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Abstract

A heuristic for solving large-scale zero-one programming

problems is given. The heuristic is based on Crowder, Johnson

and Padberg's (1983) modifications of the standard branch-

and-bound strategy. First, the initialization is modified.

only useful if the objective functionThe modification is

value for the continuous and the zero-one programming problem

are close to each other. Given the initialization, the

branch-and-bound method is stopped when a feasible solution

to the problem is found. The reduced costs are used to fix

variables. As an example, the heuristic is applied to

achievement test construction problems with good results and

excellent CPU-times.
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A Note on Solving LargeScale Zeroone

Programming Problems

Recently, Crowder, Johnson and Padberg (1983) gave some

methodological advances which, combined with clover branch

andbound strategies, solve sparse largescale zeroone

programming problems in feasible time. This method may

replace standard branchandbound approaches such as in Dakin

(1965) which for many applications take too much time

(Papadimitriou & Steiglitz, 1982). in this note a heuristic

will be given which is based on some ideas proposed by

Crowder et al. in their branchandbound strategy. The

heuristic is useful for solving largescale zeroone linear

programming problems with small differences between the

coefficients in the objective function. A practical example

from the area of achievement test construction shows that the

heuristic solves zeroone programming problems in CPUtimes

close to those for solving the continuous relaxations.

Notation

Zeroone programming problems of the following form are

considered:

(P). Maximize (c'x I Ax 5 b, xj = 0 or 1 for j = 1,.., n )

where A is an mxnmatrix and b and c are vectors of lenghts m

and n.
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The continuous optimal objective function will be

denoted by Zu and the true lower bound on the zeroone

optimal objective function by In the heuristic, the

continuous optimal reduced costs, dj, corresponding to

variable xj are used to fix variables at the value 0 or 1.

Modifications in Standard Branchandbound

The modifications in the branchandbound strategy given

in this section can be applied when (1) the optimal value of

the objective function for the zeroone programming problem P

is close to Zu, and (2) problem P is a large - -scale

programming problem. It is assumed that Zu is not equal to

0.

If no feasible solution to P is known, the branchand

bound method is initialized by assuming Z, = ..... But if it is

known that the optimal value of the zeroone objective

function is close to Zu, the branchandbound method can,

after solving the relaxation of P, be initialized by

= KiZu, where K1 is a constant (0 « K1 <1).

Given the above initialization it is known that every

zeroone solution found during the search process has a value

of the objective function between K1ZLp and Zu. So if K1 is

close to 1 every solution is a good solution. This means that

the branchandbound method can be stopped when the first

feasible solution for P is found. In this way a good

solution, but not necessarily the best one, is obtained. In

most applications this is no problem because the coefficients
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in the model are estimates and the differences between the

exact solution and the one found can be made arbitrarily

small.

The heuristic also uses the reduced costs to fix

nonhasic variables to 1 or 0:

1) Fix xi to 0 if xi = 0 in the continuous solution and

ZLP - K2ZLP < di

2) Fix xi to 1 if xj = 1 in the continuous solution and

ZLP - K2ZLP < -di

where K2 < 1. The above rules are applied after the

continuous solution of the relaxation of P is found. The

value of Kl cannot be chosen as high as the value of K2,

because when choosing Kl it must be certain that the value of

the objective function for the solution of P is larger than

KiZu. If the value of K1 or K2 is too large, the decision

tree is small. Then it does not take much time before it is

clear that no solution to P can be found for the chosen

values of K1. and K2 In such a case the values of Kl and/or

K2 can be adjusted and the procedure is started anew. The

following example illustrates the efficiency of the above

heuristic.

Example

In achievement test construction a high value for the

reliability coefficient of the test is wanted and this goal

can be achiex-ed by selecting items from a test item bank with

large contribution to the reliability (van der Linden &

9
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Adema, 1987). However, other test construction goals are also

possible (Theunissen, 1985; van der Linden & Boekkooi

Timminga, 1988). In practice, test item banks usually consist

of hundreds of items and practical constraints have to be

imposed on selection of items.

