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Abstract

An approach to simultaneously optimize assignments of
subjects to treatments followed by an end-of-mastery test is
presented using the framework of Bayesian decision theory.
The main advantages of the simultaneous approach compared to
the separate are the more efficient use of data and the fact
that more realistic utility structures can be used. The
utility structure dealt with in this combined decision
problem is a linear utility function. Decision rules are
derived for quota-free as well as quota-restricted assignment
situations when several culturally biased subpopulations of
subjects are to be distinguished. The procedures are
demonstraze.! with an empirical example of instructional

decision wmaking in an individualized study system.

Keywords: decision theory, culture-fair placement, linear
utility, quota-free placement, quota-restricted

placement.
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Introduction

tatistical decision problems arise when a decision maker is
tfaced with the need to choose a preferred action that is
optimal in some sense. Moreover, one decision problem often
leads to another, which, in turn, leads to a next one, and so
on. An example is test-based decision making in an
individualized study system (ISS), which can be conceived of
as an instructional network consisting of various types of
decisions as nodes (Vos & van der Linden, 1987; Vvos, 1990).
How should we model and analyse such sequences of decision
problems within a Bayesian decision-theoretic approach (e.g.
DeGroot, 1970; vTerguson, 1967; Keeney & Raiffa, 1976;
Lindgren, 1976)? 1In general, two main approaches can be
distinguished: either each decision <can be optimized
separately or all decisions simultaneously. In the former
approach, the expected utility of each separate decision is
maximized sewguentially while in the latter the overall
expected utility of all decisions is maximized
simultaneously.

It is the purpose of this paper to demonstrate how rules
for the simultaneous optimization of sequences of decisions
can be found. Compared with the separate optimization of
decisions, two main advantages can be identified. First, when
optimizing rules, decisions to be made later in the decision
network can already be taken into account. As a result of
this approach, rules can be found that make more efficient

use of the data in the decis.on network. Also, the overall

ry
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expected utility will be increased. Second, more realistic
utility structures can be handled by the simultaneous
approach.

Van der Linden (1985, 1988) has given an elegant
typology of decision problems in educational and
psychological testing. Each decision problem £rom this
typology can be viewed as a specific configuration of three
basic elements, namely a test, a treatment, and a criterion.
With the aid of these elements, the following four different
types of decision problems can be identified: selection,
mastery, placement, and classification.

Well~-known examples of the four types of decision making
in the field of education are admiss!on of students to
educational programs (selection), pass-fail decisions
(mastery), the aptitude-treatment~interaction paradigm in
instructional psychology where students are allowed to reach
the same educational objectives via different instructional
treatments (placement), and vocational-guidance situations
where, for instance, most appropriate continuation-schools
must be identified (classification).

Each of the four elementary decision problems can be
formalized as a problem of (empirical) Bayesian decision
making. In Hambleton and Novick (1973), Huynh (1976, 1977),
Mellenbergh & van der Linden (1981), Novick and Petarsen
(1976), Petersen (1976), Petersen and Novick (1976), van der
Linden (1980, 1981, 1987), and Vns (1988), it 1is indicated
how optimal decision rules can be found for these problems

(analytically or numerically).

rd
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In the present paper, the emphasis is on deriving
simultaneous optimal decision rules for combinations of the
elementary decisions. To illustrate the approach, a placement
and a mastery decision will be combined into a simple
decision network (see also Figure 1l). The difference between
the separate and the simultaneous approach can be
demonstrated by the combined placement-mastery decision of
Figure 1. In the separate approach, first optimal placement
rules are found by maximizing the overall expected utility
for the separate placement decision (e.g., van der Linden,
1981). Next, optimal mastery rules are found by maximizing
the overall expected utility for the separate mastery
decision (e.g., Hambleton & Novick, 1973). In the
simultaneous approach, however, the optimal placement as well
as the optimal mastery rules are found by maximizing the
overall expected utility of both decisions simultaneously.
Also, when optimizing treatment-assignment rules, pass-fail
decisions to be made later can already be taken into account;
hence, the first advantage of the simultaneous approach is
nicely demonstrated by Figure 1.

Besides the pure forms and combinations with each other,
one or more of the following generalizations may apply (van
der Linden, 1988) to the elementary decisions:

(). Multiple populations. The presence of different
subpopulations reacting differently to the test items
may create the problem of culture-fair decision making.

(2) . Quota restrictions. Due to shortage of resources, the

number of vacant places in some treatments is
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S
restricted.
(3) . Multivariate test data. The decisions are based on data

from multiple tests.
(4). Multivariate criteria. The success of a treatment has to
be measured on more than one criterion each reflecting a

different aspect of the treatment.

In the present paper, only restrictions with respect to
the presence of subpopulations and the number of wvacant
places in some treatments will be assumed. First, we
elaborate the decision-theoretic aspects of culture-fair
decision making for a quota-free placement-mastery problem.
For a 1linear utility function ¢the decision rule that
"optimizes simultaneously the treatment assignments and the
pass~-fail decisions to be taken after the treatments are
given. Next, optimal rules will be derived if allocation
quota considerations have to be taken into account. Finally,
optimal cutting scores for quota-free as well as quota-
re; icted combined decisions will be presented for an
empirical application to instructional decision making in an
ISS. In the numerical example, it is further assumed that the
students can be separated into two subpopulations referred to
as the disadvantaged and the advantaged populations.

With resnect to the applicability of the approach
presented in this paper, the following should be regarded.
Although the area of individualized instruction is a useful
application of simultaneous decision making, it should be

emphasized that the procedures advocated in this paper have a
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larger scope. For instance, the simple placement-mastery
decision problem may be important 4in such areas as
psychotherapy in which it can be expected that patients react
differentially to a certain kind of therapy and the most

promising therapy is followed by an end-of-therapy test.

The Placement-Mastery Decision Problem

In placement decisions several alternative treatments are
available and it is the decision maker’s task to assign
individuals to the most promising treatment on the basis of
their test scores. All subjects are administered the same
test and the success of each treatment is measured by the
same criterion. Figure 1 shows a flowchart of an ISS for the
case of two instructional treatments in which the treatment
assignment is followed by a mastery test. A test on the basis
of which it is decided whether the student has mastered the
instructional treatment sufficient.y so that (S)he may
proceed with the next treatment, or has to relearn the

treatment and prepare him(her)self for a new test.

Insert Figure 1 about here

In the following, we shall suppose that 4in the
placement-mastery decision problem the total population can

be separated into g (g 2 2) subpopulations reacting

gw-._
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differently to the test items. Let X be the placement test
score variable, Y the mastery test score variable, and let
the true score variable T underlying Y denote the criterion
common to the treatments j (J = 0,1), respectively. The
variables X, ¥, and T will be considered to be continuous.

We consider a hypothetical experiment consisting of a
population of students being exposed to each of both possible
treatments but where the students are "brain-washed" so that
the effects of one treatment do not interfere with those of
anothez. (The actual experiment needed for parameter
estimation and in which different samples of students are
randomly assigned to the treatments will be described later
on).

Furthermore, it is supposed that the relation between
the measurements X, the measurements Y after treatment j, and
ﬁhe criterion T, can be represented for each population i (i
= 1,2,..../9) by a joint probability function ﬂai(x,y,t).
Since the treatment is between the placement and the mastery
test, it will influence the relation between ¥, Y and T, and
this relation can be expected to assume a different shape for
each treatment. This is indicated by ¢the index Jj in
Qgi(x,y,t). However, ©because the placement test is
acninistered previous to the treatments, the marginal
probability function of X in subpopulation i is the same for
both treatments and will be denoted by qj(x). The above
experiment being executed, the placement-mastery decision
problem now consists of setting simultaneously cut-off scores

Xgy and ygy such that, given the value of tg, the overall

T
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expected ntility is maximized. It snﬁuld be stressed that,
although the nature of the decisions shown in Figures 1 and 2
is sequential, the cut-off scores Xy and yoi are optimized
simultaneously using data coming from the above experiment.

