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Abstract

A Simultaneous Approach
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An approach to simultaneously optimize assignments of

subjects to treatments followed by an end-of-mastery test is

presented using the framework of Bayesian decision theory.

The main advantages of the simultaneous approach compared to

the separate are the more efficient use of data and the fact

that more realistic utility structures can be used. The

utility structure dealt with in this combined decision

problem is a linear utility function. Decision rules are

derived for quota-free as well as quota-restricted assignment

situations when several culturally biased subpopulations of

subjects are to be distinguished. The procedures are

demonstral.e0 with an empirical example of instructional

decision making in an individualized study system.

Keywords: decision theory, culture-fair placement, linear

utility, quota-free placement, quota-restricted

placement.
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Introduction

Statistical decision problems arise when a decision maker is

faced with the need to choose a preferred action that is

optimal in some sense. Moreover, one decision problem often

leads to another, which, in turn, leads to a next one, and so

on. An example is test-based decision making in an

individualized study system (ISS), which can be conceived of

as an instructional network consisting of various types of

decisions as nodes (Vos & van der Linden, 1987; Vos, 1990).

How should we model and analyse such sequences of decision

problems within a Bayesian decision-theoretic approach (e.g.

DeGroot, 1970; Ferguson, 1967; Keeney & Raiffa, 1976;

Lindgren, 1976)? In general, two main approaches can be

distinguished: either each decision can be optimized

separately or all decisions simultaneously. In the former

approach, the expected utility of each separate decision is

maximized sequentially while in the latter the overall

expected utility of all decisions is maximized

simultaneously.

It is the purpose of this paper to demonstrate how rules

for the simultaneous optimization of sequences of decisions

can be found. Compared with the separate optimization of

decisions, two main advantages can be identified. First, when

optimizing rules, decisions to be made lat.r in the decision

network can already be taken into account. As a result of

this approach, rules can be found that make more efficient

use of the data in the decision network. Also, the overall
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expected utility will be increased. Second, more realistic

utility structures can be handled by the simultaneous

approach.

Van der Linden (1985, 1988) has given an elegant

typology of decision problems in educational and

psychological testing. Each decision problem from this

typology can be viewed as a specific configuration of three

basic elements, namely a test, a treatment, and a criterion.

With the aid of these elements, the following four different

types of decision problems can be identified: selection,

mastery, placement, and classification.

Well-known examples of the four types of decision making

in the field of education are admiseon of students to

educational programs (selection), pass-fail decisions

(mastery), the aptitude-treatment-interaction paradigm in

instructional psychology where students are allowed to reach

the same educational objectives via different instructional

treatments (placement), and vocational-guidance situations

where, for instance, most appropriate continuation-schools

must be identified (classification).

Each of the four elementary decision problems can be

formalized as a problem of (empirical) Bayesian decision

making. In Hambleton and Novick (1973), Huynh (1976, 1977),

Mellenbergh & van der Linden (1981), Novick and Petersen

(1976), Petersen (1976), Petersen and Novick (1976), van der

Linden (1980, 1981, 1987), and Vos (1988), it is indicated

how optimal decision rules can be found for these problems

(analytically or numerically).
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In the present paper, the emphasis is on deriving

simultaneous optimal decision rules for combinations of the

elementary decisions. To illustrate the approach, a placement

and a mastery decision will be combined into a simple

decision network (see also Figure 1). The difference between

the separate and the simultaneous approach can be

demonstrated by the combined placement-mastery decision of

Figure 1. In the separate approach, first optimal placement

rules are found by maximizing the overall expected utility

for the separate placement decision (e.g., van der Linden,

1981). Next, optimal mastery rules are found by maximizing

the overall expected utility for the separate mastery

decision (e.g., Hambleton & Novick, 1973). In the

simultaneous approach, however, the optimal placement as well

as the optimal mastery rules are found by maximizing the

overall expected utility of both decisions simultaneously.

Also, when optimizing treatment-assignment rules, pass-fail

decisions to be made later can already be taken into account;

hence, the first advantage of the simultaneous approach is

nicely demonstrated by Figure 1.

Besides the pure forms and combinations with each other,

one or more of the following generalizations may apply (van

der Linden, 1988) to the elementary decisions:

(1). klultiglemaulatigins. The presence of different

subpopulations reacting differently to the test items

may create the problem of culture-fair decision making.

(2). Quota restrictions. Due to shortage of resources, the

number of vacant places in some treatments is
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restricted.

(3). Multivariatetest data. The decisions are based on data

from multiple tests.

(4). natiaulAtzgmitftria. The success of a treatment has to

be measured on more than one criterion each reflecting a

different aspect of the treatment.

In the present paper, only restrictions with respect to

the presence of subpopulations and the number of vacant

places in some treatments will be assumed. First, we

elaborate the decision-theoretic aspects of culture-fair

decision making for a quota-free placement-mastery problem.

For a linear utility function the decision rule that

optimizes simultaneously the treatment assignments and the

pass-fail decisions to be taken after the treatments are

given. Next, optimal rules will be derived if allocation

quota considerations have to be taken into account. Finally,

optimal cutting scores for quota-free as well as quota-

re. icted combined decisions will be presented for an

empirical application to instructional decision making in an

ISS. In the numerical example, it is further assumed that the

students can be separated into two subpopulations referred to

as the disadvantaged and the advantaged populations.

With respect to the applicability of the approach

presented in this paper, the following should be regarded.

Although the area of individualized instruction is a useful

application of simultaneous decision making, it should be

emphasized that the procedures advocated in this paper have a

u
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larger scope. For instance, the simple placement-mastery

decision problem may be important in such areas as

psychotherapy in which it can be expected that patients react

differentially to a certain kind of therapy and the most

promising therapy is followed by an end-of-therapy test.

The Placement-Mastery Decision Problem

In placement decisions several alternative treatments are

available and it is the decision maker's task to assign

individuals to the most promising treatment on the basis of

their test scores. All subjects are administered the same

test and the success of each treatment is measured by the

same criterion. Figure 1 shows a flowchart of an ISS for the

case of two instructional treatments in which the treatment

assignment is followed by a mastery test. A test on the basis

of which it is decided whether the student has mastered the

instructional treatment sufficient.4 so that (s)he may

proceed with the next treatment, or has to relearn the

treatment and prepare him(her)self for a new test.

Insert Figure 1 about here

In the following, we shall suppose that in the

placement-mastery decision problem the total population can

be separated into g (g 2 2) subpopulations reacting
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differently to the test items. Let X be the placement test

score variable, Y the mastery test score variable, and let

the true score variable T underlying Y denote the criterion

common to the treatments j (j a 0,1), respectively. The

variables X, Y, and T will be considered to be continuous.

We consider a hypothetical experiment consisting of a

population of students being exposed to each of both possible

treatments but where the students are "brain-washed" so that

the effects of one treatment do not interfere with those of

another. (The actual experiment needed for parameter

estimation and in which different samples of students are

randomly assigned to the treatments will be described later

on) .

Furthermore, it is supposed that the relation between

the measurements X, the measurements Y after treatment j, and

the criterion T, can be represented for each population i (i

1,2,....,g) by a joint probability function Cii(x,y,t).

