, leaving a reduced network to run
the planning algorithm on.
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always a free leg, because O∩H = ∅ – the earliest departure time is set to be equal to the pickup

time, i.e., tli,n,1
= tmin

i . We then proceed to iteratively calculate the earliest departure times for

each leg, where the departure time from the timetable serves as input for the calculation of the

first feasible departure time of the subsequent leg. Similarly, the latest departure time tldli,n,z
is

determined by working backwards from tmax
i .

The departure window at each leg is given by [tedli,n,z
, tldli,n,z

]. Leaving at any departure time

falling within this window ensures that the route is time-feasible. If no timetable exists for the

leg (e.g., a free leg), every departure time within the window is feasible. If multiple departure

times are feasible for the same route, we set a tentative departure time based on a tie-breaking

policy (e.g., an earliest or latest departure policy). As we remember the departure window, the

actual time of departure can still be changed when deciding to consolidate prior to departure at

the leg. Observe that the chosen departure policy impacts the consolidation opportunities on

the route when we seek to consolidate while the route is being executed. For example, a latest

departure policy increases the opportunities for consolidation on the selected leg, but limits

consolidation opportunities for any subsequent legs.

Example 1: Route structure for incoming orders

Consider the network and order-destination pair as described in Figure 3, where order 1 has a

load size of 0.3. Suppose k = 4. We denote each route as an ordered set of legs; every free leg

is referred to as 0. In this example, the route 0-1-0 is the least expensive option, such that this

route is set as the initial solution. Being the second route in the list (see Table 4.1), we refer

to this route as r1,2.

Order 1

Fill quantity 0.3

Route(s) 0
0-1-0
0-1-2-0
0-1-3-0

Table 4.1: Characteristics and k routes for order 1.

1'
1

2

3

1

Figure 3: Initial solution for order 1, utilizing only main leg 1.
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Order 1 has an earliest pickup time of 11.40 and a latest delivery time of 20.00 on the same

day. Assume that vehicles traverse main leg 1 with an hourly departure, that traversing this

leg takes two hours, and that the transshipment time is always half an hour. In Figure 4, the

corresponding time schedule for the route is provided, given a latest departure policy. In this

figure, window 1 indicates the time interval in which departure on main leg 1 yields a feasible

schedule.

Free leg Main leg 1 Free leg

13.00 14.00 15.00 16.00

Travel time Transshipment timeSlack

12.00 17.00 18.00 19.00 20.00

Window  1

Figure 4: Gantt chart for route r1,2 under a latest departure policy, indicating the departure
window for main leg 1.

4.3 Construction of decision tree

After generating and storing k routes for the new order i, we seek to improve our initial solution

by means of consolidation. For each of the k stored routes and for every main leg in each route,

we check whether it is possible to combine order i with another order j. Order j may already

have been consolidated with other orders; in this case the route characteristics of order j (e.g.,

fill rate, departure windows) have already been updated. For all open orders – i.e., orders that

have not reached their destination yet – we check for consolidation opportunities for stored

routes having at least one main leg in common. It is feasible to consolidate on a main leg if (1)

the main leg is included in both routes, (2) a mutually feasible departure time exists for this

leg, and (3) sufficient idle capacity is available to combine the loads on the operating transport

means in a specified container. Closer assessment is required to see whether consolidation would

be beneficial in terms of reducing the total costs, as this can only be determined with certainty

in conjunction with the consolidation decisions on the other main legs in the route. We refer to

the set containing all routes of open orders that allow for consolidation as the evaluation set.

All k routes have a distinct evaluation set.

In case of multiple main legs contained in route ri,n, it may be possible to consolidate with

distinct orders on the various main legs. The decision whether to consolidate on a selected leg

affects opportunities for consolidation on other legs in the route of order i; narrowing down the

departure window for one leg might render consolidation opportunities on other legs infeasible.

Particularly when combining multiple orders with distinct routes, it is challenging to oversee

the impact of one particular consolidation action on the quality of the overall solution. Our

proposed solution to this problem is to construct a decision tree for each of the k routes of

order i, where each stage in the tree assesses all feasible order-container combinations for one

main leg in a stored route for order i. At each branch, the consolidation on the selected main

leg with a particular order (set) and the impact on the corresponding routes is evaluated. At

each end node of the decision tree, where the end node represents a combination of orders and

containers over all main legs in route ri,n, the total costs of the corresponding route set can be

13



calculated. We note that the number of paths in such a tree may increase exponentially with

the number of main legs in the route. In a practical setting, however, routes containing more

than two main legs are rare, keeping the decision tree at a well-manageable size.

