

Proceedings for

2nd International Workshop on

Tool Support and Requirements Management
in Distributed Projects (REMIDI 2008)

Bangalore, India
August 17th, 2008

Edited by Chintan Amrit, Patrick Keil, Marco Kuhrmann

© CTIT, University of Twente, 2008
Copyright is retained by the authors of the individual papers in this volume.

Title: REMIDI 2008 ProceedingsInternational Workshop on Tool Support and
Requirements Management in Distributed Projects

Authors: Chintan Amrit, Patrick Keil, Marco Kuhrmann (eds.)
Workshops Proceeding: WP0801
ISSN 1574-0846
Publisher: Center for Telematics and Information Technology (CTIT), Enschede,

the Netherlands

As part of

International Conference on
Global Software Engineering, ICGSE 2008

Program Committee

Stefan Biffl, TU Wien
Manfred Broy, TU München
Pradeep Desai, Tata Consultancy Services
Vesna Mikulovic, Siemens AG Austria
Neel Mullick, IKaru Projects Pvt. Ltd.
Jürgen Münch, Fraunhofer IESE
Daniel J. Paulish, Siemens Corporate Research
Ita Richardson, University of Limerick
Bernhard Schätz, TU München
Rini van Solingen, LogicaCMG and Drenthe University
Jos van Hillegersberg, University of Twente

Table of Contents

1. REMIDI CfP……………..………………………….……………………………………………….1

2. Decentralized Software Process Coordination and Security using Electronic Contracts….….3
Adailton Magalhães Lima, Rodrigo Quites Reis

3. A Framework to Analyze Impact of Change in Component Based Software Engineering…...9
Kuljit Kaur, Hardeep Singh, and Debasish Jana

4. A suite of tools for the automation the management of the software process………………..14
Javier Berrocal, José Manuel García, Juan Manuel Murillo

5. TESNA: A Tool for Detecting Coordination Problems………………………………………20
Chintan Amrit and Jos van Hillegersberg

Proposal - Second International Workshop on
Tool-Supported Development and Management in

Distributed Projects (REMIDI’08)

Call for Papers
in conjunction with

IEEE International Conference on Global Software Engineering (ICGSE)

Bangalore, India
August 17-20, 2008

Today, distributed projects (often subsumed under terms like global
software development (GSD), global collaboration, offshoring etc.) are
common ways to overcome time and resource restrictions or lack of
local expertise. Thus, today’s projects take place in a global context. At
the same time, tool integration and end-to-end tool chains are more and
more getting on the agenda of researchers and industry to tackle the
growing complexity of development projects.

Especially planning, coordinating and controlling software engineering
in distributed settings are far more complex than in one-site projects.
First, the process of analysis and design needs to be planned and
organized differently. Second, the methods used to document, share
and discuss design and architecture ideas need to take into account the
fact that some project members involved in these tasks are spread over
multiple sites and organisations and don’t have contact to end-users.
Third, as the development artifacts are wide spread, the development,
integration and release of a high quality product is far more challenging.

As a conclusion, we need concepts and tools to support the specific
needs, tasks and process requirements in distributed development
projects. Experience shows that an appropriate tool chain increases
efficiency and success of distributed projects since coordination and
collaboration are far more complex than in on-site projects and need to
be properly supported. Aspects like process assistance, knowledge
management or project tracking ask for appropriate tools.

Therefore, the workshop will walk through the methods and concepts
that are available and the tool chains that are used in global software
development projects. After last year’s successful edition (cf.
www.ctit.utwente.nl/library/proceedings/proceedingsamrit.pdf and
www4.in.tum.de/~kuhrmann/remidi07.shtml), this workshop will more
explicitly focus on tools and infrastructures for GSD projects.

The participants will present and discuss project experiences, best
practices and new approaches – based on academic research and / or
on experiences from industry.

One of the objectives of this workshop is to structure the major research
topics and to define a research agenda for further work in the area of
“end-to-end” tool support in distributed system development. Besides
that, there will be a demo session with presentations and live
demonstrations of tools that are specifically dedicated to support
distributed development projects.

In summary, the workshop will include different aspects of tool selection

Schedule:

June 1 Deadline for paper
submission to the
workshop organizers

July 1 Decision of acceptance
to paper authors

July 15 Final version of
accepted papers due

August
17-20

REMIDI Workshop

Paper submission:

Research and industry papers must
be submitted in PDF format by
email to the organizers.
Your paper must conform to the
IEEE proceedings publication
format (8.5" x 11", Two-Column
Format) described at IEEE/CPS and
be no longer than 6 pages including
all text, references, appendices, and
figures. Tool papers must be no
longer than 4 pages including all
text, appendices, etc. and should
contain screenshots and references
to projects using the presented
tools.
Submissions that exceed the page
limit or do not comply with the
proceedings format (cf. IEEE/CPS)
will be desk rejected without review.
The results described must not be
under consideration for publication
elsewhere.
Accepted papers will be published
in CTIT proceedings.

and orchestration in a distributed software development context, e.g.:

• Administration and tracking of documents, concepts, code, etc.:
What are the consequences for the process and the design
tools if (all or some of the) processes of requirements
engineering, design, development etc. are distributed?

• Collaboration and communication in software engineering: How can
teams be organized and coordinated when they are spread over
two or more sites? How can projects achieve efficient collaboration
and alignment? What are the lessons learned on tools and
infrastructure for collaboration in different project phases? Which
different requirements and characteristics do the different project
phases have regarding tool support?

• Process assistance and support: What does an adequate
process for distributed development look like and how should it
be supported by tools and techniques? What tools or tool
chains are adequate to assist different project roles?

• Tool orchestration: How should projects select their tools? How
different are tool chains for different industries? What are the
project characteristics that influence tool decisions most
heavily? How different are the optimal tool chains for different
levels of education and experience?

• Economic aspects: What is the Return on Investment for tools
dedicated towards distributed development?

• Project management: Which tools can help to plan, control and
track a project? Are risk management or workflow management
tools different to those used in on-site projects?

•

Topics of the 1-day Workshop

The following is a non-exhaustive list of relevant topics:

• Models, tools and technologies for handling dynamics and
complexity in the early phases of dispersed collaboration

• Models and tools for unifying processes respecting
requirements engineering, software development, and
operations and maintenance in global contexts

• Comparability and comparison with tools used in open source
projects

• Process model design for distributed engineering and
“mirroring” of these processes in SE tools

• Models and processes to define and predict usability, reliability,
performance, quality and “adequacy” of development tools

• Impacts of tools on the cost efficiency of distributed development

These topics will be discussed based on presentations by participants.
Based on these contributions, we will try to structure the problems and
challenges and discuss a “research agenda for integrated tool
infrastructures in GSD”.

An explicit tool track asks vendors and academic research teams to
present their products or prototypes. Live demonstrations are welcome.

Addressees

The workshop targets practitioners as well as researchers interested or
involved in geographically or organizationally distributed software
development.

Organization Committee:

• Chintan Amrit, University of
Twente, c.amrit@utwente.nl

• Patrick Keil, TU München,
keilp@in.tum.de

• Marco Kuhrmann, TU München,
kuhrmann@in.tum.de

Program Committee:

• Stefan Biffl, TU Wien
• Manfred Broy, TU München
• Pradeep Desai, Tata

Consultancy Services
• Vesna Mikulovic, Siemens AG

Austria
• Neel Mullick, IKaru Projects Pvt.

Ltd.
• Jürgen Münch, Fraunhofer IESE
• Daniel J. Paulish, Siemens

Corporate Research
• Ita Richardson, Lero, University

of Limerick
• Bernhard Schätz, TU München
• Rini van Solingen, LogicaCMG

and Drenthe University
• Jos van Hillegersberg, University

of Twente

1

Decentralized Software Process Coordination and Security using Electronic
Contracts

Adailton Magalhães Lima, Rodrigo Quites Reis

Software Engineering Laboratory - http://www.labes.ufpa.br

Federal University of Pará (UFPA)
Belém, Pará, Brazil

{adailton,quites}@webapsee.com

Abstract

The Software Process Technology research area

establishes methods and tools to support the good
quality of software products. Process-centered
Software Engineering Environments enable process
modeling and enactment enforcement, and only a few
of them supports decentralized coordination of process
activities. Current projects in Global Software
Development deal with many coordination and
collaboration problems, such as share process context,
information security and remote project monitoring.
This paper describes a tool that provides a
technological support to the cited problems on
decentralized software process development. The
objective of this tool is to provide a contract-based
information filtering, and allows the security
configuration when share process context among
different organizations. We provide a description of the
main expected results applying the proposed approach
in different organizational contexts and a reference to
future directions of this research.

1. Introduction

Software Engineering evolves as a theoretical and
practical research area by proposing and applying
methods, techniques and tools, which aims to increase
software product quality. To develop and maintain
software products it is necessary to cover a broad and
coherent range of policies, organizational structures,
technologies, methods and artifacts, which are all
involved with software development process.
According to [11], the software product quality
depends strongly on the quality of the adopted software
process.

The Software Process Technology research area
evolves quickly to provide adequate automated support
for the enactment of quality software processes.
Briefly, it involves the development of tools and

environments to support the software process modeling
and enactment. Software Process Technology promises
to deliver automated facilities that can be useful to
enable a software organization in order a high
capability and maturity levels on reference models
such as CMMI [3] and SPICE [25]. Integrated
environments that enable the automation of software
process modeling and enactment task are generically
known as PSEEs (Process-centered Software
Engineering Environments) [11]. The enactment of
software process models is enabled by a software
component known as process engine that enable
guidance and/or enforcement of the process models
with respect to the human enrollment in the context of
a software project [6]. However, the decentralized
coordination of process activities among different
PSEEs is only supported by a few of them. Most of the
PSEEs provide only a centralized solution based on the
traditional client-server architecture.

