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Abstract

Order acceptance decisions in manufacture-to-order environments are often

made based on incomplete or uncertain information. To promise reliable due

dates and to manage resource capacity adequately, resource capacity loading

is an indispensable supporting tool. We propose a scenario based approach

for resource loading under uncertainty that minimises the expected costs. The

approach uses an MILP to find a plan that has minimum expected costs over

all relevant scenarios. We propose an exact and a heuristic solution approach to

solve this MILP. A disadvantage of this approach is that the MILP may become

too large to solve in reasonable time. We therefore propose another approach

that uses an MILP with a sample of all scenarios. We use the same exact and

heuristic methods to solve this MILP.

Computational experiments show that, especially for instances with much

slack, solutions obtained with deterministic techniques for a expected scenario

can be improved with respect to their expected costs. We also show that for

large instances the heuristic outperforms the exact approach given a computa-

tion time as a stopping criterion.

Keywords: multi resource loading, stochastic optimisation, modeling uncer-
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tainty, scenario planning

1 Introduction

Many manufacture-to-order companies face uncertainties at the order accep-

tance stage. Orders may vary significantly with respect to routings, material,

tool requirements, etc. In spite of the uncertain order characteristics, order

accept/reject decisions must be made. It is common practice that companies

accept as many orders as they can get, although it is very difficult to estimate

the impact on the operational performance of the production system. This may

lead to serious overload of resources, which has a negative impact on order

completion times. On the other hand, customers require reliable order due

dates as part of the service mix offered by the company during order negotia-

tion. Being able to quote reliable due dates is a competitive advantage during

order acquisition. Therefore, at the order negotiation and acceptance stage,

adequate planning methods that assess the consequences of order acceptance

decisions for the production system are essential. Planning methods that are

designed for the operational planning level are not suitable for this purpose.

Operational planning / scheduling methods require detailed information about,

e.g. processing times, precedence relations between operations, and resource

requirements. This detailed information is often incomplete or not available

during the order acceptance stage. This incorporates a lot of uncertainty. Nev-

ertheless, at the tactical planning stage, there is more capacity flexibility (e.g.

working in overtime) than at the operational planning level. Tactical planning

requires methods that operate at a higher planning level, the tactical planning

level, that use more aggregate data, and that can utilise capacity flexibility.

Capacity flexibility is an important characteristic of the tactical planning

level. Ideally, methods at this planning stage should utilise this flexibility to

support a planner in making a trade-off between the expected delivery perfor-

mance and the expected costs of using nonregular capacity. In the remainder

of this paper we will refer to such methods as Flexible Resource Loading (FRL)

methods. Several exact and approximate FRL methods have been proposed,
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which use deterministic input data and assume deterministic behaviour of the

production system (see e.g. Hans, 2001). These deterministic approaches gener-

ally either focus on optimisation of time criteria (tardiness, lateness, makespan,

etc.), or money criteria (costs, profit), since these are easily quantifiable. Un-

fortunately these methods hardly deal with uncertainty. As argued before, data

may be highly uncertain, especially in the order acceptance stage. Deterministic

planning may result in unreliable and nervous plans.

In this paper we propose a model that minimises expected costs of Flex-

ible Resource Loading problems under Uncertainty (FRLU). This model is a

generalisation of the FRL model. We use scenarios to model uncertainties that

are typical for the tactical planning level. We propose an exact and a heuristic

algorithm to solve this FRLU model over all scenarios, or over a sample of all

scenarios.

The paper is organised as follows. In section 2 we position our research,

and discuss related work about planning and optimisation under uncertainty.

In section 3 we describe the FRLU problem. In section 4 we propose a scenario

based MILP model. In section 5 we discuss two solution approaches for the

scenario based model. In section 6 we present computational results. Finally,

we draw conclusions in section 7, and give directions for further research.

2 Research positioning and literature

We position our research and discuss related work about planning under uncer-

tainty using a hierarchical planning framework with 3 levels, which are generally

distinguished in the literature (Bitran and Tirupati, 1993):

• Strategical planning

• Tactical planning

• Operational planning

To position FRLU at the tactical planning level we discuss the major dif-

ferences with the other planning levels in this section.
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Strategical planning involves long-term decisions made at the company man-

agement level. It addresses problems like facility location planning, workforce

planning and product mix planning. Strategical planning problems are often

solved using LP techniques, see Hopp and Spearman (1996). They typically use

demand forecasts as planning input. These forecasts are a considerable source

of uncertainty. An example of a strategical planning technique that accounts for

these uncertainties is, for instance, the multi stage LP technique proposed by

Eppen, Martin and L. (1989). Escudero et al. (1993) propose scenario based LP

techniques for production planning problems with unknown product demands.

