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Abstract

A nonlinear version of redundancy analysis is
introduced. The technique is called REDUNDALS. It is
implemented within the computer program for canonical
correlation analysis called CANALS (Van der Burg & De Leeuw,
1983). The REDUNDALS algorithm is of an alternating least
squares (ALS) type. The technique is defined as minimization
of a squared distance between «criterion variables and
weightéd predictor variables. With the help of optimal
scaling the variables are transformed nonlinearly (cf. Young,

1981). An application of redundancy analysis is provided.

Key words: redundancy analysis, canonical correlation

analysis, optimal scaling, nonlinear transformation.
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Nonlinear Redundancy Analysis
Introduction

In many situations data are available from different sources.
Suppose the data are of the form: objects x variables, and
let us suppose the data from one source correspond with a
subset of variables. In case two (sub)sets of variables are
available a possible technique to relate the sets to each
other is canonical correlation analysis (CCA). This technique
is described in many multivariate analysis textbooks (e.g.
Tatsuoka, 1971, chap. 6;, Gnanadesikan, 1977, chap. 3.3). In
CCA the two sets of variables are treated symmetrically. But
a symmetric treatment is not always natural. It also happens
that it is clear from the data which variables are predictors
and which ones are criteria. In such cases redundancy
analysis (RA) is a possible technique.

The name redundancy analysis originates from Van den
Wollenberg (1977). Although he was the first one to name the
technique, it actuallydates back from an earlier period. De
Leeuw (1986) discusses the history of RA. We briefly
summarize it. Horst (1955), Rao (1962), Stewart & Love (1948)
and Glahn (1969) all propose the Redundancy Index. Rao (1964)
and Robert & Escoufier (1976) discuss techniques for
decomposing this Redundancy Index to uncorrelated components.
Fortier (1966) proposes 'simultaneous linear predictions’
which is equivalent with RA (cf. Ten Berge, 1985). Izenman

(1975) and Davies & Tso (1982) also treat RA, but under the
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name Reduced Rank Regression. So far the discussion of De
Leeuw (1986). Johansson (1981) proposes several forms of RA,
which vary with orthogonality constraints, and DeSarbo (1981)
disscusses a technique which is a mixture between CCA and RA.
Van de Geer (1984) places various types of RA in a larger
framework of k sets CCA. Israéls (1986) treats RA with
various normalizations and rotations. Meulman (1986, chap.
5.2.1) discusses a version of RA which can be shown to be a
generalization of Van den Wollenberg's RA. However Meulman
uses alcompletely different approach, formulating RA in terms
of distances between objects or individuals. We come will
back to this later.

A nonlinear version of RA has been proposed by Israéls
(1984). His technique makes it possible to incorporate
qualitative variables by the use of ’'dummies'. Also Meulman
(1986, chap. 5.2.1) discusses a nonlinear version of RA,
dealing with variables on an ordinal measurement level. In
this paper another version of nonlinear RA is proposed. A
larger choice of measurement levels is possible for each
variable than in case of Israéls (1984).

As the algorithm for nonlinear redundancy analysis
shows many correspondences with the algorithm for nonlinear
CCA proposed by van der Burg & De Leeuw (1983), the computer
program for nonlinear RA, called REDUNDALS, is embedded in

the canonical correlation analysis program, called CANALS.
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Redundancy analysis

Suppose the data consist of observations for n objects on m
variables, and assume that the m variables can be divided
into my criterion variables and my predictors. In addition
assume that each variable is standardized, i.e. it has zero
mean and unit variance. Collect the criterion variables in
the matrix H; of dimensions (n x m;) and the predictors in Hj
(n x mp). The Redundancy Index of Stewart & Love (1968) is
obtained by a multivariate multiple regression of h;, the

columns of Hy, (i=1,...,m;) on Hy. Thus

(1) minimize ET1,(h; — Hpb;)'(h; — Hpb;)/nmy

over bl""bml'
where the vector b; (my elements) consists of regression
weights. The squared distance or loss is divided by a factor
nmy for the sake of comparing the various techniques. The
matrix formulation of (1) is:

(2) minimize tr(H; — HyB)'(H; — HyB)/nmy over B.

This expression is minimized by

(3) B = (Hy'Hy))lHy'Hy ,
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provided that Hy'Hg is of full rank. Substitution of (3) in

(2) gives the minimum:
(4) tr(Hq'Hy — Hq Ho(Hy Hy)~1Hy'Hy)/nm

Denoting Rq1 for Hq{'Hy/n and Ry3 and Ry for H;'Hy/n and

Hyp'Ho/n respectively, expression (4) is equivalent to
(5) 1 — tr(RygRoy 1Ryq)/my.

