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Abstract

Test design is presented as a decision process under certainty. a

natural way of modeling this process leads to mathematical program-

ming. Several models are presented, including information about

algorithms and heuristics. Furthermore, notions about the analysis

and refinement of test constraints are briefly presented.
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TEST DESIGN AS MODEL BUILDING IN MATHEMATICAL PROGRAMMING

Introduction

Programming in the sence of this paper simply means planning. Luce

and Raiffa (1957) categorize mathematical programming as belonging

to the area of (individual) decision making under certainty and

point at the very close relationship between linear programming

(one of many forms of mathematical programming) and two-person

zero-sum game theory. In decision making under certainty each of

the available options, leads invariably to a specific (certain)

outcome. Given such a set of options we should choose one that

optimizes some index. The programming problem, as described by Luce

and Raiffa in a very general way, consists of (1) options, where

each option implies the choice of n real numbers, (2) feasibility

conditions, where each condition consists of a (linear) equality or

inequality constraining the options and (3) an index associated

with each option which is a function of the n numbers. This, in

actual fact, is the 'model' as used in mathematical programming.

The term therefore does not refer to psychometric theory, but to

the structure of a decision process. Several types of decision

processes occur time and again under different disguises in a large

variety of concrete fields of activity. Closer inspection often re-

veals a common abstract structure, which turns such a class of

problems into an abstract class, whose members have essentially the

U
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same structure. One such class is the class of Packing problems,

also known as Knapsack test design problems. Further below, it will

be shown that many test design prebl^ms are members of this class.

Assuming the availability of a pool of I items, calibrated with

some I.R.T. model, the total number of possible test is 21,

generally an extremely large number. 'Finding' a particular test in

this universe of tests is usually impossible on practical grounds.

Summarizing, to each itembank belongs a deterministically defined

test universe; the problem is how to find the desired test.

Generally the test universe is reduced in size by practical consid-

erations as, for example, limited testing time for students

implying a maximum number of items to be used, or by common sense

considerations, e.g. when one does not include easy items in a test

for the selection of scholarship students. Furthermore in a

psychometrically sophisticated environment quality criteria

considerations may also play their role, e.g. for every knowledge

item there should be two insight items. Obviously, any test design

process is subject to certain constraints. In modeling the decison

process (about what items to include in a test or not), these

constraints are explicitely included. They play the role of

limiting the search process through the test universe. Another way

of looking at it is as follows. Imagine an item bank filled with

three items. The total number of possible tests is 23 = 8, being

one tu:t of 0 items, three tests of 1 item, three tests of 2 items

and one tsst of 3 items. Also imagine, that the three items are

represented by three indicator variables xi, i = 1,2,3, with value
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1 if the item i is selected for the test and value 0 if it is not.

Let there also be a three-dimensional orthogonal coordinate system,

where each coordinate represents an x-variable (having only the two

values 1 and 0). All possible values of these three x-'s together

form the collection of vertices of a cube. It is easy to see, that

each vertex of this cube represents a member of the test universe.

In this sense, the test universe belonging to an item bank can be

seen as the collection of vertices on the hull of a convex body,

which body has a dimensionality that is equal to the number of

items in the bank. In this case designing a test is like travelling

over the hull and checking each vertex against the constraints.

Having found a subset of vertices admissable under the constraints,

the task is to find that member of the subset giving most satis-

faction in some defined sense.

A test always consists of a certain number of items and

frequently we have started with one item and have been adding items

till we were satisfied. This simple thought suggests that for the

index in the sense used before, we could use a simple sum-function

of indicator variabels xi, which by its nature is linear. It

remains to formulate conditions constraining us in our search for

the 'right' sum-function. Before doing so, another simple sum-

function will be presented first, which has proven to be of wide

applicability. It will be presented in its best known and most

trivial form, as the Knapsack problem (KP). Subsequently, a form of

sensitivity analysis will be presented which can useful in the

analysis of test specifications. Next a way to refine test specifi-
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cations will be briefly recapitulated. Finally, some problems and

solutions related to the choice of algorithms will be mentioned.

General Models.

The KP has many differeent formulations of which the one leading

most naturally to the general test design problem will be used.

Suppose a hiker is travelling with a number of objects, each object

having its own monetary value. He is now arriving at a desert which

he will have to cross and knows that he will have to travel as

lightly as possible. This means that he will have to leave some of

the objects behind. He also knows that once across the desert, he

will have to trade with the natives and needs a cerain minimum

amount of cash in order to reach his psychometric laboratJry again.

All objects have a weight not related to their value. in summary,

his problem is to minimize the weight of the content. Since an ob-

ject is either present in the knapsack or not, the objects are

represented by binary indicator variables xi = U or 1. (Fractional

objects have no value and negative objects don't exist). Let wi be

the weights of the objects, vi their value and V the lower bound on

total value of selected objects. The hikers problem can then be

presented in formal notation as

n

minimize .1 wixi
1=1

n

subject to 1 vixi > V

1=1

14.
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and xi = 0 or 1.

Due to the constraint in (I), this KP is known as a binary or zero-

one programming problem; if (1) is replaced by an integer-valued

variable xi > 0, the problem Is known as in integer progamming

problem. If (1) is formulated as xi < 0, it is a general linear

programming problem.

The KP is formulated above but has been extended to more general

forms as the multiple KP and the multidimensional KP. The multiple

KP involves the same problem as above but now putting the objects

into m knapsacks. The multidimensional version involves optimiza-

tion under more than one constraint. In formal notation

n m
minimize wixij

i=1 J=I

n

subject to 1 v x.. > V

1=1 i 13

and
j

m

4

x44 f 1

=1 '

with Xi =0 or 1,

j 1,2,...,m; i = i,1,2,...,n, for the multiple KP, and

n

minimize 1 w.x.

i=1 "
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n

subject to 2 v,x, >
i=1

and, for example,

n

p.x. >P
i=1 "

with xi = 0 or 1 for the multidimensional KP, where P is the lower

bound on some second constraint. A further possibility is the com-

bination of multiple and multidimensional KP.

If the knapsacks in above examples are seen as tests that have

to be loaded with items, the stage is reached where we have a sim-

ple index, the weighted sum function. If constraints meaningful in

a psychometric sense can be formulated, the stage of test design as

model building in mathematical programming is reached. In many test

applications, a very important issue concerns accuracy of measure-

ment. Since frequently we are only interested in one particular

point on the ability continuum (e.g., a cut-off score) or at most

in a limited interval of points on the continuum, the notion of

concentrating on local accuracy of measurement suggests itself

automatically. So frequently, part of the test specification

consists of demands as regards local accuracy of estimation for a

number of 0-points, expressed as test information for these points.

Because of the property that test information is the sum of item

information, one could develop the notion that the constraints

(test specifications) take the form of linear functions appearing

in equalities or inequalities. The V and the P n above KP's rani
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then be seen as the minimum desired amount of test information

specified at two 0-points and vi and wi are item informations in

item i at these two points. For tae test design problem the wi can

be taken to be equal to 1. Writing all this in the more formal

I.R.T.-based notation it can easily be seen, that the test

specification "find the test of minimum length with a certain

amount of information at (for example) two specified 0-points" has

exactly the same structure as a KP-formulation. It looks as follows

minimize 1 xi

i=1

I

subject to
i11 "I.(0)x. > I

t
(0
k=1

)

=

I

and
i1

I.(e)xi
> it(ek=2)

=1 1

and xi = 0 or 1.