Since the treatment is between the placement and the mastery

test, it will influence the relation between X, Y and T, and

this relation can be expected to assume a different shape for

each treatment. This is indicated by the index j in

Cbi(x,y,t). However, because the placement test is

administered previous to the treatments, the marginal

probability function of X in subpopulation i is the same for

both treatments and will be denoted by qi(x). The above

experiment being executed, the placement-mastery decision

problem now consists of setting simultaneously cut-off scores

xci and yci such that, given the value of tc, the overall

A.
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expected utility is maximized. IL shUuld be stressed that,

although the nature of the decisions shown in Figures 1 and 2

is sequential, the cut-off scores xci and yci are optimized

simultaneously using data coming from the above experiment.

The presence of populations reacting differently to test

items imply also different cut-off scores for each population

(Gross & Su, 1975; Petersen & Novick, 1976). Therefore, let

xci and yci denote the cut-off scores for subpopulation i on

the observed test score varaables X and Y, respectively.

However, the cut-off score tc on the criterion score T

separating "true masters" from "true nonmasters" is assumed

to be equal for each population. Note that, due to the

presence of different populations reacting differently to

test items, different probability functions for each

population should be assumed (Gross & Su, 1975; Petersen &

Novick, 1976).

In this paper, we consider only monotone decision rules

8: students with test scores above a certain cutting point

are considered "suitable" and "not suitable" otherwise. For

the decision network of Figure 1 they can be defined in the

following way:

a00 for X < xci, Y < Yci

a01 for X < xci, Y k Yci
(1) 8(X, Y) =

a10 for X a xci, Y < Yci

all for X a xci, Y k yci,

where ajh stands for the action either to retain (h = 0) or
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advance (h a 1) a student who is assigned to treatment

j (j - 0,1). The problem of setting optimal cutting scores

xci and yci, given the value of tc, now amounts to selecting

A monotone decision rule which maximizes overall expected

utility. However, the restriction to a subset of all possible

rules in our paper is only correct if there are no

nonmonotone rules with higher expected utility. The

conditions under which the subclass of monotone rules is

essentially complete, i.e., that for any nonmonotone rule

there is a monotone rule that is at least as good (Ferguson,

1967, Sec.6.1; Karlin & Rubin, 1956) will be examined in the

next section.

Monotonicity Conditions

For the elementary decisions the monotonicity conditions are

known, and a monotone solution exists. The first condition is

that the probability model relating observed test score

variable Z to true score variable T has monotone likelihood

ratio (MLR) in t, i.e. it is required that the ratio of

likelihoods f(z1t2)/f(zIti) is nondecreasing in z for any t1

< t2. Second, the actions should be ordered such that for

each two adjacent actions the utility functions possess at

most one point of intersection.

To guarantee that a monotone solution of the combined

decision problem exists, it is assumed that, in addition to

the conditions of MLR and monotone utility, the following

conditions hold in each subpopulation i for the probability

/
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functions vji(tlx), pji(x,y1t), and nji(y1x) of the

distributions of T given X =x, (X,Y) given T = t, and Y given

X = x under treatment j (j = 0,1), respectively:

(2) For any xi < x2, the ratio of likelihoods

voi(tlx2)/vii(tlxi) is nondecreasing in t,

( 3) For any ti < t2, the ratio of likelihoods

pji(x,y1t2)/pji(x,ylti) is nondecreasing in each of

its arguments, that is, MLR in each of its

arguments,

(4) For any xi < x2, the ratio of likelihoods

nii(y1x2)/n0i(ylxi) is nondecreasing in y.

After the utility function of the combined decision

problem has been specified in the next section, and it has

been indicated how the condition of monotone utility applies

to this function, it will be prove.d that the above-mentioned

conditions are sufficient for a monotone solution to exist.

An Additive Representation of the

Combined Utility Function

Formally, a utility function ujhi(t) describes all costs and

benefits involved when action ajh (Joh = 0,1) is taken for

the student from subpopulation i whose true score is t. The

decision-maker may have different utilities associated with
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different populations (Gross & Su, 1975; Petersen & Novick,

1976). Hence, in addition to separate probability

distributions, the decision-maker has to specify explicitly

his/her utility function for each subpopulation separately.

In the Introduction, it was remarked that one of the

main advantages of the simultaneous approach was that more

realistic utility structures could be used. This is nicely

demonstrated by defining the utility structure of the

combined decision problem as an additive function of the

following form:

(5) ujhi(t) = wlujip(t) W2uhim(t),

where ujip(t), uhim(t), wl, and w2 represent the utility

functions for the separate placement and mastery decisions,

and two nonnegative weights respectively. The utility

functions ujip(t) and uhim(t) are assessed separately and

then brought onto the same scale by use of the weights wl and

w2. A set of conditions sufficient for the existence of an

additive value function may be found in Fishburn (1982),

French (1986), Keeney and Raiffa (1976, Chapt. 3), and Krantz

et al. (1971). Since utility must be measured at most on an

interval scale, the utility function of (5) can always be

rescaled (normalized) as follows:

( 6 ) ujhi(t) = WUjip(t) (1"'W)Uhint(t),

where the weight w should satisfy 0 5 w 5 1. The utility
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function ujhi(t) now takes the following form:

+

wuoip(t) +

(1-w)uoirn(t)

(1-w)ulim(t)

for j=0, h=0

for j=0, hul
(7)

{wuoip(t)

uhji(t)
wulip(t) + (1-w)uoim(t) for jul, hi=0

wulip(t) + (1-w)ulim(t) for Jul, hul.

It is reasonable to assume that the utility for granting

mastery status is a nondecreasing function of a student's

true score t, and the utility for denying mastery status is

nonincreasing. Hence, the difference of the two utilities,

ulim(t)-uoim(t), is a nondecreasing function of t. In the

following, we shall suppose that the treatments have been

ordered in such a way that treatment 1 can be considered as

the "higher" treatment. In general, students with high test

scores on the placement test will be assigned to treatment 1,

and vice versa. For instance, treatment 1 may contain less

examples and exercises than treatment 0. Then, we may assume

that ulip(t) and uoip(t) are nondecreasing and nonincredsing

functions of t, respectively. Thus, it also follows that

(ulip(t) -uoip(t)) is a nondecreasing function of t. Finally,

since the difference of the two utilities for the separate

decisions are nondecreasing functions of t, the condition of

monotone utility is fulfilled for the utility functions of

both separate decisions.
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Maximization of Overall Expected Utility

As noted earlier, the optimal procedure from a Bayesian point

of view is to look for a rule chat maximizes the overall

expected utility. Since we may confire ourselves to monotone

rules, the expemted utility of a random student from

subpopulation i for the simultaneous approach is given by

(8) Miljkli(T)1XcipYcil

O° xci yci
u00i(t)D0i (x, y, t) dtdxdy +

00 00

I I
xci

I
«,

uni(t)cloi(x,y,t)dtdxdy +
- se -Go yci

I" I~ 1Yci uloi (t)ilii(x,yot)dtdxdy +
00 Xci .m00

00 00 00

(x,y,C)dtdxdy.
"gm xci yci

Substituting the additive utility function of (7) into (8),

and rearranging terms, yields

(9)

00 00mij _esE00.100i(T)Ixoyikoi(x,y)dxdy+

ele

I (E1[1100T)Ix]-E0(400T)Ix])qi(x)dx +
xOi

se
(1-w)(1 (Eo[ulim(t)-uoim(t)ly])Soi(y)dy +

yci
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I 1 cli(x)(mi[ulim(t)-uoim(t)lx,ynnli(ylx) -

xci Yci

(Eotulim(t)-uoixot)lx,y])floi(ylx))dxdy),

where sji(y) and kji(x,y) denote the probability function of

Y and (X,Y) in subpopulation i under treatment j,

respectively, and where Ej indicates that the expectation has

been taken over a distribution indexed by j (j = 0,1).