The expression tr(R12R22_1R21)/m1 is equal to the Redundancy
Index of Stewart & Love (1968). Thus minimizing (1)
corresponds to computing the Redundancy Index.

However this is not the same as performing a redundancy
analysis in the sense of Van den Wollenberg (1977). He
searches for (normalized) weights that optimize the explained
variance between criterion variables and weighted predictors.
These weight vectors v (my elements) are eigenvectors of the
matrix R22—1R21R12. Denote the corresponding eigenvalues by

u. Then
(6) R22_1R21R12v = pv with v'Roov = 1.

When all v's are solved, the sum of eigenvalues equals the
Redundancy Index (cf. Israéls, 1984). In fact we can see Van
den Wollenberg’'s analysis as a specialization of our
minimization problem (2), namely the case in which there are

rank restrictions on matrix B, i.e. B=VW' with Vv (my x r), W
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(my x r), l<r<min(mq,my), and normalization constraints on V,
i.e. V'RyyV=I. Expression (2) is rewritten in terms of V and

W as follows
(7) minimize tr(H; — HRVW')'(H; — HoVW')/nmq over V and W
subject to the condition that V'RyyV=I.

Some computational work shows that the columns of V
correspond to the vectors v discussed above. Note that Van
den Wollenberg has the choice of r, i.e. how many
eigenvectors v will be computed. In our case automatically
all weights B are solved for, as this is implicit to the way
(2) is formulated. Although (7) is more restrictive than (2),
we can argue that formulation (7) is the more general one, as
(7) can be solved for r=m; (assuming that mjsmy), and for
lower values of r.

Expression (7) also shows the relation between reduced
rank regression and redundancy analysis, as reduced rank
regression corresponds to (7) with small r (c.f. De Leeuw,
Mooijaart & Van der Leeden, 1985). To recognize other forms
of RA it 1is necessary to formulate expression (7) in a

different way. Define matrix X (n x r) as HoV. Then we get
(8) minimize {tr(X-HyV)'(X-HyV) + tr(H)—XW') " (B{—XW')}/nm;

over X, V and W, subject to the conditions that
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X = HoV and Ryy = I.

Matrix Ry, is equal to X'X/n. Meulman (1986, chap. 5.2.1)
discusses the minimization of the loss as formulated in (8),
subject to the condition that only Ryy=I. Thus X does not
have to be in the column space of Hp. De Leeuw & Bijleveld
(1987) deal with the same loss function, but they use the
condition Rxx=“21- where o is a parameter. They show that
different values of o correspond to various multivariate
techniques. e.g. o=0 boils down to principal component
analysis (PCA), and o—>= corresponds to reduced rank

regression.

Optimal scaling

In many ways nonlinear transformations can be implemented in
redundancy analysis. To do so Israéls (1984) employed dummies
for variables measured on a nominal measurement level.
Meulman (1986, chap. 5.2.1) uses monotone regression in her
version of nonlinear RA. Monotone regression is a form of
optimal scaling (cf. Young, 1981). This means that the
transformations (scaling parameters) minimize the loss, and
at the same time measurement restrictions are maintained. We
also use optimal scaling. The nonlinear transformations
treated in this article are nominal and ordinal (a definition
will follow). In addition, of course, linear or numerical

transformations are dealt with. ‘Dummy transformations’', as
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employed by Israéls (1984), are not discussed, however they
can always be obtained by simply coding variables as dummies,
and, in addition, by treating these dummies numerically.
Another way to obtain these ’'dummy transformations’ is by
using copies of a variable within the corresponding set, and
by treating these copies as nominal. This gives a multiple
nominal (or dummy) transformation (cf. Gifi, 1981, chap.
5.2.7). Using copies instead of dummies has the advantage
that one may choose both the dimensionality of the
transformation and the measurement level of each copy
separately. More information about copies can be found in De
Leeuw (1984) and Van der Burg & De Leeuw (1987).