One can imagine that, in a data base context, each item is accompa-

nied by a string filled with coded information about various pro-

perties of the item. By using a pointer, items can be rearranged

according to which characteristic is under consideration. For exam-

ple, items can be coded as regards content and reordered such that

xl to x100 refer to content domain A, x101 to x200 to domain B, and

so forth. This enables us, for example, to add constraints specify-

ing the proportion of items coming from certain domains to the mo-

del.
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A rather different general model in automated test design invol-

ves the use of so-called Matching algorithms. For this model, it is

useful to regard items and abilites as nodes in the bipartite graph

G(V,E), whey V1 is the subset of items, V2 is the subset of abili-

ties and E is the set of edges that connect all elements of both V-

subsets with each other. Associated with each edge is a weight with

value Ii(9) at 0
k'

i.e.,the information value of item i at 0
k'

A

matching is defined as a set of edges, where no two edges have a

node in common. One of the questions that could be asked is "What

is the maximum weight matching?", i.e. identify the subset in E

that is not only a matching, but also has the highest possible

weight-sum associated with its edges.

Models like this are useful if a number cf tests of equal length

that are non-overlapping in the items and of gradually in:reasing

difficulties are to be designed. Details about this approach are

presented elsewhere. It can ba shown, that the structure of the

problem is such that, without specifying this as a constraint in

the model, the solution is always integer valued. If an upper bound

of 1 to the variables is specified, the solution is automatically a

zero-one solution. This implies that standard Linear Programming

algorithms can be used, which are readily available.

In order to go to the next section it is necessary to anticipate

as regards the section on algorithms and heuristics. For the moment

is is sufficient to say that in many practical situations standard

Linear Programming (LP) algorithms can also be used in the case of

KP-like formulations of test design. This matter will be picked up

1
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LP theory entails a powerful theorem and some very useful techni-

ques. The theorem refered to is the Duality theorem. Regard the

following LP problem:

P(1) (primal) maximize {c'x}

subject to Ax < b

and x > 0.

The duality theorem says that associated with P(1) there is an

equivalent LP prOlem P(2), formulated as follows

P(2) (dual) minimize {Wu}

subject to A'u > c

and u > 0.

(riotice the symmetry of both formulations, written in matrix nota-

tion.) Proof of this theorem and results stemming from it can be

found in the literature (see Papadimitriou and Steiglitz, 1982).

For our purpose it is sufficient to know that the optimal value of

the target function is the same in P(1) and P(2). An interesting

feature is the appearance in the Dual of new variables u, associa-

ted with the right-hand s4ie constraints b of the Primal. These new

G
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variables are called the Shadow Prices (SP) of the Primal (the name

originates from economic theory). Inspection of shadow prices can

yield interesting insights in the original primal constraints. It

can be shown, that if z = Wu, the following holds

dz/dbi = ui i = 1,2,...,m,

which means that if bi changes into bi Abi, ui shows the corres-

ponding change in the target function z; zi changes with ui bi.

This means that if the SP of a constraint is equal to 0, this con-

straint is redundant. SP's are standard output in most commerically

available LP packages. It should be noted that the above interpre-

tation of SP is only valid for certain ranges of b. This range is

known as the right-hand side range. Changes outside the range and

changes in several right-hand side coefficients at the same time

are sutdied in parametric programming. This matter will not be pur-

sued any further here.

Logical Conditions in Test Design

Considering test design as a problem in zero-one programming (as

first formulated in Theunissen, 1985) supplies a natural opening

for the introduction of Boolean variables (Theunissen, 1986). These

variables are useful if one wants to put logical conditions on test

design. Suppose it is stipulated in the test specification, that if

item xl or x2 is selected, then at least one of the items x3, x4,
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x5 must also be chosen (instead of individual items, the x's may

also represent strings of items) If we use as notation '+' for

'if...then' and 'V' for inclusive 'or' (a or b or both) we have two

proportions, (x1Vx2) and (x3Vx4Vx5), connected as follows:

(x1Vx2) (x3Vx4Vx5).

It is obvious how the separate propositions are entered as con-

straints:

xl + x2 > I

and x3 + x4 + x5 > I.

What remains to be done is to connect these two propositions. We

now introduce a new variable and 'translate' the propositions as

follows:

xi + x2 - 2d > I d = 1

and d = I x3 + x4 + x5 1 I.

This gives rise to the following constraints:

xi + x2 - 2d < 0

and -x3 - x4 - x5 + d < 0 (with d as binary variable).
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This models our logical condition. Situations can be imagined where

the item selection proces is steered in a very detailed way, for

example, to avoid depedencies among items. Even for relatively

small sets of items this may result in rather long and complex

Boolean expressions. It is useful to know that reduction algorithms

for such complex Boolean formulations exists. They are used, for

example, in the algebra of switching circuits (see e.g., Graham

Flegg, 1965). This matter will not be pursued here any further.

In the final section of this paper some aspects of the practical

practical implementation of the above models will be treated.

Algorithms and Heuristics

In discrete optimization theory, a useful distinction is the one

between algorithms that work in polynomial time (P-algorithms) and

those that work in non-polynomial time (NP-algorithms). Working in

polynomial time means that the CPU-time necessary for the solution

of the problem is a polynomial function of the size of the input.

The input of, an algorithm is basically a string of symbols. The

size is the length of this sequence is the number of symbols in it

(Papadimitriou and Steiglitz, 1982). For our type of problem, i.e.,

many variables (items) and relaively few constraints, the size is

strongly determined by the number of items. In NP-algorithms the

required CPU-time is generally an exponential function of input-

size. This means that there is no guarantee that the solution can

be found in reasonable time, although one does not always know thisII"
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in advance; for example, it is known (see Papadimitriou and

Steiglitz, 1982) that the simplex algorithm and its derivatives in

LP are NP-algorithms, but in practice extremely large problems in-

volving thousands of varaibles and constraints have'been solved

without any time-problems. Integer programming, which searches for

solutions that have only integer values and of which binary pro-'

gramming is a particular instance, is known to be a NP-problem

(Papadimitriou and Steiglitz, 1982). Here it is known, that time

demands may frequently turn out to be excessive in case of modera-

tely-sized problems. A well-known algorithm in binary programming

is the Balas algorithm (for details see e.g., Syslo, Deo and

Kowalik, 1983). A strategy often taken in practice is that one

first finds an approximate solution and uses this as a starting

point for the Balas algorithm to find a purely binary solution. The

Balas algorithm makes use of Branch and Bound techniques which are

extensively used in all sorts of heuristics. A brief recapitulation

of the basic ideas of Branch and Bound techniques will therefore be

useful. The important point to remember is that, no matter its

form, a Branch and Bound technique basically is a strategy to check

the vertices on the hull of a convex body (see Introduction). Assu-

ming a start-solution, obtained by LP, the first step is to choose

a branch variable xi, for example, the x with the highest fraction-

al value. The second step is to create two sub-problems, one with

xi = 0 and one with xi = 1, both together with all other variables.

The value of the target function is now not larger and usually

lower, since we have the original LP with more constraints. If the

ti v
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solution is now completely integer, one stops; if not, one stops;

if not, one goes on. Getting lower in the search tree gives steadi-

ly lower values for the target function. Finding the first purely

binary solution could be defined as producing the first bound. The

next step is to go back to a new candidate variable and repeat the

process again. Any further development at a branch is stopped when

the value of the target drops below the current bound before having

reached an integer solution. This process continues till the search

tree is complete. The choice of candidate variables (branching) and

the definition of the nature of the bounds, determines the nature

of the B and B algorithm. Obviously, this type of algorithm can al-

so be used without prior approximate solution. As noted, however,

time demands may be excessive. Therefore, now some heuristics

approach are presented. The effectiveness of a number of therese

heuristics in a test design was recently investigated by Boomsma

(1986).