Now, the decision procedure is viewed as a series of

separate decisions, each of which involves one random student

from the total populat..on. Furthermore, it is assumed that

the overall expected utility for the simultaneous approach,

EUsim(xcl,vecl, ...,xorycg), is found by summing the expected

utility for the simultaneous approach of a random student

over all students. Under these assumptions, it follovs that

the overall expected utility for the simultaneous approach

can be written as:

g
(10) EUsim(xci acl,...fxcgacg)

m 1E1
piE[ujhi(T)Ixci aci],

=

g
where pi,

iE1
pi = 1, is the proportion of students from

=

subpopulation i in the total population.

Sufficiency of the Monotonicity Conditions

There is a theorem in decision theory (see e.g., Chuang,

Chen, and Novick, 1981) stating that E[u(e)lz) is a
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nondecreasing function of z if f (z 10) has MLR and u (0) is a

nondecreasing function of O. We will refer to this property

as monotone expected utility (MEU) .

The utility associated with action a10, uloi(t), may

either be a nondecreasing or a nonincreasing function of t.

Since (-uooi(t)) is a nondecreasing function of t, and using

the assumption of MLR of the probability function X given

Tat, it follows by applying the MEU theorem that in the ease

of ulOiCt) being

i.e., - uOim(t)
dt

(E1Cu10i(T)1/0 EOCu

a nondecreasing function of t,
d

a---(ulip(t)-uoim(t)]) S w S 1,
dt

00i(T)130) is a nondecreasing function

of x. Furthermore, since Culoi(t) - upoi(t)]

w(ulip(t)-uoip(t)] and (-uooi(t)) are nondecreasing functions

of t, and using the assumption of MLR of the probability

function of X given T=t, it follows by applying the MEU

theorem that both (EoCuloi(T)Ix] - E0 (u00i(T)14) and

(-Eo[upoi(T)Ix]) are nondecreasing functions of x. In the

case of uloi(t) being a strictly decreasing function of t,
d d

i.e., 0 5 w < - uoim(t)a--- ulip(t) uoim(t)]).
dt dt

and multiplying Eoluloi(T)Ix] by vii(tlx)/voi(tlx), it now

follows under condition 2, which implies that

vii(tlx)/voi(tlx) is nonincreasing in t, that (El[uloi(T)Ix]

- E0 [u00i(T)1x]) is a nondecreasing function of x. Thus, for

uloi(t) being a nondecreasing as well as being a strictly

increasing function of to (El[uloi(T)Ix] - Eo[upoi(T)1x1) is

a nondecreasing function of x. Using qi(x) 2 0, it then

follows that the integrand of the second term of (9) is a

nondecreasing function of x.
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With the assumed MLR of the probability function of Y

given T as t, and using (ulim(t)-uoim(t)] is nondecreasing in

t and soi(y) a 0, it follows by the MEU theorem that the

integrand of the third term of (9) is a nondecreasing

function of y.

Furthermore, since (ulim(t)-uoim(t)] is a nondecreasing

function in t, it follows under condition 3 by applying

the MEU theorem that (El[ulim(t)-uoim(t)lx,y)) and

-(Eo(ulim(t)-uoim(t) lx,y)) are nondecreasing and

nonincreasing in each of their arguments x and y, respec-

tively. Multiplying -(E0(ulint(t) - uoini(t)lx,y]) by

noi(y1x)/nii(ylx), it follows under condition 4, which

implies that noi(y1x)/nli(y1x) is nondecreasing in y, that

-(Eo[ulim(t) - uoim(t)lx,Y]) n0i(y1x)/nli(y1x) is

nondecreasing in each of its arguments. Multiplying both

(Si ruiim(t) - uoim(t) lxYi) and -(E0(ulim(t)-uoim(t) I x, yl )

n0i(y1x)/nii(ylx) by nii(ylx), and using nli(y1x), qi(x) a 0,

it now applies that the integrand of the fourth term of (9)

is a nondecreasing function in each of its arguments.

It finally follows that Muilli(T)Ixci,yei), and hence

Expression 10, possesses an absolute maximum because the

first term is a constant, (1-w) a 0, and the integrand of

each term is nondecreasing in x, y, or in each of its

arguments x and y. In each new application it must be checked

if the conditions of MLR, monotone utility, and (2)-(4) hold.

Checking for the monotonicity conditions will be considered

below after the (conditional) probability functions appearing

in (9) have been specified.
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Optimizing Cut'aing Scores for Quota-Free Placement

With quota-free placement, there is no constraint on the

number of students that can be assigned to one of the

treatments. Therefore, the values of the optimal cutting

scores, say x ci and y ci, which maximize Expression 10, can

be obtainee by maximizing Expression 9 for each subpopulation

i separately. The optimal rule can be derived by

differentiating Etujili(T)Ixciaci] with respect to xci and

yci, setting the resulting expressions equal to zero, and

solving for xci and yci.

First, differentiating E[ujili(T)Ixci,Yci] with respect

to yci, and assuming w * 1, results in

(11) soi(yci) (Eofulim(t)-uoim(t) lycil I +

SO

sii(Yci)l (ElCulira(t)-uoira(t)lx,ycinzli(xlyci)dx -
Xci

ibe

SoiCycia (EoCulirOt)-uoirOt)lx,yei])zoi(xlyci)dx u 0,
Xci

where zji(xlyci) denotes the probability function of X given

Y yci under treatment j in subpopulation i (j - 0,1).

Similarly, differentiating E[ujili(T)Ixci,yci] with respect to

xci_ and using qi(x) > 0 (the possibility of qi(x) - 0 will

be ignored), yields
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(12) El[uloi(T)Ixci] - E0(1100i(T)Ixci) +

00

(1-w) J {(Elfulim(t)-uoim(t)Ixci,y3)nii(ylxci) -

Yci

(Eo[ulim(t)-uoim(t)Ixci,Y]inoi(yixci)idy = 0.

Since the system or Equations 11 and 12 cannot be solved

analytically for xci and yci, the determination of the

optimal cutting scores may be carried out via numerical

approximation procedures such as the Newton iterative

algorithm for solving nonlinear equations. However, before

proceeding with this procedure, it is necessary to specify

the probability functions, regression functions, and utility

functions appearing in (11) and (12).

Divariate Normal Model

In the following, we shall suppose that the variables X and Y

have possibly different bivariate normal distributions under

both treatments in each subpopulation i. Let pji denote the

population correlation between X and Y under treatment j in

subpopulation i, and let xN and yNj denote the standardized

scores of X and Y under treatment j (j = 0,1), respectively.

Then it can be shown (see e.g. Johnson & Kotz, 1970) that for

the standardized bivariate normal distribution the

conditional distribution of XN given YNj = yNj is normal with

expected value pjiyNj and variance (1-pji2). Likewise,

nji(yNixN) is normal with expected value pjixN and variance

(1-pji2).

The regression functions Eji(TIx) and Eji(Tlx,y) of T on
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x and T on x and y under treatment j, are assumed to be

linear in each subpopulation i; that is, they can be written

as Eiji+rjix and aji+Pjix+Tjiy, respectively. Using results

from classical test theory, it follows that the regression

coefficients can be written as :

(13) rii Pii(Qyviaxi)

eii a µyji

Pii

Tii (pyji_pii2)/(1_pii2)

-AxiPii gyji(1-Tii),

gyji, gxi, Oyji, aki, and pyji being the population means of

Y and X, the population standard deviations of Y and X, and

the reliability coefficient of Y under treatment j (j = 0,1)

in subpopulation i, respectively. Assuming also linear

regression for T on y under both treatments in each

subpopulation i, and using Kelley's regression line (Lord &

Novick, 1968, p.55), it follows

(14) Eji(Tly) = pyji Y + (1-pyji)gyji.