The nominal, ordinal and numerical transformations
employed in this article agree with the transformations used
by Van der Burg & De Leeuw (1983) in their version of
nonlinear CCA (CANALS). Together these three transformations
form the optimal scaling. Our definition of optimal scaling
corresponds to the definition of Young (1981). We mentioned
already that optimal scaling refers to the fact that
variables are optimally scaled in the sense of the model.
This means that the data matrices H; and Hy are replaced by
parameter matrices Q1 (a x my) and Qg (n x mg) such that they
optimize the model, i.e. minimize the original loss, but at
the same time satisfy the measurement restrictions. The
original loss was formulated in (2). If the parameter matrix
Qq is subsituted for H; and Qg for H,, this expression can be
rewritten as follows. Denote the set of possible

transformations for the ith variable, i.e. ith column of
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[B1,.Hp)]., by C;j and use the notation qj for the ith column of

[Q1.Q2]. Nonlinear redundancy analysis or REDUNDALS is
(9) minimize tr(Q; — Q2B)'(Q) — Q9B)/nm

over Q. Q2 and B, subject to the condition that

The séts of possible transformations are determined by tie
and normalization restrictions for nominal variables, and, in
addition, by monotone constraints for ordinal variables or by
linear constraints for numerical variables (cf. De Leeuw,
1977). Tie 7restrictions imply that ties 1in the data
correspond to ties in the transformation. Normalization
restrictions result in standardized transformations (i.e.
zero mean and unit variance). The monotone transformations
discussed here correspond to the secondary approach of
Kruskal & Shephard (1974). Finally linear transformations are
equal to the variables itself, as standardization of the
columns of the data matrix was supposed. A more extensive
discussion of optimal scaling restrictions can be found in

Young, De Leeuw & Takane (1976) and Young (1981).
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REDUNDALS algorithm

The algorithm for nonlinear redundancy analysis follows
easily from (9). Using an alternating least squares method
results in solving the parameters in the following order (&

is a very small number)

a initialize Qq, Qo
—> b compute B
c compute the columns of Qg

d compute the columns of Qs

<— € (lossprevious — losspresent) < &

—> f end

If one set of parameters- is updated the remaining ones are
kept at a constant level. As nonlinear RA can be viewed as a
special case of nonlinear CCA the solutions for the various
parameters can be found in Van der Burg & De Leeuw (1983)

These authors formulate nonlinear CCA as follows. Define A
(my x p) and B (my x p) as the weight matrices for the first
set and the second set respectively (this new definition of B
does not interfere with the earlier one). The p corresponds
to the number of dimensions or the number of canonical
variates. Then nonlinear CCA is, according to Van der Burg &

De Leeuw (1983),
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(10) minimize tr(QiA — Q9B) (QiA — Q9B)/np
over Q1. Qp. A and B, subject to the conditions that
A'Q1'Q1A = nI or B'Qy'Q2B = nl and
q; € C; (i=1,....,m).

This technique is called CANALS. In comparing this definition
with the definition of nonlinear RA in (9) we see that, from
a CCA point of view,

a the number of dimensions p is fixed to mq,

b the weight matrix A is equal to the identity matrix,

¢ no normalizations are used.
The CANALS algorithm is based on one normalization, either of
A or of B. In addition the CANALS algorithm uses transfer of
normalization in the iterative process (i.e. weight matrices
A and B are rescaled such that the matrix to be updated is
not normalized). The sequence of solving the parameters in

the CANALS program is the following.
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1 initialize Qq. Q. A

2 rescale A such that A'Qy°'QqA = nI
——> 3 compute B
4 compute Qo
5 rescale A and B
6 compute A
7 compute Qi
8 rescale A and B such that A'Q1'Q1A = nI
no
9 (lossprevious - losspresenf.) < $
yes
—> 10 rescale A and B such that both A and B normalized

11 end

Again the remaining parameters are supposed to be at a
constant level when one set of parameters is updated. As the
REDUNDALS solutions are similar to the CANALS solutions (as
long as I is substituted for A and p is taken as my), we see
that REDUNDALS corresponds to steps 1,3,4.7.9, and 11 of
CANALS. Therefore it is easy to combine the two algorithms.
The REDUNDALS program is simply embedded in the CANALS
program by employing only the equivalent steps and by
skipping the other ones. A difference between the CANALS and
the REDUNDALS program is the fact that in case of REDUNDALS
matrix A is initialized on I and in case of CANALS A starts
with random values. In addition, the final solution for
REDUNDALS is not rotated while the CANALS solution is (for

CCA rotated weights give a similar loss).
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As long as the variables are treated numerically the
REDUNDALS program will iterate to a global minimum. However
if nominal "or ordinal variables are dealt with, a local
minimum may occur. We do not know how serious this problem
is. Compare Van der Burg et al. (1986) for a discussion of
convergence in the case of nonlinear CCA with k sets of

variables.