The main characteristic of strategic planning is that it does not assume any in-

formation about customer orders, but instead uses demand forecasts that yield

aggregate data about the future demands.

Tactical planning is concerned with allocating available resources to arriv-

ing/accepted customer orders as efficiently as possible and determining reliable

due dates for these orders. At this medium term planning stage, generally only

rough order data is available, such as estimated processing times of jobs and

some a priori precedence relations. Especially in a manufacture-to-order envi-

ronment uncertainty at the order acceptance stage is still considerably large.

The FRLU problem concerns assigning jobs to resource capacity buckets in

time periods. Regular capacity levels are fixed, and nonregular capacity (out-

sourcing, working overtime and hiring additional personnel) provides capacity

flexibility. Using this nonregular capacity invokes additional costs.

Literature on deterministic tactical planning / FRL is rather scarce. The

aforementioned LP based strategic planning methods are not suitable for FRL,

because they do not account for precedence relations between jobs. Scheduling

techniques are not suitable for the tactical planning level either. While they do

account for precedence relations, too much detailed data is required, which is

generally not readily available at the tactical planning stage. Moreover, they

generally can not utilise capacity flexibility. Especially in manufacture-to-order

environments detailed order information becomes available during detailed de-

sign and process planning, which is generally performed after order acceptance.
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Hans (2001) proposes a branch-and-price approach to solve the FRL prob-

lem. Gademann and Schutten (2001) propose an LP based heuristic, and

De Boer (1998) propose an adaptive search approach for the tactical planning

problem. All these methods use deterministic input data.

At the tactical planning stage, the lack of detailed information about jobs

forces a planner to deal with uncertainties to be able to quote, for instance,

reliable due dates. Models that anticipate and deal with uncertainty on the

tactical level have not been developed yet.

Operational planning concerns the short term scheduling of operations on

resources. The scheduling objective is generally time related. At this plan-

ning stage resource capacity is generally considered as fixed, which means that

there is hardly flexibility to absorb disruptions. The only possibilities are per-

haps to plan slack, or to reschedule. Consequently, uncertainties may result

in nervousness of the schedules created with deterministic input data. Hence,

dealing with uncertainty in scheduling has gained the interest of researchers in

the past decades. Herroelen and Leus (2002) distinguish five main approaches

of scheduling under uncertainty: reactive scheduling, stochastic project schedul-

ing, stochastic project networks, fuzzy project scheduling and proactive/robust

scheduling. The first and the second approach are online scheduling techniques

that respectively reoptimise the schedule after a disturbance, or develop an

optimal policy (e.g. Moehring, 2000) for situations of disturbances. In both

approaches decisions are made whenever information about disturbances be-

comes available. Stochastic project networks deal with projects with a stochas-

tic evolution structure of the activity network. This means that it is unknown

in advance which activities are going be executed, and for how many times.

Because of the high computational requirements of the methods, analysis of

stochastic project networks is often performed by simulation. For more de-

tails about stochastic project networks we refer to Neumann and Zimmermann

(1979). Fuzzy project scheduling is based on the assumption that activity du-

rations rely on human estimations. Hapke and Slowinski (1996) propose a

priority based scheduling heuristic using fuzzy number theory . Finally, Her-
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roelen and Leus (2002) distinguish proactive/robust scheduling as an approach

for scheduling under uncertainty. The main goal of proactive/robust schedul-

ing is to generate a robust schedule. Herroelen and Leus propose a pairwise

float model, which is a mathematical programming technique to develop stable

(robust) baseline schedules. They aim to minimise the difference between the

start times of the realisation and the initial schedule. Other proactive schedul-

ing techniques are often based on the insertion of idle times, slack or buffers.

An example of such an approach is the critical chain approach proposed by

Goldratt (1997).

Summarising, we observe that research on production planning under un-

certainty mainly focusses on the strategical or the operational level. As far

as we know, no stochastic optimisation method for the tactical planning level

have been proposed in the literature. Tactical planning methods that have been

found in literature assume deterministic input data, which we believe is a highly

questionable assumption, especially in environments with much uncertainty.