Furthermore, assuming homoscedascity, it also follows from

classical test theory that:
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(15) varji(TIx) (pyji-pii2)0yji2

varii(Tly) = ayii2pyji(1-pyji)

varii(Tlx,y) = aYji2(PYjiPji2-PYji2+Pji2PYji)/

(1-pii2) .

Having defined the probability and regression functions,

we now are in a position for checking if the monotonicity

conditions are satisfied. First, it can be noticed that,

since the probability functions of T given X=x, and T given

X=x and Y=y in subpopulation i under treatment j are normal,

they belong to the exponential family, and hence, they do

have MLR and MLR in each of its arguments, respectively (see

e.g., Chuang, Chen & Novick, 1981). Thus, monotonicity

condition 3 is fulfilled.

Furthermore, it can be shown (see e.g., Lehmann, 1959,

sect. 3.13) that a necessary and sufficient condition for the

likelihood ratios in (2) and (4) to be nondecreasing in t and

in y, respectively, is that the mixed second derivative of

the natural logarithm of these ratios exists and is

nonnegative. Differentiating these ratios of normal

distributions, it then applies that the following set of

conditions should hold for conditions 2 and 4 respectively.

(16) rWvaroi(Tlx) a rii/varli(Tlx)

P1iaY0i/ (1-P112) a Poiani/ (1-P ai2)
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Linear Utility

Although utility functions can be empirically assessed

without making any assumptions about the form of the utility

functions (e.g. Vrijhof, Mellenbergh & van den Brink, 1983),

usually the form if the utility function is specified on a

priori grounds. In statistical decision theory several forms

of the utility functions have been adopted. In the present

paper, it will be assumed that the utility structures for

both the separate decisions are linear functions of the

criterion variable t. This utility structure seems to be a

realistic representation of the utilities actually incurred

in many decision making situations. In a recent study, for

instance, it was shown by van der Gaag (1989) that many

empirical utility structures could be approximated by linear

functions. For other frequently used utility functions and

their (dis)advantages, refer to Lindley (1976), Novick and

Lindley (1978), Swaminathan, Hambleton and Algina (1975), and

van der Linden (1981).

Mellenbergh and van Ucr Linden (1981) and van der Linden

and Mellenbergh (1977) proposed a linear utility function for

the separate decisions. They can in the case of multiple

populations be defined in the following way:

(17) ujip(t) =
1

boip(tet) + doip

blip(t+tc) + kip

(18) uhim(t)
boim(tc-t) + doim

blim(t-tc) + dlim

for X < xci

for X a xci

for Y < Yci

for Y k yci,
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where boip, blip, bOim, and bum > 0.

For each action, this function consists of a constant

term and a term proportional to the difference between the

criterion performance t of a student and the minimum level of

satisfactory criterion performance tc. The parameters djip

and dhim (j,h = 0,1) can, for example, represent the constant

amount of costs of following treatment j and the costs of

testing, respectively, and will in that case have a

nonpositive value. The condition boip, 'slip > 0 is equivalent

to the assumption that for assigning students to treatment 0

and 1, utility is a strictly decreasing and increasing

function of t, respectively. Likewise, bOim, bum > 0

expresses the assumption that the utility for failing and

advancing the mastery test is a strictly decreasing and

increasing function of t, respectively.

As Gross & Su (1975) and Petersen & Novick (1976) pointed

out, the question whether decision rules are fair to the

various subpopulations which can be distinguished depend

within a decision-theoretic framework only on the chosen

utilities. From this point of view, separate parameter values

might be chosen in the linear utility model to allow for the

fact that the students might belong to a disadvantaged or

advantaged population (see also Mellenbergh & van der Linden,

1981). Suppose, for example, that population 2 is considered

more advantaged than 1. Furthermore, it is assumed that

incorrect decisions are considered worse for population 1

than for 2, while correct decisions are considered more

valuable for population 1 than for 2. If so, bilp and bhlm
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could be set higher than bj2p and bh2m, respectively, for

every value of t (j,h = 0,1).

Substituting the assumed linear regression functions,

bivariate normal probability functions, and linear utility

functions in (11), it follows by integration over x:

(19) f(xcilyci) =

((bliebOim)(PY0ace(1-PY0i)AY0i-tc) +dlim7dOim)

1

CYNOcilicrY0i 4'
j0 ajfj(xcifYci) m 0,
=

where aj = 2j - 1,

fj(xcilYci) m ((bliebOim)(9i4jiki+Tjaci+

PjiaxiPjaNjci-tc) +dlirridOim)(1-CzxyjNcin

(blim+100imOjiaxi4(1-Pli2),[zxyjNci] CYNicil/ ayji,

and C.], and z xyjNci denote the standard normal

distribution function, standard normal density, and

(xNci-Pjiftjci)/4(1-Pji2). respectively. Similarly, it

follows that (12) can be replaced by

(20) g(xcifyci) -

1

E (w(bjip(0ji+rjixci-tc)+ajdjip)
j=0

+ (1-w)(aj(boim(tc-Oji-rjixci)+ doim)

+ Vj(xcilyci))) - 0,
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where

f'j(Xcifl'ci) " +

IjiaYjiPjixNci-tc) dlim-dOim)(1-4)(zyjxNcill

(bliebOim)%jiaYji 4(1-P2ji) 9(zyjxNcil,

with zyjxNci = (ftjci-PjixNci)/4(1-P2ii)

To apply Newton's iterative procedure, the partial

derivatives of the left-hand side of (19) and (20) are

needed. They are given as

a
(21) f(xciaci)

axci

1

(ai[4(1-pli2)ani]-1 CYN1ci]((bliebOim)
j=0

(uji4jixci'lljaci-tc)+dlim-dOim),[xxjNci ]/Gkci

a
(22) f(xci,yci)

aYci

( (blim+bOim) (PY0iYci+ (1-PY01) gY0i-tc) +dlim-dOim}

YNOciCYNOci]iaY0i2+(bliebOim)PY00[YNOci]/OY0i

1

- E ( fi(xci,yci)yNiciCYNici]/Oyji2 +
j=0

(sj(blieboim) ((tiicryji+Ojipiiaxi)

(1-4qzxjNci))+Pji[4(1-
pji2)]-1

CzxjNci](aji+fijixci+TjiYci-tc)) (dlim-dOim)Pji

[4(1-pii2)]-1 CzxjNcil)CYNjcilicsYji2 },
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a
(23) g(xciaci)

axci

w (buprii+boiproi) + (1-w) boim(roi-rii)
1

E aj(1-w)((blieboim)/axi((kian+liiclYiiPii)
1=0

(1-CzyixNcii ) +Pii [4 (1-P112) ri CzyixNci]

(aji+fliixci+T jiyci-tc) + (diim-doim) pii (51
pii2)

CzyjxNcil,

a
(24) g(xciaci)

axci

1

E aj(1-w)([4(1-pji2)ayjil-1 (-(blieboim)
jP0

(a9i4jixci+TjiYci-tc) (dOledlim)/9(zyjxNci) .

Inserting Equations 19 until 24 into Newton's procedure,

and using the property that the standard normal distributions

appearing in this system of Equations can be approximated by

logistic functions with a scale parameter equal to 1.7 (Lord

& Novick, 1968, sect. 17.2), onP obtains the optimal cutting

scores x'ci and seci. The algorithm is implemented in a

computer program called NEWTON.