Due to the involvement of different locations and
organizations adequate support for the decentralized
coordination of activities in software development
projects implies on the absence of centralized
controlling mechanism. According to [7] and [10], the
provision of automated support for decentralized
coordination of software projects is a challenge for the
Software Engineering Community. More specific,
there is the problem of the shared context among
different remote sites in Insourcing and Outsourcing
projects highlighted by [19]. Other problems, such as
project monitoring and progress measurement, are also
faced as challenging problems for current projects in
Global Software Development [15].

In software development projects that use
environments like PSEEs to control and coordinate
their processes, tools like task agendas and process
views are used to provide monitoring support for the
software projects enacted by the organization [6].
Targeting specific problems of decentralized software
development context, including the problems of

2

context sharing and project monitoring, this paper
presents an extension to an existing PSEE to provide
support for project monitoring and process integration
in decentralized software projects.

The remainder of this paper is organized as follows.
Section 2 presents the main concepts involving the
coordination in decentralized software development.
Section 3 makes an overview of the WebAPSEE
environment, a PSEE used as implementation basis for
this work. Section 4 illustrates the proposed extensions
to provide decentralized software process enactment
support in the decentralized software development
context. The section 5 discusses the main expected
benefits of this approach. Finally, section 6 presents
the final remarks and future directions of this research.

2. Coordination in Decentralized Software
Development

Decentralized Software Development is a field of
study deeply influenced by the evolution of industry
and globalization [10]. According to Sabherwal [21],
project coordination focuses on the management of
inter-dependencies among different activities in
software development. In the context of decentralized
software projects it is not feasible to have a unique,
centralized entity to control process enactment.

The current state of the practice in this field is
frequently based on shared repositories to monitor
delivered and changed artifacts. However, this
approach provides limited view to customers, since it
does not show information about the internal processes
models enacted by the supplier [8]. The lack of process
monitoring is critical nowadays due to the increasing
demand on quality models in acquisition projects.

To successfully orchestrate global software
development, project managers need to share
information about projects and communicate with
other site managers to take advantages of this work
model [14]. Ebert [7] pointed out the influence of
insufficient contract management in decentralized
software development and the low control over the
quality and scheduling aspects on contracts with
external partnerships. To manage the customer-
supplier relationship a contract must describe a set of
policies to control access information and monitor
project milestones.

The contract management approach enables process
enactment monitoring while provide awareness to
customers and suppliers on current project status. In
addition, it can be used to provide support for early
notification for abnormal behavior on monitored
projects. In this way, it provides the base to support the
development of a number of additional facilities with

respect to the continuous monitoring of both product
and process related information [15].

3. The WebAPSEE Environment

PSEEs are tools that can be used to minimize
problems involving software development. Thus,
PSEEs represent the use of software to help the
management of the software development [12].

The WebAPSEE environment is a PSEE developed
since 2004 at the Software Engineering Laboratory of
Federal University of Pará, Brazil [18]. The current
open source version of this PSEE can be found in
http://sourceforge.net/projects/webapsee.

The main goal of WebAPSEE environment is to
provide support for the definition and deployment of
software process models using a graph-based formal
semantic notation [12]. In a software process
improvement initiative, the WebAPSEE environment
represents a shared repository to define and monitor
organization’s processes. In this case, it will provide
access to evidences of process definition and to the
process improvement goals.

The majority of PSEEs adopts a centralized
architecture, where they enact the processes on only
one site, and client applications use remote procedure
calls to access the processes information. As examples
of this approach, we can cite the EPOS [4], Marvel
[17] and WebAPSEE [18] environments.

Figure 1 – Screenshot of the WebAPSEE Environment
with the Manager Console and the Task Agenda.

Some clear problems of the centralized architecture
approach are: a unique failure point; the system
scalability is limited to the server machine processing
power; the final response time is limited to server
concurrency level. Beyond these technical problems,

3

the centralized architecture of PSEEs may represent an
organization disadvantage with respect to the demand
to share process information with external partners.
Furthermore, a centralized server can open backdoors
to strategic access process information from strange
clients, what is a strategic organizational problem [24].

Even if the security policies among different users
are used to support information filtering, the databases
stay in an external organization domain (in some
remote site service), and still remains the risk of
unauthorized access of strategic data and the lack of
trust among the remote sites [1].

The WebAPSEE Manager Console

The Manager Console Tool is integrated on the
WebAPSEE environment, which uses a modeling
formalism allowing the process definition using a
graphical editor. Today, the WebAPSEE environment
constitutes an integration framework for a number
services related to process management, including
modeling, enactment, visualization, instantiation and
enactment events. Using the Manager Console, the
software process manager can design a process model,
manage the process enactment, visualize process
reports and manage the organizational information
(artifacts, agents, resources, and others).

Figure 2 – General Deployment View

The WebAPSEE Task Agenda

Using the WebAPSEE Task Agenda Tool, the
developer can visualize the software processes in
which s/he is allocated to. Therefore, the developer
interacts with the Task Agenda in order to provide
feedback about the tasks performance status. Figure 1
contains the illustration of one screen of the Task
Agenda Tool use, which represents the agent tasks at
one specific process and allows accessing the task
definition and to the produced and required artifacts

(associated to file upload and download
functionalities).

4. A Decentralized Coordination Model to
the WebAPSEE Environment

The decentralized process enactment approach uses
distributed technologies to share process information
among distributed organizations’ sites. This approach
contributes to a better process scalability avoiding the
single failure point that exists at the centralized
coordination model. As examples of PSEEs that
follows this approach we can quote the environments
Oz [2], Serendipity-II [13], Genesis [20] and
SwinDeW [23].

In a general way, the proposal of this work to
decentralize the processes enactment is summarized in
the coordination of several activities among different
PSEEs instances. The participating instances of PSEEs
on the network must interact to maintain the
consistency of the environment data and the shared
processes.

As organizational advantages of this decentralized
enactment model, we can quote: the opportunity to the
organizations’ systems to manage the cooperation with
external partners; the opportunity to the process
management systems balance the access to clients tools

(in this case, the access of
Agendas and Manager
Consoles will be balanced
among the different
decentralized sites); provide a
model that can be reliable by
customers and suppliers,
because the organization’s
data is stored in its own
domain.
Figure 2 presents in a UML
deployment diagram the
general view of this work that
extends the current

WebAPSEE architecture defining the P2Process
Figure 2 illustrates the customers and suppliers
instances of their internal WebAPSEE environments.
The P2Process Server component acts as a proxy
among remote instances of a PSEE, integrating the
process enactment through the exchange of messages
among different decentralized remote sites.

Contract Management

Each of the involved environment instances
possesses a copy of the component defined as
Figure 2. The Contract component acts as a flexible
information access control from the remote sites and

4

establish rules for data access in the processes
decentralization. This approach allows the information
filtering of confidential data among the involved sites.

The current tool prototype version already contains
the electronic contract evaluator component, where the
contract rules are evaluated to allow or to deny
operations among involved decentralized remote sites.
The distribution layer implements a peer-to-peer model
using the JXTA peer-to-peer technology [9].

Process Integration

To delegate activities from the local process model
to be performed by a decentralized remote site, the
current prototype defines a delegation protocol.
Depending of the current known suppliers, the
customer chooses the destination of the activity’s
delegation process. The site that delegates an activity
must send remote messages to the targeted supplier,
and this delegation protocol has the following steps: a)
request the operation to distribute a delegable activity;
b) define the electronic contract to be applied to this
delegation; c) send the additional data needed to enact
the activity.

Process Enactment Events Synchronization

The enactment events synchronization among
customers and suppliers provides the exchange of
process enactment information among different
instances of the PSEEs. Asynchronous messages
define the enactment events, which are propagated to
represent software process model events (as an activity
state or an artifact state change). The internal
implementation follows the publish/subscribe
notification implementation approach to establish the
communication among remote sites [5].

Figure 3 – Events Messages Serialization into XML

Figure 3 illustrates the serialization process that
maps internal enactment events to XML messages

propagated through the peer-to-peer network. It
provides an automatic and interoperable way to
synchronize the different projects status in the
decentralized software process context based on a
PSEE approach.

5. Expected results from this work

This work focuses on decentralized software
development, no matter if the remote sites are at
different organizations (Outsourcing) or at different
branches of the same organization (Insourcing).
Depending on the organizational context of tool
deployment, we expect a variation on the electronic
contract rules. To the Outsourcing context, we expect
more rigid rules instead of more openness rules for the
Insourcing context. But in both cases, as the work
described in [1], an explicitly contract definition
creates a trustful environment in the customer-supplier
relationship.

We expect that the decentralized enactment model
using contracts to filter the remote access aggregate
values in both directions of global software
development: it aggregates competitive advantage to
suppliers (which can offer a remote monitoring
service) and management power to customers. Thus,
the following sections present some expected results
with the use of the proposed tool in real decentralized
software development projects.

A Common Process Language

The authors Ebert [7] and Sengupta [22] report the
need of a common language among the dispersed
members of a remote relationship to have a better
communication during the project. So, this work
proposes that the benefits of a common process
language in centralized PSEEs may be extended to
decentralized software development projects.
Therefore the visualization of information about
decentralized projects using a process-oriented notation
can help the project managers to realize the actual
remote process enactment on their internal process
model language.

Information Confidentiality in the Organization’s
Relationship

According to Sengupta [22] and Wells [24] the
organization’s information confidentiality is an
indispensable aspect for a real deployment of software
process decentralization. An important non-technical
factor involved in the process decentralization is the
trust among the involved parts. The methods and tools

5

proposed by this work must support alternatives to
information confidentiality between customers and
suppliers.