A well-known theorem in mathematical programming states that if

we regard a continuous multidimensional KP (which is the same as

saying we regard a LP with a general upper bound of 1 for the

variables), then the solution for this KP consists of at most a

number of fractional values, equal to the number of constraints

with all other values integer, 1 or 0. Since in many test design

problems tht number of constraints will be low relative to the num-

ber of variables (items), this is a very useful theorem. In the ex-

perience of the author, simply rounding off the fractional values,

keeping an eye on the constraints, produces excellent results at a
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low price. Beomsmz (1986) found excellent results with this heuris-

tic, when he rounded all fractional values upward to 1. This

guarantees results fulfilling the constraints. Inserting a back-

tracks mechanism by which it is checked if setting one of these

rounded variables to 0 will improve the solution without violating

the constraints was the final embellishment. Since the number of

constraints is generally small, the solution found in this way is

excellent. However, it is useful to have other heuristics that for

their effectiveness are not so dependent on the number of con-

straints. Another heuristic investigated by Boomsma (1986) is the

so-called Lagrangian heuristic. It is mentioned here, because there

is some evidence that it performs well in the case of uniform test

information functions (Theunissen, 1986), and also because it leads

to his best general purpose heuristic, i.e., the heuristic with

surrogate constraints. Suppose we have optimization problem

L(1) maximize v'x

subject to Ax < b, and xi = 0 or 1,

then a theorem by Everett (see Salkin, 1975) says that if L is a

vector of Lagrange multipliers and x0 solves for problem

L(2) maximize v'x - LAx,

subject to xi = 0 or 1

x0 will also solve L(1), with b replaced by x0. Algorithms exist,

that systematically vary L, until a vector x0 is found that aproxi-
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mates b as close as possible. The 'surrogate constraints' heuristic

is essenstially a Lagrangian procedure, with as multipliers the op-

timal values of the dual of the continuous version of the original

primal. For comparisons as regards the effectiveness, the reader is

referred to Boomsma (1986).
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Summary

An overview of simultaneous test construction methods using

zero-one programming is given. The item selection process is based

on the concept of information from item response theory. Next, some

objective functions and practical constraints useful in

simultaneous test construction are presented. Then, the special

case of constructing parallel tests is considered. The paper ends

with a few examples.

AC
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Some Methods for Simultaneous Test Construction

Recently, a start has been made with research on test construction

from item banks using mathematical programming, in particular zero-

one programming. The idea to adopt such an approach to test

construction has been presented in a paper by Theunissen (1985). It

has been further explored in a series of papers by Boekkooi-

Timminga (1986, 1987), Boomsma (1986), Theunissen (1986),

Theunissen and Verstralen (1986) and van der Linden and Boekkooi-

Timminga (1986, 1987). Some references to operations research

methods are Rao (1984), Syslo, Deo, and Kowalik (1983), Wagner

(1972), and Williams (1978).

In this paper, methods to construct two or mc,re tests at the

same time from an item bank are presented. The possibility of doing

so is of great importance whenever tests with a certain

relationship to each other have to be constructed, for instance,

parallel tests or tests with increasing difficulty levels

(Boekkooi-Timminga, 1987).

The actual process of item selection is based on the concept of

information from item response theory. All items are assumed to fit

the same one-dimensional item response model. Furthermore, maxik.um-

likelihood estimation of the subjects's abilitieF is assumed, so

that the item and test score information functions have the

property of additivity. Target values for the test information

functions are specified " test constructor at some prechosen

ability levels. A procedure to obtain target values from test

X
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constructors is described by Kelderman (1987).

Simultaneous Test Construction: The General Case

Simultaneous test construction can be viewed at as a

generalization of the test construction method proposed by

Theunissen (1985). The two models dealt with below clearly

illustrate this. The model in (') - (3) specifies the test

construction model for one test described by Theunissen (1985). The

mode, limizes the number of items in the test subject to the

constraints that the actual test information function values should

exceed It(ek) at all K ability levels considered, where I
t
(e

k
) is

the desired test information function value of test t at ability

level k. The model in (4) - (6) describes the construction of T

tests at the same time. The total number of items over all I tests

is minimized, under the constraint that for each test t and each

ability level k the actual test inform ion function values should

exceed the values I
t
(0

k
). The following definitions will be

used: I
i
(0

k
) is the item information function value for item i at

ability level k. The decision variables xi indicete if item i is

selected (xi = 1) or not (xi = 0), whereas xit indicates whether or

not item i is selected for test t. The total number of items in the

item bank is denoted by I.

The model for the construction of one test is as follows

I

(1) minimize xi

/

C.) n
X L.



subject to

(2) ilixI.(0k ) > I
t
(e

k
)

(3) x. c 10,11

Simultaneous Test Construction

The model for constructing T tests simultaneously is

1 T

(4) minimize xit
1=1 t=1

subject to

(5)

(6)

Yek) Yek)i1

x
it

c 10
'

11

4

k = 1,...,K

= 1,...,I

t = 1,...,T

k = 1,...,K

i = 1,...,I

t = 1,...,T

Instead of minimizing the number of items many other objective

functions may be used (van der Linden & Boekkooi-Timminga, 1987).

In simultaneous test construction there are several possibilities.

The objective function can consider aspects of ail, a few or one of

the tests to be constructed. For instance, the total number of

items in all or in one of the tests. Some objective functions are

exclusively to be used in simultaneous test construction. This is
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the case when objective functions consider an aspect taking into

account a relationship between all or some of the tests, such as,

the difference in the actual test information function values at

all or some of the ability levels considered between all or some of

the tests to be constructed. In Figure 1 three possible objective

functions for simultaneous test construction are presented.

Insert Figure 1 about here

During the optimization process all kinds of constraints can be

taken into consideration. An overview of some constraints to be

used in both simultaneous test construction and the construction of

one test at a time is given in van der Linden and Boekkooi-Timminga

(1987), Theunissen (1987) and in van der Linden (1987). Some

constraints to be used in simultaneous test construction are listed

in Figure 2,

Insert Figure 2 about here
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Constructing Parallel Tests

In this section three methods for the simultaneous construction

of parallel tests are discussed. Tests dre considered to be

parallel if their information functions are the same (Samejima,

1977). In addition to this statistical definition, it is possible

to guarantee that tests are also parallel as regards content. To

achieve this, additional constraints should be added in the test

.construction model. A discussion of these constraints concludes

this section.

A possible approach to constructing parallel tests is a

sequential procedure in which tests are selected after each other

using a test construction model with the same specifications.

However, practical experience with this approach shows that such

tests tend to be far from parallel. Parallel tests can be well

constructed using : imultaneous test construction methods. Three

methods for simultaneously constructing parallel tests are

described in Boekkooi-Timminga (1986). The first method assigns

items to tests. The other two methods match the tests item by item.

The objective function in the first method is based on a measure

of difference between the tests to be constructed. For instance,

objective function 3 in Figure 1 minimizes the maximum absolute

distance between the actual test information functions. With this

function, the same target test information function values are

required for each test (Figure 2, constraint 1), no overlap of

items between the tests is allowed (Figure 2, constraint 7), and,
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if necessary, an equal number of items is assigned to each test

(Figure 2, constraint 4).

The second and third methods are based on a measure of

difference at item level. This measure, cij for items i and j, may

be, e.g., the difference in difficulty level when the Rasch model

is considered. Using method 2, items with minimum difference are

assigned to different tests, subject to the condition that the test

information functions satisfy the target. The third method assumes

that the item bank is partitioned into as many as comparable parts

as tests to be constructed. Then, the procedure of method 2 is

applied selecting one test from each set in the partition. For the

construction of two parallel tests, the test construction model for

the second method is as follows

I I

(7) minimize 1 1 cij xii

1=1 j=1

subject to

(8)

(9)

I I

1 xi. + x.. < 1

J 1=1 J1

y ,e
k
)x

ij
I
t
(0

k
)

1=1 j=1

I I

(10) 1 1 I.(0 > I (0 )

j k ij t k

j= 1,...,I

k = 1 K

k =1 , K
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i = 1,...,1

j= 1,...,1,

where cij is large, compared to the other cij values, whenever

i = j. The decision variables xij are equal to one if items i and j

are matched. Items i an j should then be included in the first and

second test, respectively. For both tests the same target test

information functions are specified in (9) and (10). Constraint (8)

indicates that an item may be selected for one test only.

