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Abstract

A method is proposed for the detection of item bias with respect to

observed or unobserved subgroups. The method uses quasi-loglinear

models for the incomplete subgroup x testscore x item 1 x x

itek k contingency table. If subgroup membership is unknown the

models are Haberman's incomplete-latent-class models.

The (conditional) Rasch model is formulated as a quasi-loglinear

model. The parameters in this loglinear model, that correspond to

the main effects of the item responses, are the conditional

estimates of the parameters in the Rasch model. Item bias can then

be tested by comparing the quasi-loglinear-Rasch model with models

that contain parameters for the interaction of item responses and

the subgroups.
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Introduction

Educational or psychological tests are biased if tie testscores of

equally able test takers are systematically different between

racial, ethnic, cultural etc. subgroups. Biased test scores may

lead to unfair decisions or erroneous conclusions about individuals

from particular subgroups. A test score is biased only if one or

more of the test items are biased. A test item is biased if

individuals with the same ability level from different subgroups

have a different probability of a right response, i.e. the item has

different difficulties in different subgroups. A test can be made

fairer by deleting or improving the biased items.

Binet and Simon (1916; see Jensen 1980, p367) were already

concerned with bias when they applied their test of general

intelligence that was standardized on working class childeren to

children of higher social status.

To assess bias some unbiased criterion measure of ability is

needed. In some studies an external criterion for ability is at

hand (e.g. Petersen and Novick, 1976). In most practical

situations, however, no such external criterion is available and

some criterion for ability internal to the test itself is used.

Therefore most item biai detection techiques that are discus'sed in

the literature use an internal criterioh in some manner. The way in

which this is done best distinguishes the methods from each other.

Reviews are given by Osterlind (1983); Rudner Getson and Knight

(1980); and Shepard, Camilli and Averill (1981). Handbooks on item
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bias detection methods and research are Berk (1982) and Jensen

(1980).

In the earlier item bias detection methods there is no explicit

control of ability. For instance, in the analysis of covariance

approach (Cardall & Coffman, 1965) transformed p-values are

analyzed in a subgroup x items design. If there is a significant

item by subgroup interaction, the item is considered biased. The

analysis of variance assumption of equal cell variances is met by

transforming the p-values by an arcsin transformation. Cleary and

Hilton (1968), Hoepfner and Strickland (1972) and Jensen (1973)

give further examples of this method.

The oldest and most popular item bias detection method is the

transformed item difficulty method (Thurstone, 1925; Angoff, 1982;

Angoff & Ford, 1973). It is conceptually very similar to the

analysis of variance method, because it also studies the item x

subgroup interaction of item difficulty. Angoff converted each p-

value to a normal deviate (called delta's) by an inverse normal

transformation. For all items delta values are compared between two

subgroups by plotting these pairs of delta's in a bivariate graph.

Angoff claims that the delta pairs for each item scatter around a

straight line if the items are unbiased. If an item falls at some

distance from the line this indicates an item x subgroup

interaction. The item is then considered biased. Examples of

practical application of this method are in Dorans (1982) and

Donlon, Hicks and Hallmark (1980).

Both the analysis of variance method and the transformed item

7



Item Bias Detection

4

difficulty method analyse subgroup x items interactions in item

statistics on the subgroup level. Consequently, in these methods

control for ability must be performed through correcting for

differences between subgroup-level item statistics. This is

logically unsatisfactory because, according to the de.inition of

item bias, control for ability must be performed on the individual

level. It is also unsatisfactory in practice. Hunter (1975) and

Shepard Camilli and Williams (1985) show that when the items vary

in difficulty and the distribution of ability is different in

different subgrou, ;, items x subgroups interactions can arise in

perfectly unbiased tests.

A better way to control for ability is to use the raw score cf

the remaining test items as an estimate of ability. Item bias

detection methods based on this idea, called chi-square methods,

are proposed by Scheuneman (1979) and Mellenbergh (1982).

Scheuneman uses data from an item response x subgroup x scoregroup

contingency table to test the hypothesis that within each

scoregroup the prooabilities of a positive item response are the

samA fcr all subgroups. If the hypothesis is rejected the item are

considered biased. Baker (1981) criticized Scheuneman's methods on

the grounds that the distribution of the test statistic is unknown

because Scheuneman used only the data from the positive responses.

Camilli (1979) and Nungester (1977) (see Ironson 1982) proposed a

test statistic based on both the correct and the incorrect item

responses which is asympotically distributed as a chi-square.