 This work proposes the concept of an electronic
contract, defining rules to enable or disable data access
between customers and suppliers in a decentralized
process context, as shown in Figure 4. Suppliers can
configure the electronic contract, blocking the access
of some information when sent to the customer. When
customers request a supplier process view, it can
visualize only the explicitly allowed components of the
software process. Thus, a more openness access control
can be defined to internal partners (the Insourcing case
illustrated by the Customer Process View A in Figure
4) and external partners (the Outsourcing case
illustrated by the Customer Process View B in Figure
4). These different visualizations allow the information
confidentiality in the customer-supplier relationship.

Figure 4 – Remote Process Context Visualization in
Different Organizational Contexts

Adherence to the CMMI goals

The main rationale of this work deals with the
demand of coordinated monitoring between customers
and suppliers by process maturity models. The CMMI
maturity model [3] and the eSCM model [16] demand
to support the goal of work coordination between
suppliers of software products. In the case of external
suppliers, the monitoring of activities is an important
aspect to verification of methods and products used in
the software development.

The current proposal of decentralized process
coordination can benefit the project monitoring process
performed by the customer, by providing a higher
automation degree on the remote information retrieval.
As a consequence, this work proposal created an open
channel of communication between customers and
suppliers. In this way, the higher automation degree in
suppliers’ monitoring can help customers to better
manage different suppliers simultaneously, since the
retrieve of remote process status is effortless.

6. Conclusions and Future Work

The Genesis [20] and SwinDeW [23] tools define a
homogeneous integration model to external tools.
Instead of following this homogenous integration
model, this work defines a XML way to exchange
messages among different PSEEs, and open the

opportunity to integrate
different PSEEs or process-
oriented tools on this
coordination approach.

The need for consensus
in Global Software
Development tools [15] can
be achieved by the contract
definition in each one of
the involved sites.

Applying the approach
of this work in
decentralized software
development can lead to
the customers the power to
know the current supplier
development status. It can
make the risks management
and decision-making
process easier, because can
lead to customers an early
decision before the project

risks be higher than the accorded value with the
supplier. To the suppliers, the process transparency can
represent a market advantage.

The management and control over communication
activities help minimize the management and
communication problems. Integrating to process
support tools, as PSEEs, we can bring a higher
automation level to monitoring tasks in Global
Software Development [15] and provides a better
control over variable costs on software projects [21].

The functionality to retrieve remote process views
(as shown in Figure 4) can help to minimize the
context-sharing problem [19] by the process-oriented
view of the remote project described in this work.

6

The current prototype of the tool is under beta
version to evaluate its effectiveness in study cases with
local industrial partners. In specific, it is expected to
evaluate if the scalability of the proposed notification
message propagation approach is able to handle the
demand for Global Software Development projects [5].

As future work, one of the requirements cited by [8]
is the difficulty to choose potential partners to support
a development demand. Both the CMMI process
maturity model [3] and the eSCM model [16] define
that to choose IT suppliers it is necessary to prescribe
the entire process and be based on objective criterion to
choose the best supplier for each case. Thus, as a
possible extension of this work we can provide
automatic client-supplier relationships metric
collection and support the choose of possible suppliers
using the historical data from decentralized projects.

References

[1] Babar, Ali; Verner, M.; et al. (2007) “Establishing and

maintaining trust in software outsourcing relationships: An
empirical investigation”. In: Journal of Systems and
Software, vol. 80, 9, September, 2007.

[2] Ben-Shaul, Israel Z.; Kaiser, G.E. (1998) “Federating
Process-Centered Environments: The OZ Experience”. In:
Automated Software Engineering, vol. 5, 1998.

[3] CMMI. CMMI Web Site. <http://www.sei.cmu.edu/cmmi/>.
[4] Conradi, Reidar; et al. (1994) “EPOS: Object Oriented

Cooperative Process Modeling”. In: Software Process
Modeling and Technology, Research Studies Press LTD,
1994.

[5] De Souza, C. R. B., Basaveswara, S. D., Redmiles, D. F.
(2002) "Supporting Global Software Development with
Event Notification Servers". In: 24th International
Conference on Software Engineering, International
Workshop on Global Software Development, pp. 9-13,
Orlando, Florida, EUA, 2002.

[6] Derniame, Jean-Claude, et al. (2002) “A Comparative
Review of Process-Centered Software Engineering
Environments”. In: Annals of Software Engineering, vol. 14,
p. 311-340, 2002.

[7] Ebert, Christopher “Global Software Engineering”. IEEE
Ready Note (e-Book), IEEE Computer Society, Los
Alamitos, USA, 2006.

[8] Ebert, Christopher (2007) “Optimizing Supplier
Management in Global Software Engineering”. In: Second
International Conference on Global Software Engineering,
ICGSE 2007, Munch, Germany.

[9] Flenner, Robert; et al. (2003) “Java™ P2P Unleashed: With
JXTA, Web Services, XML, Jini, JavaSpaces, and J2EE”,
Sams Publishing, EUA.

[10] Fitzgerald, Brian; Ågerfalk, Pär J. (2006) “Flexible and
distributed Software Process: Old Petunias in New Bowls?”.
In: Communications of the ACM, vol. 49, n. 10, October,
2006.

[11] Fuggetta, Alfonso. (2000) “Software Process: A Roadmap”.
In: Proceedings. of The Future of Software Engineering,
ICSE’2000, Limerick, Ireland, 2000.

[12] Gruhn, Volker (2002) “Process-Centered Software
Engineering Environments: A Brief History and Future

Challenges”. In: Annals of Software Engineering, vol. 14,
363–382. Kluwer Academic Publishers, 2002.

[13] Grundy, J.C., et al. (1998) “An architecture and environment
for decentralized, internet-wide software process modeling
and enactment”. In: IEEE Internet Computing: Special Issue
on Software Engineering via the Internet, vol. 2, n. 5, IEEE
CS Press, September/October, 1998.

[14] Herbsleb, James D. (2007) “Global Software Engineering:
The Future of Socio-technical Coordination”. In:
International Conference on Software Engineering, Future of
Software Engineering, IEEE Computer Society, Washington,
DC, USA, 2007.

[15] Hillegersberg, Jos van; Herrera, Miles (2007) “Tool Support
for Distributed Software Development: The past – present –
and future of gaps between user requirements and tool
functionalities”. In: Tools for Managing Globally
Distributed Software Development (TOMAG 2007), Munch,
Germany, 2007.

[16] Hyder, E. B.; Heston, K. M.; Paulk, M. C. (2006) ”The
eSCM-SP v2.01: Model Overview, The eSourcing
Capability Model for Service Providers (eSCM-SP) v2.01”.
Published in http://itsqc.cmu.edu.

[17] Kaiser, G.E.; Barghouti, N.S.; Sokolsky, M.H. (1990)
“Preliminary Experience with Process Modeling in the
Marvel Software Development Environment Kernel”. In:
Annual Hawaii International Conference On System
Science, Kona., p. 131-140

[18] Lima, A. M.; Reis, R. Q.; Lima Reis, Carla A. “Gerência
Flexível de Processos de Software com o Ambiente
WebAPSEE”. In: XIX Brazilian Symposium in Software
Engineering – Tools Session, October, 2006.

[19] Prikladnicki, R.; Audy, J. L. N.; Damian, D.; Oliveira, T. C.
(2007) “Distributed Software Development: Practices and
challenges in different business strategies of offshoring and
onshoring”. In: Proceedings. International Conference on
Global Software Engineering (ICGSE 2007), Munch,
Germany, 2007.

[20] Ritrovato, Pierluigi; Gaeta, Matteo “Generalised
Environment for Process Management in Cooperative
Software Engineering”. In: Proceedings. 26th Annual
International Computer Software and Applications
Conference, 2002.

[21] Sabherwal, R. (2003) “The evolution of coordination in
outsourced software development projects: a comparison of
client and vendor perspectives”. In: Information and
Organization, vol. 12, n. 3, pages 153-202.

[22] Sengupta, Bikram; Chandra, Satish; Sinhá, Vibha. (2006) “A
Research Agenda for Distributed Software Development”.
In: Proceedings of International Conference on Software
Engineering (ICSE’06), Shanghai, China, 2006.

[23] Yan, Jun; Yang, Yun; Raikundalia, Gitesh K. (2003)
“Decentralised Coordination for Software Process
Enactment”. In: Lecture Notes in Computer Science, vol.
2786, Heidelberg: Springer Berlin, 2003.

[24] Wells, Thomas O.; Braunfeld, Roger. (2001) “Protecting
Your Most Valuable Asset: Intellectual Property”. In: IEEE
Special Issue in IT Professional, vol. 3, issue 2, pages 11–17,
March-April, 2001.

[25] SPICE. ISO SPICE Web Site. <http://www.isospice.com>

A Framework to Analyze Impact of Change in Component Based Software
Engineering

Kuljit Kaur 1, Hardeep Singh1, and Debasish Jana 2
1Dept of Computer Science and Engineering, Guru Nanak Dev University, Amritsar, India

2 Senior Member, IEEE, Simplex Infrastructures Ltd, Kolkata, India
 kuljitchahal@yahoo.com, hardeep_gndu@rediffmail.com, djana@alumni.uwaterloo.ca

Abstract

Component Based Software Development is a
reuse-based approach. New applications can be
developed on the fly by integrating already existing
software components. The components are either
available in the in-house reuse library of the
application development organization, or are procured
from third parties. So in this process, development of
an application is not confined to a single organization
but distributed across the globe. One of the issues in
this global software development scenario is that
component users have limited control on the
development and evolution of third party components.
Component users or application developers have to
keep track of new offerings produced by the component
vendors and upgrade their products accordingly as
vendors may not support the old versions of the
components any more. In a component based software
application, when a component is upgraded, added or
removed, it can affect the components depended-by
and dependent-upon this component in the application.
In order to analyze the impact of change in one
component on other components in the system, we
have to identify and explicitly specify the inter-
dependencies of the components. This paper studies
dependency analysis, various types of dependencies
and techniques used to manage the dependencies. We
propose a matrix-based representation to record inter-
dependencies of software components. Impact Analysis
can be carried out using the proposed algorithms. An
experimental study is presented at the end.