Application

For illustration of REDUNDALS an example is taken which was
also used to demonstrate the CANALS technique (Van der Burg &
De Leeuw, 1983). A detailed description of this example can
be found in the latter article. The data are from a
Parliamentory Survey carried out in 1972. Among other things,
the Dutch members of parliament (MPs) gave their opinion on
seven issues, and their preference votes for the political
parties of which only the four larger parties interest us.
The opinions were measured on a nine-point scale of which the
lowest and the highest category were described (Table 1). The
preference votes were recorded as a table of rank orders. As
there were 14 parties, the preference votes take values 2

(highest preference) to 15 (lowest preference) (Table 1).

INSERT TABLE 1 ABOUT HERE
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We wondered whether party preferences could predict the
opinions on the issues. The idea behind it is that MPs have
their, traditional, party sympathies and take over the
official party viewpoints. In Dutch politics a rather strong
party discipline exists, so that many parties carry a clear
image.

Results are shown in Table 2. In the first place the
multiple correlation coefficients are rather high. Thus the
preferénce votes are good predictors for the opinions on the
issues. In Table 2 also the correlations between the
preferences and the issues (both transformed monotonically)
are given. We do not interprete the weights as they do not
give a clear idea of the relations between the variables due
to multicollinearity (cf. Gnanadesikan, 1977, p. 22). Table 2
shows that the preference votes for PvdA and VVD are more
strongly correlated with the issues than the preference votes
for ARP and KVP are. The highest correlations are between
PvdA and LAW, and VVD and INC. This means that the amount of
sympathy for the socialists (PvdA) goes together with ideas
about law & order: more sympathy corresponds to 'too strong
action’, and antipathy to ’stronger action’'. CGreat sympathy
of the MPs for the VVD agrees with ’"income differences should
remain’', and antipathy with ‘income differences much less’.
Law & order is a hot topic for the PvdA (but also TAX and
DEF) and income differences for the VVD. Both parties take up
clear positions on these issues( cf. Van der Burg & De Leeuw,

1983). All the other opinions are also correlated strongly



REDUNDALS: redundancy analysis
16

with the preference votes for these two parties, and nearly
always in different directions (except for ABO). The
socialistic party (PvdA) and the conservative party (VVD) are
antagonists in Dutch politics, as in most countries.
Apparently the profilation of those parties is clear to many
members of parliament.

The subject abortion needs some extra explanation. As
the VVD originally is a liberal party. there exists still
some liberal ideas. Especially with regard to abortion
severai VVD-members kept liberal thoughts (cf. Van der Burg &
De Leeuw, 1983), so that socialistic MPs and those
conservative MPs agree on this subject. One has to know the
historical background to understand such behaviour.
Apparently sympathy (or antipathy) for the VVD comes from
both people against abortion and people pro abortion, as the
correlation between ABC and the VVD preference is not very
high.

The christian democratic parties (KVP and ARP) appear to
be less <clear (or extreme) than the socialists or
conservatives are. Sympathy for the KVP includes a strong
position against free abortion, but other issues hardly
correlate with a KVP preference. A similar thing holds for
the ARP. This agrees with the fact that the christian
democrates form a middle party (they combined after 1972).
Sometimes they co—operate with left, sometimes with right.
Both socialists and conservatives need christian democrats to
have a majority in the parliament. Therefore it is clear that

MPs from both left and right have sympathy for the KVP or
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ARP, while having completely different ideas on the issues
(except for ABO).

The difference between seven separate (nonlinear)
multiple correlations and a REDUNDALS analysis lays mainly in
the fact that only one transformation is obtained for all the
analyses together. This is a great advantage as analysis
results have to be interpreted for each set of tranformations
separately. This problem is avoided by using one set of
transformations. As all variables had a natural ordering in
the catégories, the data were treated at an ordinal
measurement level. The monotone transformations are given in
Fig. 1. The original scores (horizontal) are plotted against
the transformed values, the so—called category
quantifications (vertical). The most striking transformation
is the one belonging to the KVP preference. We see that the
lowest score is separated from the rest. This means that one
has either a very large sympathy (i.e. one is a member of the
KVP party) or not. The nots are not distiguished from each
other. Therefore it is clear that the KVP preference hardly
correlates with the opinions on the issues. The ties

accentuate once more the middle position of the KVP.

INSERT FIGURE 1 ABOUT HERE

The transformation of the ARP preference also shows

ties, but only for categories regarding great antipathy. Thus
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strong or very strong aversion to the ARP does not matter in
this analysis. The issue INC shows several ties in the low
categories. This means that the differentiation is in the
fact of how much income differences should decrease. The
amount of decrease corresponds to the PvdA or VVD preference.
The remaining transformations look normal, i.e. they do not

contain many ties, nor very big Jjumps.