As we solve the decision tree for all ri,n ∈ Ri, we must construct an evaluation set T for

every given route ri,n. This set T contains all route sets corresponding to open orders j ∈ I
containing routes that have at least one main leg in common with ri,n, and consolidation is

feasible on this leg. As multiple containers may be transported over the same leg of the same

route set – thereby representing distinct consolidation opportunities – the container description

ql is also required for evaluation. Hence, each element in the evaluation set consists of both

a route set and a corresponding container description. In addition to the option to combine

orders in a container, ‘not consolidating’ is a feasible choice for every leg (both main and free)

as well, such that we have at least one decision for every leg in ri,n. Let Tli,n,z
⊆ T denote

the subset of routes that contain a leg equal to li,n,z (i.e., the same main leg), and where the

departure windows and container capacity allow for consolidation with order i on leg li,n,z.

Furthermore, let m ∈ {1, . . . , k}. If an open order j has already been consolidated, then

adjusting the departure window and fill rate for the selected leg in route rj,m also has an effect

on the routes that are interrelated with rj,m. In this context, interrelated is a broader definition

than consolidated ; an interrelated route may have no main legs in common with rj,m, but still

be affected by the changes made in rj . To illustrate this, consider a route r1,1 containing main

leg 1, r2,1 containing both main legs 1 and 2, and r3,1 containing main leg 2. Suppose that

orders 2 and 3 are already consolidated on leg 2. If orders 1 and 2 are consolidated on leg 1,

updating the departure window on leg 1 may have an impact on the departure window at leg 2

as well, thereby indirectly affecting the schedule for order 3. To describe the set that contains

route rj,m and all routes interrelated with this route (if any), we use the symbol Rj,m. Hence,

we have rj,m ∈ Rj,m, with Rj,m = {rj,m} when order j has not been consolidated yet. Observe

that if |Rj,m| > 1 (i.e., order j has been consolidated with at least one order), then k = 1 for

all orders having a route contained in Rj,m. An element (Rj,m, ql) is included in evaluation set

Tli,n,z
if the following four conditions are met for a main leg li,n,z ∈ ri,n:

1. The main leg li,n,z is also included in at least one route rj,m ∈ Rj,m.

2. At least one mutually feasible departure time exists for both orders on li,n,z.

3. There is sufficient spare capacity to add order i to container ql (with j ∈ Ωql) on the main

leg.

4. The element (Rj,m, ql) is not yet included in the evaluation set. This condition implies

that a route set can be included more than once in the evaluation set. For example, mul-

tiple containers may be transported on the same train, representing distinct consolidation

opportunities on the same leg.

When we identify a route rj,m for which consolidation is feasible on the selected leg, it is

ensured that consolidating orders i and j on the selected leg and container is also feasible due to

the departure window constraints. After completing the evaluation set per main leg, we combine

the evaluation sets per main leg in all possible ways in the decision tree. Every stage in the
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tree represents a main leg in ri,n, every branch in the stage represents a unique consolidation

opportunity (Rj,m, ql) ∈ Tli,n,z
. Every consolidation opportunity in a stage can be combined with

all consolidation opportunities of other stages; a path in the tree describes a unique solution. The

decision tree contains
|ri,n|∏
z=1
|Tli,n,z

| paths. Even though all individual consolidation opportunities

in the tree are feasible (i.e., each branch), after updating the departure windows the combination

of multiple consolidation opportunities (i.e., consolidation on multiple legs) is not necessarily

feasible. However, as the savings for each path are already known, we only need to check the

feasibility of solutions until we encounter the best improving solution that is feasible. Non-

improving solutions are never selected, and therefore need not to be evaluated.

From the evaluation set, an upper bound to the achievable savings by consolidating on a

specific route can be calculated. We can use this upper bound to reduce the size of the decision

tree by excluding routes in the tree construction phase. Based on the evaluation set for a

specific main leg, we may already be able to tell whether a specific order-container combination

may or may not be able to yield a saving. Consider a route set Rj,m incorporated in the

evaluation set, which contains a specific route rj,m ∈ Rj that allows for consolidation on leg

li,n,z. To determine the upper bound, we first calculate the cost difference (without consolidation

with order i) between executing route rj,m and the least expensive route r∗j,m′ ∈ Rj , with

m′ ∈ {1, . . . , k}. We then compute the cumulative savings (based on the updated transportation

costs and transshipment costs) if we were to consolidate with order i on all mutual main legs

between ri,n and rj,m that allow for consolidation, which can be derived from the evaluation

set T . If the cost difference between rj,m and r∗j,m′ exceeds the potential savings stemming

from consolidation, then consolidating on any leg in rj,m is never an improving solution. Even

if some decision tree path that includes legs from rj,m would yield a saving, we could always

improve on this saving by not consolidating on these legs. Therefore, all main legs in rj,m can

be discarded, and need not to be included in the decision tree. Unfortunately, this upper bound

is rather weak for multi-leg routes, as it ignores the cost difference between ri,n and r∗i,n′ ∈ Ri,

where n′ ∈ {1, . . . , k} and r∗i,n′ is the cheapest route in Ri. The reason that we cannot include

the latter cost difference is that consolidation with different order sets may be possible, such

that the cost difference cannot be fully allocated to a specific consolidation action.