1. Introduction

In Component based software paradigm,
developing an application involves the assembly or
composition of preexisting, reusable and independent
pieces of software components [8]. Components
communicate and share information in order to provide

system functionalities. These components are self-
contained units, which can interoperate with other such
components in the system through well-defined
interfaces. Dependencies in the software components
should ideally be identified and controlled in the initial
phases of the software development life cycle, so that
the software product can be reconfigured easily
without spending much effort, and quality of the
product can also be maintained even after the revisions
are done [9].

Object Oriented Development endorses
compartmentalization of system into several self-
contained reusable components. Reusable components
provide ready-to-use structural as well as behavioral
artifacts for use by other components. Less coupling
and high cohesion are important criteria for a good
component design. A software system is bound to
change. Managing changes effectively and efficiently
is prime concern of today to build a resilient
architecture. In this context, our research work is
targeted towards analyzing the impact of change in
component-based software engineering. The paper is
organized as follows. Section two emphasizes on the
need and methodology of dependence analysis with
types of dependencies. Related work in this area has
been studied in section three. Our proposed approach
towards our goal of this paper is presented in section
four. Here we analyze the type of change of one
component and its impact on the dependent
components in the system. We also present the
methodology of managing dependencies using
dependence matrix and associated algorithms.
Experimental study and results are shown in Section
five. Finally, in section six, we conclude with vision
for future work.
2. Dependence Analysis

Defining a Dependency - A dependency is a
relationship involving two or more elements where a
change of structure or behavior in one or more

elements leads to a potential for a change of
structure/behavior in one or more other elements.

Instead of merely saying that two things are
dependent on each other (either directly or indirectly
through a transitivity chain), we are interested in the
type of the dependency.

2.1. Types of Dependencies

A component can depend upon another component
in either or both of two ways – Structure or Behavior
[6]. Both structural and behavioral dependencies are
important to capture and understand when analyzing
architecture. A change in behavior that changes the
publicly visible signature of a component affects the
client. However, if the change is internal to the
component, for example, instead of following FCFS
manner, a queue works in a priority ordering, but the
externally visible signatures for insertion and deletion
remain same, then we mention that the client is
behaviorally dependent but not structurally dependent.
In case of structural dependencies, some categories as
identified in [6] are –

• Includes – A component may be created from
other subcomponents, using relationships such
as aggregation or composition. For example, a
Reservation Component for a Hotel
Management System consists of
CustomerManager Component, Billing
Component and RoomAllocation component.

• Import/Export – The specification for a
component may describe the information
imported or exported between modules.
Sometimes, the implementation of a function
within a component may use some other
component related through an association type
of relationship. For example, in an order
management system, an order component
depends upon the Inventory component..

• Inheritance – The specification for a component
may be created through inheritance from other
components. The inherited components extends
the basic functionality provided in the base
component.

The behavioral dependencies (6) can be categorized
as-

• Temporal – The behavior of one component
precedes or follows the behavior of another
component.

• Casual – the behavior of one component implies
the behavior of another component.

• Input – A component requires information or
stimulation from another component.

• Output - A component provides information or
stimulation to other components.

In a nutshell, a component A can be dependent

upon -
• The structure of another component B or
• The behavior of B
• Or both (i.e. the structure as well as behavior of B)
 It is easy enough to develop a directed graph of the

dependencies; however, such a graph is too simple to
analyze complex software systems. We need a model
of dependency relationships that goes beyond just
knowing that two things are dependent upon each
other.

3. Related Work

As inter module dependencies can have large
impact on the present and future structure of a software
product, the identification and exploitation of
dependencies has been a subject of research. Most of
the research work has been done to analyze
dependencies at the implementation level i.e. in
program code. Several tools are available that can
automatically extract the dependencies in the program
code such as JDepend, which identifies dependencies
from programs written in Java language [5]. At the
architectural level too, tools such as Aladdin are
available, which can extract dependencies from
specifications written in Architecture description
language [6].

Li [3] has used dependency matrix based technique
for managing dependencies. Li has identified eight
types of dependencies in a component-based system :
dependency related to data, control, interface, time,
state, cause-effect, input/output and context. The value
for a cell in the matrix is defined using Boolean OR
operator over all eight types of identified
dependencies. The cell takes a value 1, if any of the
eight dependencies exists in a pair of software
components and 0 otherwise. Li [3] has suggested
using different matrices for eight different types of
dependencies. Stafford et al [7] used dependence
matrix to show interdependencies of interfaces of
software components. Rows and columns of the matrix
correspond to the in and out interfaces of software
components. But, such a solution cannot be easily
scaled up to large complex applications, because one
component may support multiple interfaces in an
application and number of operations per interface may
also be very large. The work presented in this paper is
an extension to the technique used by Li [3] for
managing dependencies.

4. Proposed Approach

 As per the previous discussion, a component can be
dependent upon either the structure or the behavior of
another component. The idea behind the proposed
approach is that if a change is required in the structure
of a component, then only those components need to
be changed which depend upon its structure. As the
behavior of a component changes, the components
dependent upon its behavior should be considered for
change. According to the proposed model, for every
dependency in a pair of components, the type of
dependency also needs to be recorded. This
information can help in correct impact analysis,
whenever a change is requested in the system.

4.1. Analysis of Type of Change and Its Impact

We will now analyze type of change and its impact
through an example. Let us take an example of a
component say ElementSearch, which can search for a
given element in a given list and report the
presence/absence of that element in the list.
ElementSearch implements linear search algorithm.
Another component say DataManagement, uses this
component for searching purposes. DataManagement
component depends only upon the behavior of
ElementSearch component, not on its structure.

 In table 1, we consider some situations in which a
change in component ElementSearch can impact the
component DataManagement.
 We can observe in table1, that a change in the
structure of ElementSearch does not require a change
in DataManagement component. But a change in
behavior may result in change in the behavior of the
dependent component. This later type of change may
not always be necessary, because a component can
support multiple interfaces. This approach is followed
in Microsoft COM+ environment [4]. As in the last
case discussed in table 1, ElementSearch can maintain
a different version of the interface for its old clients
(e.g. DataManagement in this case). But this kind of
dependence analysis can help us to know about the
overhead (cost of managing multiple versions of
interfaces) caused by a change in the behavior of a
component.

 4.2. Managing Dependencies Using Dependence
Matrix

Here we consider a dependence matrix as a 3-

dimensional matrix. For a component-based system of
N components, every cell of the NxNx2 matrix
contains information about type of dependence (i.e.

structural or behavioral) and strength of dependence
(i.e. number of references) of the corresponding pair of
Table1: Impact of change in a component on a
dependent component

software components. Type of dependence is not
stored but just indicated by the location of information.
This has been done keeping in mind the memory
savings. First node of the cell stores number of
references for structural and second node stores the
number of references meant for behavioral
dependencies. For example in figure 1, number of
structural dependencies is 6 and number of behavioral
dependencies is 8.

6
8

Figure 1: Contents of a cell of a matrix.

The matrix for a hypothetical system design is
given in figure 2. Let us consider a component-based
software consisting of 3 components C1, C2, and C3.

Type of Change
in
ElementSearch

Description Impact on
DataManagement

Structure
changed,
Behavior
unchanged

Static memory
allocation is
changed to dynamic
memory allocation.

No change

Structure
changed,
Behavior
unchanged

Linear search
algorithm changed
to binary search
algorithm.
Component uses a
sub module to sort
the unsorted list
received from
DataManagement
component

No change

Structure
changed,
Behavior
changed

Searching algorithm
changed to binary
search, but
ElementSearch does
not itself sort the
data,
DataManagement
has to provide now
a sorted list

 Change required

Structure
unchanged,
Behavior
changed

ElementSearch now
provides the
location of the
searched item
present in the list
too

Change required
(if the component
wants to use this
feature).

Dependency Matrix for the system is given in figure 3.
Rows show the components depended upon and
columns show the dependent components. For
example in fig. 2, C2 has a component C1 dependent
upon it. C1 has two references to the structure of C2
and 6 references to the behavior of C2. So whenever a
change to C2 takes place, C1 may also have to be
modified. C3 has two dependents C1 and C2.

Table 2: A Dependency Matrix

Components

C1 C2 C3

 C1

4 C2
6
1 6 C3
0 3

4.2.1 Dependence Analysis Algorithms

Suppose that we have to see the impact of making a
change to one component of a system. The steps to see
the impact of change are as follows: -

1. Create a dependence matrix for the system.
2. Identify the type of change i.e. whether it is

a change in the structure of the component
or in the behavior of the component or both.

3. Proceed to
 1. Algorithm (1.A) if the change is in the

structure of the component,
 2. Algorithm (1.B) if the change is in the

behavior only,
3. Algorithms (1.A), (1.B) in the sequence if
component’s structure as well as behavior is
changed.

Algorithms (1.A) and (1.B) are explained in the
following paragraphs-

Algorithm (1.A) – Algorithm for changes in the

structure of a component C
1) Find the row of the dependency matrix

corresponding to component C.
2) Select all those columns of the matrix in which

the cells in this row have non-zero values for
structural dependencies.

3) The components corresponding to this selected
set of columns are the components that will be
directly affected by this change.

For transitive dependencies of this change, repeat
step 1-2 for the set of components identified in step
3.

Algorithm (1.B)- Algorithm for changes in the

behavior of a component C
1) Find the row of the dependency matrix

corresponding to component C.
2) Select all those columns of the matrix in which

the cells in this row have non-zero values for
behavioral dependencies.

3) The components corresponding to these columns
are the components which will be affected by
this change.

Figure 3: Interdependencies of components
Unlike the (1.A) algorithm we do not consider

transitive dependencies in this algorithm, because one
component can support multiple interfaces for different
components. The components with which it directly
interacts are the only ones that may be affected by this
change. For example, in figure3, components C1, C2
and C3 communicate using two-way communication
links. Now let us imagine that behavior of C1 with C2
changes.