3 Problem description

Flexible Resource Loading under Uncertainty (FRLU) addresses the problem

of assigning a set of jobs, generated by a list of customer orders considered

for acceptance, to a number of resource groups. Capacity levels are flexible

because of the possibility to plan nonregular capacity against additional costs.

Problem parameters like processing times or capacity levels can be uncertain.

The objective is to plan the orders in such a way that available resources are

used as efficiently as possible, customer order due dates are met, and the plans

are insensitive to uncertainty.

There are n orders that consist of jobs or work packages, which must be

processed for a given processing time on one or more resource groups. We

consider m independent resources. Each order j consists of nj jobs (index b)

with generic precedence relations. An order can start from its release date (rj)

and must be completed before its due date (dj). Job (b, j) is performed on
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resource group µbj for a given positive processing time pbj . The parameter ωbj

indicates the minimum duration for each job (b, j) in periods.

The basic idea of our scenario based approach is as follows. At the tactical

planning stage, many order characteristics and resource characteristics, such as

processing times, precedence relations, occurrence of a job, resource capacity,

or material availability, etc., can be uncertain. In this paper we deal with un-

certainty in processing times. To model this, we assume that a limited number

of processing times per job may actually occur, which we call modes. We define

a scenario of a problem instance as a case in which each job occurs in a specific

mode. We assume that we have no a priori information about which mode a

job will occur in until we start the job. At that moment we know the mode for

that job. Based on this limited knowledge, we want to present a good plan with

respect to the expected costs over all scenarios. The plan must be causal, i.e.,

it can only use information about what scenarios may occur, but it is unknown

what scenario will occur. Valls et al. (1998) refer to this causality condition as

the nonanticipativity constraint of multiperiod stochastic problems. We define

a scenario independent plan as follows: for each job we determine the fraction

of the job that will be processed in a time period. Since the processing time is

known at the start of the job, we can execute such a plan independent of the

scenario. To find such a plan we present an approach to solve to FRLU problem

by minimising the expected costs over all scenarios. The idea of this approach

is that uncertain jobs will be planned in buckets with the largest amount of

excess capacity, if multiple scenarios are taken into account. We illustrate this

by the following example.

Example

Consider the following problem instance with one resource group and two

orders. Each order has one job with a minimum duration. Job (1, 1) is certain,

and only occurs in one processing mode. Job (2, 1) is uncertain, and can occur

in three processing modes. Each mode has equal probability 1/3. The resource

groups have regular and nonregular capacity. Table 1 and table 2 present the

instance data.
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Order Job Resource min. dur. Proc. times Probabilities

1 1 1 2 − 60 − − 1 −
2 1 1 1 5 10 15 1/3 1/3 1/3

Table 1: Order data

Resource Reg. cap Nonreg. cap

i t = 1 t = 2 t = 1 t = 2
1 40 40 10 10

Table 2: Resource data

Solving the problem using one scenario with processing time 10 for job (2, 1)

may yield the cost optimal solution displayed in figure 1 (note that alternative

optimal solutions exist).

 

t=2t=1 

40

Job (1.1) Job (1,1) 

Job (2,1) 
30

50
Nonregular Cap. 

Regular Cap. 

Figure 1: A solution for the expected scenario

This plan gives the following fractions: 1

2
of job (1, 1) is executed in period

1 and 1

2
is executed in period 2. Job (2, 1) is completely executed in period 2.

If the processing time of job (2, 1) happens to occur with processing time 15

this would require
(
1 ∗ 15 + 1

2
∗ 60− 40 =

)
5 hours of nonregular capacity. The

expected costs of this solution are (1
3
∗ 0) + (1

3
∗ 0) + (1

3
∗ 5) = 12

3
.

Preferably, we would have generated a cost equal solution for the using gives

a plan that executes 2

3
of job (1, 1) in period 1 and 1

3
in period 2 (see figure 2).

This solution does not require costs for nonregular capacity if job (2, 1)

occurs with processing time 15. The expected costs of this plan over all scenarios

are (1
3
∗ 0) + (1

3
∗ 0) + (1

3
∗ 0) = 0.
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t=2t=1 

40

20 Job (1,1) 

Job (1,1) 

Job (2,1) 
30

50
Nonregular Cap. 

Regular Cap. 

Figure 2: The preferred solution

4 Scenario based model

To formulate the model we introduce the following concepts.