Mellenbergh (1982) modified Scheuneman's method so that it fits in
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the general theory of loglineair and logit models for contingency

tables. This yields a parametric model describing different types

of bias which can also be tested by chi-square statistics.

Chi-square methods can detect item bias very well. Rudner,

Getson and Knight (1980) show that Scheuneman's method can detect

item bias in simulated data where the responses are generated form

a three parameter logistic model with different slope and locations

in different groups. Van der Flier, Mellenbergh, Adir and Wijn

(1984) show that Mellenbergh's (1982) method works well in both

empirical data and in simulated data generated by a certain three-

parameter-normal ogive type model. Kok, Mellenbergh and van d'r

Flier (1985) showed that the method also effectively detected

experimentally induced item bias. Although in chi-square methods

there is a better control for ability level than in the analysis of

variance method and the transformed item difficulty method, taking

ability as the number right score c' the remaining items is rather

informal and possibly inappropriate.

In item-response theory, ability is described by formal

parameters. In these models the probability of an individual

response to a certain item is explained by parameters describing

the individual's ability and the item's difficulty. An item is

considered biased if the item parameters are different for

individuals with the same ability parameters from different

subgroups.

Lord (1980) used Birnbaum's three parameter logistic model to

detect biased items. The model contains three parameters: a lower

9
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asymptote, a slope, and a location parameter of the item

characteristic curve. The parameters are associated with guessing,

discrimination, and difficulty, respectively. If one or more of tne

estimated item parameters differ significantly from subgroup to

subgroup, the item is considered biased.

Nuthen and Lehman (1985) uses multiple group factor analysis of

dichotomous variables to test the invariance of the parameters of

the two-parameter-normal-ogive model over subgroups.

Durovic (1975) as well as Wright, Mead and Draba (1975) osc the

Basch model to detect item bias. For each item the mean squared

differences between the observed responses and expected

probabilities of a ccrrect response were computed and compared

between two subgroups.

In this paper the loglinear formulation of the Basch model

(Keldermaa, 1984) is used to test the invariance of item parameters

over subgroups. If the difficulty parameters vary from subgroup to

subgroup the item is considered biased. Subgroup membership may be

observed or unobserved. In some practical situations, items may be

expected to be biased for certain subgroups of individuals, but it

is not known a-priori to which subgroup each of tne individuals

belongs. For example, for an item in an examination the probability

of a correct response may be larger for a group of individuals with

specific educational experiences than for individuals without that

experience, or for an item in a mastery test the probability of a

correct response may be larger for a subgroup of individuals having

a different study strategy or for a subgroup of individuals having

10
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a different cognitive strategy to solve the item, etc. In these

examples, information on the individuals' subgroup membership may

be difficult to observe or, as in the last example, the test

behavior itself may be the natural indicator of subgroup

membership. In this paper a loglinear Rasch model is formulated

where item difficulty may also vary over _ubgroups that are not

observed.

In what follows, the choice of the Rasch model to detect item

bias is discussed. Quasi-loglinear models are formulated for test

data and the Rasch model is formulated as one of them. Some

alternative models are described to test various aspects of item

bias with respect'. to known subgroups. The use of these tests is

illustrated on a set of test data from Kok (1982) where item bias

was introduced experimentally. Finally, corresponding latent class

models for item bias with respect to unknown subgroups are

described, and the effects of this bias is discussed.

Choice of model

The Rasch model describes .he probability P(X.J .x.1a) that an

individual with parameter a gives a response Xj to item j

..... k), where Xj can take values xj = 0,1 nor a wrong (0) or a

right (1) response:

(1) P(Xj=xila) = exp(xj(a-y) (1+exp(ct-6j)) .

11
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where 6. (j.1,...,k) is a single item parameter describing the

difficulty of item j. If this item parameter varies from subgroup

to subgroup, the item is considered biased. Although the Rasch

model is a rather simple model, its parsimony yields several

virtues in using it to detect item bias.

Firstly, unlike the Birnbaum model if in the Rasch model item A

has a larger item parameter value than item B, the probability of

getting a correct solution on item A is always smaller than the

probability of getting a correct solution on items B regardless of

the examinee's ability level. Consequently, if the data fit the

Rasch model, it makes sense to assert that item A is more difficult

than item B. The item parameter value may therefore justifiably be

interpreted as the item's difficulty (Rasch, 1966a), so that

differences in item parameters between different subgroups can be

interpreted as differences in item difficulty between subgroups.

The dependence on the subgroups of the item parameters can then be

analyzed to make a diagnosis of the item's flaws necessary to

improve the item.