The presence of populations reacting differently to test
items imply also different cut=-off scores for each population
(Gross & Sﬁ, 1975; Petersen & Novick, 1976). Therefore, let
%oy and yoy denote the cut-off scores for subpopulation i on
the observed test score variables X and ¥, respectively.
However, the cut-off score t, on the criterion score T
separating "true masters" from "true nonmasters" is assumed
to be equal for each population. Note that, due to the
presence of different populations reacting differently to
test items, different probability functions for each
population should be assumed (Gross & Su, 1975; Petersen &
Novick, 1976).

In this paper, we consider only monotone decision rules
0: students with test scores above a certain cutting point
are considered "suitable" and "not suitable" otherwise. For
the decision network of Figure 1 they can be defined in the

following way:

K for X < %oy, Y < Yai

a for X < Xg4,» Y2 ¥
(1) S, ¥ =1 O3 ' el
aig for X 2 Xgys» Y < Yei

where ajp stands for the action either to retain (h = 0) or

'it:v,s
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advance (h = 1) a student who is assigned to treatment
j (3 = 0,1). The problem of setting optimal cutting scores
Xci and Yoy, given the value of t,, now amounts to selecting
A monotone decision rule which maximizes overall expected
utllity. However, the restriction to a subset of all possible
rules in our paper is only correct i1f there are no
nonmonotone rules with higher expected utility. The
conditions under which the subclass of monotone rules is
essentially complete, i.e., that for any nonmonotone rule
there is a monotone rule that is at least as good (Ferguson,
1967, Sec.6.1; Karlin & Rubin, 1956) will be examined in the

next section.t
Monotonicity Conditions

For the elementary decisions the monotonicity conditions are
known, and a monctone solution exists. The first condition is
that the probability model relating observed test score
variable 2 to true score variable T has monotone likelihood
ratio (MLR) in t, i.e. it is required that the ratio of
likelihoods f(zltz)/f(z|t1) is nondecreasing in z for any t,
< tp. Second, the actions should be ordered such that for
each two adjacent actions the utility functions possess at
most one point of intersection.

To guarantee that a monotone solution of the combined
decision problem exists, it is assumed that, in addition to
the conditions of MLR and monotone utility, the following
conditions hold in each subpopulation i for the probability

4
~ 1

b

Laa
“~

IR Y



A Simultaneous Approach
10

functions vji(t|x), pji(x,ylt), and nji(y|x) of the
distributions of T given X =x, (X,¥) given T = t, and Y given

X = x under treatment j (j = 0,1), respectively:

(2) For any X7 < X3, the ratio of likelihoods

v°i(t|x2)/v11(t|x1) is nondecreasing in t,

(3) For any ti3 < tj, the ratio of likelihoods
pji(x,y|t2)/pji(x,y|t1) is nondecreasing in each of
its arguments, that is, MLR in each of its

arguments,

(4) For any X7 < X3, the ratio of 1likelihoods
nli(y|x2)/n01(y|xl) is nondecreasing in y.

After the utility function of the combined decision
problem has been specified in the next section, and it has
been indicated how the condition of monotone utility applies
to this function, it will be proved that the above-mentisned

conditions are sufficient for a monotone solution to exist.

An Additive Representation of the
Combined Utility Function

Formally, a utility function Ujhi(t) describes all costs and
benefits involved when action ajn (3,h = 0,1) is taken for
the student from subpopulation 1 whose true score is t. The

decision-maker may have different utilities associated with

]
[

s

PR
Ky



A Simultaneous Approach
11

different populations (Gross & Su, 1975; Petersen & Novick,
1976). Hence, in addition to separate probability
distributions, the decision-maker has to specify explicitly
his/her utility function for each subpopulation separately.
In the Introduction, it was remarked that one of the
main advantages of the simultaneous approazh was that more
realistic utility structures could be used. This is nicely
demonstrated by defining the utility structure of the
combined decision problem as an additive function of the

following form:

(S) U4pi (€) = Wiu4ip(t) + waupjp(t),

where u4jp(t), upjp(t), w3, and wy represent the utility
functions for the separate placement and mastery decisions,
and two nonnegative weights respectively. The utility
functions u4yjp(t) and upjp(t) are assessed separately and
. then brought onto the same scale by use of the weights Wy and
w2. A set of conditions sufficient for the existence of an
additive wvalue function may be found in Fishburn (1982),
French (1986), Keeney and Raiffa (1976, Chapt. 3), and Krantz
et al. (1971). Since utility must be measured at most on an
intexrval scale, the utility function of (S5) can always be

rescaled (normalized) as follows:

(6) Ughy (€) = wuyip(t) + (l-w)jupjp(t),

where the weight w should satisfy 0 € w £ 1. The utility

CH
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function uypy (t) now takes the following form:

Wugip(t) + (1=wW)ugin(t) for 3j=0, h=0

wu () + (1-w)u (t) for j=0, h=1l
(7) Upyi (E) =9 Odp 1im ’

L Wup4p () + (1-W)ugjp(t) for j=1, h=l,

It is reasonable to assume that the utility for granting
mastery status is a nondecreasing function of a student’s
true score t, and the utility for denying mastery status is
nonincreasing. Hence, the difference of the two utilities,
Uijm(t)=ugim(t), is a nondecreasing function of t. In the
following, we shall suppose that the treatments have been
ordered in such a way that treatment 1 can be considered as
the "higher" t:ieatment. In general, students with high test
scores on the placement test will be assigned to treatment 1,
and vice versa. For instance, treatment 1 may contain less
examples and exercises than treatment 0. Then, we may assume
that u;jp(t) and upjp(t) are nondecreasing and nonincredsing
functions of t, respectively. Thus, it also follows that
(u1ip(t) =ugyp(t)) is a nondecreasing function of t. Finally,
since the difference of the two utilities for the separate
decisions are nondecreasing functions of t, the condition of
monotone utility is fulfilled for the utility functions of

both separate decisions.
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Maximization of Overall Expected Utility

As noted earlier, the optimal procedure from a Bayesian point
of view is to look for a rule that maximizes the overall
expected utility. Since we may confire ourselves to monotone
rules, the experted utility of a random student from

subpopulation i for the simultaneous approach is given by

(8) Elugny (T |xgysveyl

= I~ IxCinCi

ugoy (t) &4 (%, y,t)dtdxdy +

-00 =00 =00
o X i [
[ 1% ug1y (£) gy (%, y,t)dtdxdy +
w0 T Yei
e o y
| | el uypy () Sk 4 (x,y,t)dtdxdy +

=0 gy T

o9 o0 [
[T [ uppqte)Qqy (x,y,t)dtdxdy.
=™ Xoi Yei

Substituting the additive utility function of (7) into (8),

and rearranging terms, yields

(9; E[Ujni (T) lxcipycil = [ | Egluggy(T Ix'YIkoi(x'Y)dde +
o0 =go
(- -]
[ {Eplugey (™ Ix1-Egluggy (T) Ix)1qy (x)dx +
Xci

(2=w) {/ {Eg(ugim(t) =ugim(t) ly] }sgy (y)dy +
Yei

L
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z [ I aqg(x) (t{Ey[ugym(t) =ugim(t) %, ¥ ing g tylx) -
' Xei Yei

{Eq [ugim(t) =ugim(t) Ix, ¥1}ngy (v|x) 1dxdy},

where Sji(y) and kji(x,y) denote the probability function of
Y and (X,¥) 4in subpopulation 1 under treatment 3,
respectively, and where Ej indicates that the expectation has
been taken over a distribution indexed by j (j = 0,1). .
Now, the decision procedure is viewed as a series of
separate decisions, each of which involves one random student
from the total populat.on. Furthermore, it is assumed that
the overall expected utility for the simultaneous approach,
EUgim(Xc1/¥Yclr «++v¥pgi¥eg)r 18 found by summing the expected
utility for the simultaneous approach of a random student
over all students. Uader these assumptions, it follovs that
the overall expected utility for the simultaneous approach

can be written as:

g
(10’ Eusim(xcll YCI' ) o'xcg' ng’ = izlpiE [ujhi (T’ |xci' YCi] ’

g
where py, i§1pi = 1, 4is the proportion of students from
subpopulation i in the total population.