Order plan and loading schedule

The order plan for order j specifies the time periods in which job (b, j) is

allowed to be processed. An order plan π for an order j is represented by a vector

aπj , which has binary elements aπbjt that specify whether job (b, j) is allowed to be

executed in period t. We only consider order plans that are feasible with respect

to the precedence relations, the order release date, and the minimum duration

restrictions for jobs. For each order j the variable Xπ
j indicates whether order

plan π is selected. We implicitly generate order plans by a column generation

technique (we come back to this in section 5.1). Working with order plans has

tremendous advantages in terms of the size of an MILP model and the number

of required integer variables.

The loading schedule of order j specifies the fraction Ybjt of job (b, j) that

is performed in period t. A loading schedule is represented by a vector (Y1j1,...,

Y1jT ,..., Ynj1,..., YnjT ). Since a loading schedule matches a selected order plan,

the loading schedule is always feasible with respect to the precedence relations.

By multiplying a loading schedule by the corresponding processing times pbj we

obtain the realisation Ybjt ∗ pbj in period t.

Tardiness

We define the completion time of an order according to order plan π as the
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last time period t in which processing of order j is allowed. Accordingly, we

define the allowed lateness of an order as the difference between the allowed

completion time CT π
j and the due date dj of order j measured in periods. The

allowed completion time of order j is the last period in which the order is allowed

to be processed in the order plan, i.e. CTπ
j = max

{
t|aπbjt = 1

}
. The allowed

tardiness ∂π
j of an order is zero if the allowed lateness is nonpositive, and equal

to the allowed lateness if it is positive, or formally: ∂πj = max
{
0, CTπ

j − dj
}
.

The total allowed tardiness is penalised in the objective function with a cost

parameter θ. Notice that we penalise the allowed tardiness instead of the actual

tardiness. A branch-and-price procedure (see section 5.1) that we use to solve

this problem, however, always leads to a solution where the allowed tardiness

matches the allowed completion time.

Scenarios

We model uncertainty as follows. For all uj uncertain jobs we consider three

processing modes (m ∈ {min, exp,max}) by drawing processing times from a

uniform distribution. We use pmbj to indicate processing time of job (b, j) in mode

m. The corresponding probability for each mode is qmbj . The modes constitute

a total of l = Πj (3)
uj scenarios. The mode in which an uncertain job (b, j)

occurs in scenario σ is indicated by zσbj . The scenario probability qσ is then

given by: Πb,j,m|m=zσbj
qmbj . In the remainder we indicate the processing time of

job (b, j) in scenario σ by pσbj . Using scenario independent loading schedules

automatically results in satisfying the causality condition.

4.1 Notation

We use the following notation:

Indices

t period (t = 0, ..., T )

σ scenarios (σ = 1, ..., l)

j order (n = 1, ..., n)

b job of order j(b = 1, ..., nj)

i resources (i = 1, ...,m)
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Scenario dependent parameters

pσbj the processing time of job (b, j) in scenario σ

pmbj the processing time of job (b, j) in mode m

qσ probability of scenario σ

qmbj probability that job (b, j) to occurs in mode m

zσbj the mode in which job (b, j) occurs in scenario σ

sσit outsourcing capacity in period t in scenario σ

υσ
bji fraction of job (b, j) that is performed on resource i in scenario σ

mcσit total regular capacity of resource i in period t in scenario σ

sσit outsourcing capacity on resource i in period t in scenario σ

Scenario independent parameters

uj number of uncertain jobs of order j

Π(Πj) the set of all feasible order plans (order plans for order j)

aπj π-th order plan for order j

ζ costs of one unit subcontracting

rj , dj release date, due date for order j

θ tardiness penalty

∂π
j allowed tardiness of order j in order plan aπj

ωbj minimum duration of job (b, j)

Decision variables

Sσ
it outsourced production hours for resource i in period t in scenario σ

Xπ
j 0-1 variable that assumes 1 when order plan ajπ is selected for order j

Ybjt fraction of job (b, j) executed in period t

4.2 Model

The objective of the model is to minimise the expected costs over all scenarios:

z∗ILP = min
l∑

σ=1

qσ


ζ

T∑
t=0

m∑
i=1

Sσ
it + θ

n∑
j=1

∑
π∈Πj

∂π
j X

π
j


 (1)

Subject to: ∑
π∈Πj

Xπ
j = 1 (∀j) (2)
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Ybjt −

∑
π∈Πj

aπbjtX
π
j

ωbj

≤ 0 (∀b, j, t) (3)