Example 1 [Continued]: Construction of a decision tree

Cycling through all k routes for order 1, assume we now arrived at route r1,3, with trajectory

0-1-2-0. Suppose three open orders (2,3 and 4) have main legs in common with this route, that

are feasible in departure time and capacity, and therefore included in the evaluation set. Orders

2 and 3 were already consolidated in an earlier stage, hence only one route remains for both

of these orders. Order 4 still has four available routes, Figure 5 shows the current schedule,

Table 4.2 shows all available routes for the orders.

In Table 4.3, the timetable corresponding to the relevant main legs is presented, giving the

departure times with the routes that are eligible for leaving at each departure time between

parentheses. The transshipment times at the transfer hubs are 30 minutes, no extra time is

assumed for handling.

When constructing the evaluation set, we see that consolidation at main leg 1 is feasible for

15



1

2

3 4'

1'

3'2'

2 34

1

Figure 5: Current routes for orders 1, 2, 3, and 4.

Order 1 2 3 4

Fill quantity 0.3 0.4 0.3 0.5

Route(s) r1,1: 0 r2,1: 0-1-2-0 r3,1: 0-2-0 r4,1: 0
r1,2: 0-1-0 r4,2: 0-1-0
r1,3: 0-1-2-0 r4,3: 0-1-2-0
r1,4: 0-1-3-0 r4,4: 0-1-3-0

Table 4.2: Order properties for orders 1, 2, 3, and 4.

three routes of order 4, corresponding to two nodes in the decision tree. On main leg 2, consol-

idation is possible with r2,1, r3,1, and r4,3. Observe that since orders 2 and 3 utilize the same

container on main leg 2, this consolidation opportunity needs to be assessed only once. Finally,

on both legs we can also choose not to consolidate, leaving the original time window intact. With

five options on main leg 1 and three on main leg 2 (including not consolidating), we have fifteen

combinations to assess. However, not all of them are feasible. It is not possible to combine

different routes for order 4 in the same schedule, while it is not possible either to consolidate

both on main leg 1 with r2,1 and on main leg 2 with r4,3 due to time constraints. When updating

the route combinations in the next step (Section 4.4), such infeasible combinations are identified

and discarded. The decision tree in Figure 6 shows all combinations. By calculating the savings

corresponding to each path, the decision maker can determine the consolidation opportunity with

the largest feasible saving.

Main leg Feasible departure time with corresponding route sets Travel time

1 13.00 {r1,3}, {r4,2}, {r4,3}, {r4,4} 2 hours
14.00 {r1,3}, {r4,2}, {r4,4}
15.00 {r1,3}, {r2,1}, {r4,2}, {r4,4}

2 15.30 {r1,3}, {r4,3} 1 hour
16.30 {r1,3}, {r2,1, r3,1}
17.30 {r1,3}

Table 4.3: Timetable on main legs 1 and 2, showing the feasible departure times for orders 1,
2, 3 and 4.
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r4,2 r4,3 r4,4

r4,3

Main leg 1       

Main leg 2      r2,1r2,1r2,1 r4,3r2,1r4,3 r4,3

r2,1

r2,1 r4,3

Figure 6: Decision tree containing all feasible combinations of consolidation opportunities for
route r1,3. The empty nodes represent the option not to consolidate. The dotted nodes represent
infeasible solutions.

Our decision tree allows only for consolidation with one order (set) on each branch. Would we

assess all combinations of orders at once, the tree could quickly grow unfeasibly large. However,

after consolidating by selecting the best solution from the tree, it may be possible to further

expand the updated route set by utilizing the remaining capacity of the container. Using the

best solution acquired from the decision tree as input, with updated departure windows and fill

rates, we may therefore construct an updated tree to check whether more orders could be added

to the main legs. Note that if it was an improvement to consolidate open orders on a given leg,

this would have been done in a previous point in time. Hence, only changes in the marginal cost

structure can render previously non-improving solutions as improving solutions. The additional

benefits of additional loops are therefore generally expected to be limited in comparison to the

first loop. The algorithm terminates when it is unable to find a feasible improving solution in

the decision tree, this procedure is described in Section 4.4.