By including some extra constraints in the test construction

models, it is possible to assure that the tests are parallel as

regards content. Indicator variables pis are used to indicate if

item i covers a certain subject matter s (pis=1) or not (pis=0).

Let S be the number of topics of interest during the selection

process. Then, (12) gives a set of constraints requiring that the

proportions a1,a2,...,a5 of items in the test from topics s must be

the same for all tests t.

1

= = as./ PiSxital/ Pilxit = a2itlr o

1=1
i2
xit(12)

1=1

t = 1 ..... T

Examples

Three examples of parallel tests constructed on basis of their

test information functions are given (see also Boekkooi-Timminga,
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1986). Examples 1, 2, and 3 were based on the methods described in

the previous section. Two parallel tests had to be constructed. The

test information function values were considered at the ability

levels 0 = -1, 0, 1. The target values were the same for each

example: It(ek) > 0.4 at all ability levels considered. An item

bank of 14 items was used. In Table 1 the item parameters and item

information function values are given. Since the meaning of these

examples was to explore the behavior of the three methods only on a

bank of 14 items was used. Applications to more realistic domains

of items have to wait for solutions to the computational complexity

of zero-one programming problems.

Insert Table 1 about here

The algorithm used for solving the problems was a branch-and-bound

algorithm developed by Land and Doig (1960) implemented on a DEC-

2060 computer.

In the first example objective function 3 from Figure 1 was

used. It had two versions: one without (la) and the other with (lb)

the constraint of both tests containing the same number of items.

In Examples 2 and 3, the sum of the squared absolute differences in

item information over the three ability levels was considered as a

measure for the differences between the items. In Example 3 the

item bank was divided into two equivalent parts. Part one consisted
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of the items 2, 5, 6, 7, 9, 11, 14 and part two of the items 1, 3,

4, 8, 10, 12, 13. The results are summarized in Table 2. For each

example: (1) the items selected, (2) the number of items selected,

(3) the test information function values, (4) the maximum distance

y between the actual and target test information function values,

and (5) the maximum distance y* between the actual test information

function values of the two constructed tests are given. For Methods

2 and 3, the following item pairs were produced: (1-4), (3-10),

(14-12) and (6-13), (7-4), (14-12).

Insert Table 2 about here

It is clear that y* was smallest for Method 1. This result was not

unexpected because this method explicitly minimizes the distance

between the items. Instead, the value of y is much larger for this

method than for the other two methods. Which method should be

considered best is mainly a matter of taste depending on which

objective the test constructor finds most important to optimize.

Conclusion

In this paper a description of simultaneous test construction

methods using zero-one programming was given. First, it was shown
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that simultaneous test construction methods are a generalization of

the method for the construction of one test proposed by Theunissen

(1985). Then, three models for the construction of parallel tests

were presented. In these methods, both statistical and content

aspects can be taken into consideration. Three examples were given

using the methods described for the construction of parallel tests.

Algorithms for solving zero-one programming problems are known,

and computer packages in which these algorithms are implemented are

amply available nowadays. However, an important problem with zero-

one programming problems is their computational complexity (Lenstra

Rinnooy-Kan, 1979). If one test at a time has to be constructed,

CPU-time can be reduced by relaxation, which means that the

decision variables xi are allowed to take values between zero and

one. However, when simultaneous test construction is involved this

is not possible, because it could lead to solutions in which items

are partly included in different tests. Before simultaneous test

construction methods can be used in every day testing practice,

more research on algoritnms and approximations will be needed.

Given the large amount of research adressing this topic as well as

the number wick approximative methods already obtained, it is

expected that fast algorithms will be found before long.

I
'
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Figure 1. Some Objective Functions for Simultaneous Test

Construction

1. Minimizes the total number of items in all tests:

I T

min 1 1 x4,
i.1 tat '"

2. Minimizes the sum of the distances between the target test

information functions and the actual test information functions

at the ability levels considered:

I T K

min xi I
i

1=1 t=1 k.1

subject to

i=1

x
it

I
i
(ek ) > It (e

k
) t i 1,...,T

k 1,...,K

3. Minimizes the maximum absolute distance y between the

information functions of test 1 and 2 at the ability levels

considered:

min y

subject to

I I

11 '

xI(0k) - y -
i1 '

x49I(0k) < 0

I I

-1
1

xI4(ek) - y +
11 1

x.
2
I.(0

k
) < 0i=.

k = 1,...,K

k = 1,...,K
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Figure 2. Some Constraints for Simultaneous Test Construction

i. Target test information function values:

I
>

1 Xityek) yek) t - 1,...,T
i1

k = 1,...,K

2. The number of items desired for each of the tests t:

I

1 =1 '

xi, i nt

3. Total number of items in all tests:

I T

1 1 xit z n
i=1 t=1

t = 1,...,T

4. Proportions of items selected for each test given by

hi,b2,...,br:

I I I

b,

41i1 1
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ii 1

xi2 = ... 2 bT
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X4T4 ==
5. Item i must be excluded from all tests:

xit . 0 t = 1,...,T

6. Item i must be included in precisely one of the tests:

T

/ xt 1

t1
i

'

7. Each item must be included in at most one test:

T

Ex
it

<1
t=1

i = 1,...,I

8. Proportions of items selected from each topic given by

al, a2 ..... as:

I I I

a1

1.1
il

x =alplpx = ... =alp. x
it 2

1=1
i2 it S

i=1
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t = 1,...,T
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Table 1

Item Parameters and Information Function Values

Item bi di I
i
(-1) Ii(0) Ii(1)

1 0.576 0.695 0.091 0.116 0.118

2 -0.442 1.109 0.280 0.290 0.172

3 -0.824 0.823 0.168 0.151 0.101

4 0.254 0.609 0.080 0.092 0.088

5 0.419 1.213 0.189 0.345 0.326

6 -0.017 1.138 0.240 0.324 0.236

7 -0.245 0.549 0.072 0.075 0.06,

8 1.828 1.171 0.047 0.129 0.273

9 1.109 0.892 0.091 0.157 0.198

10 -0.080 0.879 0.165 0.193 0.155

11 -1.708 1.384 0.380 0.151 0.043

12 0.016 0.909 0.168 0.207 0.170

13 -0.264 1.299 0.339 0.410 0.229

14 0.063 0.936 0.173 0.219 0.182

4
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Table 2

Results for Test Construction Methods 1 - 3

la

lb

2

3

Selected n It(0)

9-10-12-14 4 0.597

1-3-4-5-7 5 0.600

3-7-9-13-14 5 0.843

1-2-4-6-10 5 0.856

1-3-14 3 0.432

4-10-12 3 0.413

6-7-14 3 0.485

13-4-12 3 0.587

It(0) It(0) y Y*

0.776 0.705 0.376

0.779 0.700 0.379 0.005

1.012 0.777 0.612

1.015 0.769 0.615 0.013

0.486 0.401 0.086

0.492 0.413 0.092 0.019

0.618 0.485 0.218

0.709 0.487 0.309 0.102

n: number of selected items

y: maximum distance between the actual and target test information

function values

y*: maximum distance between the test information function values

of both parallel tests

4 2
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Abstract

The use of the minimax principle in IRT-based test construction is

proposed. It is shown how this results in test information func-

tions deviating less systematically from the target function than

for the usual criterion of minimal test length. 'text, an

alternative minimax approach is presented. Under this approach, the

test constructor specifies only relative target values which serve

as constraints subject to which the algorithm maximizes the

information in the test. In the final part of the paper, some

practical constraints are considered (e.g., test composition,

administration time, mutually exclusive items, and curriculum

differences), and a description of how these constraints can be

included in the optimization model is presented.
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Automated Test Construction

Using (Generalized) Minimax Programming

Although in IRT-based test construction a target information func-

tion for the test is specified, the actual item selection procedure

usually has a different entity as its objective function.