Derivation of Optimal Separate Decisions

The expected utility of a random student for the separate

30
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mastery decision from subpopulation i, E[uhim(T)IYci].

follows immediately from (9) by realizing that both

treatments can be thought to coincide in this case implying

that noi(y1x) = nii(y1x) and E0[.] = E1(.]. Also, the

combined additive utility function, uira(t), can be replaced

in this case 174 ((l-w)uhira(t)] implying that amongst others

ul0i(t) a 40i (t) (1-14)uOim. Furthermore, the placement

test score variable X can be thought to coincide with the

true score variable T in this case implying that the first
00

term of (9) reduces to (1-w) I Eo[uoim(T)IY]soi(Y)dy.
-

Substituting the above-mentioned equalities into (9), results

in

00

(25) E[uhim(T)1Yei] (1-w) ( I EO[uOim(T) IY]soi(y)dy +
.20

I (E0(ulim(t) - uoim(t)ly]lsoi(y)dy).
Yci

The optimal separate mastery scores, y'ci, can be

derived again by differentiating E(uhim(T)lyci] with respect

to yci, setting the resulting expression equal to zero, and

solving for yci. Doing so, and using soi(yci)>0 and w * 1,

results in

(26) Eo[ulim(t)-uoim(t)lyci] = 0,

which yields the same optimal cutting score y'ci as the one

given by van der Linden and Mellenbergh (1977). For the

3.1
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linear utility model (Expression 18), it follows from (26)

that

(27) yoci gyoi + (tc-ploi+(doim-dlim)/(blieboim))/pyoi.

As an aside, it may be noted that Equation 26, and hence

Equation 27, can also be derived immediately by substituting

the equalities soi(yci) = sii(yci), zoi(xIyci) = zii(xlyci),

and E0[.] = El[.] into (11).

Next, the expected utility of a random student for the

separate placement decision from subpopulation

E[ujip(T)Ixci], can easily be derived from (9) by realizing

that in the combined additive utility function, ujhi(t), the

term [(1-w)uhim(t)] vanishes in this case implying that the

third term of (9) also vanishes, and the second term of (9)
IVN

reduces to [w I (Ei[ulip(T)Ix]-Eo[uoip(T)Ix]lqi(x)dx).
x

Furthermore, the mastery test score variable Y can be thought

to coincide with the true score variable T in this case

implying that the first term of (9) reduces to

w I Eo[uoip(T)Ix]qi(x)dx. Substituting the above-mentioned
-se

results into (9), yields

(28) Efujip(T)Ixcil = w(iEo[uoip(T)Ixlqi(x)dx +
-eo

00

I (E1[ulip(T)110-E0[u3ip(T)Ix])qi(x)dx).
xci

The expected utility for a random student from

32
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subpopulation i for tne separate approach is found by summing

E[uhim(T)lyci] and Etujip(T)Ixcil. Finally, analogously to

the simultaneous approach, the overall expected utility for

the separate approach, EUsep(xci
0 Ycle 0 xog0 l'cg), is

found by summing the expected utility for the separate

approach of a random student over all students yielding

(29)
. EUsep(xclfl'clf..-0Xcg0Ycg)

g

1.1
Pi(E(uhim(T)lyci)+Elujip(T)Ixcil}.

2=

The optimal separate placement cutting scores, y'ci,

follow now again by differentiating Etujip(T)Ixci] with

respect to xci, setting the resulting expression equal to

zero, and solving for xci. Doing so, and using qi(x) > 0 and

w * 0, results in

(30) EiCulip(T)Ixcil-So(uoip(TIlxci] 0.

Also, this optimal solution agrees with the one reached by

van der Linden (1981). Adopting the linear utility model from

Expression 17 in (30), it applies that

(31) x'ci m (doip-dlip+tc(blip+boip)-blipeli-boipeoi)/

(bliprli+boiproi).

Equation 30, and hence Equation 31, can also easily be

derived by putting (1-w) ulim (1-w)uoim 0 in (12).

33
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As a final remark, it should be noted that the optimal

separate cutting scores, unlike the expected utilities for

the separate decisions, do not depend upon the value of w. On

the other hand, the optimal cutting scores as well as the

expected utilities for the simultaneous approach depend upon

the value of w.

Solution for Quota-Restricted Placement

In the restricted placement situation only a fixed number of

students can be assigned to each treatment. Confining

ourselves to assignment decisions with two treatments, this

constraint can be expressed as

g V a.

(32) po = pi[Prob(X k xci)] = I pi[j qi(x)dx],11 xci

g
where 0 < po <i E pi = 1 represents the fixed proportion of

1

all students that can be assigned to treatment 1.

Analogous to the quota-free model, optimal cutting

scores x'ci and y'ci can be derived by maximization of the

overall expected utility for the simultaneous approach from

Equation 10 subject to (32). To solve this constrained

optimization problem, first introduce the placement

restriction into the function to be optimized (Equation 10)

through a Lagrange multiplier ):

34
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g
(33) L(xciolicle..-fxcglYcg,X) 1E1piECui(T)Ixciacil +

g "r
16( iE Pi EJ qi (x) dx) -p0)a

where X First,is a constant. differentiating

L(xci ,Yclfoxcg,Ycg,X) with respect to yci and setting the

resulting expression equal to zero yields the same solution

as the solution for quota-free placement given by Equation

11. Next, differentiating of L(xci acl,.,xcgacgd4) with

respect to A,, setting the resulting expression equal to zero

yields, of course, Equation 32. Finally, differentiating

L(xci acl, ...,xcglycg,X) with respect to xci, setting the

resulting expression equal to zero, and using pi, qi(x) > 0,

yields

(34) Eituloi(T)Ixci] - Eptuopi(T)Ixci] + A, +

OD

(1-w)I ((Ei juiim(t)-uoim(t) lxciannii(y1xci) -
Yci

(Eofulim(t)-uoim(t) lxciYi }n0i(y1xci))dy 1. 0.

Now, optimizing cutting scores for quota-restricted

placement proceeds by substituting the assumed probability,

regression, and utility functions into Equations 11, 32, and

34 and solving this system of Equations for the (2g + 1)

unknown parameters xci, yci and X using Newton's iterative

method again. For the linear utility model this results in

the system of nonlinear Equations f(xci,Yci), (32), and

35
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Vxci,yci) respectively. Note that with quota-restricted

placement, unlike quota-free placement, the optimal cutting

scores x'ci and y'ci ( i as 1,...,g) are dependent upon each

other. Also, the partial derivatives of the given system of

nonlinear Equations is required again. The derivatives of

f(xci,yci) and g(xci,yci) with respect to xci and yci were

given already in the preceding sections. Furthermore, it can
a a

easily be derived that (g(xciaci)+X]

a
aa xci ,axci

Eg (xcif Yci) ` g ()la, Yci) and (g (xci, Yci) +X3
ayci aYci a
- 1. Since qi(x) is a normal distribution with mear. Axi and

variance Oxi2 (see, ae Owe, Johnson & Kotz, 1972), it finally

follows from (32) that

a g
(35) Pid qi(x)dx) -130) (-pi/axi),(xNci) .