4.4 Verifying and updating the solution

After completing the decision tree, we update the route sets corresponding to the path that

yields the largest savings. If the solution proves to be feasible, it is stored as the new best

solution. If not, the path is deleted and the next best solution is assessed; this procedure is

repeated until the best feasible path in the tree has been identified. In this section we outline the

updating procedure after a consolidation action; simply checking whether the latest departure

time on a leg remains greater than (or equal to) the earliest departure time is sufficient to verify

the feasibility of the solution.

For each branch in the path – where the branch represents a consolidation opportunity on

a specific main leg found in both ri,n and rj,m ∈ Rj,m on a certain container – the departure

windows are updated. First, the departure windows at the selected leg needs to be updated,

followed by those for all other legs in the routes incorporated in Rj,m. This is required for

the assessment at the subsequent legs in ri,n; consolidation may no longer be possible after

narrowing the departure window. Also when future orders arrive, it is important that each

leg has the correct departure window to properly assess consolidation opportunities. Defining

z′ ∈ {1, 2, . . . , |rj,m|} as the precedence indicator for rj,m, synchronization of the departure

windows at li,n,z and lj,m,z′ is done by selecting the maximum earliest departure time and

minimum latest departure time of the two. After obtaining the adjusted departure windows
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for li,n,z and lj,m,z′ , we update the departure windows of the remaining legs in both ri,n and

Rj,m. The departure windows of routes contained in Rj,m that do not contain lj,m,z′ need to

be recalculated as well. We do this by identifying common main legs, and use the departure

window of the updated main leg as input to adjust the departure windows of any other main

legs in the route.

For all stages in the decision tree after the first – representing the consolidation opportunities

for a subsequent main leg in ri,n – the departure windows as identified in the evaluation set can

no longer directly be applied. This is because consolidation on the first main leg potentially

alters the subsequent departure windows, meaning that we must find mutual departure times

within the updated departure window for li,n,z. If we seek to consolidate with an order in

Rj,m again (i.e., on a different main leg from the same route set as a preceding branch), we

must therefore use the updated departure times for Rj,m as well. Repeating the procedure of

updating subsequent departure windows and identifying feasible mutual departure times, we

advance to the end nodes of the decision tree. If no feasible departure time can be found for

any of the legs, the solution is infeasible and therefore discarded. We then proceed to the next

best solution, and repeat the same steps until we find a feasible solution or no more improving

solutions exist.

Example 1 [Continued]: Updating the departure windows after consolidation

Based on the decision tree as constructed in the preceding section, we decide to consolidate r1,3

on main leg 1 with r4,4 and on main leg 2 with {r2,1, r3,1}. In this example, we describe how

the departure windows are updated for consolidation, and how updating affects the rest of the

schedule. We again assume that departures are tentatively scheduled as late as possible; how-

ever, earlier departure times can be selected to facilitate consolidation. In Figure 7, the vertical

dotted lines represent the mutually feasible departure times on both legs.

Free leg Main leg 1 Free leg

Travel time Transshipment timeSlack

Main leg 2

13.00 14.00 15.00

Free 

leg
Main leg 1

Free 

leg
Main leg 3

Main leg 2

Main leg 2

Free 

leg

Free 

leg

Free 

leg

Free 

leg

3,1r

4,4r

1,2r

1,3r

Main leg 1

Window 1

12.00

Window 2

Window 1

16.00 17.00 18.00 19.00 20.00

Figure 7: Gantt charts of routes before consolidation. A mutually feasible departure time must
exist for consolidation.

It can be seen that 13.00, 14.00 and 15.00 are feasible departure times for both order 1 and

4. However, when selecting 15.00, consolidation at main leg 2 would no longer be possible.

Hence, 13.00 and 14.00 are the only feasible departure times for this particular combination.

The departure window is therefore narrowed, causing scheduled slack after the second main leg.

The schedule after consolidation for order 1 is shown in Figure 8.
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Free leg Main leg 1 Free legMain leg 2

13.00 14.00 15.00 16.00 17.00

3,1r
12.00 18.00 19.00 20.00

Window 1

Figure 8: Gantt chart on route r1,3 after consolidation on both main legs

As we are interested in reducing the total costs, the combination of orders should have lower

costs than those of the best individual solutions added up. Let X = {1, 2, . . . ,
|ri,n|∏
z=1
|Tli,n,z

|} be

the set of indices for the unique paths in the decision tree of route ri,n, with x ∈ X referring to

a specific path in the decision tree. Let Rx be the set containing route ri,n and all route sets

corresponding to a specific path in a decision tree. Every branch in the path may relate to a

distinct route set and/or container, the costs of the solution can only be determined if all these

sets are considered in conjunction. The total costs of a route set are composed of three elements

with their own cost functions: the transportation costs cp(Rx), the transshipment costs ct(Rx),

and the handling costs ch(Rx). Once the algorithm terminates and has identified the best

improving solution (if any) for order i, we store the corresponding route set permanently, such

that we have Rx = Ri,n. The purpose of this action is threefold. First, in case |Rj,m| > 1,

rescheduling a single order from Rj,m may have a strong impact on the solution quality of

other orders in Rj,m. It might then be better to reschedule other orders in Rj,m as well.