Theunissen (1985), for instance, has proposed a binary programming

model for test construction in which the objective function con-

sists of minimization of the test length. In his model, a branch-

and-bound algorithm selects a test of minimal length subject to the

condition that, at a number of ability points chosen in advance,

the test information function lies above the target function.

Practical experience in using models with minimization of test

length as the objective function shows that, for the usual item

response models, the information functions usually have a large

peak in the middle of the ability interval. The explanation of this

phenomenon is simple. Let Ok (k = 1,...,K) be the values of the

ability parameter considered in the model. Since the target values

for the information function at these points have to be met by a

minimum number of items, the algorithm will select items with the

"bulk of their information" in the interval [0
l' K

]. However, for

the one- and two-parameter logistic models the item information

functions are symmetric about their difficulty parameter values.

Hence, a tendency exists to select items located in the middle of

the interval. (Due to the presence of a guessing parameter, the
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item information functions corresponding to the three-parameter

model are skewed to the left and items somewhat to the left of the

interval are preferred.) This tendency will be observed for most

target functions in use in test construction. An exception is the

case of a U-shaped target with large values at the extremes; then,

obviously, the test will tend to contain items not in the middle

but at the ends of the interval.

The above phenomenon is not only less elegant but may also nave

some practical consequences. For example, the fact that all items

tend to concentrate at a single point and not to be distributed

over the entire interval may be less desirable as regards test

content. Also, in case new tests for the same interval have to be

selected on a regular basis, the supply of items in the mida,e 0'

the interval may quickly be exhausted. Then the procedure no longer

meets the ideal of producing short tests.

This paper is based on a twofold goal. The first goal is to

propose an objective function of the minimax type to solve the

above problem. Although other remedies are possible, this objective

function has two other favorable properties: First, as will be

shown below, the minimax principle has a generalization that

suggests a simple experiment to elicit target information functions

from test constructrxs. It is believed that this experimental

approach provides a major advance in the attempt to solve the

awkward problem of specifying a target information function.

Second, an objective function of this type does not contain any

test parameters. Therefore, the properties of the test may be

4 r'
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completely controlled by manipulating appropriate constraints in

the model. It is the second goal of the paper to exemplify the use

of this model under a variety of practical constraints.

A Minimax Test Construction Model

The purpose of having a target information function for a test is

that at each of the points Ok (k = 1 ..... K) the information about

the ability parameter will be close to some prespecified value. Let

I
t
(0

k
) and I(0

k
) denote the actual test information at 0

k
and its

target value, respectively. As the test information function may

approach the target values from below as well as from above, a

choice needs to be made. It is henceforth assumed that the target

function specifies the minimum amount of information required from

the test and that I
t
(0
k
) must approximate 1(0

k
) from above. it

follows that the relevant quantities are the (non-negative) values

{It(Ok)-I(Ok); k=1,...,KI and that the objective function in the

item selection model must guarantee that they are minimal in some

sense.

A direct attack on the problem of peaks in test information

functions is to minimize the largest deviation from the target

function subject to the condition that all deviations are non-

negative. This leads to the following criterion:

(1) minimize [max fl,(0k)-I(Ok);k"
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Although the minimax criterion specified in (1) seems to result in

non-linear optimization, it is a standard transformation in

mathematical programming to modify (1) so that it is in a linear

form (e.g., Wagner, 1975, sect. 14.8). Let y denote an arbitrary

upper bound to the set lIt(004(0k); k=1 K} and let Ii(ek) be

the value of the information function of item i (i = 1,...,I) at

the point Ok. Now, if xi is the decision variable as to whether

(xi=1) or not (xi=0) to include item i on the test, a linear

programming model minimizing the largest deviation may be specified

as follows:

(2) minimize y

subject to

I

(3) 1 I
i k i
(0 )x - y< k) k= 1, K

1=1
-

I

(4) I.(Oki -)x > I(0
k

) k = 1, K

i=1

(5) x.
1

f {0, 1) i = 1, ..., I.

The constraint in (3) requires the deviation of yek) = I4(0k)
1=1

Ii (0k)

1(0
k
) to be no larger than the upper bound y; the constraint
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in (4) stipulates that these deviations are non-negative. By mini-

mizing the upper bound y in (2) the test information function tends

to conform to the target function. Consequently, a test information

function with the smallest possible peak is produced and the items

in the test are spread out over the interval [el,ek]. The model

specified (2) through (5) can be solved for (y, xl, xl) by one

of the branch-and-bound algorithms available for integer

programming problems (Wagner, 1975, chap. 13).

It should be noted that the objective function specified in (2)

is just a dumay variable introduced to cast the minimax criterion

into a linear model. Hence, it does not contain any item or test

parameters. This provides the test constructor with the potential

for controlling any feature of the test t.at can be modeled as a

linear constraint. Examples of such modelling will be provided

below.

An Alternative Minimax Model

In IRT-based test construction it is assumed that the test

constructor is able to specify a target information function.

Although in general the target function of a test should be derived

on the basis of its intended use, the specification of such a

function is by no means an easy task. This section of the paper

describes a simple experiment that may be used to elicit

information about target functions from test constructors. An

alternative minimax model is then presented in which elicited
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information is used in item selection. An other approach to the

problem of specifying target information functions is given by

Kelderman (1987).

The suggested experimental approach consists of the following

steps. First, the test constructor is faced with the ability scale

underlying the item bank. This can be done by offering him or her a

line displaying the contents of items with locations at some well-

chosen points. The same practice is used in scale-score reporting

of assessment data (e.g., Pandey, 1986). Then, the constructor is

asked to select a number of scale points he or she wants to

consider. The number of points and their spacing are free. Next, he

or she is given, say, 100 chips and requested to distribute them

over the scale points such that they reflect the relative

distribution of information wanted from the test. The final step

then is to ask the test constructor for the desired length of the

test. The answer to this question can be facilitated by providing

some statistics about the time typically needed by the group of

examinees to complete items in the bank.

Let rk be the numbers of chips the test constructor puts at

point 0
k

(k = 1,...,K). Now the idea is to characterize the

relative target information function by a series of lower bounds

(rly, rKy) in which y is a dummy variable to be maximized

subject to the constraint that test length is equal to the value n

specified by the test constructor. This leads to the following

model:

t'



(6) maximize y

subject to

I

(7) Ii(0 k)xi - rky > 0
1=1

I

(8) xi = n
1=1

(9) xi ,E [0, II
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k = I, K

i = 1, ..., I.

The constraints in (7) set a series of lower bounds, rky. to the

test information I
t
(0

k
) = I,(0k)xi at each of the points Ok.

1=1 '

The common factor y in these bounds is maximized in (7). The

colstraint in (8) sets the test length equal to n.

Just as in the previous model, the present model also tends to

prevent the items in the test from concentrating in the middle of

the ability interval. The reason is simply that for each test with

an information function showing a large deviation from the target

function at one of the points ek, it is likely that a test with a

series of uniformly larger lower bounds rky could be found by

distributing the items more in accordance with the relative weights

(r1, rk).

A comparison between (2) through (5) and (6) through (9) shows
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that the latter has K-1 less constraints. Nevertheless, it has the

additional potential for controlling the length of the test.

Some Practical Constraints

For automated test construction to be practical, it is necessary to

provide control of features of the test other :tan just the

information function and the number of items. Since the previously

presented models are linear programming models, they can easily be

extended through the use of additional constraints, provided these

can be modeled as linear (in)equalities. In this section some

practical constraints are discussed. Throughout the discussion it

is assumed that (6) through (9) is the basic model.