Sufficiency of the Monotonicity Conditions

There is a theorem in decision theory (see e.g., Chuang,

Chen, and Novick, 1981) stating that E[u(e)lz) is a

Rt
i
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nondecreasing function of z if £(z|0) has MIR and u(@) is a
nondecreasing function of 6. We will refer to this property
as monotone expected utility (MEU).

The utility associated with action ajg, ujgy(t), may
either be a nondecreasing or a nonincreasing function of t.
Since (-uggi(t)) is a nondecreasing function of t, and using
the assumption of MLR of the probability function X given
T=t, it follows by applying the MEU theorem that in the case
of ujpi(t) being a nondecreasing function of t,
i.e., - :;— uoim(t)/(f—[ulip(t)-uom(t)]) S w s 1,
(B (ug04 (T) ix] =~ Egluggy (T) lx1) is a nondecreasing function
of x. Furthermore, since (ug04 (t) -  ygpi(v)] -
wlujjp(t) -ugjp(t) ] and (-uggy (t)) are nondecreasing functions
of t, and using the assumption of MLR of the probability
function of X given T=t, it follows by applying the MEU
theorem that both (Eo[uloi('r)lx] = Egluggy (T) [x1)  and
(-Eo[uOOi(T)lx]) are nondecreasing functions of x. In the
case of ujgj (t) being a strictly decreasing function of ¢t,
ie., 0Sw < = ;—;1- uQim(t)/(-S— uiip(t) = ugim(t)l},
and multiplying Egluqqy(T) | %] by vli(tlx)/voi(t|x), it now
follows under condition 2, which implies that
vli(tlx) /vOi(tlx) is nonincreasing in t, that (Ej[ujgy(T) | %]
= Eqglugpy (T) |x]) is a nondecreasing function of x. Thus, for
ujpi (t) being a nondecreasing as well as being a strictly
increasing function of t, (Eq(ujgy(T) lx1 - Eglugoy (T) |x1) is
a nondecreasing function of x. Using qi(x) 2 0, it then
follows that the integrand of the second term of (9) is a

nondecreasing function of x.

[ S
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With the assumed MLR of the probability function of Y
given T = t, and using [ujjp(t)-ugim(t)] is nondecreasing in
t and spj(y) 2 0, it follows by the MEU theorem that the
integrand of the third term of (9) is a nondecreasing
function of y.

Furthermore, since (ujjm(t)-ugim(t)] is a nondecreasing
function in t, it follows under condition 3 by applying
the MEU theorem  that  (Ej[ugjm(t)=ugim(t) l%,¥])  and
-(Eo[ulim(t)-uOim(t)|x,y]) are nondecreasing and
nonincreasing in each of their arguments x and y, respec-
tively. Multiplying =(Egluijm(t) - uOim(t)lx,y]) by
noi(ylx)/nli(ylx), it <follows under condition 4, which
implies that nOi(ylx)/nli(ylx) is nondecreasing in y, that
~(Eglugim(t) = ugim(®) Ix,91)  ngitylxi/nggtyla)  is
nondecreasing in each of its arguments. Multiplying both
(Eylugym(t) - ugim(t) lx,¥1) and =(Eglugip(t)=ugin(t) I, ¥1)
nOi(ylx)/nli(ylx) by nli(ylx), and using nyj(ylix), qi(x) 2 0,
it now applies that the integrand of the fourtn term of (9)
is a nondecreasing function in each of its arguments.

It finally follows that El[ujny(T)|xgy,vei), and hence
Expression 10, possesses an absolute maximum because the
first term is a constant, (l-w) 2 0, and the integrand of
each term is nondecreasing in x, y, or in each of its
arguments X and y. In each new application it must be checked
if the conditions of MLR, monotone utility, and (2)=(4) hold.
Checking for the monotonicity conditions will be considered
below after the (conditional) probability functions appearing
in (9) have been specified.

&2
’.m .
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Optimizing Cutiing Scores for Quota-Free Placement

with quota~-free placement, there is no constraint on the
number of students that can be assigned to one of the
treatments. Therefore, the values of the optimal cutting
scores, say x'ci and y'ci, which maximize Expression 10, can
be obtained by maximizing Express.on 9 for each subpopulation
i separately. The optimal rule can be derived by
differentiating E[ujhi('r)lxci,yci] with respect to xoy and
Yecir Setting the resulting expressions equal to zero, and
solving for xgi and Yeqi-

First, differentiating E(ujpji(T) lxci,yci] with respect

to Ycir and assuming w # 1, results in

(11) S04 (Yei) (Eglugim (t) =ugim (€) lyeyl} +

[ ]
sli(Yci)I {Eq(uqim(t) =ugim(t) |81Yc1] }211(8|Yci)dx -
Xei

o
o1 (vey)] (B [uyym(t)=ugim(t) |2, ¥eil 1204 (2lyey)ax = o,

Xeoi

where zji(x|yci) denotes the probability function of X given
Y = yoi under treatment j in subpopulation i (J = 0,1).
Similarly, differentiating E[uypj (T) |"ci'Yci] with respect to
Xeci. and using gy (x) > 0 (the possibility of gj(x) = 0 will
be ignoréd), yields

Ly
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(12) Eqlu1gy (T Ixgyl = Eqluggy (T) Ixgy) +

o0
(=) ({Ep(ugim(t) ~ugim(t) Ixgq,ylingy (ylxgy) -
Yei

(Eolulim<t)'001m<t)Ixci'Y]}nOi<Y|xci’}dY = 0.

Since the system ot Equations 11 and 12 cannot be solved
analytically for xoy and ygy, the determination of the
optimal cutting scores may be carried out wvia numerical
approximation procedures such as the Newton iterative
algorithm for solving nonlinear equations. However, before
proceeding with this procedure, it is necessary to specify
the probability functions, regression functions, and utility
functions appearing in (11) and (12).

Blvariate Normal Model
In the following, we shall suppose that the variables X and Y
have possibly different bivariate normal distributions under
both treatments in each subpopulation i. Let Pyi denote the
population correlation between X and Y under treatment 3 in
subpopulation i, and let xy and YN3 denote the standardized
scores of X and Y under treatment j (j = 0,1), respectively.
Then it can be shown (see e.g. Johnson & Kotz, 1970) that for
the standardized Dbivariate normal distribution the
conditional distribution of Xy given Yy4 = yy4 4s normal with
expected value p4ijyNy and variance (l-pjiz). Likewise,
nji(ynlxn) is normal with expected value p4ijxy and variance
(l-pjiz)-

The regression functions Eji(Tlx) and Eji(Tlx,y) of T on
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X and T on X and y under treatment j, are assumed to be
linear in each subpopulation i; that is, they can be written
as 043+Ty3x and a44+B4ix+t4iy, respectively. Using results
from classical test theory, it follows that the regression

coefficlients can be written as :

(13) Tyi = pyi(0y44/0%y)
041 = B3y - Tyibxy
ﬂjj_ = (Cy41/0xy) { (P41-Py4iP41)/ (l-pjiz) }
T4y = (pyji-pjiz)/(l-pjiz)
@5y = ~HxiP41 + Hy4q(1-T4),

Byiir Mxi, Oy4i, Ox4i, and py4y being the population means of
Y and X, the population standard deviations of ¥ and X, and
the reliability coefficient of Y under treatment j (3§ = 0,1)
in subpopulation i, respectivelv. Assuming also linear
regression for T on y under both treatments in each
subpopulation i, and using Kelley’s regressioh line (Lord &
Novick, 1968, p.55), it follows

(14) Eji(le) = Py4i ¥ + (1-Py4i)Hyyq.