Potentially, a complete re-optimization of the scheduling problem could be invoked at each

new order arrival. Second, by fixing routes after a consolidation decision, the physical route of

the order is altered at most once during the planning phase. In a practical setting, allowing

continuous change might be detrimental to the planning process. Finally, fixing consolidated

routes allows deleting the remaining k − 1 routes, effectively reducing the search space. This

vastly improves the computational speed required for planning new orders. Note that, although

we fix the consolidated route, further expansion on a consolidated route remains possible. By

adding orders arriving in the future or by combining with currently non-improving orders, the

fill rate on the fixed route can be increased.

5 Numerical experiments

In this section, we describe the experiments that were completed with our algorithm. Our aim

is to provide insight into the behavior of our algorithm under various circumstances. We use

three benchmarks to measure the added value of our algorithm, namely (1) direct transport

from origin to destination (single free leg), (2) the best route (including intermodal options)

without consolidation, and (3) the best route for each order with consolidation allowed (i.e., we

set k = 1 such that alternative consolidation opportunities cannot be identified).

We performed experiments on four virtual networks, each one representing generalizations of

common consolidation scenarios. In addition, we did experiments on a real case with a reduced

European transportation network. In Figure 9, panel a) shows a cluster with pickup locations,

a cluster with delivery locations, transfer hubs in the center of both clusters, and a main leg
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connecting these two hubs. A practical form of this representation would be a liner service

operating between an industrial area and an urban area. Panel b) shows a network consisting

of a single origin cluster and two distant destination clusters. Panel c) shows a triangular

network, where making a detour could yield additional consolidation opportunities. Finally,

panel d) shows a scaled-down version of a semi-random network. Our actual networks consist

of 20 randomly generated transfer hubs and 40 main legs, all directed towards the right. The

pickup points and distributions are uniformly generated within a distance of 1000km
#hubs from the

nearest hub, based on the notion that hubs tend to be positioned within areas of high demand

and vice versa. As opposed to the other virtual networks, the semi-random network allows for a

large number of distinct routes, making the selection for k the most relevant. Orders generated

have a preset minimum distance of 250km between origin and destination, and always move to

the right. The semi-random network could for example correspond to a European corridor. In

addition to the network with 20 hubs and 40 main legs, we also perform tests with networks

containing 15 hubs and 30 legs, and 20 hubs and 100 legs respectively.
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Figure 9: Graphical representation of the four virtual networks used in the experiments. Four
order-destination pairs are shown for each network, in the actual experiments many orders are
available at the same time.

We do not explicitly consider the transport means operating on the main legs, but rather

define an abstract modality based on average properties of barge, truck, and train. We presume

there is no limit on the number of containers a vehicle can carry, and set the travel speed at

50 km/hour. A preset cost is paid for each amount of container capacity to be transported.

In accordance with dominant practice, we incorporate static pricing principles, based on the

fill rate of the container. Although in reality costs may also differ based on the number of

container carried, we assume that only the fill quantity of the container itself impacts the costs.

In Figure 10, we show the two cost functions evaluated in our experiments; a logarithmic cost

function
ln(63.62)·fqli,n,z

6.51 (standard setting) and a flat cost function 0.5. The flat cost function

provides the strongest incentive to consolidate. For the logarithmic cost function, the benefits of

consolidation marginally decrease with the fill rate. For comparative purposes, the logarithmic
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function is established in such a way that the integral of both functions is the same. This way,

on average and without consolidation, the costs are the same when order sizes are uniformly

distributed.
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Figure 10: Flat and logarithmic cost functions, providing a transportation cost per km based on
the container fill rate.

In Table 5.1, we provide the standard settings for the experiments on the four virtual

networks. These settings are based on experiences in several practical cases. The order size is

selected from the indicated range based on a uniform distribution. Furthermore, we test different

settings for three variables. Varying the maximum horizontal distance between hubs allows us

to determine the minimum distance required to make consolidation a feasible alternative for

direct road transport. Finally, we vary the number of routes stored (k) to assess the impact

of storing an additional route, i.e., to gain insight in the tradeoff between solution quality

and computation time. The experiments are done for every network with both cost functions.

The number of orders per run and the warm-up period are determined based on the graphical

procedure of Welch (1983), using the average costs of transporting an order as the KPI. We use

6 replications with a run length of 650 to achieve a relative error of at most 5% for the 95%

confidence intervals.