Test Composition

As already noted, for a sufficiently large bank of items, the

constraint in (8) controls the length of the test. The same

principle can be applied at the level of possible subtests

providing the test constructor with the ability to control the

compesitionathetest.letV.(f = 1,...,J) be a subset of items

in the bank from which the test constructor wants n.
J

< n in the

test. This is attained if the following equality is added to the

model:

(10) x. = n.
iml

.3

i c V
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It is important to note that for a series of such constraints the

sets V (j = 1,...,J) do not need to be disjoint. This provides the

opportunity for controlling the composition of the test

simultaneously with respect to several dimensions. For example, an

item bank for English could be partitoned not only with respect to

its content (e.g., vocabulary, grammar, or reading comprehension),

but also to a behavioral dimension (e.g., knowledge of facts,

application of rules, or evaluation) or the format of its items

(e.g., multiple choice, completion, or matching). For each set in

these partitions the constraint in (10) is incorporated within the

model, with the restriction that the ni's are specified such that

the sum over all sets 'a the same partition is equal to n. If this

Jption is used, the constraint in (8) is redundant and may be

dropped.

Administration Time

In a computerized testing environment, the time needed to solve the

items in the bank by the population of examinees of interest can

easily be monitored. Let ti be, e.g., the 95th percentile of the

distribution of time for item i in the population. Instead of

fixing the length of the test, the selection of the items could

also be based on the time limit, T, in force for the examinees. In

that case (8) is replaced by

(11) T.

i=1
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Analogous to (10), the composition of the test can be controlled by

introducing tine limits at the subtest level.

Selection on Item Parameters

Let ci be a positively valued numerical parameter representing a

feature of the items in the bank. Then it is possible to restrict

the selection of the items to those with c. a [c
1,

cµ] by including

the following set of inequalities in the model:

(12) cixi cu

(13) c. x. < c
-1

i = I

i = I, ..., I ,

where cu > c1.

Unlike (10), these constraints do not fix the length of

subtests. Therefore they can be used to give all items in the test

the same properties. At the same time, (10) can be used to compose

the test with different item properties.

If the frequency of administration of the items in the bank is

monitored, the constraints in (12) through (13) can be used to

restrict th:. selection of the items to certain frequencies. For

example, if the intention is to obtain uniform usage of items in

the bank, (12) can be used to set an upper bound for item use thus

restricting the selection of items to those with lower usage.

It is also possible to substitute one of the parameters in the

item response model for ci. In this way, the constraints can be
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used, for example, to select items with values for the uifficulty

parameters in a certain interval. For the Rasch model, this allows

for the selection of items based on their probabilities of success:

Let 0
o
be the a priori known average ability of the group of

examinees, and let [px,pu] be the interval to which the

probabilities of success for the "average" examinees are

restricted. It follows that the items must have the values of the

difficulty parameter, bi, in the interval [bl,bu] determined by

090;51.) = pu and p(eo;bu) = px, where p(.) is the logistic

function specified in the Rasch model. Selecting items based on

their probabilities of success for given examinees may be desirable

for instructional reasons.

Group-dependent Item Parameters

If the item bank has to serve distinct groups of examinees, items

may have different properties for different groups. In such cases

it is obvious to consider the parameter ci in (12) - (13) as group

dependent. In school settings, for instance. the recording of the

date of the final administration of item i to group g = 1, G

may be useful. iiuc constraint in (13), with cgi instead of cg, tten

allows the selection of items for one group that have not been used

after a given date for other groups. Such strategies may be

instrumental in solving the problem of test security.

If cgi is allowed to take only the values zero and one, it can

be used to adapt tests to curriculum differences between groups.

Let cgi indicate whether (cgi=1) or not (cgi=0) item i covers a
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part of the curriculum of group g. Then the following constraint

automatically suppresses the administration of items to group g on

topics for which instruction is absent:

(14) xi < cgi i = 1, ..., I.

Inclusion or Exclusion of Individual Items

For some persomli ;:ason the test constructor may want to include

or exclude certain items from the test. As already noted by

Theunissen (1985) and ftekkooi-Timminga (1986), the following

constraints can be used for this purpose:

(15) x. = 1 i e V.

(16).xi =0 i e V. ,

Jo

with V. n V. _0.
J

0

Inter-item Dependencies

In some practical situations certain items are not allowed to be

administered on the same test. For instance, this may be the case

if some items contain a cue with respect to the solution of other

items. Suppose io = 1, ..., I0 indicates a set of mutually

exclusive items in the bank. Then, the following multiple-choice

constraint allows the selection of at most one item from this set:

13
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I
o

(17) x, < 1

i
o
=1 10

The opposite case occurs if the selection of one item entails the

necessity to select other items as well. This may occur if the

content of some items builds on that of other items. (The question

if one of the current response models could fit such items is

deliberately omitted.) It is also possible to model the presence of

this dependency between test items as a linear constraint.

Let i1 = 1, ..., II represent a set of dependent items in the bank.

The following equality guarantees the simultaneous inclusion or

exclusion of these items from the test:

(18) x = x
ii+1

it = 1, ..., I1-1.

The last two constraints differ from those previously specified

in that they represent dependencies among items in the bank that

hold for all possibly generated tests. Therefore, they should be

specified when the item bank is designed and automatically inserted

in the model each time a test is constructed. Another approach to

the problem of inter-item dependencies, using Boolean algebra, is

given by Theunissen (1986).

Discussion

From (6) through (8), it is clear that the basic model in this

paper always has a feasible solution for n < I: The constraint

specified in (8) stipulates that n items are selected; from all
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possible selections of this length, (6) through (7) result in the

choice of the one with an information function for which the lower

bounds (rly,...,rKy) are maximized. Thus, a sufficient condition

for a model extended with additional constraints to have a feasible

Solution is that the intersection of their solution spaces is non-

empty. This should be taken into account when specifying

constraints in (10) through (18) as an addition to the basil model.

For example, if (10) is used in combination with (18), it should be

specified such that the lengths of the subtests are consistent with

the equality constraints in (18).

Strictly speaking, a solution to the models in the paper is just

a collection of test items. To make them into a test, the items

should be put into an appropriate order of administration. This

again can be considered as a problem of optimization subject to

constraints with respect to, e.g., item difficulty, administration

time, or topic structure. How this problem can be solved using a

linear programming model is the subject of another paper.

As a final comment it is noted that in a computerized test

system the models in this paper can also be used in an interactive

mode. In doing so, the system selects a test and requests the user

to indicate which items are appropriate and which are not. In the

next stage, the model is used to select a new version of the test,

but now with xi = 1 for the items that have to be retained and xi =

0 for those that were rejected. The process is repeated until all

items are considered appropriate. Interactive use of the models in

this paper is recommended since it allows test construction to be

based on possible remaining constraints of interest that can not be

modeled as linear (in)equalities.
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Abstract

To construct a test from an item bank, items are selected from the

bank so that the test has a certain test information function. In

this paper procedures to assess target information functions for

the test are described. The probability that a certain student of

ability 01 will erroneously obtain a higher estimate than a more

able student with ability 02 can be derived from the information

function of the particular test. The procedures to obtain infqrma-

Mon function are based on the reverse relation; from the probabi-

lities of wrong-order mistakes (WOM), information-function values

are obtained. In a dialogue between the test constructor and a

computer, the procedure can be used to obtain the information

functions on one or more scales.

f'"
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Some Procedures to Assess Target Information Functions

Item banks are used increasingly in educational testing (Choppin,

1976, 1981; Wright & Bell, 1984). An item bank contains a large

number of test items relevant for a particular curriculum. From an

item bank a teacher may select a set of items to measure the abili-

ty of a group of students. In this selection proces two problems

are encountered.