This change will not affect component C3. C1 will
provide to C3 same old interface, it will support a new
updated interface for C2. So C1 will now be
supporting two interfaces, one for C2 and another for
C3.

5. Experimental Study and Results

Let us consider the component based software
system for a hotel reservation management system as
given in [1] .It consists of four components –
Reservation System, Billing, Hotel Mgt, Customer Mgt.
Dependency Matrix, given in figure 4 is constructed
using the proposed model :

C3

C2

C1

Components

Reservation
System

Billing Hotel
Mgt

Customer
Mgt

 Reservation
System

0 Billing
1
0 0 Hotel Mgt
3 0
0 0 0 Customer Mgt
4 0 0

Figure 4: Dependence Matrix for Hotel

Reservation System

All the components are independent of each other

as far as their definitions are concerned i.e. they do not
have any structural relationships. Except the
component Reservation System, other components are
not directly connected with one another. So their
behavior is also independent of others. Let us assume
that a structural change is to be introduced in billing
component, regarding the customer charging rules.
Using the algorithm (1.A), we can see that no
component is affected by this change, as in the matrix,
row corresponding to billing component has got 0
structural dependencies. Comparatively, if Li [3]’s
approach is applied in the same situation, then a
structural change in billing component will reportedly
affect reservation component, which is actually not the
case. Because, the structural change (not any change in
publicly exposed interface) in billing component is
confined within the implementation of the billing
component itself and should no way, affect the
reservation component. As such, the proposed
algorithm of our paper shows better results than Li
[3]’s in this aspect. For a change in the behavior of
billing component , as per (1.B) algorithm only
component reservation system may be affected, so
billing component has to provide an additional
interface for one component only. In addition to this
we can see that reservation system is more tightly
coupled with customer Mgt component as compared to
billing component.

6. Conclusion

In this paper, we have studied dependency analysis
in component based software systems from impact
analysis point of view. This can further help in
estimation of maintenance cost of software i.e. higher
is the impact of change in a part of the system; more is
the cost of implementing that change. A dependency
matrix based approach is proposed for recording the

interdependencies in software components. Algorithms
have been formulated to know the effect of a change in
a component of the system. It has been applied to a
simple system too, and the results show that impact
analysis is more correct than the existing approach
used for the same purpose.

References
[1] Cheesman, J., Daniels, J.: “UML components – A

Simple Process for Specifying Components”;
Component Software Series, Addison-Wesley.

[2] Crnkovic, L., Larson, M.: “Building Reliable
Component Based Software Systems”, Artech
House.

[3] Li,B.: “Managing Dependencies in Component
Based Systems Based on Matrix Model”,
Proceedings Of Net. Object. Days, 2003 -
netobjectdays.org available at
www.citeseer.ist.psu.edu/650086.html.

[4] Microsoft COM+, http://msdn.microsoft.com.
[5] Sanghal, N., Jordan, E., Sinha, V., and Jackson,D.:

“Using Dependency Models to Manage Complex
Software Architecture”, OOPSLA ’05, San Deigo,
California, USA.

[6] Stafford, J., Alexander, W.: “Architecture level
Dependence Analysis in support of software
Maintenance”, ISA W3, Orlando Florida, USA,
ACM press.

[7] Stafford, J., Richardson, D., Wolf, A.: “Chaining:
A Software Architecture Dependence Analysis
Technique”, Technical Report CU-CS-845-97,
department of Computer Science, University of
Colorado, USA

[8] Szyperski, C.: “Component Software: Beyond
Object-Oriented Programming”, Addison Wesley.

[9] Vigdar, M., Kark, A.: “Maintaining COTS based
Systems: Start with the Design", IEEE Computer
Society Press.

A suite of tools for the automation the management of the software process

Javier Berrocal, José Manuel García, Juan Manuel Murillo

Universidad de Extremadura

10071 Cáceres

{jberolm, jgaralo, juanmamu}@unex.es

Abstract

A proper management and the control of each

element of the software development process have

become very important to obtain high quality software.

However, with the rise of globalized software

development, these activities have become more

complex and, at the same time, more important, not

only to achieve high quality software, but also for the

success or failure of a project; so new tools better

adapted to these activities and environments are

needed. This has led us to develop a suite of tools that

facilitate and automate, as much as possible, the

management and control of software development in

distributed environments. Making the realization of

tasks easier and, thus, increasing the productivity of

each development team member, and building higher

quality software.

1. Introduction

In the last few years all the software companies

have greatly advanced in the development of better

quality products, but in the shortest time and lowest

cost possible. This evolution has been mostly directed

towards two areas: to improve the software processes

and to improve the business models.

In the past, a series of sequential processes were

carried out which had many problems, such as

overloading of some tasks, a higher price of the change

of the requirements, etc. [1]. Nowadays, by improving

the software processes, there are some iterative

processes such as RUP, XP, Scrum, etc. that focus on a

greater collaboration and communication between the

development teams and with the customers [2] to

obtain better products and a greater satisfaction of the

customers and the development team.

Also, the business models have changed towards a

higher industrialization and globalization of the

software process, seeking new models to achieve

higher productivity but with lower costs. With respect

to these models, the near-shore and off-shore factories

have prevailed, in which developments are made in

factories far from the customers, where the lower

standard of living allows for lower development costs.

However, the cultural differences, the time zone and

some difficulties with the management, the

coordination and the communication between the

development team members or with the customers are

the main handicaps for the success of the projects.

Moreover, these problems especially arise when these

models are combined with iterative processes, in which

collaboration and communication are key practices [3].

A good example of this is reflected in a recent survey

of the DR. Dobb’s Journal [4], which shows that the

offshore projects have a 42.7% success rate compared

with 71.5% for the projects done with agile

methodologies and on-site.

For these reasons, the software companies and the

research groups have been encouraged to seek and

build some kind of tool that reduces the problems

associated with geographic scattering and supports the

different tasks of the software process [5]. However,

the use of different tools for each task, which are

correlative or are very interrelated, entail the need of a

greater effort in their coordination. So, even though

they have begun to develop applications to coordinate

the different tasks of the development [6], they are

putting aside the integration with the tools for the

management of the development, which is a crucial

area to increase the quality of the products and the

success of the projects. For these reasons, in this paper

we propose a suite of tools which, besides supporting

and coordinating most of the tasks of the software

process, is also able to integrate and automate the

activities for the management and execution of all kind

of software processes in distributed environments,

although for the moment we are focusing more on its

adequacy for RUP. In this paper, besides presenting the

architecture of that suite, we are going to show an

example explaining how the different tools work

together.

With this suite of tools, a set of applications to

manage and control the software process is provided,

and with these the coordination and the management of

the process are improved and the independence of

location of each resource is achieved. In addition, we

are going to show how by integrating two of these

tools, one for the management and the other for the

execution of the software process, the automation and

agility of a large amount of the work of coordination

and management is achieved, increasing the

productivity and the quality of the development. These

advantages were obtained with the introduction of the

tools in the factory of Indra
1
 in Cáceres, too.

The rest of the paper is structured in the following

way: in section 2 we present some of the tools and

methodologies that exist at present, as well as the

motivation that leads us to present this work; in section

3 we describe the architecture of the suite of tools; in

section 4 we present an evaluation of the tools in real

cases; and, finally, in section 5 we present the

conclusions and further works.

2. Background and motivation

In the last few years, software development has

become a more industrialized practice, with

developments similar to the production chains where

the tasks are perfectly fixed and they are done by

certain resources with fixed roles. In this environment,

the management and coordination of each element of

the process are essential activities to increase, or at

least maintain, the quality of the software created.

However, even though there are a lot of applications

for the software process management, which even

manage to contemplate the globalization of

development (such as Jazz Team Concert [12]), they

don’t cover all the areas of the management, so, it is

necessary to use different tools to control each area

[6,13]. Therefore, the use of a lot of tools for the

management, coupled with the lack of integration

between them and with those that support the

collaboration and the completion of each task of the

software process, cause an increase in effort and a

decrease in productivity.

In addition to the industrialization of the software

process, companies are continuously evolving the

software processes that govern them, making them

more agile and efficient. But, as the software processes

evolved, we could see the need to document each of the

1 Indra is a software enterprise with more than 23000 employees,

and it has customers in more than 82 countries.

different practices being carried out, in order to be

properly transmitted to the entire development team,

because, without this information, we could fall into

some inconsistencies and lack of coordination when

carrying out certain practices. Thus, for documenting

and modeling these practices, some metamodels like

SPEM [7] and tools like Eclipse Process Framework

[8] have emerged. Nevertheless, while the software

development has been scattered, the control and the

management of the projects has appeared as a more and

more complex activity, and the documentation of the

process for the proper coordination and control of all of

the tasks is not enough. Thus, it is necessary to develop

methods and tools capable of automate the

management and the control of the software process.

In this way, in recent years many research groups have

developed method for the modeling of software

processes like workflows, using notations such as UML

Activity Diagram, BPMN, etc.; and the execution of

these workflows in some application, using similar

technology by which Business Processes of an

organisation are executed on a BPMS [9, 10, 11].

However, these studies were more oriented towards the

documentation and the execution of the software

process in order to automate some tasks of the process

or a part of the development, so they obviated the

utilization of this execution for automating and

expediting the management and coordination of the

development.

All of these problems have motivated us to build a

suite of tools that is capable of: on the one hand,

supporting (in an integrated fashion) all the work of the

software process management, making the job of the

control and the coordination of the activities of

development easier, and is able to execute the software

processes, which is used for automate much of the

work of management, and on the other hand, building a

subset of modules capable of supporting each of the

tasks of the iterative processes, and which are perfectly

coordinated among themselves and with the

management and process execution modules.