We apply our algorithm on a data set of the Dutch LSP. The order set at hand consists

of 1006 orders transported over a quartile in 2013, which were shipped from several locations

in the Netherlands to a variety of locations in Germany, Austria, Switzerland and Italy. The

actual locations, pickup- and delivery times are used. The order sizes – provided in loading

meters – are slightly adjusted; we consider a full container to be equivalent to a full truckload.

The average order size for this set is 0.33 container. For transport to the delivery areas, the LSP

utilizes a network consisting of 37 hubs connected by 110 waterway and railroad legs. These

legs are operated by contracted carriers that make use of fixed timetables. As an alternative,

it is always possible to transport by truck. The corridor is directed towards Italy; intermodal
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transportation options towards Germany are therefore limited. Also, the distances for the

orders shipped from the Netherlands to Germany are generally too short to consider intermodal

transport. In line with practice, a flat rate is charged for each container transported over a main

leg. Transportation costs are normalized for confidentiality reasons. The cost for transporting

a full container via a free leg is set at 1.00 per km for a full container. A linear capped cost

function (i.e., piecewise linear) with a start rate of 0.30 and a cost cap at a fill rate of 0.90

is applied. For barges a flat rate of 0.33 is used, for trains this flat rate is 0.51. As the LSP

requires only a relatively small amount of barge or train capacity, we assume no constraints on

the number of containers that these modalities can carry.

Variable Standard setting Experimental variables
Cost function (main legs and free legs) Logarithmic Flat
Maximum horizontal distance between 500km (straight) 100,250,. . . ,600km (straight)
hubs 800km (split/triangular)

1000km (semi-random)
Time between order arrivals (Poisson
distributed)

3 hour mean

Number of orders per run 650
Warm-up/cool-down period (in # of or-
ders)

25

Travel speed (all vehicles) 50km/hour
Departure policy Latest departure Earliest departure
Earliest pickup time (after arrival) 0 days
Latest delivery time (after arrival) 5 days
Costs free leg per km (flat rate for full
container)

1.00

Costs main leg per km (flat rate for full
container)

0.50

Costs transshipment operation 22
Costs handling operation 35
Number of routes stored per order 2 (straight/split)
(i.e., k)2 3 (triangular)

5 (semi-random) 1,2,. . . ,10 (semi-random)
Order size 0.04-1.00
Vehicle capacity (all vehicles) 1.00

Table 5.1: Settings for the numerical experiments on the virtual networks.

We first describe the key results for the experiments on the virtual networks, using the

standard settings. In Table 5.2, we provide the attained fill rate with (1) consolidation compared

to the best route without consolidation, (2) the average detour compared to the best routes,

and (3) the relative cost reductions per network. For the latter, we use three benchmarks: the

free leg from origin to destination (Direct), the best route without consolidation (Best), and

consolidation possible on the best route only (k = 1). It can be seen that the benefits are

greatest for well-connected areas of demand and supply. For the first three networks, we note

that the (rounded-off) improvement compared to k = 1 is 0%. Due to the small diversity in

routes for these networks, the algorithm is generally able to combine best routes of orders when

2For the straight, split and triangular network, the best identified settings for k are used. Due to the small
amount of routes in these networks, experiments could be run for all values of k.
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consolidating, such that storing more than one route has a negligible impact.

When comparing the performance under an earliest departure policy with that of a latest

departure policy, the latter clearly performs better (Table 5.3). These differences can be ex-

plained by the reduction of solution space when applying earliest departure, which discards

later departure times and alternative routes by fixing the route upon order arrival. Note that

new orders may still be added during execution of the route, such that waiting at intermediate

hubs remains possible.

From our tests on the straight network (Figure 11) consolidation actions start to occur

frequently if average distances between origins and destinations are about 200km. Smaller

distances result in direct routes via a free leg, as the tradeoff between transportation costs and

transshipment costs is no longer beneficial. Therefore, main legs with a length under 200km

are unlikely to be utilized. Fill rates stabilize around 500km; larger distances do not yield an

increase in consolidation actions.

In Figure 12, we provide an experimental instance of the realized savings for a semi-random

network, distinguishing between four values for k. The savings are split out per route, where the

Route# refers to the position of the route when sorted on costs (e.g., the third best route has

Route# 3). In this setup, k = 3 yields the highest overall savings. Similar results – a certain non-

maximum value for k providing the best solutions on average – consistently occurred during our

experiments. As our algorithm is a greedy heuristic and we solve a dynamic problem, increasing

the value of k needs not to continuously lead to improving overall solutions. Consolidating on

low-quality routes might yield a small saving which would not be identified with smaller k, but

possibly eliminates more suitable schedules when new orders arrive. The optimal setting for k

depends on the composition of the order set and the structure of the network.