Furthermore, assuming homoscedascity, it also follows from

classical test theory that:
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(15) varyy (T1x) = (pyy3-p412)0yqs2
varji(le) = Oyjizpyji(l-pyji)
varyy (Tle,y) = 6y332(Pyyi-p412-pyys2+p412pyqs)/
(1-p332) .

Having defined the probability and regression functions,
we now are in a position for checking if the monotonicity
conditions are satisfied. First, it can be noticed that,
since the probability functions of T given X=x, and T given
X=x and ¥sy in subpopulation i under treatment j are normal,
they belong to the exponential family, and hence, they do
have MLR and MLR in each of its arguments, respectively (see
e.g., Chuang, Chen & Novick, 1981). Thus, monotonicity
condition 3 is fulfilled.

Furthermore, it can be shown (see e.g., Lehmann, 1959,
sect. 3.13) that a necessary and sufficient condition for the
likelihood ratios in (2) and (4) to be nondecreasing in t and
in y, respectively, is that the mixed second derivative of
the natural logarithm of these ratios exists and 1is
nonnegative, Differentiating these ratios of normal
distributions, it then applies that the following set of

conditions should hold for conditions 2 and 4 respectively.

(16) I'Oi/varoj_('rlx) 2 I'li/varli('rlx)
P110y0i/ (1-p13%) 2 PoiSy14/ (1-pgs?) .
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Linear Utility
Although utility functions can be empirically assessed

withoyt making any assumptions about the form of the utility
functions (e.g. Vrijhof, Mellenbergh & van den Brink, 1983),
usually the form »f the utility function is specified on a
priori grounds. In statistical decision theory several forms
of the utility functions have been adopted. In the present
paper, it will be assumed that the utility structures for
both the separate decisions are linear functions of the
criterion variable t. This utility structure seems to be a
realistic representation of the utilities actually incurred
in many decision making situations. In a recent study, for
instance, it was shown by van der Gaag (1989) that many
empirical utility structures could be approximated by linear
functions. For other frequently used utility functions and
their (dis)advantages, refer to Lindley (1976), Novick and
Lindley (1978), Swaminathan, Hambleton and Algina (1975), and
van der Linden (1981).

Mellenbergh ard van Jder Linden (1981) and van der Linden
and Mellenbergh (1977) proposed a linear utility function for
the separate decisions. They can in the case of multiple

populations be defined in the following way:

bOi (Ee~t) + doy for X < Xei
(17) ujgp (t) ={ P P
blip (t‘tc) + dlip for X 2 Xey
boim(te-t) + doyp for ¥ < ygy
(18) Unim(t) "{
™y
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where bgyp, b1ips boims and byjn > 0.

For each action, this function consists of a constant
term and a term proportional to the difference between the
criterion performance t of a student and the minimum level of
satisfactory criterion performance to. The parameters dyjp
and dpyy (joh = 0,1) can, for example, represent the constant
amount of costs of following treatment j and the costs of
testing, respectively, and will 4in ¢that <case have a
nonpositive valve. The condition bgjp, M1jp > 0 is equivalent
to the assumption that for assigning students to treatment 0
and 1, utility 4is a strictly decreasing and increasing
function of t, respectively. Likewise, bgjm, bi1jym > 0
expresses the assumption that the utility for failing and
advancing the mastery test is a strictly decreasing and
increasing function of t, respectively.

As Gross & Su (1975) and Petersen & Novick (1976) pointed
out, the question whether decision rules are fair to the
various subpopulations which can be distinguished depend
within a decision-theoretic framework only on the chosen
utilities. From this point of view, separate parameter values
might be chosen in the linear utility model to allow for the
fact that the students might belong to a disadvantaged or
advantaged population (see also Mellenbergh & van der Linden,
1981). Suppose, for example, that population 2 is considered
more advantaged than 1. Furthermore, it is assumed that
incorrect decisions are considered worse for population 1
than for 2, while correct decisions are considered more

valuable for population 1 than for 2. If so, bjlp and bpin

g -n
' el

b P
%
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could be set higher than bypp and bpoy, respectively, for
every value of t (j,h = 0,1).

Substituting the assumed linear regression functions,
bivariate normal probability functions, and linear utility

functions in (11), it follows by integration over =x:

(19) £(Xoyr¥ei) =

{ (b1 m*Poim) (PYoi¥Yeit(1-Pyos)Hyoi~te *+d1im~doim!

1
PlYNOci] /Ov04 +j§0 ayfq(xeis¥ei) = 0,

where ay = 23 - 1,

£4(%ci,¥ei) = {(D1im*boym) (@41+Byinxi+T41Vei+
PB310xiP41¥Ngci~te) *+d1im-doim} (1-Plzgy4Nci]) *+
(b 4m*boim) B410x1V (1-P112) @l2xy4nci] PLYN3cLl/ Oyqis

and ®[.], @[.], and 2z4y4yciy denote the standard normal
distributicn function, standard normal density, and
(XNeci=P4i¥Ndci!) /N (l-pjiz) ’ respectively. Similarly, ic
follows that (12) can be replaced by

(20) g(xcichj_) =
1l
jzo (w(bjip (9j1+rjixci-tc) +ajdjip}
+ (1-w){a4y(boynm(te=043-Tyixcy)+ doyp)

+ £'4(Xci,¥cq)}) = O,
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where

£'y(Xcys¥ei) = {((D1in+boim) (@44 +T4ily41+B4i%cs +
T410¢4iPyi%¥Nci~tc) + d1im~doim} (1-Q(2y4xneci]) +
(01 {m*00im) T410y41 V(1-p241) @lzy4xncil

With ZygxNci = (YNjei-PiixNes) /V (1-p244) .
To apply Newton’s iterative procedure, the partial
derivatives of the left-hand side of (19) and (20) are

needed. They are given as

d

(21) Ry ¥Yey) =

1
-j-zo{aj [V(1-p132)0y131"% @lyn1cil { (01 in*Doin)

(@53 +B41%ci+T41¥ci~te) +d1 1n~doim) Pl2xiNci] /Oxct

)
(22) — f(Xgyi¥eci) =

aYci
={(b1im+Poim) (Pyoi¥Ycit (1-Pyoi)Myoi-te) +d1im~d04im}

¥YNOci®[¥NOci]/O¥01%+ (b1 im*Doim) Pyoi®¥NOCL] /Ov0L
1

-jfo{ £4(Xc1s¥ei) YNJciP¥Nc1] /Oy412 +

{aj(b1im*boim) {(T310¢41+B41P410xy)

(1-®lzy yney)) +p41 IV (1-p332) 172

Pl2x4nci] (@41 +B4i1Xci+T4iVei=te) ) + (d1im~doim) P4y

(V(21-p332) 17 @lzyine) 1lynge1l/Oyy12 ),

o)
i)
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d
(23)

9(Xgir¥ei) =
Xel

w(byipl11+bgiploy) +(1-wibgyn(Tpy-T13) +

1
jzoaj<1'"){(b11m+b01m)/0x1{(Bji°xi+f310231931)
(1-BL2ygxnei]) #0341 IV (1-p432) 171 @lzgypnci]
(@43 +B4iXci+T4i¥ei-te) I+ (d1ip=dgym) P44 [V (1=
Py12)0gy172

Pl2y4xncily

d
(24)

9(Xeir¥Yei) =
Xei

1
jzoaj(l-w)(IV(I-Pjiz)szil'l (= (b11m*D01m)

(@41 +B41 Xci+T4i¥ei=te) + (doim=d1im) }P2yyxNei!] -

Inserting Equations 19 until 24 into Newton’s procedure,
and using the property that the standard normal distributions
appearing in this system of Equations can be approximated by
logistic functions with a scale parameter equal to 1.7 (Lord
& Novick, 1968, sect. 17.2), one cobtains the optimal cutting

