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Preface

Computational resources have developed to the level that, for the first time, it
is becoming possible to apply large-eddy simulation (LES) to turbulent flow
problems of realistic complexity. Many examples can be found in technology
and in a variety of natural flows. This puts issues related to assessing, assuring,
and predicting the quality of LES into the spotlight. Several LES studies
have been published in the past, demonstrating a high level of accuracy with
which turbulent flow predictions can be attained, without having to resort
to the excessive requirements on computational resources imposed by direct
numerical simulations (see, e.g., [1]). This is also corroborated in the current
volume, which contains the proceedings of the first QLES meeting on Quality
and Reliability of Large-Eddy Simulation, held October 22–24, 2007 in Leuven
(QLES07).

The setup and use of turbulent flow simulations requires a profound knowl-
edge of fluid mechanics, numerical techniques, and the application under con-
sideration. The susceptibility of large-eddy simulations to errors in modelling,
in numerics, and in the treatment of boundary conditions, can be quite large
due to nonlinear accumulation of different contributions over time, leading
to an intricate and unpredictable situation. A full understanding of the in-
teracting error dynamics in large-eddy simulations is still lacking. To ensure
the reliability of large-eddy simulations for a wide range of industrial users,
the development of clear standards for the evaluation, prediction, and con-
trol of simulation errors in LES is summoned. The workshop on Quality and
Reliability of Large-Eddy Simulations (QLES2007) provided one of the first
platforms specifically addressing these aspects of LES. Its main objective was
to address fundamental aspects of the LES-quality issue by bringing together
mathematicians, physicists, and engineers, thereby confronting entirely differ-
ent approaches to the subject, doing justice to the complexity of this field.
The problem of treating one flow problem correctly is easily an order of mag-
nitude more challenging than the feasibility problem of doing one simulation
at all. The latter illustrates the state-of-the-art in LES of a decade ago, while
the former represents a more timely challenge.
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One of the main difficulties arising in the evaluation of errors in large-
eddy simulation, is the nonlinear accumulation of different error sources. Most
notorious is the possible interaction between subgrid-scale modelling errors
and numerical errors [9, 33]. A problem which is not so well recognized, is the
fact that there is no consensus on the definition of errors among researchers.
Moreover, differing views exist on the role of the subgrid-scale model relative
to that of the numerics in LES. Obviously, such differences handicap the
exchange of ideas on accuracy and reliability of LES. These elements will be
addressed in some more detail next, to provide an introduction to the current
volume.

In early large-eddy simulations, subgrid-scale models were nothing more
than a numerical stabilization mechanism [29], regularizing the coarse-mesh
solution of the Navier–Stokes equations. Later (see, e.g. [18, 17]) a physical
interpretation was linked to the subgrid-scale model, based on the formal ap-
plication of a low-pass filter to the Navier–Stokes equations. In particular, at-
tention was given to an analysis of the exchange of energy between so-called re-
solved and unresolved scales, corresponding roughly to scales larger or smaller
than the width of the presumed spatial filter, respectively. In modern-day LES,
both approaches still exist, i.e., numerical stabilization of the Navier–Stokes
equations versus a physics-based subgrid-scale model.

Many examples exist of physics-based models, such as the Lilly–Sma-
gorinsky model [18], backscatter models [22], VMS-Smagorinsky models [12],
and several of their variants [28, 32, 25, 31, 13, 26]. Mathematically, these mod-
els are used to close the low-pass filtered Navier–Stokes equations. Hence, a
natural point of reference for the definition of errors are the low-pass filtered
results from either direct numerical simulations or experiments [34]. In such
a framework, it was realized early on that, apart from subgrid modelling is-
sues, also numerical discretization was central for the quality of LES [20]. In
Mansour’s approach [20], a spectral cut-off filter is considered, and spectral
discretization is used as a point of reference for the quality of a numerical dis-
cretization scheme. In this context, Ghosal [9] pointed out that discretization
and modelling errors are of the same order of magnitude, and further work
along these lines was presented in [4, 3]. In a different approach to numeri-
cal errors Mason [21] proposed to increase the ratio of the filter scale to the
grid size Δ/h. At high values of Δ/h, any consistent numerical discretization
will converge to a grid-independent solution. Using this framework to define
discretization and modelling error, Vreman, Geurts & Kuerten [33] showed a
strong interaction between both error sources when Δ = h. In this context,
it was also shown that Δ/h > 1 does not necessarily guarantee a reduction
in total errors [33, 7, 23]. From a computational-cost point of view, both
Δ/h > 1 and higher order numerics are expensive, and avoided in most large-
scale computations of realistic applications. In addition, recent research seems
to suggest that low-order schemes and Δ/h = 1 may be beneficial to the global
simulation error at coarse resolutions [24].
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In an alternative approach to LES one may introduce a direct regular-
ization of the Navier–Stokes equations. In this case a change is made to the
dynamical properties of the equations, such that they can be accurately solved
at a much coarser mesh than DNS. Such an alteration can be performed on
the level of the continuous equations, e.g., addressing the convective nonlin-
earity, as is done in Leray regularization [8, 16], in the NS-α model [5], or
in the ADM approach [30, 15]. Alternatively, it has been suggested that this
‘regularization’ may be absorbed into the discretization scheme; examples are
the spectral vanishing viscosity method [14], MILES [6], and several others
[11, 10]. In contrast to the classical subgrid-scale model approach described
above, in a numerical stabilization approach, no explicit distinction is made
between numerical errors and modelling errors. This is a cause of deep method-
ological disagreements among different LES practitioners – an element that
re-appears in several of the contributions.