The heuristic has been applied to zeroone programming

models with the goal as mentioned above in the objective

function. The (0,1)variables xj were defined as follow:

0 item j not in the test

xj =

1 item j in the test.

The total time of test administration and the mean of the

difficulties of the items in the test were restricted. Except

for these constraints all the coefficients in the constraints

were 1, 0 or 1. One constraint was introduced to fix the

number of items in the test Also the numbers of items to be

selected from different subdomains of the item bank were

restricted. Sometimes we want two items to be simultaneously

included in or excluded from the test. Constraints to satisfy

this wish were included in the model. In all, 14 constraints

were imposed.

A number of test construction problems were implemented

and solved by the proposed heuristic for item banks with 400

items. This was done on a DEC2060 computer. The modifications

were introduced in the program LANDO. It was assumed that the

items in the item bank satisfy an item response mode.. An

10
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item response model specifies a relationship between the

observable examinee test performance and the unobservable

trait or ability assumed to underlie performance on the test.

The relationship between the "observable" and the

"unobservable" quantities is described by a mathematical

function. For this reason, item response models are

mathematical models based on assumptions about the test data

(Hambleton & Swaminathan, 1985). In the implementations, the

Rasch model and the 3-parameter logistic model were used. The

probability that an item i is answered correctly by a person

with ability 8 under the Rasch model is

-1
p(+Ii,o) = [1 + exp (bi - 0)]

where bi is the difficulty of item i and repesents the point

on the ability scale at which an examinee has a 50 percent

probability of answering item i correctly. Under the 3-

parameter model this probability is

P(+1i,8) = ci + f(1 ci) / (1 + exp (-ai(0 -bi))]

where the parameter ci represents the probability of

examinees with low ability correctly answering an item and

the parameter ai, called item discrimination, is proportional

to the slope of P(+1i3O) at the point 0 = b1.

The results are shown in Table 1. To see how important

the choice of K1 is, two values, .99 and .995, were chosen

for K1. Parameter K2 was set equal to .998 if 20 items were

11
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selected and equal to .999 if 40 items were selected. It is

possible to choose K2 higher when 40 items are selected.

because the difference between Z.+ and ZLP in percents is

smaller for 40 items selected than for 20 item selected.

Insert Table 1 here

For the 3parameter model the dispersion in the

coefficients of the objective function was greater.

Therefore, more variables were fixed after applying the rules

with the reduced costs. As a conseqence. the CPUtimes for

the 3parameter model were better.

Because of the modification in the initialization. more

branches are fathomed without finding a feasible solution of

P for K1 = .995 then for K1 = .99. Therefore it is possible

that more CPUtime is needed to solve P for Kl = .995.

Conclusions

A heuristic for solving largescale zeroone programming

problems is proposed. This heuristic is useful in particular

when the optimal objective function value of P is close to

ZLP. The heuristic was used to solve test construction

problems. As shown in Table 1. the CPUtimes for solving the

zeroone programming problem were close to the CPUtimes

needed to solve the continuous problem.
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Table 1

CPU-times and objective function values for different values

of Ki and K2

Zero-one Continuous

ni K1 K2 Objective CPU Objective CPU

Function (sec) Function (sec).

Value Value

Rasch model

20 .990 .998 8.80 22.17 8.8533 18.04

20 .995 .998 8.82 24.65 8.8533 18.04

40 .990 .999 17.27 34.82 17.3911 24.63

40 .995 .999 17.32 35.96 17.3911 24.63

3-parameter model

20 .990 .998 9.43 18.35 9.4468 16.68

20 .995 .998 9.43 18.93 9.4468 16.68

40 .990 .999 18.35 25.46 18.3500 25.42

40 .995 .999 18.35 25.47 18.3500 25.42

Note. ni = number of items in the test
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