Secondly, in item bias detection studies we are interested in

invariance of item parameters over subgroups and not in the

individual person parameter values within each subgroup. It is

therefore a desirable property of the Rasch model that the item

parameters are inferentially separable from the person parameters.

The Rasch model is an exponential family model wherein the simple

number right score T = XI + + Xk is a sufficient statistic for

the person parameter a. Assuming local independence of the item

12
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responses for a given valuc of a and after conditioning on the

number right score taking the value t, the joint

probability P(X1=x1,...,XexkiT=t) of the item responses Y

Xk for a given score Tut becomes Rasch ;1966b):

(2)

= exp(-x161...-xkok)/(; exp(-x161...-Ak6k))
1 k

t=x
1 k

By conditioning on the score, the nuisance parameter a has vanished

(Rascn 1966b). In this paper the invariance over sub, ups i

(i.1 ..... m) of the joint item response distributions for given

values of T

(3) P(X1=x1,...,XexkIT.t)

is tested to study item bias. According to model (2) any deviation

of this invariance must be explained by differences in item

difficulty between the subgroups. Note from (2) that the use of the

Rasch rAdel to study item bias is both an observed score method and

a latent-trait-model method.

Thirdly, the conditional Rasch model can be formulated

(Kelderman, 1984) as a quasi-loglinear contingency table model

(Fienberg, 1972; Bishop, Fienberg a Holland, 1975). Model (2) is

then equivalent to the hypothesis that the item responses and the

score are quasi independent (Goodman, 1968) in the incomplete score

13
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x item 1 x x item k contingency table. Incomplete table

methodology can be used to formulate several hypotheses about item

bias by specifying alternative quasi-loglinear models that contain

various subgroup dependent parameters. Testing the conditional

Basch model agains. such models yields a test of the hypotheses.

Quasi-Loglinear-Models for the

Incomplete Subgroup x Score x Item 1 x x Item k Table.

Let fi txi... 1
be the number of individuals from subgroup i

x

(1=1,...,m) with number right score Tat (t=0,1,...,k) and item

scores Xx=xx where xj = 1 if item j (j=1,...,k) is

answered correctly and xj = 0 if item j is answered incorrectly.

Since it is logically impossible to have a test score that is

unequal to the number of correct item responses (excluding counting

errors) the counts fitx
1.x k

are zero for t * E xi . Table 1

shows the

table 1

sub2roup x score x item 1 x x item 3 contingency table for

subg,oup i. Dashes denote cells that are logically or structurally

zero cell. Contingency tables with structurally zero cells are

called incomplete contingency tables.

iienberg (1972; see also Bishop, Fienoerg S Holland, 1975)

presents a general theory for the statistical analysis of

14
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incomplete multi way contingency tables by quasi-loglinear models.

We apply Fienbergs theory to the analysis of the subgroup x score x

item 1 x x item k contingency table to detect item bias.

Let mitx
be the expected counts for the table under some1 x

k

model. If t * x
1

+ + x the expected counts are again

structurally zero. If t xl+...+xk, the expected counts are

structurally nonzero and these counts are explained by a quasi-

loglinear model. The saturated or fully specified model for the

table is:

(4) In mitxl...xk

u + u1(i) + u2(t) + u3(xl) + + u(k +2)(xk)

+ u12(it) + u13(ix1) + u(k+1)(k+2)(xk-lxk)

u123(itx1) u123...(k+2)(
4txl...xk)

for i = 1, m; xl - 0,1; ...; xk = 0,1; t = xi + + xk,

where In is the natural logarithm. Model (4) has constraints:

(5) U1(+) U2(+) ***

2 U13(+Xl) U13(")

a U(k+1)(02)(xk 1+)

U123(it+)

U(02)(+) u12( +t) U12(")

2 = u(k +1)(k +2)( +xk)

a *** a U123(+"1) U123("X1)

U123...(02)
(+t)(1...)(k) =

a U123...(02)(i+Xl**.N)

= u123...(k+2) (itxl...xk_i+) 0.

15
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The u-terms in model (4) describe main effects and interaction

effects of subgroup i, score t and item responses xi, xk. The

u -terms in expression (5) denote sums of parameters that occur in

model (4) where a plus sign replacing an index indicates that the

summation is over the replaced index. The constraints (5), however,

are not sufficient to ensure that all parameters in model (4) are

estimable. Additional constraints must be imposed to obtain a

unique solution of the model parameters. These constraints will be

discussed later.

Restrictive quasi-loglinear models are defined by setting u-

terms in (4) equal to zero. The only models considered here will be

hierarchical, i.e. whenever a particular u-term is set to zero, all

its higher order relatives must also be set to zero.