Figure 13 shows the outcomes for applying k = {1, 2, . . . , 10} on three semi-random networks;

15 hubs with 30 main legs, 20 hubs with 40 main legs, and 20 hubs with 100 main legs. The

savings structure of the first two networks are rather similar, achieving their best results at

k = 3 and k = 4 respectively. For the 20/100 network, k = 5 yields the best results. The

number of attractive alternative routes tends to increase the best setting for k. As the quality

of routes is then higher as well – due to stored routes being closer together in terms of costs –

overall savings are also higher.

Network Cost function Increase fill rate Detour Cost reduction
(achieved fill rate) compared to

Direct Best k = 1
Straight Logarithmic 78% (0.92) 0% 43% 18% 0%
Straight Flat 73% (0.91) 0% 48% 27% 0%
Split Logarithmic 76% (0.92) 1% 48% 23% 0%
Split Flat 75% (0.91) 1% 53% 30% 0%
Triangular Logarithmic 75% (0.91) 1% 44% 18% 0%
Triangular Flat 74% (0.91) 1% 49% 26% 0%
Semi-random Logarithmic 52% (0.79) 3% 31% 10% 2%
Semi-random Flat 52% (0.79) 4% 34% 14% 5%

Table 5.2: Key results from numerical experiments under the standard settings. Shown are the
average increase in fill rate, the average increase in route length, and the average cost reduction.

Finally, we discuss the results of our experiment based on the real LSP data. As a bench-
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Network Earliest departure Latest departure Absolute difference between
policy performances

Cost reduction Increase Cost reduction Increase Cost reduction Fill rate
compared to Best fill rate compared to Best fill rate

Straight 14% 60% 18% 77% 4% 17%
Split 20% 67% 23% 75% 3% 8%
Triangular 15% 56% 19% 72% 4% 16%
Network 4% 15% 10% 49% 6% 34%

Table 5.3: Differences in performance between earliest departure policy and latest departure
policy. The latest departure policy consistently outperforms its counterpart; due to retaining
flexibility it is more often able to identify good solutions.
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Figure 11: Attained fill rates on the straight network with various main leg lengths. For main
legs shorter than 200km consolidation does not take place; the handling and transshipment costs
then outweigh the lower transportation costs.

mark: the average transportation cost per order is 321 when only considering direct transport.

Accounting for transport via the intermodal network already yields an average cost reduction

of 9.1%. In that case, 215 routes (out of 1006) utilize main legs. However, when allowing for

consolidation with k = 1, the additional benefits from consolidation are negligible, with only

20 orders that can be consolidated. As the 215 routes make use of 28 distinct main legs, the

chance of finding a match in terms of main leg, departure window and capacity is limited when

k = 1. In a case like this, the added value of storing multiple paths can be observed. Table 5.4

shows the improvement in performance for various settings for k. These results show how the

flexibility acquired by storing multiple routes improves the average fill rates and reduces logistics

costs.

Despite the promising initial results, we note a few practical limitations of our algorithm.

First, handling operations will take more time than just transshipping. This means that routes

may no longer be feasible when requiring additional handling time, requiring an additional

feasibility check. Second, not all hubs allow for handling; some hubs only transship full con-
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Figure 12: Savings for k = {1, 3, 5, 10}, compared to the best solution without consolidation,
split out per route. As route quality diminishes for large k, marginal savings decrease with k.
The choice for k impacts the global solution quality.

k
No. consolidated

(out of 1006 orders)

Cost reduction for
consolidated orders
(compared to k = 1)

Overall cost
reduction (compared

to k = 1)

Overall improvement
fill rate

k=1 20 0% 0% 1%
k=2 102 2.1% 0.4% 4%
k=3 143 5.6% 0.7% 7%
k=5 205 6.5% 1.8% 14%
k=10 270 6.9% 2.5% 20%
k=15 326 7.1% 2.8% 26%
k=20 371 8.9% 3.2% 29%

Table 5.4: Computational results for the LSP experiment, using various settings for k

tainers. This feature can be added as an additional constraint that limits the solution space.

Third, travel times and transshipment times are not deterministic in practice. Incorporating

stochasticity is particularly relevant when lateness at the customer must be taken into account.

Penalty functions could then be used to assess the tradeoff between consolidation opportunities

and lateness. The number of transshipments in a route will likely have a greater impact, as

missing a planned departure time results in significant delays. As an alternative to stochas-

tic travel times, we could also employ the time-dependent mapping function to incorporate

time-dependent travel times. Finally, we do not consider consolidation on the free legs. Our

algorithm could be integrated with a VRP-algorithm, such that tours composed of free legs

could be constructed. The implementation of this aspect would benefit from more advanced

waiting policies than deployed in this paper.
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Figure 13: Average route costs for three semi-random networks, measured for k = {1, 2, . . . , 10}.
It can be seen that the network containing 20 hubs and 100 main legs benefits most from the
algorithm, due to the higher variety in good routes.