3cores X'qy and y’.ij. The algorithm is implemented in a

computer program called NEWTON.
Derivation of Optimal Separate Decisions

The expected utility of a random student for the separate

30
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mastery decision from subpopulation i, E(upim(T)I¥eyl.
follows immediately from (9) by realizing that both
treatments can be thought to coincide in this case implying
that ngj(ylx) = nj3i(yix) and Eg(.] = Ej([.]. Also, the
combined additive utility function, U4hi (t), can be replaced
in this case by [(l1-W)upjpn(t)] implying that amongst others
ujpi(t) = ugpift) = (l=wlugyy. Furthermore, the placement
test score variable X can be thought to coincide with the
true score variable T in this case implying that the first
term of (9) reduces to (l-w) f°° Eqlugim(T) lylsgy(y)dy.
Substituting the above-mentioned equ;Ilties into (9), results

in

(25) Elupin(T) lyey] = (1=w){ | Eglugim(T) Iylsgy (y)dy +
=00

o0
| 1Eqlupym(t) - ugim(t) [¥]}sgy (y)dy}.
Yei

The optimal separate mastery scores, ¥'ci»r can be
derived again by differentiating E([upjn(T)lycy] with respect
to Yoy, setting the resulting expression equal to zero, and
solving for y.j. Doing so, and using sgj(yey)>0 and w # 1,

results in
(26) Egluiim(t)=ugim(t) lycil = 0,

which yields the same optimal cutting score ¥’ ci as the one

given by van der Linden and Mellenbergh (1977). For the

31
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linear vtility model (Expression 18), it follows from (26)

that

(27) ¥Y'ci = Byoi *+ (te-iyoi*(doim=diim) / (b1 im*Poim) }/Pyoy -

As an aside, it may be noted that Equation 26, and hence
Equation 27, can also be derives immediately by substituting
the equalities sgj(yci) = S13i(¥ei)r 20i(Xlygy) = 213 (X1yei) s
and Eg[.] = E3j[.] into (11).

Next, the expected utility of a random student for the
separate placement decision from subpopulation i,
E{uyijp(T) IXe3], can easily be derived from (9) by realizing
that in the combined additive utility function, U4hi (€), the
term [ (1-W)upjm(t)] vanishes in this case implying that the
third term of (9) also vanishes, and the second term of (9)
reduces to ([w I” {E1 (u13p(T) Ix]=Eqg(ugip (T) IX]}qy (x)dx].
Furthermore, the ma:géry test score variable Y can be thought
to coincide with the true score variable T in this case
implying that the first term of (9) reduces to
w f~EO (Uoip(T) IX]qy (x)dx. Substituting the above-mentioned
resx:;ts into (9), yields

o0 .
(28) Efugip(T) I%gy]l = wif Eqlugyp(T) ixlqy(x)dx +
-00

] {E1luyyp (™) Ix]=Eqlugip (T) Ix]}qy (x)dx}.
Xed

The expected utility for a random student from
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subpopulation i for the separate approach is found by summing
E{unym(T) lycs] and E[u4yp(T)Ixgy]l. Finally, analogously to
the simultaneous approach, the overall expected utility for
the separate approach, EUgep(Xc1s Yelr +++» Xggr Yeg)s is
found by summing the expected utility for the separate

approach of a random student over all students yielding

‘29) . EUsep (:‘cl' YCly s 'xcg' ng)

g
= 121 PL{E[unin(T) I¥cy I +E(u44p(T) Ixcy] ).

The optimal separate placement cutting scores, Y'cir
follow now again by differentiating E[Ujip(T)lxci] with
respect to Xoj, setting the resulting expression equal to
zero, and solving for xgj. Doing so, and using qi(x) > 0 and

w# 0, results in
- (30) E1 (U14p(T) IXci]1-Eqlugip (TIlxgy] = 0.

Also, this optimal solution agrees with the one reached by
van der Linden (1981). Adopting the linear utility model from
Expression 17 in (30), it applies that

(31) ®'gy = {dgjp-dijpttc(brip+boip) ~b11p@11-PoipOosl}/
(byipl14+bo1ploy) -

Equation 30, and hence Equation 31, can also easily be
derived by putting (l-w)ujjm = (1-w)ugym = 0 in (12).

33
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As a final remark, it should be noted that the optimal
separate cutting scores, unlike the expected utilities for
the separate decisions, do not depend upon the value of w. On
the other hand, the optimal cutting scores as well as the
expected utilities for the simultaneous approach depend upon

the value of w.
Solution for Quota-Restricted Placement

In the restricted placement situation only a fixed number of
students can be assigned to each treatment. Confining
ourselves to assignment decisions with two treatments, this

constraint can be expressed as

g < L
32 = 3 - ¥
(32) PO itlpi[Prob(x leci)] iilpi[lxciqi(x)dx]'

where 0 < pg <i§1 Py = 1 represents the fixed proportion of
all students that can be assigned to trezatment 1.

Analogous to the quota-free model, optimal cutting
scores x'qy and y’oy can be derived by maximization of the
overall expected utility for the simultaneous approach from
Equation 10 subject to (32). To solve this constrained
optimization problemn, first introduce the placement
restriction into the function to be optimized (Equation 10)

through a Lagrange multiplier A:

34
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g
(33) L%cls¥els +++r¥egr¥egrM = E PiBluy (D) lxey, veyl +

A g rI°° ) dx]
1=1F4 xciqi‘x *1=pol,

where A is a const.nt. First, differentiating
L(xcl,ycl,...,xcg,ycg,l) with respect to yoy and setting the
resulting expression equal to zero yields the same solution
as the solution for quota-free placement given by Equation
11. Next, differentiating of L(Xg1,¥cls.«+sXcgr¥egrd) with
respect to A, setting the resulting expression equal to zero
yields, of course, Equation 32. Finally, differentiating
L(Xc1/¥clr +v+r¥cgr¥egrd) with respect to xqj, setting the
resulting expression equal to zero, and using Pir q1(x) > 0,

yields

(34) 31[“101<T)|3ci] - EO[UOOi(T)Ixci] + A+

(1-w)]  {{Eq[ugypm(t) -ugim(t) |xey,¥1inq4 (vlxgy) -
Yei

{Bolugym(t) =ugim(t) Ixeq,v] ingy (ylxay) dy = 0.

Now, optimizing cutting scores for quota-restricted
placement proceeds by substituting the assumed probability,
regression, and utility functions into Equations 11, 32, and
34 and solving this system of Equations for the (2g + 1)
unknown parameters xXoi, Yoy, and A using Newton’s iterative
method again. For the linear utility model this results in

the system of nonlinear Equations £(xgy,¥Yei)s (32), and
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g(Xecis¥ci) * A respectively. Note that with quota-restricted
placement, unlike quota-free placement, the optimal cutting
scores X'y and y'qy (1 =1,...,9) are dependent upon each
other. Also, the partial derivatives of the given system of
nonlinear Equations 1s required again. The derivatives of
£(Xcir¥ci) and g(xgi,yci) with resnect to xoy and yoy were

given already in the precsding sections. Furthfgmore, it can

easily be derived that (g(XaysYoyi) Al =
Xed 3 Xei

) d
g(xcichi)l and [g(xcichi)*k]

g(xcichi)p

(g(xcirycy) +A]l =
aY(:,j. ay(.‘.i

= 1. Since qj (x) is a normal distribution with mear. puy; and

variance Oy;2 (see, e.g., Johnson & Kotz, 1972), it finally
follows from (32) that

g’ - J
{Zpill  qy(x)dxl-pg) = (-p3/Ogy) @lxycyl.
Rey 1=l Xci

(35)

When there are allocation quota consideraiions, the set
of given monotonicity conditions do not hold without
modifications. Since A is a constant, it follows directly
from (11) and (34) that this set is also sufficient to
guarantee that the integrand of each term in
L(xcl,ycl,...,xcg,ycg,l) is nondecreasing in x. y, or in each
of its arguments x and y. In addition to these conditions, it
should ho;d that L(Xc1,¥cls+++sXcgs¥YogrA) 1S a nondecreasing
in A or T L(Xe1/Ycls+++sXcgi¥ogrAd) 2 0. Using (33), then

the following extra monotonicity condition can be formulated
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g
(36) £pitl  qywdx] 2 pg.
igl 8ci

Since the above stated condition should hold for every value

of KXoy, it follows that

g [ -]
(37) Zpyl | qy (x)dx] 2 Py
i= X'ey, cree

where X'y, free denote the optimal placement cutting scores
in the quota-free model. Furthermore, let X'gj,quota denote
the optimal placement cutting scores in the restricted model,
then it will generally hold that X'gy quota > ¥'ci, free’
because fewer students can be assigned to treatment 1 in the
restricted model. Since the left-hand side of (36)) is a
nondecreasing function in Xy and is equal to pp when xoy =

X' ei,quotar it follows that

g
izlpi[! qy (x)dx] 2 pg, for X'y, free S ¥ci S ¥'ci,quota’
= Xed

Hence, using (X'cy, free'¥’'ci, free) as a first approximation
in Newton’s iterative procedure guarantees that
L{Xg)sY¥gls+++1%cgrYogr M) reaches its maximum for one pair of
cutting scores.