T∑
t=rj

Ybjt = 1 (∀b, j) (4)

n∑
j=1

nj∑
b=1

pσbjυ
σ
bjiYbjt ≤ mcσit + Sσ

it (∀i, t, σ) (5)

m∑
i=1

Sσ
it ≤ sσt (∀t, σ) (6)

Xπ
j ∈ {0, 1} (∀j, π ∈ Πj ⊂ Π) (7)

all variables ≥ 0 (8)

Constraints (2) and (7) stipulate that exactly one order plan is selected

for each order j. Constraints (3) stipulate that for each order j, the loading

schedule Y π
bjt is consistent with the selected order plan aπj . It also stipulates

that if job (b, j) has a minimum duration of wbj periods, no more than 1

ωbj
-part

of the job can be done per period. Constraints (4) stipulate that all is done.

Constraints (5) and (6) are the resource capacity and subcontracting capacity

constraints for each scenario σ. An LP relaxation of this model, which we shall

use later on, is obtained by relaxing constraints (7) toXπ
j ≤ 1 (∀j, π ∈ Πj ⊂ Π) .

5 Solution approaches

In this section we discuss two solution approaches to solve the FRLU problem.

In section 5.1 we discuss an exact branch-and-price algorithm. In section 5.2,

we discuss a heuristic approach to solve the FRLU problem. As described in

section 4.2, the number of scenarios is l = Πj (3)
uj where uj is the number

of uncertain jobs. To deal with a large number of scenarios we also propose
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method that takes a sample of all scenarios in section 5.3.

5.1 Branch-and-Price

Solving an LP relaxation of the MILP model described in section 4.2 would

require all order plans. The total number of feasible order plans is exponentially

large. Therefore, we start with a restricted LP model (RLP) in which each

order has at least one feasible order plan. We generate these order plans with

a heuristic that is based on the Earliest Due Date (EDD) priority rule.

The FRLU model is a generalisation of the FRL model, proposed by Hans

(2001). The main difference is in the added constraints to deal with scenarios.

The branch-and-price algorithm proceeds roughly as follows: a pricing algo-

rithm is applied to update the RLP. If order plans with negative reduced costs

exist, they are added to the RLP. After this, the new RLP is reoptimised. This

process is repeated until no order plans with negative reduced costs exist. The

column generation algorithm then terminates. The obtained RLP solution at

this stage is the optimal solution for the LP relaxation. If this solution hap-

pens to be integral, it is the optimal solution for the MILP model of the FLRU

problem. Otherwise, we first apply several rounding heuristics to obtain good

upper bounds and then a branch-and-price algorithm to obtain the optimal so-

lution for the MILP problem. In a fractional solution more than one order plan

may be selected fractionally. As a result, in the combined order plan prece-

dence constraints may be violated. The branch-and-price algorithm branches

on these violated precedence constraints. If no precedence constraint in a RLP

solution in a node is violated we have found a solution for the MILP problem.

By branching through all nodes we obtain the optimal solution. If no optimal

solution is obtained within 30 minutes, we truncate the algorithm. We select

the best solution that has been found until then.

5.2 LP based improvement heuristic

We use an improvement heuristic proposed by Gademann and Schutten (2001)

to find approximate solutions for FRLU problems. As for the exact branch-and-

13



price approach , this heuristic was also proposed for FRL problems. However,

we may use it to solve FRLU problems with hardly any modifications.

The heuristic starts from a feasible solution from which it forms an RLP

model with one order plan per order. This feasible solution is constructed with

an earliest due date heuristic (EDD). In each iteration the algorithm evaluates

the expected yield (based on the shadow prices) of all possible changes in the

order plans. These changes are obtained by changing the start or completion

time of a job in the order plans with one period. If necessary, the start or

completion times of successors or predecessors of this job are updated. There

are four possible types of changes resulting from decreasing or increasing the

start time or the completion time of a job with one period. We discard the

changes that lead to an infeasible solution. We order all changes according to

the improvement in objective function. We accept the change that yields the

best expected improvement, and then reoptimise the RLP. After optimisation

of the RLP with the new order plan we evaluate all possible changes of the

new order plan. We repeat this procedure until no change exists that leads

to an expected improvement. Note that this procedure uses one order plan

per order in the RLP at all times. As a result, reoptimising the RLP in each

iteration requires relatively little computation time and each iteration yields a

feasible solution. However, for some instances it may be necessary to limit the

computation time. We therefore truncate the algorithm after 30 minutes.