axci xci

When there are allocation quota considerations, the set

of given monotonicity conditions do not hold without

modifications. Since is a constant, it follows directly

from (11) and (34) that this set is also sufficient to

guarantee that the integrand of each term in

L(xci, Ycl,wfxcgacg,X) is nondecreasing in x, y, or in each

of its arguments x and y. In addition to these conditions, it

should hold that L(xci acl,...0xcg,Ycgd) is a nondecreasing

in X
a

x
or --- L(xci acl,...,xcgacgd) 0. Using (33), then

a

the following extra monotonicity condition can be formulated

36
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C")

(36) E pit! qi (x) dx] a Po.
i-1 xci

Since the above stated condition should hold for every value

of xci, it follows that

(37) E pi t qi(x)dx] a Po,
i-1 x'cilfree

where ecit free denote the optimal placement cutting scores

in the quota-free model. Furthermore, let x' ci,quota denote

the optimal placement cutting scores in the restricted model,

then it will generally hold that x' ci, quota > eci,freef

because fewer students can be assigned to treatment 1 in the

restricted model. Since the left-hand side of (36)) is a

nondecreasing function in xci and is equal to po when xci =

eci,quota, it follows that

E pia qi(x)dx] Z po, for x' ci, free 5 xci 5 x' ci, quota
i°1 xci

Hence, using (xicilfree0Y'ci,free) as a first approximation

in Newton's iterative procedure guarantees that

L(xci PYcl, ...,xcglycg,X) reaches its maximum for one pair of

cutting scores.

It should be noted that condition 37 can easily be seen

to hold by realizing that if the left-hand side of condition

37 is less than po, this implies that fewer students are

37
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assigned to treatment 1 than the number of places available.

In applying the quota-restricted model, it must always be

checked if condition 37 holds. If this is not the case, the

optimal placement cutting scores of the unrestricted model

should be used. To czmpute the optimal cutting scores with

quota-restricted placement for the linear utility model, the

computer program QUO-SIM has been developed.

Analogously to the quota-free model, the optimal

separate cutting scores can easily be derived from Equations

11, 32, and 34 by imposing certain restrictions. The optimal

separate mastery scores, y'ci, follow again immediately from

(11) by substituting the equalities soitycif = si(Yci),

zoi(xlyci) = zii(xlyci), and E0(.] = E1(.] into (11) yielding

Equation 27 in case of the linear utility model.

However, unlike the optimal separate mastery decision,

the optimal separate placement decision for the quota-

restricted model differs from the quota-free model. The

optimal separate placement scores, x'ci, follow by first

putting (1-w)uoim(t) = (1-w)ulim(t) = 0 in (34) yielding

(38) El[ulip(T)Ixci)-Eoruoip(T)Ixci] + 7l = 0.

Next, substituting the linear utility and linear regression

functions into (38), results in

(39) xci(bliprli+boiproi) - (doip-dlip)

tc(blip+boip) + blipOli + boipOoi + 7l = 0.
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Now, the optimal separate placement scores for the

quota-restricted model are found by solving the nonlinear

system of Equations 32 and 39 for the (g+1) unknown

parameters xci and X using Newton's iterative algorithm

again. Analogously to the simultaneous approach, it should be

noted that with quota-restricted placement, unlike quota-free

placement, the optimal cutting scores x'ci(i=1,...,g) are

dependent upon each other. In order to apply Newton's

iterative method to solve the given system of nonlinear

Equations, the partial derivatives are required again. The

derivatives of (32) with respect to xci were given already in

(35). Finally, from (39) it can easily be verified that the

derivatives of the left-hand side of (39) with respect to X

and xci are given by 1 and (bliprii + boiproi), respectively.

Finally, it should be noted that, analogously to the

quota-free model, condition 37 should hold in order to

guarantee that no fewer students are assigned to treatment 1

than the number of places available; that is, the Lagrangian

function is nondecreasing in X. In condition 37, x' ciffree

denote now, of course, the optimal separate placement cutting

scores of the quota-free model. If the resulting sum of

products of the left-hand side of (37) is less than po, then

the decision-maker .should use again the optimal separate

placement cutting scores of the unrestricted model.

A computer program called QUO-SEP has been written to

obtain the optimal separate placement cutting scores for the

quota-restricted model. To illustrate the models presented in

this paper, a numerical example is given in the next section.
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An Application of the Combined Diacision Problem

The procedure for computing the optimal cutting scores was

applied to a sample of 59 freshmen in medicine. So.h the

placement and mastery test was composed of 21 free-response

items on elementary medical knowledge with test scores

ranging from 0-100. The treatments 0 and 1 consisted of an

interactive video (IV) and a computer-aided instructional

(CAI) program, respectively. Since the IV-program contained

more examples and exercises, treatment 1 was considered as

the "higher" treatment.

Due to previous schooling, the total sample of 59

students could be separated with respect to elementary

medical knowledge into a disadvantaged and an advantaged

population of 31 and 28 students referred to as populations 1

and 2, respectively. The normal models assumed for the

distributions Xi and Yji (j - 0,1; i 'm 1,2) showed a

satisfactory fit to the test data for a Kolmogorov-Smirnov

goodness-of-fit test.

The teachers of the course considered a student as

having mastered the subject matter if (s)he could answer

correctly at least 55% of the total domain of items.

Therefore, tc was fixed at 0.55.

The means, standard deviations, and correlations between

X and Y were computed for each subpopulation under both

treatments using the unbiased maximum likelihood estimates of

the sample means, sample standard deviations, and sample

40
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correlations, respectively. Furthermore, since the items were

not scored as right or wrong, the reliabilities of the test

shores were estimated as coefficient a (Cronbach, 1951) for

each subpopulation under both treatments. The results are

reported in Table 1.

Insert Table 1 about here

It is important to notice that the necessary statistics come

from the correct experiment and not, for example, from ISS's

in which students are already assigned to treatments on the

basis of their scores on the placement test in question. In a

proper experiment students from the same probability function

of X are randomly drawn and assigned to treatments, after

which their performances on the mastery test are measured.

As noted earlier, in each application of the combined

decision problem it should be checked if the monotonicity

conditions hold. Substituting the statistics of Table 1 into

(13) and (15), showed that the set of conditions (16) was

satisfied.

First, the quota-free situation is considered. Because

the costs for testing are assumed to be equal for advanced

and retained students, dhim is set equal to dh2m (h = 0,1).

Similarly, the costs of following the different treatments j

(j = 0,1) are equal: dilp = di2p. Furthermore, it should hold

that bjlp > bi2p and bhim > bh2m,

41
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fact that population 2 was considered more advantaged than 1.

Using the computer program LINEAR, the optimal cutting scores

x'ci and y'ci were then obtained by solving iteratively the

system of Equations 19 and 20 for xci and yci (i=1,2) with tc

as starting values. The criterion for convergence was that

the absolute differences between two iteration steps for both

x'ci and y'ci were smaller than 10-7. The results are

reported in Table 2 for 3 different values of the utility

parameters as well as for w = 0.5, 0.9, and 0.1 to illustrate

the dependence of the results on the utility structure.

Insert Table 2 about here

The table shows that the consequence of raising the value of

w is generally a decrease of the optimal placement scores and

a small increase of the optimal mastery scores. Thus,

increasing influence of the utility associated with the

mastery decision implies that students should be assigned

sooner to the "lower" treatment. In particular, the optimal

placement cutting scores should be raised considerably for w

= 0.1. This can be argued by the fact that the increasing

influence of the utility associated with the mastery decision

implies that students should be assigned sooner to the

"lowed:" treatment in order to prepare them better for the

mastery test at the end of the treatment. Besides, this

better preparation for the mastery test accounts for the fact
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that the optimal mastery scores can generally be set slightly

lower with increasing w. Furthermore, inspection of Table 2

shows that both the optimal placement and mastery scores are

lower for the advantaged than for the disadvantaged group.