The Rasch Model as a Quasi-Loglinear Model.

A restrictive quasi-loglinear model is

(6) In mi txl...xk = u + u1(i) + u2(t)

with the constraints

(7)

u12(it) + u3(xl) + + uk +2(xk)

111(+) a u2(
+)

= u12( +t) = 1112(i+)

x U3(4) = = Uk+2(4) =
0
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Model (6) can be obtained from the saturated quasi-loglinear

model (4) by setting all interactions with and between item

responses equal to zero.

If the subgroup and score are taken as fixed variables and the

item responses are considered as random variables, model (6) is

equivalent to the conditional kasch model. In that case mitx,..ock

is the conditional expected frequency of the response Xisexi,

Xk=xk for given subgroup i and score t. The conditional probability

of response X1 =x1, Xk=xk for i and t can then be obtained from

(6) by

(8) Pi(Ximexi,...,Xk=xklT=t) = mit.
1 .

.x
k
ik

1
k
k
mitx1 x

k

x
1
+...+x

k
ast

exp(u3(x1)+...+u0.2(xl())/i1... kexp(u3(x1)+...+u02(xk)).

x
1
+...+x

k
=t

Except for a reparametrizatim, model (8) is equivalent to model

(2). In model (2) the effect
-x3

d3 of a response Xj=xj on i em j

is -6 for a correct response (X3 =1) and zero for an incorrect

response (X3 =0), whereas in model (8) the effect of a correct

response is up.2(1) and the effect of an incorrect response is

u3 +2(0), where u3 +2(0) = -uji.2(1) by the constraints (7). Model (8)

can be parametrized in the same way as model (2) if up.2(1) is

added to each parameter uji.2(xj) so that the new parameter ujil(xj)

7
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+ 94.2(1) becomes 9+2(0) + up.2(1) = 0 with an incorrect response

and 29+2(11 with a correct response. This can be done by

multiplying both numerator and denonimator by

exp(u3(1)+...+uk+2(1)),

so that model (8) becomes model (2) with

'..Xjalj X us+21xj) + uj +2(1) 8 Xj(2Up.2(1))111

for all j = 1, k; i.e. 6
j

= 2u
j+2

(0) . This shows that the

Rasch model is equivalent to the quasi-loglinear model (6).

In model (6) there is an obvious overparameterization because of

the linear dependence of the item responses and the score: adding a

constraint c to each of the item parameters 94.2(1) (j=1,...,k) and

substracting c from up.2(0) (j=1,...,k) to satisfy the constraints

(7) is equivalent to adding

t.c - (k-t).c = (2t-k).c to u2(t). This indeterminacy can oe

removed from model (2) by putting one linear constraint on the item

parameters, e.g. by setting uk +2(xk) equal to zero.

We now describe less restrictive quasi-loglinear models that can

be used to detect item bib.--

Quasi-Loglinear Models to Detect Item Bias.

To study item bias in a particular set of data, quasi loglinear
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models may be set up that contain subgroup-dependent item

parameters in addition to the parameters of the Rasch model (Rascn,

1960). The fit of these models can be compared by a likelihood

ratio test with the fit of more restrictive models to test the

significance of each of the subgroup-dependent item parameters. If

a test yields a significant result, the item is biased. The

subgroup-dependent item parameters each describe a particular type

of item bias.

To detect the simplest type of bias, e.g. in item one, the model

(9) In mitx1 x
k

u + ul(i) + u2(t) + u12(it) +

+ u3(x1) + uk +2(xk) + u13(ix1),

with the usual constraints (5), is compared with the loglinear

Rasch model (6) to test the null nypothesis that the interaction

between the subgroup and the response to item one, u13(ix1) is

zero. If the test is significant, it may be concluded that un(ixi)

is not zero so that the difficulty of item one varies from subgroup

to subgroup. The parameter u13(ix1) is the change of item easyness

in subgroup i and u3(x1) + u13(ix1) is the easyness of item xi in

subgroep i.

In model (9) a u-term is specified to test item bias for only

one item. Obviously similar u-terms can be specified for two or

more items if necessary. For example, comparing the loglinear Rasch

model with the model:

9
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(10) ln mitxl...xk = u + u1(i) + u2(t) + u12(it) + u3(x1) +

u10.2(xk) + 1413(ix1) u14(ix2),

yields a simultaneous statistical test for bias in both item one

and item two.