5.3 Sampling

We proposed two algorithms to solve the FRLU problem. Observe that in-

cluding all possible scenarios in the FRLU model may lead to a model that is

too large to solve within reasonable computation time. We therefore propose a

scenario sampling approach. This sampling approach takes a sample of size x

from all scenarios.

We refer to the approach with the branch-and-price with all l scenarios

as Monolithic Branch-and-Price Loading (MBPL). We refer to the approach

with the branch-and-price with a sample of size x form all scenarios as Sample
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Branch-and-Price Loading (SBPL(x)).

We refer to the approach which incorporates all scenarios in combination

with the heuristic solution algorithm as Monolithic Heuristic Loading (MHL).

We refer to the approach with a scenario sample of size x in combination with

the heuristic solution approach as Sample Heuristic Loading (SHL(x)).

6 Computational experiments

We performed several experiments to test the proposed approaches. In section

4.2 we have formulated the model for the FRLU problem with scenario depen-

dent processing times, resource requirements, resource capacity and outsourcing

capacity. For the computational experiments we consider scenario dependent

processing times. Hence, νσbji, mcσit and sσit are in the exp mode. Before pre-

senting the computational results we describe the problem instance generation

procedure.

We implemented and tested all methods in the Borland Delphi 7.0 program-

ming language on a Pentium III 600 Mhz personal computer. The application

interfaces with the ILOG CPLEX 8.0 callable library, which we use to optimise

the linear programming models.

6.1 Test Instances

We use the network generation procedure proposed by Kolisch, Sprecher and

Drexl (1995) to generate the order release and due dates, and job precedence

relations in our test instances. In this procedure a network is characterised by

the three parameters n (the number of jobs), K (the number of resources ) and

φ (average slack).

The network generation procedure is as follows. Given is a set of n jobs. The

first step is to determine the start jobs (jobs that have no predecessor) and the

finish jobs (jobs that have no successor). In step 2, one predecessor is randomly

assigned to each non start job. In step 3, one successor is assigned randomly to

each non finish job. Precedence relations are only added in step 2 and 3 if they
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are not redundant. A precedence relation between job i and j is redundant if

and only if some path P(i, j) exists. In step 4, nonredundant arcs are added

until the desired average number of predecessors per node is reached. The

desired average number of predecessors per node (i.e. the network complexity)

is 2.

All jobs require at least 3 and at most 5 resources. Resource capacity (mcit)

and processing times
(
pσbj

)
are chosen such that the expected workload is 70%

of the total capacity. The average slack is defined as:

φ =

∑
j

∑nj

b=1
(dj − ωbj − rbj + 1)∑

j nj

(9)

where (dj − ωbj − rbj + 1) is the slack of job (b, j). The minimum duration ωbj

of job (b, j) is an integer number drawn randomly from {1, ..., 5}. We now

repeatedly draw dj and rbj (the release date of job (b, j)) until we satisfy the

average slack condition in equation (9). The regular capacity for each resource

mcit is randomly drawn from [0, 20]. Each job requires a random number of

resources drawn from {1, ..., 5}. The processing times pbj are now randomly

drawn from the interval

[
1, 0.8

(
2
∑m

i=1

∑T
t=1

mcit

nj
min{m,5}+1

2

− 1

)]
. If a resource is not

selected to process job (b, j), its processing time pbj is set to 0.

The number of uncertain jobs uj = 4. We draw these uncertain jobs ran-

domly from all nj jobs. By applying l = Πj (3)
uj , the number of scenarios is 81.

The processing modes are determined as follows: pmin
bj = α∗pbj , p

max
bj = β ∗pbj ,

and pexp
bj

= α+β

2
∗ pbj , α is randomly drawn form [0.5, 1] and β is randomly

drawn from [1, 2]. In our experiments withMBPL, SBPL(x), MHL, and SHL(x)

the probabilities qmbj are 1/3 for each mode.

We generate 90 instances with 10 jobs (nj = 10). This set consists of 3

sets of 30 instances. The average slack in the three sets are 0.2, 0.5, and 1

respectively. For the sampling methods we use a sample of 10 scenarios that

are uniformly drawn from all scenarios (SBPL(rand10) and SHL(rand10)).
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6.2 Test results

In this section we present the computational results. In table 3 we present

the results for the complete set of 90 instances. The results in this table are

all relative to the performance of the (deterministic) FRL method. The FRL

method determines a solution based on the exp scenario. This solution is then

evaluated over all scenarios, which yields the costs of the solution in each sce-

nario. From this we can calculate the expected costs (of the ‘exp solution’, over

all scenarios) and the standard deviation of the costs over all scenarios. The

column ‘exp costs’ in table 3 represents the relative average improvement of the

expected costs (over all scenarios) for the other methods, with respect to the

expected costs of the FRL solution (the range of the costs over all instances

is given between square brackets). The column ‘stddev’ does the same for the

standard deviation in the costs.