3. Architecture of the suite of tools

In Figure 1 the architecture of the suite of

implemented tools to support the management and

execution of the software process is shown, as well as

the set of modules used to do each task. As can be seen,

the architecture is divided into three layers, each of

which has a very clear set of responsibilities, and each

layer is also divided into different modules in charge of

carrying out specific responsibilities.

Figure 1. Architecture of the suite of tools

The first layer, Control Process Layer, is in charge

of doing an exhaustive control of the software

processes that govern the development company. To

carry out this control, the layer has three essential

modules to lead the software processes, which are:

 Software Process Modeling; this is a

subsystem used for modeling and

documentation of software processes. It is

based on the SPEM meta-model and the EPF

tool [7, 8]. But, SPEM only focuses on

providing the needed structures to model

software processes and it gives freedom to use

any standard (UML2, BPMN, BPDM, etc.) to

model its behavior. In this sense, EPF

implements the entire SPEM specification but

only allows the use of Activities Diagrams to

model its behavior. For this reason, we have

made an extension to model the behavior with

BPMN in the EPF, thus facilitating its

modeling like a business process and making

its further execution easier. Also it facilitates

the control of the existing variability in a

process when it is applied in different

projects, or when we want to focus more on a

specific discipline.

 Software Process Execution; this module is

for the execution of the software process

models. We have based this execution on the

BPMS technology but we have made some

adaptations to fulfill the specific

characteristics of the software process

execution; it is in this BPMS where the

software processes can be run, due to the

previous model in BPMN of the behavior with

the Software Process Modeling tool. With this

execution a greater automation and agility in

the management and in the coordination of

each process’s element is achieved.

 Software Process Management; this module is

in charge of monitoring and managing each of

the elements involved in the software

development, making the tracing of the

projects and the resources easier and

generating a large amount of statistics (such as

the status of each task, the time of execution,

the workload of each resource, etc.) which

could be used to do an evaluation of the

situation or for making future decisions.

The last layer, Development Layer, contains each of

the necessary tools to carry out each of the tasks and

activities for the development. Thus, this layer has two

essential modules that are responsible for covering all

the development areas, they are:

 Case Tools; a set of plug-ins based on the

Eclipse IDE that support each of the activities

of the software process, through which

methods to automate them as much as possible

are provided, facilitating their synchronization

and consistency with the existing information

and maintaining the traceability throughout

the entire lifecycle of a project.

 Documentation; a tool based on a Wiki that

has been specially adapted for the software

development, with which any kind of artifact

or document generated from the tasks of the

development can be maintained and

synchronized.

The middle layer, the Coordinator Layer, is in

charge of abstracting and granting technological

independence between the other two layers. This is a

very important issue because the control of the

software process and the realization of each task are in

very close ambit with a lot of relationships among

them, where a proper integration between both areas is

crucial to expedite the development as much as

possible; but at the same time, each tool in each area

must be sufficiently independent to allow that changes

in one area do not adversely affect others. To carry out

this isolation, the module of this layer is:

 Tool Coordinator; this module grants the

isolation and technological independence

between the others layers, allowing it to

evolve and modify the functions of a layer

without having to make changes in the others.

And, at the same time, it is in charge of

coordinating and controlling all the modules

of each layer to work together, making the

tasks more agile and automating as many

activities as possible.

To explain the different functionalities and

operations of each of the above modules more clearly,

in paragraph 3.1 we show an example of how to use all

of them; nevertheless, we are going to focus on

showing and explaining in more detail how the Control

Process Layer modules works.

3.1. An example of use of the suite of tools

To see more clearly how these tools are coordinated

to develop software, and specially how the Control

Process Layer modules work together, Figure 2 shows

a generic example for any process and project driven

by use cases. If we would like to use another process

we would only have to define the set of tasks and the

artifacts generated during the development.

Figure 1. Example of software building with the set of

tools.

For any software company, whether they are

distributed or not, it is advisable document the software

process and the practices that have to be followed for

each project to ensure a better coordination between

tasks and between resources and to provide a greater

knowledge of the process to all members of the

development team. In this way, before the development

of a new project starts, an activity that should be done

is to model and define the software process that will be

followed during all the development. Because of this,

the module Software Process Modeling is used, which

is able to model the software process with SPEM and

its behavior with BPMN. However, even if modeling

the entire software process for each project could

appear to be a complex and tedious task, the reality is

that normally software companies have perfectly

modeled and documented the software process that

they follow, therefore this process can be used like a

template that can be easily adapted to cover the

variability of each project, in the event that it is

necessary.

Afterwards, once the software process to follow is

modeled or adapted, apart from for documentation, it

can be executed in a BPMS, only if it is made with

BPMN. Thus, once modeled, this process is deployed

in the Software Process Execution to be run. Through

this execution we can follow the sequentiality of each

task inside the process and coordinate and control what

task is being done in every moment, which has to be

the next, which is the status of each task or sub-

process, etc. In addition, it makes the jobs related to the

coordination, control and management of the process

easier, because, through the execution, it is possible to

automate a large number of activities, such as inserting

tasks in the management module (because it knows

when each task starts), updating the status of each task

(because it knows its situation), allocating the task to

the resource with the least workload (reading the

workload of each resource from the management tool),

etc. But the BPMS not only coordinates the work from

the model made, but also the software process and its

execution are adjusted while the project progress,

thereby hugely increasing the flexibility of the process

and the tool. To do this adaptation, the BPMS is able to

read and evaluate the results and artifacts generated at

the end of each task, and especially when these tasks

are done using the tools built for that purpose (module

4 and 5); once the results are evaluated, the process is

adjusted to be in keeping with the status of the project.

Therefore, for example, if we are following a process

driven by use cases, once the Use Case Diagram is

made (which is the result of a task of the process), the

BPMS reads that diagram and creates, for each use

case, an instance of a sub-process which controls the

status and directs its development until the end of the

use case.

At the same time that the process is executed in the

BPMS, an efficient administration and management of

each project and each element of this project becomes

necessary for the proper control of the development,

because this information could be crucial for the

success or failure of a project, mostly when its size is

increased or the development is made in more complex

environment like distributed environments. To carry

out all the common administration and management

activities, but in an integrated way and in the same

environment, the module Software Process

Management is used, which from the moment that the

project starts, begins to administer and register all the

important information for the development. But, this

module is also able to obtain the information in a

manual way, by the members of the development team,

or in an automatic way, being extracted and caught

from work carried out by the other modules, such as the

BPMS. Moreover, this module has more functionalities

which differentiate it from many of the other

management applications, such as: facilitating statistics

and functionalities oriented to software factory

management (showing statistics about the manpower

that has been estimated and invested, differences

between estimation and real-time invested, etc), making

the documentation of the management and the software

process activities easier (through the integration with

the documentation module, which allows the auto-

creation of documents and a better collaborative editing

of these), a prefect traceability since a requirement is

inserted until its source code is created (due to the

implementation of a plug-in for Eclipse) and, through

its integration with the Software Process Execution

module, allowing the automation of the most activities

and making the rest of activities for project

management more agile.

Finally, to perform all tasks in a coherent and

consistent way, the different tools that are used to carry

them out have to be perfectly coordinated and working

together, achieving: a greater efficiency to made each

task and in turn a greater flexibility of the process,

because the results are used by the Software Process

Execution module to adapt the process. To obtain this

coordination the module Tool Coordinator is used,

which is in charge of, firstly, coordinating the different

tools used to make each activity of the process and,

secondly, isolating them in order to evolve or modify

some functionalities without effecting the others.

4. Tools evaluations

In the last few sections we have shown the

theoretical benefits of using this suite of tools, but what

is really important is the validation of these benefits in

real environments. To that end, this suite of tools has

been deployed at the factory owned by Indra in

Cáceres, providing a perfect environment to test all the

features in situations of real development.

For the testing of the suite of tools, we began by

checking its functionalities in the development of small

projects that were carried out completely in the factory,

where the interactions with other factories were only to

know the state of development. In this situation, the

members of these projects ratified the benefits listed

above, including: the factory manager emphasized its

usefulness to obtain deeper knowledge about the

utilization and profitability of the factory, facilitating

awareness of how to improve this; the project leaders

highlighted its utilization to achieve a better

coordination and management of the projects and a

better traceability and control of each task; and the

analyst detailed a better use of the manpower and an

increase in the productivity of each user and their

satisfaction.

Once the tools were tested in small projects and the

profits were demonstrated, we began to incorporate

larger projects whose developments involved several

factories. In this situation, the profits were similar to

smaller projects; however there were some problems

with the coordination between the different factories,

which were mainly because the tools were only being

used in the factory in Cáceres. Once we began to

deploy the tools in the rest of factories most of the

problems were solved.

Once that all the tests were finished, the results

obtained by us, as well as those transmitted by the

company to us, have been very positive, so now we

have started to evaluate the use of these tools in a

larger number of projects, as well as projects where the

offshore model is applied.

5. Conclusions and further work

In the last few years the software companies have

improved both the software processes that govern them

and the business models that manage them with the

purpose of developing higher quality products but in

the shortest time and lowest cost possible. However,

these evolutions have some handicaps that threaten the

success of the projects, such as difficulties in

communication, coordination and control of the

software. In order to solve these problems, a tools suite

has been shown, in this paper, which can cover

everything from the documentation and modeling of the

software process to the management and control of

each task of the development. Finally, we have shown

how the integration of these tools is the best method to

automate most of the management activities and

increase the flexibility supported by the execution.

Applying these tools to scatter environments, the

most important benefits are: a better coordination of

the different tasks and resources involved in the

software process (even reaching the automation of

some of the functionalities of this coordination) and an

improvement of the coordination and collaboration

between the development members, because they know

the interactions between each task, and between tasks

and resources better.

However, the work done in both tools is not

finished yet; we still have to add new functionalities to

cover more characteristics of distributed environments.