An item may be more difficult in one subgroup than another,

because the item introduces some specific difficulty, e.g. reading

ability, in which the members of one subgroup are generally more

proficient than the members of another. If the ability to solve

this difficulty varies from individual to individual within each of

the subgroups and if there are two items in the test that both

introduce the same difficulty we may expect these items to show an

interaction that is not explained by the original latent trait.

This interaction may be investigated using the model:

(11) In m u u1(i) + u2(t) + u12(it) + u3(x1) +

+ + uk+2(xk) + un(ixi) + u14(ix2) +

+ u34(x1x2) u134(ix1x2)

which contains two u-terms, u341x1x2) and u134(ix1x2) describing an

interaction between item one and two. If u134(ix1x2) is zero but

u34(x1x2) is not zero, there is a simple interaction between both

items that is the same in all subgroups. It u134(ix1x2) is not

zero, the interaction is different from subgroup to subgroup. This

may, for example, be the case if reading ability does introduce

common variance in one subgroup, does not introduce any

f) 0
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variance in another subgroup, because the individuals in that

subgroup are all of superior reading ability.

Comparing model (11) with the loglinear Rasch model (6) yields a

test for the hypothesis that all subgroup-dependent item parameters

in model (11) are simultaneously zero. If the test is significant,

it may be concluded that one or more of these parameters are not

zero. Comparing model (11) with model (10) yields a test for the

item interaction terms alone. To test both item interaction terms

u34(x02) and L1134(11(02) separately, an intermediate submodel must

be defined that contains u34(x1m1) but not u134(ix02)

table 2,3

Table 2 lists all relevant models (a. through e.) containing

subgroup-dependent item parameters for the case of two items. Table

3 summarizes which models in Table 2 must be compared to test

specific subgroup-dependent item parameters. Hypothesis 3 shows

which models must be compared to test u34(x02) and u134(ix02)

respectively.

Hypothesis 1-4 in Table 3 refer to what Mellenbergh (1982) has

called 'uniform' item bias. It means that the bias is constant

within each subgroup. With 'nonuniform' item bias (Mellenbergh,

1982) the bias of in each subgroup is dependent on the individuals

ability level. Nonuniform bias may be studied with quasi-loglinear

models containing item parameters that depend both on the subgroup

and the score.

21
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Table 2 shows a series of models (f. through m.) with subgroup-

and score- dependent item parameters. Since quasi-loglinear models

are hierarchical, each model with a subgroup x score x item(s)

interaction term must contain the corresponding subgroup x item(s)

interaction term. In Table 2 all models f tnrough m contain a

submodel from models a through e, which is indicated by its letter

for brevity. Table 3 shows which of these models must be compared

to obtain a statistical test that is sensitive to a specific type

of nonuniform item bias. Note that these tests concentrate only on

the nonuniformity of the bias and not on the uniform part of the

bias. Therefore, if these tests are not significant, items may

still be uniformly biased.

Hypothesis 5 in Table 3 concerns the simplest type of

nonuniformity in item bias. If model g and f (Table 2) differ

significantly, it can be concluded that the subgroup x score x item

interaction u123(ity is not zero. This nonuniformity in itea. bias

may be expected, for example, if the difficulty of an item varies

from subgroup to subgroup for low ability individuals only, which

is the case if an item involves a specific skill that is not

mastered by the low ability individuals of only one cf the

subgroups.

Hypothesis 6 (Table 3) concerns this hypothesis for two items

simultaneously, whereas hypothesis 7 and 8 address the question

whether item interaction rowiuniform (u234(tx02)#0) or whether

subgroup differences in item interaction are nonuniform

(u1234(ity2)#0). This may be called nonuniform common item bias,

22
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where the amount of item bias that two items have in common depends

on ability level. This type of item bias may occur, for example, if

in only one subgroup two items introduce a common difficulty for

low ability individuals but do not introduce a common difficulty

for high ability subjects.

In most of the models in Table 2, the constraints are not

sufficient to ensure identifiability of the model parameters. For

example, the parameter u23(tx1) with t=0 and xel or t=k and x1=0

cannot be estimated because it corresponds to structurally zero

cells only. A convenient way to determine the number of estimable

parameters is to determine the rank of the information matrix,

which should be equal to the number of estimable parameters for a

given set of data (cf. McHugh, 1956; Goodman, 1974). Baker and

Welder (1978, sec. 4.3) describe a weighted least-squares algorithm

for the analysis of contingency tables, which estimates the

parameters in a sequential fashion. If a parameter is linearly

dependent on the preceding parameters, or if there are no

observations to estimate it from, the parameter is removed from the

model, thus the information matrix is of full rank.