It should be noted that condition 37 can easily be seen
to hold by realizing that if the left-hand side of condition

37 4is less than pg, this implies that fewer students are
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assigned to treatment 1 than the number of places available.
In applying the quota-restricted model, it must always be
checked if condition 37 holds. If this is not the case, the
optimal placement cutting scores of the unrestricted model
should be used. To compute the optimal cutting scores with
quota-restricted placement for the linear utility model, the
computer program QUO-SIM has been devaloped.

Analogously to the quota-free model, the optimal
separate cuttiny scores can easily be derived from Equations
11, 32, and 34 by imposing certain restrictions. The optimal
separate mastery scores, y’qj, follow again immediately from
(11) by substituting the equalities spj{yci) = S1(Yei):
201 (X1¥ei) = 274 (XI¥cyi)s and Egl.] = E;[.] into (11) yielding
Equation 27 in case of the linear utility model.

However, unlike the optimal separate mastery decision,
the optimal separate placement decision for the quota-
restricted model differs from the quota-free model. The
optimal separate placement scores, x’.j, follow by first

putting (l-w)ugym(t) = (l-Wujjm(t) = 0 in (34) yielding
(38) E1 (U13p(T) 1%c31=Eglugyp(T) IXgy] + A = 0,

Next, substituting the linear utility and linear regression

functions into (38), results in

(39) Xei (b1ipl1i+boiplol) - (doyp=dijp) -
- tcibyip*boip) + b1ipli1i + boipboi + A = 0.

38
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Now, the optimal separate placement scores for the
quota-restricted model are found by solving the nonlinear
system of Equations 32 and 39 for the (g+l) wunknown
parameters Xg3 and A using Newton’s iterative algorithm
again. Analogously to the simultaneous approach, it should be
noted that with quota-restricted placement, unlike quota-free
placement, the optimal cutting scores R'ey(i=1l,...,9) are
dependent upon each other. In order to apply Newton’s
iterative method to solve the given system of nonlinear
Equations, the partial derivatives are required again. The
derivatives of (32) with respect to xoj were given already in
(35) . Finally, from (39) it can easily be verified that the
derivatives of the left-hand side of (39) with respect to A
and %oy are given by 1 and (byypli3 + boyplpy), respectively.

Finally, it should be noted that, analogously to the
quota-free model, condition 37 should hold in order to
guarantee that no fewer studerits are assigned to treatment 1
than the number of places available; that is, the Lagrangian
function is nondecreasing in A. In condition 37, x’'gy, free
denote now, of course, the optimal separate placement cutting
scores of the quota-free model. If the resulting sum of
pProducts of the left-hand side of (37) is less than pp, then
the decision-maker .,hould use again the optimal separate
placement cutting scores of the unrestricted model.

A computer program called QUO-SEP has been written to
obtain the optimal separate placement cutting scores for the
quota-restricted model. To illustrate the models presented in

this paper, a numerical example is given in the next section.

39

R




A Simultaneous Approach
35

An Application of the Combined Duicision Problem

The procedure for computing the optimal cutting scores was
applied to a sample of 59 freshmen in medicine. Bo.h the
placement and mastery test was composed of 21 free-response
items on elementary medical knowledge with test scores
ranging from 0-100. The treatments 0 and 1 consisted of an
interactive wvideo (IV) and a computer-aided instructional
(CAI) program, respectively. Since the IV-program contained
more examples and exercises, treatment 1 was considered as
the "higher" treatment.

Due to previous schooling, the total sample of 59
students could be separated with respect to elementary
medical knowledge into a disadvantaged and an advantaged
population of 31 and 28 students referred to as populations 1
and 2, respectively. The normal models assumed for the
distributions X; and Y44 (3 = 0,i; 4 = 1,2) showed a
satisfactory fit to the test data for a Kolmogorov-Smirnov
goodness-of-£fit test.

The teachers of the course considered a student as
having mastered the subject matter if (s)he could answer
correctly at least 55% of the total domain of items.
Therefore, t, was fixed at 0.55.

The means, standard deviations, and correlations between
X and Y were computed for each subpopulation under both
treatments using the unbiased maximum likelihood estimates of

the sample means, sample standard deviations, and sample
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correlations, respectively. Furthermore, since the items were
not scored as right or wrong, the reliabilities of the test
s.ores were estimated as coefficient a (Cronmbach, 1951) for
each subpopulation under both treatments. The results are

reported in Table 1.

Insert Table 1 about here

It is important to notice that the necessary statistics come
from the correct experiment and not, for example, from ISS’s
in which students are already assigned to treatments on the
basis of their scores on the placement test in question. In a
proper experiment students from the same probability function
of X are randomly drawn and assigned to treatments, after
which their performances on the mastery test are measured.

As noted earlier, in each application of the combined
decision problem it should be checked if the monotonicity
conditions hold. Substituting the statistics of Table 1 into
(13) and (15), showed that the set of conditions (16) was
satisfied.

First, the quota-free situation is considered. Because
the costs for testing are assumed to be equal for advanced
and retained students, dpjy is set equal to dpo, (h = 0,1).
Similarly, the costs of following the different treatments j
(3 = 0,1) are equal: dyjp = djypp. Furthermore, it should hold
that byip > bjy2p and bpiy > bpoms taking into account the

41
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fact that population 2 was considered more advantaged than 1.
Using the computer program LINEAR, the optimal cutting scores
X'ci and y’y were then obtained by solving iteratively the
system of Equations 19 and 20 for Xgi and ygi (i=1,2) with tg
as starting values. The criterion for convergence was that
the absolute differences between two iteration steps for both
X'cy and ¥’y were smaller than 10~7. The results are
reported in Table 2 for 3 different values of the utility
parameters as well as for w = 0.5, 0.9, and 0.1 to illustrate

the dependence of tiae results on the utility structure.

Insert Table 2 about here

The table shows that the consequence of raising the value of
w is generally a decrease of the optimal placement scores and
a small increase of the optimal mastery scores. Thus,
increasing influence of the utility associated with the
mastery decision implies that students should be assigned
sooner to the "lower" treatment. In particular, the optimal
placement cutting scores should ke raised considerably for w
= 0.1. This can be argued by the fact that the increasing
influence of the utility associated with the mastery decision
implies that students should be assigned sooner to the
"lowe:" treatment in order to prepare them better for the
mastery test at the end of the treatment. Besides, this

better preparation for the mastery test accounts for the fact
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that the optimal mastery scores can generally be set slightly
lower with increasing w. Furthermore, inspection of Table 2
shows that botin the optimal placement and mastery scores are
lower for the advantaged than for the disadvantaged group.
This is so because the disadvantaged students should be
assigned sooner to the "lower" treatment. Also, they should
stay longer in the instructional treatment to be sure that
they have niastered the educational objectives.