Some of the planned improvements are:

1. Even if at the moment we can follow the

traceability of each requirement of the product

built, we have to include some methods that

allow to us follow this traceability in a

graphical form, facilitating the tracing of each

element of the project and their changes.

2. Develop a plug-in to do transformations from

software process modeled with EPF in UML

Activity Diagrams to BPMN and BPEL. So

the software processes modeled with EPF will

not require remodeling effort.

3. Since the BPMS is able to coordinate and

monitor all users, it can also be a particularly

useful way to improve communication

between them. Therefore, one of the goals for

the future is to adapt the BPMS to improve

methods of communication between users.

6. Acknowledgments

This work has been financed by the projects PRI

2PR04B011 and CICyT TIN2005-09405-C02-02

7. References

[1] C. Larman. Agile & Iterative development: a manager’s

Guide. Adison Wesley, December 2005. ISBN 0-13-111155-

8

[2] Agile Manifesto, http://agilemanifesto.org/

[3] S. W. Ambler and K. Nizami. “Agile Strategies for

Geographically Distributed Quality Management”. December

2007. http://www.agilejournal.com

[4] S. W. Ambler. “IT Projects Success Rates Survey”.

August 2007.

http://www.ambysoft.com/surveys/success2007.html

[5] G. Booch and A. Brown. “Collaborative Development

Environments”. Advances in Computers Vol. 59, Academic

Press, August 2003.

[6] V. Sinha, B. Sengupta, S. Gosal. “An adaptative tool

integration framework to enable coordination in distributed

software development”. Proceeding of the International

Conference on Global Software Engineering. pp. 151-155.

August 2007.

[7] SPEM: Software Process Engineering Metamodel 2.0

Beta 2. http://doc.omg.org/ptc/2007-11-01

[8] Eclipse Process Framework (EPF).

http://www.eclipse.org/epf/

[9] D. Riesco, D. Romero. “Un Workflow que Automatice

los Procesos de Negocios del Proceso Unificado Rational”.

VI Workshop de Investigadores en Ciencias de la

Computación. May 2004

[10] D. Romero, M. Uva. “De los procesos de desarrollo a la

definición de procesos de un workflow”. Argentine

Symposium on Information Systems. August 2005.

[11] R. Bendraou, B. Combemale, X. Crégut, M.P. Gervais.

“Definition of an Executable SPEM 2.0”. Proceedings of the

14th Asia-Pacific Software Engineering Conference

(APSEC'07) – Vol. 00. pp 390-397. 2007

[12] Jazz Team Concert. Beta 2. http://jazz.net/pub/index.jsp

[13] J.J. Berrocal, J.M. García, J.M. Murillo. “Hacia una

gestión del proceso software dirigida por procesos de

negocio”. I Taller sobre Procesos de Negocio e Ingeniería del

Software. September 2007. ISSN 1988-3455

[14] B. Sengupta, S. Chandra, V. Sinha. “A research agenda

for distributed software development”. ICSE, Shanghai,

2006, pp 731-740.

[15] Best Practices.

http://www.w3.org/2001/sw/BestPractices/SE/

[16] F. Maurer, B. Dellen, F. Bendeck et al. “Merging

Project planning and Web enabled dynamic workflow

technologies”. Internet Computing, IEEE, Volume 4, Issue 3,

May-June 2000, pp 65-74

[17] Parvathanathan, K., Chakrabarti, A., Patil, P.P., Sen, S.,

Sharma, N., and Johng, Y.B. (2007). Global

Developmentand Delivery in Practice: Experiences of the

IBM Rational India Lab

[18] M.Cataldo, M. Bass, J.D. Herbsleb, L.Bass. “On

coordination mechanisms in Global Software Development”.

Proceeding of the International Conference on Global

Software Engineering. pp. 151-155. August 2007.

[19] UML. http://www.uml.org/

[20] Eclipse. http://www.eclipse.org/

[21] BPMN. http://www.bpmn.org/

[22] BPEL. http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsbpel

[23] Apache ODE. http://ode.apache.org/

[24] Intalio Tempo. http://tempo.intalio.org/

[25] Zentipede. http://www.zentipede.org

http://agilemanifesto.org/
http://www.agilejournal.com/
http://www.ambysoft.com/surveys/success2007.html
http://doc.omg.org/ptc/2007-11-01
http://www.eclipse.org/epf/
http://jazz.net/pub/index.jsp
http://www.w3.org/2001/sw/BestPractices/SE/
http://tempo.intalio.org/

TESNA: A Tool for Detecting Coordination Problems

Chintan Amrit, Jos van Hillegersberg
Department of IS&CM
University of Twente

{c.amrit, j.vanHillegersberg}@utwente.nl

Abstract

Detecting problems in coordination can prove to

be very difficult. This is especially true in large
globally distributed environments where the Software
Development can quickly go out of the Project
Manager’s control. In this paper we outline a
methodology to analyse the socio-technical
coordination structures. We also show how this can be
made easier with the help of a tool called TESNA that
we have developed.

1. Introduction

Coordination in large scale software development is
a very difficult [1, 2] . The coordination problem is
further multiplied in a globally distributed scenario
[3].
Some of these coordination problems can be solved by
following best practices. An example of such a best
practice is what has come to be known as Conway’s
Law [4]. Conway [5] states, organizations which
design systems are constrained to produce designs
which are copies of the communication structure of
these organizations. Since Conway, researchers have
invented various more detailed patterns which
describe the preferred relationships between team
communication structure (the social network) and
technical software architecture [6]. We call such
patterns Socio-Technical Patterns [7]. In addition to
the classic law by Conway, various Socio-Technical
patterns, including those from Coplien et al. [6] have
been documented. However, these patterns have not
been extensively validated empirically and can be hard
to implement. The lack of empirical validation makes
it complex for the project manager to decide on which
Socio-Technical patterns to apply to his project. We
provide the possibility to detect Socio-Technical

Coordination problems (that we call STSCs) and also
validate such Socio-Technical Patterns with the help
of the TESNA tool and method we have developed. In
this paper we show how the method and tool of
TESNA works in more detail.

2. TESNA Method

As defined in [7] an STSC or Socio-Technical
Structure Clash occurs if and when a Socio-Technical
Pattern exists that applies to the actual social network
of the software development team and the technical
dependencies within the software architecture under
development. STSCs are indicative of socio-technical
coordination problems in a software development
organization. Some of these problems (or STSCs)
concerning development activities have been collected
and described by Coplien et al. [6] including a set of
what they call Process Patterns to deal with some of
these coordination problems. As the term process
patterns is also used in business process management
and workflow, we prefer to use the term Socio-
Technical Patterns to refer to those patterns involving
problems related to both the social and technical
aspects of the software process.

We claim that continuous and early detection of
STSCs can help project managers in monitoring the
software development process and enable the
managers to take actions whenever a STSC occurs.

Figure 1 represents the overview of the method
behind TESNA. Our motivation is that when
implementation and monitoring of patterns is
enhanced, empirical validation of patterns will also
become feasible. We provide a Method and Tool called
TESNA that can improve the system development by
regularly monitoring the software development project
and alerting in case of a STSC.

mailto:@utwente.nl

Figure1. Socio-Technical Structure Clashes and the planned Software Process

The Project Manager (who is implicitly present in

Figure 1) decides which STSC to look for in Technical
Software and Social Network diagrams that is shown
with the help of TESNA. TESNA makes it easy for the
Manager to detect STSCs and he/she can then decide
if the problem is severe enough to warrant a change in
the Planned Software Process and Architecture.
For this tool and method to work, we need a data
structure for storing the Technical dependencies as
well as the social network connections. We
accomplish this by using what are known as
Dependency Structure Matrices.

3. Dependency Structure Matrix Overview

Since the concept of the Design Structure Matrix
was first proposed by Steward [8, 9], Dependency
Structure Matrices have been used in engineering
literature to represent the dependency between tasks.
A DSM highlights the inherent structure of a design
by examining the dependencies between its component
elements in a square matrix [8, 10].

Morelli and Eppinger (1995) describe a way
comparing the predicted and actual communication in
an organization [11]. Sosa Eppinger et.al.(2002)[12]
describe factors that influence the frequency of
communication and choice of media in a Sosa,

geographically distributed development organization.
In a different study Eppinger and Rowles (2003) [13]
compare the DSM formed through the interation of
system components with the DSM of the technical
interactions among team members. Sosa, Eppinger
and Rowles (2004) [14], highlight the factors that
impact the misalignment of the product and the
organizational structures.

Figure 1 shows an example of a simple DSM. The
letters A-E, on both axis of the matrix, represent tasks.
An ‘x’ in location (a,b) of the matrix means that the
task of row a depends on the task in column b.
Dependencies below the gray diagonal represent ‘feed
forward information’, while tasks above the diagonal
represent feedback, for example, task E gives feedback
on task C. In this example, tasks A and B depend on
each other.

Figure 2. Example of a DSM

MacCormack et.al. (2006) [15] compare the DSMs of
a commercial and a pure open source project and
show how the structure of the code in the projects
reflects the organizational structure that created it,
much like what Conway said in his paper[5]. More
recently Li et al. [16] use dependency matrices to
analyze dependencies between components in a CBS.
While Cataldo et.al. [17] show how DSMs can be used
to predict coordination in a software development
organization and then they compare the predicted
coordination DSM with the actual communication
DSM.

4. TESNA Tool Functionality

The tool TESNA consists of three modules namely the
Social Structure, Technical Structure and the Socio-
Technical Structure analysis modules. The tool uses
the DSM data structure to analyse each of the different
structures and

4.1 Social Structure Analysis

To analyse the Social Structures TESNA can construct
and analyse metrics from logs of chat messages (from
a chat server like Jabber). Moreover, TESNA displays
the different metrics of the social network over a
period of time. We have used this option to detect the
Betweenness centrality match pattern [7] by
calculating the betweenness centrality of the social
networks over the period under study.
TESNA can mine bug tracking websites (like Mantis)
to gather data on the social thread of responses for
each bug posted. We have used this feature on a
corporate case (eMaxx discussed below) that we are
currently studying.