The results in the ‘min scen’ column in table 3 give the relative average

improvement of the costs of the solutions of the other methods in the min

scenario, with respect to the costs of the FRL solution in the min scenario (a

positive number is a decrease of the costs). The column ‘max scen’ does the

same for the max scenario. The column ‘# trunc instances’ shows the number

of instances that were truncated after 30 minutes. The column ‘Average comp

time (in sec)’ shows the average computation time in seconds.

Average improvement of (in %): Average

exp costs min max # trunc comp time

[range] stddev scen scen instances (in sec)

FRL − − − − 3 102
MBPL 5 [−71.2, 49.3] 0.4 8.8 4.6 62 1525
MHL 10.5 [−7.3, 57.3] 2.2 16.2 8.9 23 869
SBPL(rand10) 9.1 [−20.1, 57.8] −0.1 15.0 7.0 21 607
SHL(rand10) 11.2 [−7.3, 57.3] 2.1 16.7 9.3 0 24

Table 3: Results of the complete batch

MBPL yields smaller improvements thanMHL and the sampling approaches

SBPL(rand10) and SHL(rand10). The main explanation for this is that MBPL

only solves 28 out of the 90 instances to optimality. We have performed ex-
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periments in which we gave MBPL 60 minutes of computation time (instead

of 30 minutes), but this did not yield much improvement. The range of the

solutions, especially for the exact methods, is considerably wide. This can be

also be explained by the fact that for some problem instances the truncated

exact algorithm yields a far from optimal solution.

In Table 4 we compare the results for all instances that could be solved to

optimality. We compare the results of the instances that were solved to opti-

mality by the exact approaches (MBPL) with the results for the same instances

solved by SBPL(rand10), MHL, or SHL(rand10). Note that we only consider

28 of the 90 instances.

Average improvement of (in %): Average

exp costs min max comp time

[range] stddev scen scen (in sec)

MBPL 6.9 [0.0, 43.4] 2.7 9.1 6.4 640
MHL 6.8 [−0.2, 43.0] 2.5 9.0 6.3 283
SBPL(rand10) 6.4 [0.0, 36.9] 1.3 8.6 5.5 13
SHL(rand10) 6.6 [−0.3, 41.2] 2.1 8.6.0 5.9 7

Table 4: Results for the instances that could be solved to optimality

Here we see that the differences between the heuristic and the exact method

are only small. The additional computational effort required for the exact

solution approach appears to yield little improvement. The solutions for the

problem instances for the monolithic approaches (MBPL and MHL) range from

0% to 43% improvement. The left side of the ranges of 0% can be explained

by instances for which no lower expected costs could be found using a scenario

approach.

Note that the number of solutions to an instance increases with the average

slack that the orders in the instance have. Intuitively, these cases with more

slack are easier to solve. However, since the solution space also increases with

the slack,MBPL will require more computation time to find an optimal solution.

To analyse the impact of the average slack we performed the experiments

for the three sets with φ = 0.2, φ = 0.5, and φ = 1 separately. Tables 5, 6, and

7 show the results for these sets.
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Average improvement of (in %): Average

exp costs min max # trunc comp time

[range] stddev scen scen instances (in sec)

FRL − − − − 0 2
MBPL 5.0 [0.1, 34.3] −0.2 8.1 3.8 3 751
MHL 5.0 [−0.2, 34.3] −0.3 8.1 3.8 0 335
SBPL(rand10) 4.8 [0.1, 34.3] −0.7 7.7 3.5 0 18
SHL(rand10) 4.9 [−0.3, 34.3] −0.5 7.6 3.6 0 8

Table 5: Results of the batch with φ = 0.2

Average improvement of (in %): Average

exp costs min max # trunc comp time

[range] stddev scen scen instances (in sec)

FRL − − − − 0 65
MBPL 6.4 [−17.6, 47.3] 0.7 9.3 6.1 29 1766
MHL 11.0 [−1.8, 50.4] 2.7 15.1 9.8 5 901
SBPL(rand10) 10.7 [−4.1, 53.7] 2.2 14.5 8.8 4 585
SHL(rand10) 10.8 [−3.8, 50.2] 2.2 14.5 9.1 0 24

Table 6: Results of the batch with φ = 0.5

The average slack has a negative impact on the solution performance of the

exact approaches. If the slack is large the instance are more difficult to solve.