6 Conclusions

With the algorithm presented in this paper, we explore operational scheduling of consolidated

routes in networks with transshipments. We introduce a new method to assess consolidation

opportunities in a dynamic planning environment. By using a time-dependent graph that allows

for multiple departure times, we facilitate the scheduling of routes with consolidated orders. We

create flexibility in both space and time, by (1) storing k routes for every order and (2) using

departure windows instead of fixed departure times. The storage of the k best routes for each

order yields a high-quality search space for the consolidation algorithm. The matching procedure

only takes place on the controlled search space, allowing the algorithm to be used in an online

planning environment.

Our algorithm is based on three key design choices that bring computation speed to a level

suitable for dynamic planning, but reduce the chances of finding the optimal solution. First,

by setting k smaller than the total number of possible routes, not all consolidation opportuni-

ties are evaluated. Second, the loop structure that sequentially solves decision trees considers

consolidation with one order (set) at a time, and might therefore deviate from the optimal as-

signment of orders. Third, by removing k− 1 solutions after consolidating, future consolidation

opportunities on other routes are discarded. The first two aspects in particular are necessary to

guarantee that the algorithm can be used in a practical setting. The final restriction might be

relaxed, but introduces additional complexities and would make the algorithm less suitable for

instances where computation time is limited. Static re-optimization techniques may be more

fitting for such an approach.

The number of routes that is stored for each order determines the tradeoff between solution

quality and computation time. The more routes we store, the larger the probability of finding
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an efficient consolidation option. However, as the algorithm is greedy, storing too many routes

may decrease the solution quality. A large set of routes per order increases the probability of

finding a consolidation opportunity, but the routes that allow for such a solution may be of

poor quality, such that only minor savings are obtained. These savings would not have been

found for small values for k, but at the same time eliminate potential future opportunities of

higher quality (i.e., consolidation while using better routes). It is therefore recommended to

calibrate the algorithm to a given network and order properties. An important influence on the

computation time is the number of main legs in a route, as additional legs causes an exponential

growth of the decision tree. Despite the theoretical problems with computational time, in none

of our experiments we encountered search spaces of a magnitude that would hamper real-time

planning.

Our experiments on semi-random networks showed cost savings between 10 and 14%, using

transportation via the best route without consolidation as a benchmark. The LSP experiment

in particular showed how memorizing multiple routes contributes to the quality of the solution.

When only storing the best route for each order (i.e., k = 1), only 2% of the orders could

be consolidating. When k = 20, we could consolidate 37% of the orders, achieving a 9%

cost reduction on these orders. However, in most cases storing the best route of each order

contributes most to the savings. The flexibility acquired by leaving departure windows open

already greatly contributes to consolidation opportunities. In more complex networks, the added

value of variety in physical routes can be observed as well. Diversity in both space and time

are therefore important attributes when considering the operational planning of consolidation.
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A Pseudocode for consolidation algorithm

Consolidation algorithm
1: for each route in route set for new order i do
2:
3: % Preprocessing of routes feasible for evaluation
4: for each leg in route for order i do
5: for each leg in set of available legs open orders do
6: if selected legs order i and j are the same and
7: feasible departure time within mutual departure window exists and
8: sufficient capacity to combine orders and
9: no order from consolidated route set order j in evaluation set or

10: vehicle on selected leg not in evaluation set3 then
11: Incorporate route (set) in evaluation set;
12: end if
13: end for
14: end for
15:
16: % Tree construction
17: InitSolution := BestSolution; [sets initial route as starting point for evaluation]
18: for each leg in route for order i do
19: for each representation in evaluation set do
20: if no consolidation on different route for order j in preceding branch and
21: feasible departure time within mutual departure window exists then
22: Update departure window for selected leg;
23: Update fill quantity on selected leg;
24: Update other departure windows in routes containing the selected leg;
25: Update departure windows remaining routes in set;
26: Update costs on selected leg;
27: end if
28: end for
29: end for
30:
31: % Tree evaluation
32: for all end nodes do
33: if Cost(NewSolution)<Cost(BestSolution) [lower costs of consolidated route set than current best solution] and
34: NewSolution is feasible then
35: BestSolution := NewSolution;
36: end if
36: end for
37: end for

Table A.1: Pseudocode for consolidation algorithm.

3Same order set can be incorporated more than once if multiple vehicles operate on the same leg.
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