Figure 3 Social Network from the eMaxx case

In order to display the social network got through
mining these repositories TESNA uses libraries from
the Java Universal Network/Graph Framework
(JUNG)[18], an open source library widely used by
Network researchers. The display of the social
network from the eMaxx case is shown in Fig 3. Here,
each of the nodes represents a member of the social
network (whose name is indicated by the label next to
the node) and the thickness of the line between the
nodes represents the number of messages exchanged
between the people represented by the nodes. The
more the number of messages are the thicker the line
gets.

4.2 Technical Structure Analysis

To analyse the Technical Structures TESNA can read
the source code file and construct the call graph of the
software. At present, the tool supports reading java
code files (jar files) to determine the technical
dependencies between the different components or
modules of the software. TESNA again uses
JUNG[18] to display the call graph of the software as
shown in Figure 4.

Figure 4: Call Graph of Jython

Figure 4 represents the Call Graph or the dependency
graph of an open source project called Jython. Each
red node represents one java class object of Jython. As
this Call Graph is already quite complex, we don’t
display the names of the class objects and instead use
the tool tip if the user hovers above interesting areas of
the Call Graph. We will show later how we reduce this
complexity further by clustering the Call Graph.

4.3 Socio-Technical Structure Analysis

TESNA can mine version control systems like CVS
and SVN and find out the Socio-Technical
Dependencies (the people working on the different
parts of the software). TESNA uses JUNG to display
the developer code network as shown in Figure 5.

Figure 5: The developer code Socio-Technical

Network of Jython

 The red nodes in Figure 5 represent the software class
objects that the developers, represented by the blue
nodes have last modified. The names of the developers
are displayed by the labels next the nodes. This
graphic representation uses the normal bipartite graph
functionality of JUNG. So, the links between the class
objects are not displayed. Such a complex graph can
provide us with limited information, for example,
which developer modified how many files. Using the
tool tips of the red class objects one can find out the
names of the class objects and in-turn find out which
developer modified which class object. As we will
show later TESNA reduces the complexity of this
graph by clustering the class objects and then
displaying the developers working on the different
clusters. We further combine the network of
dependencies of the class objects with the network of
the developers working on the different class objects
(as described in the Chapter on the DSM approach).
We thus come up with the graph of the developer
dependencies. Figure 6 shows the developer
dependencies of the Jython project. The red nodes
represent the developers working on the different
modules of Jython and the directed links represent the
dependency, for example bedronis is dependent on
bckfnn and vice versa

Figure 6: The developer dependency graph of

Jython

TESNA displays the people dependencies (Figure 6)
based on whether people are working on the same or
dependent modules [17] and can compare this with the
social network of the developers in order to detect
Conway’s Law STSC [7].

Figure 7: The Clustered Socio-Technical

Network of Jython

5. The TESNA Visualization

Large graphs can cause problems of usability and
discern-ability. Though, large graphs can give an
indication of the overall structure or that of some
location within it, in general the display of large
graphs makes them difficult to comprehend. It follows
that it is easier to comprehend and perform a detailed
analysis of graph structures when the size of the graph
is small [19]. In response to the need to make the
graphs especially Figures 4 and 5 more
understandable we cluster the graphs. For clustering

we use the algorithm by Fernandez[20] and used by
MacCormack et al. [15]. We cluster the graphs into a
fixed number of 9 clusters according to the golden 7
plus or minus 2 rule for human comprehension [21].
The clustering is done with the help of a DSM
Clustering tool that we have developed [22]. Figure 7
is a representation of the Jython call graph clustered
into 9 clusters along with the developers who have
modified classes in different clusters. We also show
the dependencies that exist among the clusters. Such a
clustered display can enable a more easy detection of
different STSCs [23].

6. Discussion

The visualizations created by TESNA help the Project
Manager in identifying STSCs. Once the STSCs are
identified the Project Manager can decide whether the
current development process needs to be changed. We
have tested this methodology in multiple case studies.
Among the case studies, we have conducted two case
studies in a corporate environment namely Mendix [7]
and eMaxx (forthcoming publication). We have also
conducted multiple case studies studying Open Source
STSCs [23] and have got a few interesting insights
into how STSCs in the open source environment
differs from Corporate environment.

7. Other TOOLS

There are a few tools available to display the social
network as well as the social call graph.
Augur is a visualization tool that supports distributed
software development process by creating visual
representations of both the software artefacts and the
software development activities [24]. de Souza et al.
[25] are developing a tool called Ariadne that checks
dependency relationships between software call
graphs and developers. Also there is a tool under
development for forecasting dependencies between
developers in a Dynamic/iterative environment [17].
The limitation of these tools is that they check for only
one particular STSC, namely the Conway’s Law
STSC.

REFERENCES

1. Kraut, R., E. and L. Streeter, A. ,

Coordination in software development, in
Commun. ACM. 1995: New York, NY, USA.
p. 69--81.

2. Curtis, B., H. Krasner, and N. Iscoe, A Field-
Study of the Software-Design Process for
Large Systems. Communications of the Acm,
1988. 31(11): p. 1268-1287.

3. Herbsleb, J.D. and D. Moitra, Global
software development. Software, IEEE, 2001.
18(2): p. 16-20.

4. Herbsleb, J., D. and R. Grinter, E. , Splitting
the organization and integrating the code:
Conway's law revisited, in ICSE '99:
Proceedings of the 21st international
conference on Software engineering. 1999:
Los Alamitos, CA, USA. p. 85--95.

5. Conway, M., How do Committees Invent, in
Datamation. 1968. p. 28-31.

6. Coplien, J., O. and N. Harrison, B. ,
Organizational Patterns of Agile Software
Development. 2004: Upper Saddle River, NJ,
USA.

7. Amrit, C. and J. van Hillegersberg, Detecting
Coordination Problems in Collaborative
Software Development Environments.
Information Systems Management, 2008.
25(1): p. 57 - 70.

8. Steward, D., The design structure system: a
method for managing the design of complex
systems. IEEE Transactions on Engineering
Management, 1981. 28(3): p. 71-74.

9. Steward, D.V., Partitioning and tearing
systems of equations. SIAM J. Numer. Anal,
1965. 2(2): p. 345-365.

10. Eppinger, S.D., et al., A model-based method
for organizing tasks in product development.
Research in Engineering Design, 1994. 6(1):
p. 1-13.

11. Morelli, M.D., S.D. Eppinger, and R.K.
Gulati, Predicting technical communication
in product development organizations.
Engineering Management, IEEE
Transactions on, 1995. 42(3): p. 215-222.

12. Sobol, M.G. and U. Apte, Domestic and
global outsourcing practices of America's
most effective IS users. Journal of
Information Technology, 1995. 10(4): p. 269-
280.

13. Sosa, M.E., S.D. Eppinger, and C.M. Rowles,
Identifying Modular and Integrative Systems
and Their Impact on Design Team
Interactions. Journal of Mechanical Design,
2003. 125: p. 240.

14. Sosa, M.E., S.D. Eppinger, and C.M. Rowles,
The Misalignment of Product Architecture

and Organizational Structure in Complex
Product Development. J Manage. Sci., 2004.
50(12): p. 1674-1689.

15. MacCormack, A., J. Rusnak, and C.Y.
Baldwin, Exploring the structure of complex
software designs: An empirical study of open
source and proprietary code. Management
Science, 2006. 52(7): p. 1015-1030.

16. Li, B., et al., Matrix-based component
dependence representation and its
applications in software quality assurance, in
ACM SIGPLAN Notices. 2005: New York,
NY, USA. p. 29--36.

17. Cataldo, M., et al., Identification of
coordination requirements: implications for
the Design of collaboration and awareness
tools, in Proceedings of the 2006 20th
anniversary conference on Computer
supported cooperative work. 2006, ACM
Press: Banff, Alberta, Canada.

18. Madadhain, J.O., et al., The JUNG (Java
Universal Network/Graph) Framework, in
Technical Report UCI-ICS 03-17 2005,
University of California, Irvine.

19. Herman, I., et al., Graph visualization and
navigation in information visualization: A
survey

Graph visualization and navigation in information
visualization: A survey. Transactions on
Visualization and Computer Graphics, 2000.
6(1): p. 24-43.

20. Fernandez, C.I.G., Integration Analysis of
Product Architecture to Support Effective
Team Co-location. ME thesis, MIT,
Cambridge, MA, 1998.

21. Miller, G.A., THE MAGICAL NUMBER
SEVEN, PLUS OR MINUS TWO: SOME
LIMITS ON OUR CAPACITY FOR
PROCESSING INFORMATION.
Psychological Review, 1956. 63(2).

22. Hegeman, J.H. Towards a Comprehensible
Representation of Software Development
Tasks. in Twente Student Conference. 2007.
University of Twente.

23. Amrit, C., J.H. Hegeman, and J. van
Hillegersberg. Exploring Coordination
Structures in Open Source Software
Development. in 1st Workshop on Tools for
Managing Globally Distributed Software
Development. 2007. Munich, ICGSE 2007:
Centre for Telematics and Information
Technology (CTIT).

24. Froehlich, J. and P. Dourish, Unifying
Artifacts and Activities in a Visual Tool for
Distributed Software Development Teams, in
ICSE '04: Proceedings of the 26th
International Conference on Software
Engineering. 2004: Washington, DC, USA.
p. 387--396.

25. de Souza, C., R. B., et al., Sometimes you
need to see through walls: a field study of
application programming interfaces, in
CSCW '04: Proceedings of the 2004 ACM
conference on Computer supported
cooperative work. 2004: New York, NY,
USA. p. 63--71.