Discussion

The nonlinear redunduncy analysis presented in this article
corresponds to a multivariate multiple regression with
optimal scaling. The technique maximizes the Redundancy Index
of Stewart & Love (1968). The algorithm is realized in the
computer program REDUNDALS which can handle several types of
nonlinear transformations. This is a great advantage over
other redundancy analysis programs. In addition only one
transformation for each variable is obtained for all the
multiple regressions together, which makes interpretation
more simple than in case of separate analyses.

As the REDUNDALS program is implemented within a program
for nonlinear canonical correlation analysis (CANALS) the
approach to missing data is the same. This means that missing
observations are quantified such that the model is fitted
optimally. Only one quantification for each missing value is
computed instead of as many as there are predictors. Thus

even in case of (incomplete) data with a numerical
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measurement level, one may prefer the REDUNDALS program over
multivariate multiple regression with listwise or pairwise
deletion.

The REDUNDALS program is written in Fortran. As CANALS
and REDUNDALS are combined, the program can only be obtained
together with the CANALS program. Another computer program
which can also perform multivariate multiple regression
together with nonlinear transformations is TRANSREG (Kuhfeld,
Young & Kent, 1987). This program is implemented as a SAS
procedure.

A disadvantage of the REDUNDALS technique is that no
space reduction is obtained. Van den Wollenberg (1977) can
choose how many components must be obtained. In fact he
solves the generalized eigenvalue problem (RgiR13, R33),
which gives directions in the predictor space that explain
the larger proportion of variance of the criterion variables.
Of course, this generalized eigenvalue problem can always be
solved after a REDUNDALS analysis. Then the transformed
variables must be used to compute the correlation matrices.

The difference between CANALS and REDUNDALS results is
that CANALS finds direction(s) in both sets of variables
(subspaces), that correlate maximally, independent of how
much variance is explained, while REDUNDALS explains és much
variance as possible in every criterion direction. This means
that results are hardly comparable unless one of the
canonical variates correlates strongly with one or more
criterion variables. However, they should never contradict

each other.
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In case of the Dutch Parliamentory data the REDUNDALS
results are mostly comparable with the numerical CANALS
analysis (cf. Van der Burg & De Leeuw, 1983). The first -
dimension of this analysis is dominated by all the issues
(except for ABO, and DEV) and the VVD and PvdA preference,
and the second dimension by ABO and the XVP and ARP
preference. Of course the transformations differ, but we have
seen from Fig. 1 that no large deviations exist from
linearity (except for the XVP transformation). The first
CANALS dimension corresponds to the left-right contrast and
the second dimension to the con-pro—abortion contrast.
Indeed, REDUNDALS shows a similar pattern although not in two
dimensions. Even subtle results (e.g. the XVP and ARP
preferences are tended towards the VVD preference on the
issues LAW and DEF (Table 2)), are recovered in the CANALS

results.
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Table 1. Dutch Parliament. The issues and party preferences

and the meaning of the lowest and the highest category.

DEV:
(1)

9)

ABO:
(1)
(9)

LAW:
(1)
(9)

INC:
(@]
&)

PAR:
1)
&P

TAX:
(1)
16D

DEF:
(@9!
9)

PvdA:
(2)

ARP:
(2)

KVP:
(2)

VVD:
(2)

development aid

the government should spend more money on aid to developing
countries

the government should spend less money on aid to developing
countries

abortion
the government should prohibit abortion completely
a woman has the right to decide for herself about abortion

law and order

the government takes too strong action against public disturbances
the government should take stronger action against public
disturbances

income differences
income differences should remain as they are
income differences should become much less

participation

only management should decide important matters in industry

workers must also have participation in decisions important for
industry

taxation

taxes should be decreased for general welfare

taxes should be decreased so that people can decide for themselves
how to spend their money

defence
the government should insist on shrinking Western armies
the government should insist on maintaining strong Western armies

socialists
highest preference, (15) lowest preference

christian democrats (protestants)
highest preference, (15) lowest preference

christian democrates (katholics)
highest preference, (15) lowest preference

conservatives
highest preference, (15) lowest preference
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Table 2. Dutch Parliament. Multiple correlations (MC) and

correlations between issues (columns) and preference votes

(rows).

DEV ABO LAW INC PAR TAX DEF
MC 662 782 .786 .804 767 805 765
PvdA  .591 —.430 719 —.624 —.632 716 .705
ARP .000 542 —.336 —.022 —.152 031  —.294
KVP —.001 637  —.274 051 —.100 033 —.182

VVD -.537 —.212 —.418 .722 .667 —.654 —.450
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Figure Caption
Figure 1. Monotone transformations of the variables. Original
scores (horizontal) against category quantifications.

(vertical).
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