Estimation and Testing

The kernel of the log likelihood is

23
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f

(12) t= In V f PI (mitx
1
...x

k
)

itx,..xk

f
itx

I
...x

k
In mitxf f fk

I
...x

k

Inserting a loglinear model for In mitx,...xk this log likelihood

yields a sum of products of model parameters (e.g. u3(x1)) with tne

corresponding sufficient marginal counts (e.g. f+,114....4.). For

example, using the loglinear Rasch model (6) in (12) gives

(13) I(Rasch) = + + f

co(
...

,03(xl)
f f fl

+ f
k k

f+ uk+2(xk).

where a plus sign replacing an index denotes summation over that

index.

Log likelihoods of larger models (e.g. Model 9) may be obtained by

adding terms (e.g. ; tEl fi
+xl +,,,

+u13(ixl)) to (13). If one model -
x

say model M - is a special case of another model - say model M* -

model M* may tested against model M by -2 times the natural

logarithm of the likelihood ratio of both models, or equivalently,

by -2 times the difference in log likelihood of both models

(14) G
2
(M;M*) -2(i(M)-0*))

24
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Under the assumption of model M, G2 is asymptotically distributed

as chi-sqnare with degrees of freedom equal to the number of

estimable parameters of both models (Bishop, Fienberg b Holland,

1973, p. 525; Rao, 1965, p. 351).

An overall goodness at fit test for model M is obtained by

testing it against the saturated model M* where in the expected

cell counts (m) in (12) are set equal to the observed cell counts

(f).

For example the Rasch model (6) is a special case of model (9).

Model (9) has all parameters of the Rasch model but adds the term

u13(ix1). Testing model (6) against model (9) is a test for tne

hypothesis u13(ix1) z 0. If the parameter estimates of both model

(6) and (9) are known, the likelihood-ratio statistic G2(M;M*) can

be calculated easily from the sufficient marginal sums

corresponding to the parameters.

Maximum-likelihood estimates of the model parameters can be

obtained by setting the observed marginal counts corresponding to

each of the parameters equal to the corresponding expected marginal

counts and solving the resulting system of equations for the

parameters (Haberman, 1979, p. 448). For example, for the Rasch

model the maximum-likelihood equations are

(15)
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In general, for quasi-loglinear models, the maximum-likelihood

equations yield no direct solution of the model parameters. The

equations must be solved iteratively. Algorithms to solve the

maximum-likelihood equations for quasi-loglinear models have been

described by Goodman and Fay (1974: ECTA) and Baker and Nelder

(1978: GLIM). Kelderman (1983) describes a generalisation to

multiway tables of an algorithm by Goodman (1964, 1968) that

calculates the parameters of quasi-loglinear models without setting

up the entire incomplete continvicy table, so that memory space

required can be modest if the number of items is not small.

An Example.

Kok (1982) studied item bias in multiplication items by

experimentally varying the test takers' skill in bias factors that

can be expected to be operating in differently formulated test

items. In this section, some of these data are reanalyzed to

illustrate the use of quasi-loglinear models for the detection of

item bias.

table 4

Table 4 shows the contents of six multiplication items. In item

1 through 4 the numoers are written out in Dutch and in item 5 and

6 Roman numerals are used. The subjects were 286 Dutch

undergraduates of which 144 randomly selected individuals received

406
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a short training in Roman numerals. can be expected that the

Roman items are biased.

table 5

In Table 5 for each item the values of the likelihood ratio test

and the degrees of freedom are shown for both uniform (hypothesis

1, Table 3) and nonuniform bias (hypothesis 5, Table 3). From Table

5 it is seen that item 5 and item 6 are uniformly biased. There is

no nonuniform bias in this set of data. Since both item 5 and 6 are

written in Roman numerals, we would expect both items to be oiased

by a common bias factor. To trt this, hypothesis 3 and 4 of Table

3 are tested. Neither showee, a significant result (G2(c0)=0.2,

OF=1;62(d;e)=1.4, OF=1). We can, therefore, conclude that item 5

and item 6 are uniformly biased but not that the bias factors of

both items are the same.

The model with both item 5 and 6 uniformly biased (i.e. (10))

gives a good fit to the data (G2=106.8, OF=107). The estimates for

the item parameters u4(x2) through u8(x6) are 0.36, 0.40, -0.51,

0.05 and 0.03 respectively for x=1; where the first item parameter

is fixed at zero. The subgroup x item response parameters u17(ix5)

and u
18

(ix
6
) for x=1 and i=1, the group that received a training in

Roman numerals, are 0.21 and .27 respectively. That is, the items

are much easier for the group that received the training in Roman

numerals.