In Table 2 the optimal cutting scores for the separate
decisions are also displayed. The cutting scores optimizing
the separate decisions were computed using Equations 27 and
3l1. As can be seen from Table 2, the optimal cutting points
for the separate model do generally not have large
differences compared to those in the combined model for w=0.5
and w=0.9 for both subpopulations. However, for w=0.l1 the
optimal cutting points for the placement decision of the
comhined m.del are substantially higher for both
subpopulations. This can be explaired by realizing that, as
noted before, the psychometric portion of the separate model
for optimizing the separate cutting scores does not depend
upon the value of w. Furthermore, it has been argued before
why the optimal cutting points for the placement decision of
the combined model should be set rather high for w=0.1.

In the Introduction, it was remarked that one of the
main advantages of the simultaneous approach was the increase
of the overall expected utility. This can be demonstrated by
comparing the gain in overall expected utility of the

simultaneous to the separate approach. In order to calculate
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the overall expected utility for the simultaneous approach,
first the computed optimal simultaneous cutting scores from
Table 2 were substituted into (9) for both subpopulations and
the overall expected utility was calculated according to
(10) . The fourth term in the right-hand side of (9) has been
computed using numerical integration methods, while the first
three terms have been integrated analytically yielding

respectively

{wboip*(1-W)bgim} (Eo=0gs ~BoiMxi~Toikyoi) +
Wdoip+ (1-w)dpim,

{(wbyip=(1-w)bgy) (813+ 1 hyi-te) + (Wbgyp+ (1~w)bgyim)
(0031 +FosMyi~te) +wldyjp=dgip) H{1-Blxngy)} + OgiPlxyey)
{(w(l13b13p+T01bo1p) +(1-w)bgym (Fgi-T14) },

(1=w) {{ (boim+P1im) (Kyoi=te) *d1im=doim} {1-DlyNoci] ) +
" Oy0iPy0si Poim*P1im) PLYNOci] ! -

.

Similarly, the overall expected utility for the separate
approach was calculated by substituting the optimal separate
cutting scores from Table 2 into Equations 25 and 28 for both
subpopulations followed by the sunmation according to (29).
The first and second term in the right-hand sides of (25) and
(28) have been integrated analytically yielding respectively

(1=w) {bgim(te-Uyoy) + doim!-
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(1-w) {{ (boim*P1im) Byoi~tc) *d1im=doim} (*=@lyNocy]) +
Cy0iPyo4 (D0im*P1im) PI¥NOci] )/

w{bgyp (tc=09i-Toikxi) + doipl,

W{{{by3p(@13+F13Ugi-te) + boyp(Bgy+loipxi-te) +
d1ip-doip} {1-@Ixncy]} + Oxy (F1ybyyp+Toiboip) @lxNcy]) -

Computer programs EU-SIM and EU-SEP have been written to
calculate the overall expected utility for the simultaneous
and separate approach, respectively. Table 2 summarizes the
results.

As can be seen from Table 2, the gain in overall
expected utility for this particular example and chosen
utility structures (1)-(9) .s not very much. Only for utility
structure (9) with w=0.1 the gain is substantially. This can
be argued by the fact that the utility associated with the
mastery decision is dominating in this case. Now, due to the
high optimal placement cutting scores for the combined model,
most students will be assigned to the "lower"™ treatment
implying that on the average they are bette: »repared for the
end-of-mastery test. As a result, due to the high positive
utility associated with the advance decision for this
particular utility structure, the overall expected utility
will be rather large.

Note that for both approaches the overall expected
utility increases with decreasing w. This means that the

utility associated with the separate mastery aecision
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contributes the most to the overall expected utility.
Finally, the solution for quota-restricted placement for
the combined model is considered. The proportions p; (i =
1,2) were estimated as nji/n, where n and nj; stand for the
total sample and the number of students from the sample in
subpopulation 1, respectively. Furthermore, the fixed
proportion pg of the total student population that could be
assigned to treatment 1 was arbitrarily set equal to 0.333.
The optimal cutting scores were then computed using the
computer program QUO-SIM; the results are summarized in Table
3. The optimal solutions of the unrestricted model were used
as first approximations in the iterative procedure. 2Xs
mentioned earlier, before optimizing the cutting scores for
quota-restricted placement, it should be checked if condition
37 holds. Inserting the solutions of the quota-free model, it
appeared that this condition was satisfied for all values of

the utility parameters and all values of w.

Insert Table 3 about here

As can be seen from Table 3, the opt¥ﬁal placement scores
X'o1 and %' in the quota-restricted model have to be raised
substantially for the disadvantaged as well as advantaged
groups compared to those in the quota-free model, because
fewer students can be assigned to treatment 1 in the

restricted situation. On the other hand, the optimal mastery
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scores y'’q1 and y’c2 in the quota-restricted model can be set
slightly lower for both the disadvantaged and advantaged
groups compared to those in the unrestricted model. this can
be explained by realizing that only the "33.33% best"
students are assigned to the "higher" treatment 1 implying
that the remaining 66.66% low and average students are
assigned to the "lower" treatment 0 where thev are provided
with more examples are exercises. As a result, the average
student will be prepared better for the mastery test; hence,
the optimal mastery scores can be set slightly lower.

Furthermore, it follows from Table 3 that, analogous to
the unrestricted situation, the optimal mastery scores are
higher for the disadvantzjed than for the advantaged group.
Unlike the quota-free situation, however, the optimal
placement scores are higher for the advantaged than for the
disadvantaged group for w=0.,5 and 0.9 implying that
disadvantaged students are sooner assigned to treatment 1
- than advantaged students in these cases. This can be argued
by the fact that, since the number of vacant places available
for the "higher" treatment is restricted, otherwise hardly no
disadvantaged students should be assigned to the "higher™
treatment. However, since the influence of the utility
associated with the mastery decision for w=0.1 is rather
high, the disadvantaged students should be assigned sooner to
the "lower" treatment in that case.

Also, the optimal separate scores for the quota-
restricted model have been computed again. The optimal

separate mastery scores are, of course, the same as those
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obtained by the simultaneous approach. The optimal separate
placement scores can be found by computing iteratively the
system of Equations 32 and 39. Checking for condition 37, it
appeared again that this condition was fulfilled; the results
are shown iu Table 3.

Finally, the overall expected utilities were calculated
for the quota-restricted model analogously to the quota=-free
model. The results are also reported in Table 3. Note that,
the overall expected utilities for both approaches is lower
in the quota-restricted model. This result is in accordance
with the theory of constrained optimization (see e.g.,

Bertsekas, 1982).
Discussion

In this paper an approach to simultaneous decision making for
combinations of elementary decisions was described. The
approach was applied to the area of instructional decision
making by combining two elementary decisions (viz. a
pPlacement and a mastery decision) into a simple ISS. It was
indicated that the optimal placement cutting scores obtained
by the simultaneous approach in some cases differed
substantially from those obtained by the separate approach.
In particular, if it wes assumed that the influence of the
utility function associated with the placement decision was
small, it turned out that the cutting points for the
pPlacement decision yielded rather large differences. It was

indicated how by simultaneous optimization of such sequences
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of decisions, optimal routing decisions could be taken using
the framework of Bayesian decision theory.

The solutions given in this paper only apply ¢to
treatment assignment problems followed by an end-of-mastery
test. However, more complicated decision networks can be
handled effectively within a decision-theoretic framework.
Further examination of the "best" way to represent more
complicated decision networks of combinations of elementary
decisions seems a valuable line of research. By simultaneous
optimization of such sequences of decisions, optimal
decisions can be taken using the framework of Bayesian
decision theory. Also, restrictions such as multivariate test
data and criteria can be taken into account. Furthermore, the
optimization methods can be readily generalized to more than
two treatments by introducing a series of cutting scores on
the placement test.