This is so because the disadvantaged students should be

assigned sooner to the "lower" treatment. Also, they should

stay longer in the instructional treatment to be sure that

they have mastered the educational objectives.

In Table 2 the optimal cutting scores for the separate

decisions are also displayed. The cutting scores optimizing

the separate decisions were computed using Equations 27 and

31. As can be seen from Table 2, the optimal cutting points

for the separate model do generally not have large

differences compared to those in the combined model for wm0.5

and w=0.9 for both subpopulations. However, for w=0.1 the

optimal cutting points for the placement decision of the

comhined m:del are substantially higher for both

subpopulations. This can be explained by realizing that, as

noted before, the psychometric portion of the separate model

for optimizing the separate cutting scores does not depend

upon the value of w. Furthermore, it has been argued before

why the optimal cutting points for the placement decision of

the combined model should be set rather high for w=0.1.

In the Introduction, it was remarked that one of the

main advantages of the simultaneous approach was the increase

of the overall expected utility. This can be demonstrated by

comparing the gain in overall expected utility of the

simultaneous to the separate approach. In order to calculate

43



A Simultaneous Approach

39

the overall expected utility for the simultaneous approach,

first the computed optimal simultaneous cutting scores from

Table 2 were substituted into (9) for both subpopulations and

the overall expected utility was calculated according to

(10). The fourth term in the right-hand side of (9) has been

computed using numerical integration methods, while the first

three terms have been integrated analytically yielding

respectively

(wboip+(l-w)boim)(teaoi-Poiki-toigyoi) +

wdoip+(l-w)doim,

((wblip-(1-.w)boi)(01i+Fliki-tc)+(wboip+(1-w)boim)

(90i+rOifti-tC)+w(dlip-dOip)){ 1-44ftcii} aX19(xNC1)

(w(rliblip+roiboip)+(l-w)boim(roi-rii)),

(1-w) (( (boim+blim) Cliyoi-tc)+diim-doirnHi-of YNocii}

aYoihoi (boim+biim)9EYNOcil }

Similarly, the overall expected utility for the separate

approach was calculated by substituting the optimal separate

cutting scores from Table 2 into Equations 25 and 28 for both

subpopulations followed by the summation according to (29).

The first and second term in the right-hand sides of (25) and

(28) have been integrated analytically yielding respectively

(1-w)(boim(tegyoi) +
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(1-w) (bOim+blim)k0i-tc)+dlim-dOim) (1-40(YNoci) ) +

aY0iPY0i(b0ieblim),EYNOcil).

w(b0ip(tc-0 + doip),

W(((blip(eli+rligntC) bOip(90i+rOikitC)

dlip.'Cl0ip}{141( XNCi]} aXi(rliblip+rOibOip),(XNCin

Computer programs EU-SIM and EU-SEP have been written to

calculate the overall expected utility for the simultaneous

and separate approach, respectively. Table 2 summarizes the

results.

As can be seen from Table 2, the gain in overall

expected utility for this particular example and chosen

utility structures (1)-(9) not very much. Only for utility

structure (9) with wim0.1 the gain is substantially. This can

be argued by the fact that the utility associated with the

mastery decision is dominating in this case. Now, due to the

high optimal placement cutting scores for the combined model,

most students will be assigned to the "lower" treatment

implying that on the average they are better prepared for the

end-of-mastery test. As a result, due to the high positive

utility associated with the advance decision for this

particular utility structure, the overall expected utility

will be rather large.

Note that for both approaches the overall expected

utility increases with decreasing w. This means that the

utility associated with the separate mastery necision
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contributes the most to the overall expected utility.

Finally, the solution for quota-restricted placement for

the combined model is considered. The proportions pi (i =

1,2) were estimated as ni/n, where n and ni stand for the

total sample and the number of students from the sample in

subpopulation i, respectively. Furthermore, the fixed

proportion po of the total student population that could be

assigned to treatment 1 was arbitrarily set equal to 0.333.

The optimal cutting scores were then computed using the

computer program QUO-SIM; the results are summarized in Table

3. The optimal solutions of the unrestricted model were used

as first approximations in the iterative procedure. As

mentioned earlier, before optimizing the cutting scores for

quota-restricted placement, it should be checked if condition

37 holds. Inserting the solutions of the quota-free model, it

appeared that this condition was satisfied for all values of

the utility parameters and all values of w.

.11:I
Insert Table 3 about here

As can be seen from Table 3, the optimal placement scores

xlci and x'a in the quota-restricted model have to be raised

substantially for the disadvantaged as well as advantaged

groups compared to those in the quota-free model, because

fewer students can be assigned to treatment 1 in the

restricted situation. On the other hand, the optimal mastery
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scores y'01 and lea in the quota-restricted model can be set

slightly lower for both the disadvantaged and advantaged

groups compared to those in the unrestricted model. This can

be explained by realizing that only the "33.33% best"

students are assigned to the "higher" treatment 1 implying

that the remaining 66.66% low and average students are

assigned to the "lower" treatment 0 where they are provided

with more examples are exercises. As a result, the average

student will be prepared better for the mastery test; hence,

the optimal mastery scores can be set slightly lower.

Furthermore, it follows from Table 3 that, analogous to

the unrestricted situation, the optimal mastery scores are

higher for the disadvantaled than for the advantaged group.

Unlike the quota-free situation, however, the optimal

placement scores are higher for the advantaged than for the

disadvantaged group for w=0.5 and 0.9 implying that

disadvantaged students are sooner assigned to treatment 1

than advantaged students in these cases. This can be argued

by the fact that, since the number of vacant places available

for the "higher" treatment is restricted, otherwise hardly no

disadvantaged students should be assigned to the "higher"

treatment. However, since the influence of the utility

associated with the mastery decision for w=0.1 is rather

high, the disadvantaged students should be assigned sooner to

the "lower" treatment in that case.

Also, the optimal separate scores for the quota-

restricted model have been computed again. The optimal

separate mastery scores are, of course, the same as those
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obtained by the simultaneous approach. The optimal separate

placement scores can be found by computing iteratively the

system of Equations 32 and 39. Checking for condition 37, it

appeared again that this condition was fulfilled; the results

are shown in Table 3.

Finally, the overall expected utilities were calculated

for the quota-restricted model analogously to the quota-free

model. The results are also reported in Table 3. Note that,

the overall expected utilities for both approaches is lower

in the quota-restricted model. This result is in accordance

with the theory of constrained optimization (see e.g.,

Bertsekas, 1982).

Discussion

In this paper an approach to simultaneous decision making for

combinations of elementary decisions was described. The

approach was applied to the area of instructional decision

making by combining two elementary decisions (viz. a

placement and a mastery decision) into a simple ISS. It was

indicated that the optimal placement cutting scores obtained

by the simultaneous approach in some cases differed

substantially from those obtained by the separate approach.

In particular, if it vas assumed that the influence of the

utility function associated with the placement decision was

small, it turned out that the cutting points for the

placement decision yielded rather large differences. It was

indicated how by simultaneous optimization of such sequences
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of decisions, optimal routing decisions could be taken using

the framework of Bayesian decision theory.

The solutions given in this paper only apply to

treatment assignment problems followed by an end-of-mastery

test. However, more complicated decision networks can be

handled effectively within a decision-theoretic framework.