17
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Item Bias Detection whin subgroups are Unknown

When subgroup membership is unobserved the subgroup variable

becomes a laten ariable. The models to detect item bias then

become latent-class models. For example, if the latent classes are

denoted by to(url,...,m) , the latent class version of model (9)

becomes

(16) In m
totx,...xk

= u +u1(w)+u2(t) +u12(wt) +u3(x1)

+...+u
k+2

(x
k
)+u

13
(ux

1
)

to= 1,...,m; x1=0,1;...; xk=0,1; t=x14....+xk; with the usual

constraints 5.

Model (16) describes a Rasch model in each latent class w, where

the difficulty of item 1 may be different in each latent class. The

parameter u
13

(ux
1
) describes the differences in item difficulty

betwen the latent classes. If this parameter is not zero, item 1

is biased With respect to the latent classes.

Latent-class models have been introduced by Lazarsfeld (1950;

Lazarsfeld & Henri, 1968; Goodman, 1978). At first, latent-class

models assumed local independence within each latent class. Goodman

(1975) introduced latent-class models where the observed variables

form an incomplete-contingency table assuming quasi independence

within each latent class. Finally, Haberman (1979, ch. 10)

formulates a latent-class model for an incomplete table where the

model is not necessarily an independence model. The model can be

28
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any identifiable loglinear model containing unobserved categorical

variables. Model (16) is a special case of Haberman's general

latent class model where item 1 may have a different difficulty in

each of m latent classes, where the number m of latent classes is

specified by the investigator. Not all latent class versions of the

models to detect item bias (Table 2) make sense, since parameters

involving the latent-class variable may be wholy absorbed by lower

order parameters involving observed categorical variables only.

These latent-class parameters are then redundant and not

identifiable. This holds true for most models for nonuniform-item

bias.

For example, consider the latent class version of model g Table

2:

(17) In m
wtx,...xk

= u+u
1
(w)+u

2
(t)+u

12
(wt)+u

3
(x

1
)+...+u

k+2
(x

k
)

+u13(wx1)+u23(tx,
)"123(64x1)

The expected value of the observed coup s (t,xl ..... xk) are then

where

m
xi xk

exp {u +u2(t) +u3(xl) +... +uk +2(xk)

+u
23

(tx
1
)+g

1
(tx

1
)1

gi(tx1) = In E explui (w)+u12 (wt)+u13(ux1)+11123(wtyl

29
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Now g(tx1) can be completely absorbed by u, u2(t), u3(xl) and

u23(tx1) to obtain new parameters using the following

reparametrisation:

u* u 91(++).

up) = u2(t) + 'jot+) - fl(++),

u3(xl) = u3(xl) + 91(+x1) - ii(++),

u23(tx1) = u23(tx1) + gi(t%) - VOL+) - ii(+)(1) + j(++),

where the notation V1(t+) is used to denote an average over the

subscripts replaced by a plus sign. This shows that the latent-

class terms in model (17) are redundant. Consequently there is no

latent-class version of test 5 of table 3. A similar argument holds

for test 8; the latent class term u1234(axix2) is adsorbed by its

lower order relatives involving observed variables t,xl and x2.

In the latent-class models for detecting uniform bias the

latent-class parameters are not adsorbed. For example latent-class

version of the model used to test one-item uniform bias (16) yields

the expected values of the observed counts:

(18a) m
+tx

1
...x

k

= exp{ u+ u2( t ) +u3(xl) +... +uk +2(xk) +g2(txl) },

where

30
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(18b) g2(tx1) = In E explui (w)+u12(wt)+u13(69(1)},

so that if we set

(19a)

the model

27

u*
a

u i2(")

u; (t) = u2(t) + i2(t+) - "2(++)

ul(xl) u3(xl) + i2(+x1) - g2( + +)

u13(tx1) = g2(tx1) - I2(t+) - r2(+)(1) + ;5( ++)

(19b) In m
+t

= air+LI(t)+1,(xl)
xi xk

+u4(x2)+...+uk+2(xd+u23(tx1)

satisfies the usual constraints (5).

In model (18) the term g2(tx1) is not absorbed by lower order

terms. The corresponding term u13(tx1) describes a specific

interaction between the test score and item 1. From (18b) it can be

seen that this parameter arises both from differences in item

difficulty over latent classes (u13(ux1)) as well as differences in

testscore distribution in over latent classes (u12(wt)) . If one of

these effects are zero, the g2(txl) becomes constant over one

index, so that from (19a) u23(tx1) becomes zero. For example
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if un(wal) becomes zero g2(tx1) does no longer depend on xi so

that g2(tx1) = g2(tx1) for all xl 0 xl. Consequently

g2(+x) = 42(++) and g2(tx1) = i2(tx1) for all x so that u23(tx1)

becomes zero.