Two final remarks are appropriate. First, it should be
noted that the monotonicity conditions 2 and 4 are less
restrictive than they look at first sight. As noted earlier,
condition 2 should only hold if wujgj(t) is a strictly
decreasing function of t; that is if 0 S w < boim/ (P1ip*boim)
in case of the linear utility model. Besides, since condition
2 is a sufficient condition, even if condition 2 does not
hold for ujgj(t) is a strictly decreasing function of t, the
integrand of the second term of (9) still may be a
nondecreasing function of x. This may be the case whenever
Egluggi(T) IX] is a more slowly decreasing function of x than

E1(u101(T) IX]. For the linear utility model this condition
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boils down to ;;- Egq (TIX) > ;;— Eq1(Tix) or Tpy > Tqy.
Similarly, the fourth ¢term of (9) still may be a
nondecreasing function in each of its arguments X and y
whenever (Eq(ujjp(t)=ugim(t) X, ¥lngi(ylx)] is a more slowly
increasing function in each of its arguments x and y than

(Eq (ugim () =ugim(t) IX,¥lnyy (YIX)].

Second, the example given in this paper was used only to
illustrate the models. However, it is recommended not to use
such small samples as in the described experiment, because
the parameters to be estimated can yield errors of estimation
in that case. If so, they can propagate in computiag the
derived optimal decision rules. This does not mean, however,
that small samples necessarily yield inaccurate results. This
is because not only distributional parameters but utility
parameters as well determine how errors of estimation

propagate.
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Author’s Note

This article is based on a paper read at the European Meeting
of the Psychometric Society in Leuven, Belgium, 17-19 July,
1989. The author wishes to thank Wim J. van der Linden, Sebie
J. Oosterloo and Paul Westers for their helpful comments and
Jan Gulmans for providing the data for the illustration.
Details of the derivations and copies of the computer
programs NEWTON, QUO-SIM, QUO-SEP, EU-SIM, and EU-SEP are

available upon request from the author.
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Table 1

Statistics Placemen® and Mastery Tests (X and ¥)

Statistic Disadvantaged Advantaged
X Y X b 4

Treatment Treatment

0 1 0 1
Mean 55,965 63.266 62.148 59.832 66.1Z7  67.233
Standard Deviation 10.821 10.144 11.245 11.674 10.517 12.523
Reliability 0.764 0.813 0.744 0.791
Correlation P1=0.786 p11=0.819 P02=0.725 p12=0.771

yoeoaddy snoauelInuwls ¥
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Table 2
Optimal Cutiing Scores Quota-Pree Placement with Linesr Utility

Overall Expected Utility

Mo, Utilicy Specifications W Cutting Scores (x5y,¥5q)
Disadv, Adv. Simultaneous Sepazate Simultaneocus Separate
Disadv. My, Disadv. Adv.
(1) bgyp=3.5 dgp==? bgzp=d  dggp=-2 0.5  x4y=46.38 xp=43.81 x£1=46.10 xgp=4.82 21.09 20.87
by1p=2 di1p==3 by12p=l djp=-3 ¥51°53.22 yhy=S51.84 y3)=52.63 y&o=51.47
boip=3  doip=-4 boop*2  dyop=-4
Biip=4  d1im=-5 b12p*2.5 dyom=-S
(2) 0.9  x&y=46.12 x4=43.82 x4)=46.10 x42=43.82 14.92 14.87
¥51=53.25 yho=51.85 y51=52.63 yg&a=51.47
(3 0.1  n4)=55.19 x42=45.30 x%1=46.10 x%2=43.82 271.43 26.87
¥51=52.56 y&2=51.77 yg)=52.63 yh2=51.47
(4) bgyp=3.5 dgyp=0 bozp=3  dgzp=0 0.5  xAp=46.14 x32=43.46 x21=45.87 x42=43.46 24.94 24.72
byjp=2 d11p=0  by2p=1 d12p=0 ¥51=53.04 yho=51.56 yg1=52.45 yga=51.11
boia"3  do1n=0 bgom=2  do2p"0
biin®4  d11p"0 b12a"2.5 djgp=0
(s) 0.9  x51=45.89 x&p=43.46 x4;1=45.87 x42=43.46 17,96 17.92
y£1=53.08  y42=51.56 y§1=52.45 yhp=51.17
(6) 0.1  x51=55.09 x%2445.54 x2;=45.07 x42=43.46 32.06 31.53
¥h1=52.39 y&2=51.44 yy1=52.45 yga=51.17
(7) boyp=5  dopp=-2 bgap=3.5 dggp=-2 0.5  x£1=46.87 x2=43.30 x£)=46.06 xi2=43.99 51.59 50.72
by1p=3 d11p=-3 b12p=2 dy2p=-3 ¥&1=53.06 y&2=51.6) yg1=52.53 ygo=51.28
boip=6  doip=-4 bo2m=5  do2m=-4
bi1a"9  d1yp"-5 b12m"?  di2a"-3
(8) 0.9  x31%46.12 x4=44.02 x41=46.06 x22=43.99 29.78 29.50
¥51=53.15 y42e51.65 y41=52.53 yhy=51.28
(9 0.1  x51=57.69 x%2=49.04 x4=46.06 x%2=43.99 74.05 1.84
y51=52.49 y&2=51.37 y§)=52.53 yhy=51.28
)
Y 5'(
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" table 3

Ootimal Cutting Scores Quota-Restricted Placement with Lineac Utility

Overall Bxpected Utility

Xo. Utility Specifications ¥ Cutting Scores (x%j,y&y)
Disadv, Mv. Sisultanecus Separate Simultanecus Sepacrate
Disadv. Adv., Disadv, Adv,
{1) 5019-3-5 dolp--z bozp-l dozp--z 0.5 %L1=60.85 x%o=64.04 x%1=59.97 x5o=65.11 12.62 12.19
bnp-z dnp--3 blzp-l dlzp"3 ¥51=52.62 y§2=51.81 y§;=52.63 y&o=51.47
boim=3  doim=-4 Dbo2p=2  djp=-¢
big"¢  dy1p=-5 b12p=2.5 dyym=-S
(t]] 0.9 x5=60.06 x%2=64.97 x&;=59.97 xgp=65.11  -0.65 -0.16
v41=52.62 y42=51.50 y4;1=52.63 ylp=51.41
(3) 0.1 x23=64.57 x42=60.53 x§;=59.97 xip=65.11  26.05 25.13
y41=52.64 y2=51.50 y4;=52.63 yig=51.41
{4 boxp-l-s dolp-o bgzp-i dgzp-o 0.5 x21=60.85 x&2=64.04 x51=59.97 x%=65.11 16.22 15.79
bnp-z dyyp=0 bxzp-l dy2p=0 ye1=52.44 y%y=51.20 yg&y=52.45 ygo=51.17
boje=3  doim*0 bo2m=2  do2m=0
bjje"¢ d11m=0 b32n=2.5 dj2p=0
(%) 0.9 x43=60.06 x&2=64.97 x3;=59.97 xjg=65.11 1.94 1.83
y51=52.43 y52=51.20 y5y3=52.45 yga=51.17
(6 0.1 x43#64.57 x42=60.53 u41=59.97 x&=65.11 30,65 29.74
¥61=52.45 yla=51.20 y&;1=52.45 yga=51.17
(1) bpyp=S  dogp=-2 bpzpe3.5 dozp=-2 0.5 xg;=61.21 x§p=63.65 x21=59.66 xz2=65.50  39.60 38.34
bnp-J dllp"3 bxzp-z dlZp"‘3 ¥51=52.53 y&2=51.32 y41+52.53 y5o=51.28
bojn=6  doip"-4 bo2m"S  do2n"-¢
biin"9  d11n"-5 b12m"?  dj2m=-3
1] 0.9 x&3=59.85 x%2=65.25 x&;=59.66 x2=65.50 1.58 .14
v41=52.51 y&a=51.31 yg1=52.53 yho=51.28
(9 0.1 x21=65.99 x22=59.49 x%1=59.66 xz2=65.50  72.14 69.37
y41°52.54 yioeS1.31 y2;=52.53 y2oe51.28
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Figure Caption

Elgure 1. A system of c.e placement and one mastery decision
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