We believe that the main challenge for LES today is not lying anymore in
the development of new modelling or regularization approaches. Aside from
the important, unresolved problem of LES and high-Re boundary layers, most
of these techniques produce very satisfactory results when used appropriately.
Rather, a main challenge is in the development of a transparent standard
which helps practitioners in the correct use of LES. A fully consistent theory
on errors in LES still requires a huge amount of work. While empirical quali-
tative comparisons with reference data have been used for decades to conclude
on possible improvements in the numerics and physical closures, a mathemat-
ically grounded quantitative error measure, like the one proposed by Hoffman,
is certainly needed. The definition of such an error measure is a tricky issue,
since it appears that in some flows the error can evolve in an counter-intuitive
way [33, 27]. A related issue is LES sensitivity: how sensitive is a given LES
result to computational setup parameters? A reliable simulation must be sta-
ble, in the sense that a small variation of the setup parameters should not
yield a dramatic change in the quality of the results. Here again, only very
few results are available, and advanced mathematical tools are required (e.g.
[19]).

For Reynolds-averaged Navier–Stokes simulations, which are nowadays
commonly used in industry, advice on best practise is well known, e.g., ER-
COFTAC’s Best practice guidelines [2]. Certainly, such an exercise would also
be extremely useful for LES. This motivated a concerted effort to arrive at
‘Best practice for LES’ as identified as a central target of the COST Action
‘LESAID’, that started in 2006. However, for LES more should be possible: not
only guidelines for good quality, but also a ‘first-principles’ framework may be
feasible, in which the quality of LES is guaranteed. It was this context which
motivated the organization of a dedicated workshop on quality and reliability
of LES. Different contributions were grouped into four sessions. This is also re-
flected in the current book, which is divided into four parts, i.e., (1) Numerical
and mathematical analysis of subgrid-scale-model and discretization errors,
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(2) Computational error-assessment, (3) Modelling and error-assessment of
near-wall flows, (4) Error assessment in complex applications.

For the organization we relied considerably on the members of the scien-
tific committee: N. A. Adams (Technische Universität München, Germany),
M. Baelmans (Katholieke Universiteit Leuven, Belgium), A. Boguslawski (Po-
litechnika Czestochowska, Poland), D. Carati (Université Libre de Bruxelles,
Belgium), E. Dick (Universiteit Gent, Belgium), D. Drikakis (Cranfield Uni-
versity, United Kingdom), A. G. Hutton (QinetiQ, United Kingdom), J.
Jiménez (Universidad Politecnica Madrid, Spain), M. V. Salvetti (Università
di Pisa, Italy), and G. S. Winckelmans (Université Catholique de Louvain,
Belgium). We gratefully acknowledge their help.

The workshop on quality and reliability of large-eddy simulations was sup-
ported financially by a number of institutions. On a European scale, support
was provided by COST Action P20 ‘LESAID’ (LES – Advanced Industrial De-
sign) and ERCOFTAC (European Research Community on Flow, Turbulence
and Combustion). At the Belgian level, financial support was provided by the
Research Foundation – Flanders (FWO – Vlaanderen), and by the research
council of the K.U.Leuven. This support was crucial to the organization of
this workshop and is gratefully acknowledged.

Leuven, Johan Meyers
January 2008 Bernard J. Geurts

Pierre Sagaut
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Assessment of LES Quality Measures Using the Error
Landscape Approach
Markus Klein, Johan Meyers, Bernard J. Geurts . . . . . . . . . . . . . . . . . . . . . 131

Analysis of Numerical Error Reduction in Explicitly Filtered
LES Using Two-Point Turbulence Closure
Julien Berland, Christophe Bogey, Christophe Bailly . . . . . . . . . . . . . . . . . . 143

Sensitivity of SGS Models and of Quality of LES to Grid
Irregularity
Ghader Ghorbaniasl, Chris Lacor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Anisotropic Grid Refinement Study for LES
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