The first problem is that, in general, an item bank will not

consist of a single homogeneous set of items fitting a one dimen-

sional item response theory model. Typically, a bank will contain

different homogeneous scales measuring the effects of particular

elements of the curriculum. Bock, Mislevy and Woodson (1982) call

these elements indivisible curricular elements. In selecting the

items to be used in a test, the teacher has to decide which indi-

visible curricular elements have to be represented in the test and

with what weight this has to be done. This is a problem of content

validity (Thorndike 1982, ch. 7).

Secondly, for each indivisible curricular element it has to be

decided how many items of what levels of difficulty must be includ-

ed in the test. For example, if for a particular element only a low

level of ability is required, easy items have to be included in the

test.

Birnbaum (1968) has pointed out that information functions can

be used for test construction. If, for a given latent trait, a tar-
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get information function is known, the desired test can be con-

structed by selecting items in such a way that the information

function for the test approximates the target function. Lord

(1980), Theunissen (1985) and Boekkooi-Timminga (1986) describe

methods to do this. Theunissen (1985) describes a procedure based

on integer programming, a special branch of linear programming.

Boekkooi-Timminga (1986) uses integer programming to construct

several tests simultaneously starting with several information

functions for different tests.

To employ these methods, for each of the scales a target infor-

mation function must be known. To date, however, no satisfactory

method to specify target information functions is available.

In this paper, first the concept of an information function and

its properties are described. Some interpretations of this concept

are discussed and an interpretable function of information is cho-

sen: the probability of a wrong order of the ability estimates of

two subjects.

Using this interpretation, a paired comparison experiment is

proposed that yields the values of the information function for

different scale points by comparing their wrong order probabili-

ties. These experiments can be used in an interactive procedure to

specify information functions for scales.

Test Information Functions

Consider a test measuring q traits, where each trait r (.1 ..... q)
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is measured by nr items with responses U =
(Url ..... ''Urn ) Each

r

item response uri can take values 0 (wrong, negative) or 1 (right,

positive). It is assumed that the responses are locally independent

P(U
r
=u

r
1 0(r)) = Ili'. P(U

ri
.1

ri
I 0

(r)
). (1)

that is, the dependence between the item responses is wholly ex-

plained by their dependence on an unidimensional latent trait

0("). Several item response models are proposed for

P(Uri =uri 1 0(11). For example Rasch (1980) gives the model

exp(ui(0-6,1))

P(Ui=ui I 0) = (2)

1+exp(0-61)

where 6i is a parameter for the difficulty of item i and the index

r denoting the trait is dropped.

The amount of information about 0 contained in the subtest U
r

is defined as (Kendall & Stuart, 1978, p. 10):

I(0) = E0 [(h log P(Ur10))2)

If the items are locally independent (1), we have (Lord, 1980):

where

(3)

I(0) =
n

Ii(0), (4)

i=1

Ii (0) = E
0 6
[(10 log P(U.18))) (5)

1



Assessing Information Functions

5

is the information about 0 in the response to item i. For example,

in the Rasch model the item information function is

Ii(e) = [2 + exp(8i-0) + exp(0-50]-1 (6)

If t is an unbiased estimator of some function T(0) of 0, the

Cramer-Rao inequality (Kendall & Stuart, 1978, p.10; Lord, 1980,

p.71) states that

Var(t10) > {T1(0)}2/I(0) .

If 9 is a maximum likelihood estimator of 0 we have asymp-

totically (Lord, 1980, p. 71):

1

Var(0 10) = I
-1

(0)

Furthermore, 0 has asymptotically a normal distribution with

expectation 0 and variance I-1(0) (Oosterloo, 1984).

Interpretations of Test Information

(7)

(8)

To obtain a target information function I(0) from a test construc-

tor, some suitable interpretation of both the latent trait value

0 and its associated information value I(0), must be available.

Unfortunately, neither 0 nor I(0) have a straightforward interpre-

tation. Before a procedure for obtaining information functions can

fq;
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be constructed, we must therefore relate 0 and 1(0) to quantities

that do have an interpretation familiar to the test constructor.

Interpretation of Ability Level

Firstly, the ability level can be expressed in terms of the

expected observed score (true score) of some subtest with which the

test constructor is familiar. Let A be the set of items of this

test, then

T1(0) = Nui=110)
icA

(9)

is the true score, where P(U =1-0) is some IRT model. In general,

however, it may not be expected that test constructors are very

familiar with specific tests, let alone homogeneous subtests

pertaining to indivisible curricular elements.

A second way to give an interpretation to the ability level is

to relate 0 to percentiles for a reference population with which

the test constructor :s familiar, i.e.

T2(0) = 100.F(e) , (10)

where t2(0) is the percentile point for ability level 0 and F is

the cumulative density function of 0 in the population of interest,

e.g. students of a certain grade level in a certain school type.

In general, it may be expected that the test constructors are

more familiar with subpopulations than which specific tests.
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Consequently percentile points may be the prefered way to express

ability level. In the application of percentile points, however, a

good description of the trait to be measured should be given. This

trait can be described verbally in terms of teaching materials or

in terms of test items.

A third way is to give an interpretable representation of dif-

ferent ability levels is to provide test items with difficulty

levels corresponding to the particular 0 level. Instead of test

items also mean ability levels of particular reference groups can

be used.

Interpretation of Information

A more difficult problem is the one of interpreting test infor-

mation. For functions t of 0 'e can use the relation

I/40) = [T'(0)] / var(tI9P2 (11)

which can be interpreted as "the slope of the regression of t (i.e.

the observed value of s(0), on 0 relative to the stanlard error of

measurement of t for fixed 0" (Lord, 1980, p. 67). This interpreta-

tion can be urea for both true scores (9) and percentiles (10), but

it has the drawback of still referring to a 0 scale which is not

interpretable. Moreover the 'stariard error of measurement' is not

directly a very easily interpretable quantity either.

A second way to get to an 1' rpretable quantity from which in-

formation values can be obtained is to use the property that for a
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latent trait value 0 the estimator 0 has an asymptotic normal dis-

tribution with variance I
-1

(0). The asymptotic confidence interval

has length I4k0) so that the .95 confidence interval is

0 ± 1.96 I24{0). The interpretation of a confidence interval "The

probability that the interval covers the true value is .95" is not

easy to comprehend for test constructors who are unfamiliar with

statistics.

A third way to derive an interpretable quantity from test in-

formation is as follows. Consider two individuals with true ability

levels 0
1 L

and 0,
'
respectively, where the second individual is more

able than the first. If the values of the target information func-

tion for 0
1

and 0
2
are small, the variances of the estimated abili-

ty levels 01 and 02 are large. In that case, the probability that

the first individual is erroneously estimated to be more able than

the second individual becomes also large.

The probability of such a wrong order mistake (WOM) can be

derived as follows. Because 0
1
and 8

2
are ability scores obtained

from different persons who respond independently to the test

(Kreyszig 1970, p. 173)

Var(01-02) = Var(01) + Var(02) (12)

Furthermore, from the fact that 0
1
and 0

2
have an asymptotic normal

distribution with mean 0
1
and 0

2
and variance I

-1
(0

1
) and I

-1
(0
2

)

'

respectively, we have
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P(81 -82) = N(81- 82,I -1 (e1) + I
-1

))
'

(13)

so that the probability of putting inch persons in the wrong order

of ability is:

- -

P(0 -0
2
) = P(e

1
-e

2
> 0) =

(e1 -e2) (e1 -e2)
0

= P (
-1-82)

T-1
I (el) + (e2) I11(81) + I-1(e2) )

-(61-82)
= 1 - 0 (

)

I-1(01)+I (02)

el e2

-1(81)I (e
1
) + )

(14)

where 0 is the cumulative normal distribution function. From (14),

I
-1 -1 -1 -1

(e ) I 0
2
) = (61 -82) (0 (P(e

1
>e

2
)1 (15)

so that the sum of the reciprocals of the information values for

two known scale points can be obtained if the wrong-order probabi-

lities are known. Furthermore, from (15) we have:

1(e2) = 1/{(81-02) [4?10'6e82M-1 - I-100) (16)

If one of the information values is known, the wrong-order probabi-

lity can be used to determine the other. If both information values

are unknown but can be assumed to be approximately the same we have
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I2(6) 2/1(61-62)[1
1

("61'62))]
-1

I
(17)

Since ueasurement in education is concerned with comparisons

between perLins on particular traits and the fairness of these

comparison is important to most test constructors, we will choose

for an interpretation of information functions in terms of wrong-

order mistakes.