Further examination of the "best" way to represent more

complicated decision networks of combinations of elementary

decisions seems a valuable line of research. By simultaneous

optimization of such sequences of decisions, optimal

decisions can be taken using the framework of Bayesian

decision theory. Also, restrictions such as multivariate test

data and criteria can be taken into account. Furthermore, the

optimization methods can be readily generalized to more than

two treatments by introducing a series of cutting scores on

the placement test.

Two final remarks are appropriate. First, it should be

noted that the monotonicity conditions 2 and 4 are less

restrictive than they look at first sight. As noted earlier,

condition 2 should only hold if uloi(t) is a strictly

decreasing function of t; that is if 0 5 w < boim/(blip+boim)

in case of the linear utility model. Besides, since condition

2 is a sufficient condition, even if condition 2 does not

hold for uloi(t) is a strictly decreasing function of t, the

integrand of the second term of (9) still may be a

nondecreasing function of x. This may be the case whenever

Wupoi(T)Ix] is a more slowly decreasing function of x than

Eiruloi(T)Ix]. For the linear utility model this condition
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d d
boils down to Eoi(Tlx) > Eli(Tlx) or roi >

dx dx
Similarly, the fourth term of (9) still may be a

nondecreasing function in each of its arguments x and y

whenever CE0Culim(t)-uoirn(t)lx,yln0i(y1x)] is a more slowly

increasing function in each of its arguments x and y than

(ElCulim(t)-uoim(t)lx,y]nli (y1x)].

Second, the example given in this paper was used only to

illustrate the models. However, it is recommended not to use

such small samples as in the described experiment, because

the parameters to be estimated can yield errors of estimation

in that case. If so, they can propagate in computing the

derived optimal decision rules. This does not mean, however,

that small samples necessarily yield inaccurate. results. This

is because not only distributional parameters but utility

parameters as well determine how errors of estimation

propagate.
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Author's Note

This article is based on a paper read at the European Meeting

of the Psychometric Society in Leuven, Belgium, 17-19 July,

1989. The author wishes to thank Wim J. van der Linden, Sebie

J. Oosterloo and Paul Westers for their helpful comments and

an Gulmans for providing the data for the illustration.

Details of the derivations and copies of the computer

programs NEWTON, QUO-SIM, QUO-SEP, EU-SIM, and EU-SEP are

available upon request from the author.
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Table 2

Statistics Placement and MasteKy Testa tX and Y1

Statistic Disadvantaged Advantaged

X

Treatment

0 1

X

Treatment

0 1

Mean 55.965 63.266 62.148 59.832 66.1:7 67.233

Standard Deviation 10.821 10.144 11.245 11.674 10.517 12.523

Reliability 0.764 0.813 0.744 0.791

Correlation Poi /P0.786 D110.819 P02'0.725 p12'0.171



Table 2

t EL.

Ho. Utility Specifications

Disadv. Adv.

w Cutting Score

Simultaneous

Disadv. Adv.

(41,40
Separate

Oisadv. Adv.

Overall Expected Utility

Simultaneous Separate

(1) 1301p" d01p2 403 d02p.-2 0.5 4146.38 4243.81 4146.10 4243.82 21.09 20.87

1314.2 dllp"3 1314'1 d12e-3 y61.53.22 yt2.51.84 y61.52.63 yt2.51.47

bOlse 3 d0lm.-4 4214.2 d1211..-4

b110.4 dlle-5 1312e2.5 d12se-5

(2) 0.9 41.46.12 42.43.82 x6146.10 42.43.82 14.92 14.87

A153.25 y62.51.85 nim52.63 n2.51.47

(3) 0.1 415.19 42.45.50 x61.46.10 42.43.82 27.43 26.87

41.52.58 42.51.77 y61.52.63 )12.51.47

(4) boll,. 3.5 dOlo 13023 d02p 0.5 41.46.14 42.43.46 4145.87 42.43.46 24.94 24.72

1,144 d 14.0 b12p.1 d12p" 4e51.56 41.52.45 42.51.17

1201e3 dOle 0 b02e2 d02e0

blle) dile° 1212m62.5 d12m"
151 0.9 4145.89 42.43.46 41.45.87 42.43.46 17.96 17.92

Y62.51.56 yk.52.45 42.51.17

(61 0.1 4155.09 42.45.54 41.45.87 42.43.46 32.06 31.53
cri

y6152.39 n2..51.44 411.52.45 y62.51.17

(7) bolp5
bup..3

do1 -2

dllp" 3

443.5
b14.2

d02p -2

d12p.-3

0.5 411.46.87

a1 .53.06

42.43.30

A2.151.63

4146.06
4142.53

42.43.99

1%2.51.28

51.59 50.72 rt
a

bOlm" d01e-4 bum. 5 d02e-4

blies" )312e7 O

(6) 0.9 4146.12 42.44.02 41.46.06 42.43.99 29.78 29.50

(51 0.1

W11.53.15

4157.69

42.51.65

42.49.04

y6152.53

4146.06

y62 -51.28

42.43.99 74.05 71.84
ro

y61.52.49 yt2.51.37 y61.52.53 yt2.51.28 O



Table 3

Octimal Cuttina Scores Quota - Restricted Placement with Linear Utility

No. Utility Specifications

Disadv. Adv.

111 44.3.5
1214.2
41..3
bila4

d01p -2

dlle-3
dole-4
dlimm-5

42 p"3

44.1
b02m2
b '21502.5

(2)

13)

14) b01p35 d010 1)043
1314.2 dile° 13121
12013 dOleo 1202e2

1211e4 dlle° 1212e2.5
(51

161

d02 pm-2

d12p -3
d12m m-4

d12m -5

d020
d120
d02m0
d12m'0

(7) 13045 do1p -2 b02pm3.5 do2pm-2

1)140 b12p'2 d12p-3
bolm6 doimm-4 b02m.5 d02m.-4

bllm'9 1312m'7 d12e-5
(8)

491

w Cutting Scores Ix&ifYW

Simultaneous Separate

Disadv. Adv. Disadv. Adv.

Overall Expected Utility

Simultaneous Separate

0.5 xE1 60.85 x6264.04 x5159.97 4265.11 12.62 12.19

1%1.52.62 42.51.51 1151.52.63 y62.51.47

0.9 41.60.06 42=64.97 x6159.97 x265.11 -0.65 -0.76

1,6152.62 1,62.51.50 41152.63 1 %2.51.47

0.1 41.64.57 x52.60.53 41.59.97 42=65.11 26.05 25.13

1 t1 m52.64 1 %2=51.50 1 %1.52.63 1 t2.51.47

0.5 x %1 -60.85 xE264.04 3%1=59.97 4265.11 16.22 15.79

1tim52.44 1%2.51.20 y&I.52.0 1E2.51.17

0.9 41.60.06 42.64.97 :%1.59.97 42.65.11 1.94 1.83

11,41m52.43 y2m51.20 1%132.0 152.51.11

0.1 qi.64.57 42=60.53 41.59.97 4265.11 30.65 29.74

151.52.45 152=51.20 1E152.45 1E251.17

0.5 qim61.21 42=63.65 x51m59.66 42.65.50 39.60 38.34

thm52.53 y52 m51.32 41.52.53 1t2m51.28

0.9 :4159.85 4265.25 q159.66 42=65.50 7.55 7.14

1%1.52.51 1%251.31 151.52.53 152=51.28

0.1 xW65.99 42=59.49 41.59.66 42.65.50 72.14 69.37

A1.52.54 152.51.31 1%1=52.53 yE251.28
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Figure Caption

Figure 1. A system of o.ie placement and one mastery decision
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