The explanation for this is that more average slack increases the solution space

of the problem. Hence, MBPL results in small improvements for the problem

instances with an average slack of 1, because no instances could be solved to

optimality. Hence, the heuristic approaches SHL(rand10) and MHL yield the

best results of 15.6% and 18.1% respectively (see table 5, table 6 and table 7).

Observe that the improvement heuristic in combination with a sample yields

the best result for the expected costs for almost all experiments. To investigate

the impact of the way of selecting scenarios on the result of the experiments

we now compare the results of three different scenario selection approaches

in combination with the improvement heuristic. The first approach is to select

the scenarios randomly, like for the previous experiments. We call this approach

SHL(rand10), like in the previous experiments. For the second sampling ap-

proach we use a sample that consists of the exp scenario, the max scenario, all

four scenarios with one of the four uncertain jobs in the max mode, and all

four scenarios with one of the four uncertain jobs in the min mode. We refer to
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Average improvement of (in %): Average

exp costs min max # trunc comp time

[range] stddev scen scen instances (in sec)

FRL − − − − 3 238
MBPL 3.6 [−71.2, 49.3] −1.7 9.0 3.8 30 1800
MHL 15.6 [−7.3, 57.3] 4.1 25.2 13.0 18 1365
SBPL(rand10) 12.0 [−17.5, 57.8] −1.7 22.7 8.6 17 1219
SHL(rand10) 18.1 [−7.3, 57.3] 4.5 27.8 15.0 0 41

Table 7: Results of the batch with φ = 1

this sampling approach as SHL(Sel10). Finally, we test a sampling approach

which uses a sample consisting of the min scenario (i.e., all jobs in the min

mode), the exp scenario (i.e., all jobs in the exp mode), and the max scenario

(i.e., all jobs in the max mode). We call this approach SHL(MEM3). Finally,

we test an approach which only uses two scenarios as input for the model. For

this approach (SHL(EM2)) we use the max scenario and the exp scenario.

Average improvement of (in %): Average

exp costs min max # trunc comp time

[range] stddev scen scen instances (in sec)

FRL − − − − 3 106
SHL(rand10) 11.2 [−7.3, 57.3] 2.1 16.7 9.3 0 25
SHL(Sel10) 10.9 [−7.6, 57.2] 3.1 15.6 9.2 0 25
SHL(MEM3) 11.0 [−7.3, 57.8] 2.7 16.6 9.4 0 5
SHL(EM2) 10.2 [−8.3, 57.4] 6.9 11.6 9.7 0 4

Table 8: Results for various samples of scenarios

Table 8 shows that using a controlled sample (SHL(Sel10)) does not improve

the average expected costs. From table 8 we can also conclude that a sample

of three scenarios (SHL(MEM3)) yields almost the same improvement as a

sample of 10 scenarios. Moreover, a sample of two scenarios (SHL(EM2)) still

yields considerably better results than the FRL approach. Finally, we conclude

that the approach with three scenarios (SHL(MEM3)) has a good performance

considering the improvement of the expected costs and the computation time.
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7 Conclusions and further research

We have presented a scenario based model for Flexible Resource Loading un-

der Uncertainty (FRLU ), which aims to obtain plans with minimum expected

costs. We discuss several exact and approximation algorithms to solve this

model. Computational experiments show that improvement of the expected

costs can be obtained by using the FRLU approach, as opposed to using a de-

terministic approach. We have shown that the exact approaches often cannot

solve instances to optimality within reasonable time, even when only a sample

of the scenarios is considered. An LP based improvement heuristic in combina-

tion with scenario sampling is to be the most promising approach. Moreover,

a small sample (of for instance three or two scenarios) appears to be enough to

achieve a considerable improvement with respect to the expected costs.

The model proposed in this paper can account for several uncertainties in

a manufacturing environment. However, uncertainties like uncertain release or

due dates can not be accounted for in the model. In future research we will

look for ways that allow us to account for these uncertainties. We also plan

to examine an approach which generates a number of alternative plans with

(almost) equal costs. We will develop a robustness indicator to measure the

robustness of a plan. With such an indicator, the alternative plans can be

compared with respect to their robustness.
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