Assessment of Information through Wrong-order Mistakes

The above relationship can be used to give a sensible interpre-

tation to an information function for the precisio,-; of measurement

in terms of wrong-order probabilities. It can also be used the

other way around. That is, the desired measurement precision may be

specified in terms of wrong-order probabilities to obtain the

associated target information function.

To obtain a target information function for a certain scale, a

number of equidistant points may be chosen for which the informa-

tion values will be determined. Three to five of such target infor-

mation values suffice for the construction of a test using integer

programming (Theunissen, 1985). For each pair consecutive pair of

scale points, a test constructor, typically a teacher, is then

asked to specify the wrong order probability that (s)he is willing

to accept for that particular pair. The target information function

is then calculated using formula (16). Since formula (16) supposes

that one information value is already known, one more pair of scale
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points must be judged to remove the indeterminacy.

Although the idea of wrong order is easy to grasp, the proce-

dure is not entirely satisfactory. Firstly, producing a probability

is still a difficult task. The teacher might not be willing to

accept any order mistakes at all! But on the other hand he might

not be willing to pay the price of a very long test, or not believe

that that is the price to pay.

Secondly, this procedure is restricted to one scale only. We

need however a procedure that simultaneously yields information

functions for a number of homogeneous subscales. The procedure must

give reliable information concerning the relative heights of these

information functions so that a composite test can be constructued.

In this section of the paper, some procedures to be presented are

based on paired comparisions of wrong-order mistakes that avoie

asking for probabilities and can be used to obtain information

about the ref vr heights of information functions for different

traits. Th, :an be done thro,gh a procedure based on the compari-

son of two paires of items: The pair completion experiment.

The pair-completion experiment is as follows. The test con-

structor is confronted with three appropriately anchored scale

points. (S)he must now provide a fourth scale point so that the

wrong-order mistake in scale points one and two is equally serious

as a wrong-order mistake in scale points three and four. We will

show now that if the information values of the first three scale

points are known, the information value of the fourth scale point

can be calculated.
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The basic idea is that two wrong order mistakes of the same

seriousness are allowed to occur with the same probability, that is

P(611'6u) P(621'622),

where 8
11

and 0
12

are the estimated latent trait values of the

(18)

first pair and 821 and 822 are the estimated latent trait values

of the second pair.

From (18) and (14) and the fact that the cumulative normal dis-

tribution function has an inverse, we have

so that

1
e21 -e22 -

I" 0 ) + I to )

-1
(e )4410 )) (19)

2 21 2 22 6
11

-8
12

1 12 '

I (0 ) = lir
021022

(1
1
(e )+1 )1 ( )1 (20)

1 -1

2 22 Le
11

-0
12

1 11 1 -612 -621--' 20

where 1
1
and I2 are the information fune_ions for the first and the

second pair, respectively. These information functions are indexed

because the first and the second pair of scale values may be from

different latent traits.

If the information values of the given scale points 8..,
Li -12

and 821 are known, the information value of the scale point 822

that is provided by the test constructor (through his choice of an

item or a percentile point) can be calculated using (20). If the

information values in the second pair are assumed to be
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approximately the same, we have from (191:

-

11(621) 1
2
(0
22

)

e

e
11

-0

0
12

2 . (21)-,I
1

1
21 22

1
(ell) +I1 le

12

1

If the information values are assumed to be approximately the same

in both members of the first pair i,e. I 1 I ( 1
1.811'

1.812', we have

.._ *,

12(622)
1/[2

621-622

11 12

I11(611)
12

1

1e211J '

(22)

and if the information values within both pairs are approximately

the same, i.e. 11(611) 11(612) and 12 (621) 12(622), we have

2
(6
22

) L
e

11

-0

-612
I1(e11) .

11 12

A Procedure to Determine Multiple Information Functions

(73)

The pair-completion experiment can be used repeatedly to obtain

information values for a number of points on one or more scales. It

is supposed that the test constructor is seated in front of a

terminal. The terminal presents the scale points appropriately

anchored by item content and/or percentile points on a line. The

following steps are now taken to determine the information

functions.

Step 1 The test constructor is asked to select an interval on one

of the scales around the point (s)he is most interested

in. The items corresponding to the end points of the
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interval are highlighted.

Step 2 The test constructor is requested to give the WOM probabi-

lity for the end points of the interval. The end points

are assumed to have the same information values.

step 3 A new point on the scale scale is found using the pair

completion experiment. In this experiment, the points of

the first pair are the end points of the interval and the

first point of the second pair is one of the end points of

the interval. The information value of the new point is

calculated by formula (22).

Step 4 In the same way as in step three, information values are

determined for points at the right (left) side of the

scale, using the two rightmost (leftmost) points as points

with known information values. The information value of

the new point is calculated by formula (20). At each step,

the test constructor may decide to stop adding points.

Step 5 The test constructor is asked to select another scale and

a point on that scale (s)he is most interested in.

Step 6 The information value of this point and another point on

the new scale is found by executing the pair completion

experiment. In this experiment, the points of the first

pair are the end points of the interval on the old scale

and the first point of the second pair is the the point

chosen on the new scale. Assuming that the information

values of both points on the new scale are the same, the

information value of the new points are calculated by
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formula (?3).

Step 7 Step 4 is repeated for the new scale.

step 8 Step 5 through 7 is repeated another new scale until all

relevant scales are processed.

In this fashion information values are obtained for a number of

points on the on a number of scales. Note that the test constructor

can determine how many points on the scale (s)he wants to have. In

many applications this number will be small. so that the procedure

need not take too much time.

Discussion

The procedure presented in this paper yields a number of infor-

mation functions to be used for ccnstructing a test measuring a

number of homogeneous traits.

The procedure to determine information functions is carried out

only once. No replications are made to check the reliability of the

Judgments. Checks could be built into the procedure but would re-

quire a lot of time from the test constructor and may make the

method impractical.

The unit of precision by which the functions are measured is

chosen by the test constructor in step 5. This might be hard to be

do no. The size of this unit also has a large effect on the total

duration of the procedure. Therefore the unit might be chosen by

the system to limit the duration of the procedure.

G
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In this paper a pair completion experiment is performed. In

some cases this will not be feasible because there might not be a

scale point available for which the WOM in the second pair is as

serious as a WOM in the first pair. For example, if it is

considered much more important to measure one trait than another

trait, a WOM for the standard pair in the first scale may be more

serious than a WOM for any pair of scale points in the second

trait. As a result the test canstructor is not able to indicate a

new point on the second scale. In that case another experiment may

be devised where all four points are furnished by the system. The

test constructor is then asked to distribute a number of dollars

(say 100) over the two pairs in proportion to the seriousness of a

WOM in each of the pairs. The relative probability of a WOM is now

taken inversely proportional to the relative seriousness of a WOM,

so that the expected value of WOM seriousness is equal in both

pairs. For example, if a WOM in the second pair is considered twice

as serious, the probability of a WOM in the second pair becomes

half the probability of a WOM in the first pair. Formulas for

determining the information values of the points similar to (20)

through (22) can be derived Jlong the lines of the present paper.
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