If u*
23

(tx
I

) is nonzero, the item charactic curve of item one

deviates from the ICC predicted by the Rasch model. This means that

deviations of the ICC's of a certain item may be explained as item

bias of that item with respect to unknown subgroups. Introducing

latent clases may provide an alternative to introducing additional

item parameters as in the two and three parameter logistic

testmodel.

The latent-class versions of the remaining models for detecting

uniform bias (model c-e. Table 2) also contain non-redundant

latent-class terms. Writing the models for the expected values of

the counts, the latent class parameters of model c-e similarly

produce terms u234(tx1x2) and lower order relative terms that are

not allready specified in the observed part of the model. This

means that score dependent item interaction may result from

differences in item difficulty or differences in item interaction

between latent subgroups.

Methods fur the estimation and testing of latent-class-quasi-

loglinear models differ from those for ordinary quasi-loglinear

models. Since latent class membership is unobserved, the

freougmcics f

"w`"1. k

are not known. Consequently, the maximum-

likelihood equations (e.g. f
11+ xl+

m for parameters involving

latent classes w (e.g. u13(wx)) cannot be solved because the

32
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frequencies are unknown. Haberman (1979, ch. 10), however, gives

the a rule for the derivation of maximum likelihood estimates in

latent-class models from the known frequencies f+tx
1

x
k

. It says

that: "The same maximum-likelihood equations apply as in the

ordinary case in which all frequency counts are directly observed,

except that the unobserved counts are replaced by their estimated

conditional expected values given the observed marginal totalsTM.

Under some loglinear model M (e.g. Model (16)), these estimates are

(20)
tWtX

1
...x

k

= Em (f
wtx

1
...x

k
I f+tx

1
...x

k

)

(

.x
k
/

fi

+tx .x
k

if
+tx1" .x

k

t xl + ." + xk

For model (16) the likelihood equations would then become

(21)
wt+...+

n; 'wt+...+ f++X
1
+...+ ++X

1
+...+

f
+...+xk

= i
+...+Xk

and r =

The estimated counts rare obtained from (20) where the m are

described by model (16). A scoring algorithm to solve these

equations has been described by Haberman (1979, p. 556). An

alternative way to solve these equations, is by using the E-M

algorithm (Dempster Laird & Rubin, 1977) with (20) as the expecta-

33
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Lion step and (21) as the maximization step.

Discussion

In this paper an item bias detection method is proposed that

uses a Rasch latent trait as an internal criterion for ability.

Latent trait parameters of the model are removed from the model by

conditioning on the number right score and the quasi loglinear

formulation of the model is extended with parameters that describe

diffrent types of item bias. The general theory of (quasi-)

loglinear models is used to obtain maximum likelihood parameter

estimates and likelihood ratio tests.

Using Haberman's (1979) latent class generalisation of quasi-

loglinear models it is shown that even if subgroup membership is

unknown it is still possible to determine whether different

individuals with the same ability level have different

probabilities of a correct response on a certain item.

It is also shown that nonzero item bias parameters with respect

to latent classes can alternatively be modelled as parameters that

describe deviations of item difficulty in different scoregroups.

This means that the item characteristic curve of that item deviates

from item characteristic curve predicted by the Raschmodel.

Consequently, at least part of the structure in the item responses

that is explained by slope parameters in the Birnbaum model may be

explained as item bias. Since item bias can be interpreted as

multidimensionality, item specific slope parameters may partly be
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explained as multidimensionality the item response.

The models presented in this paper have two parts: one part

contains parameters describing item bias, the other part contains

parameters for the Rasch measurement model. It may be objected that

the Rasch model is too restrictive a model for the measurement part

and that a less restrictive, possibly multidimensional model, is

preferred. Two remarks in favour of the Rasch model are in order

here.

Firstly, as was seen before, there is a trade-off between the

complexity of the item bias part of the model and the measurement

part of the model. A more complex measurement model, e.g. a model

with slope parameters for the item characteristic curve, may hinder

the identification of certain types of item bias. Therefore if

identification of item bias is the objective and nothing is known

about the right ( possibly multidimensional) measurement model, a

simple measurement model is to be preferred. Unlike many other itim

bias detection methods a check of the adequacy of the item bias

detection model is available because the overall fit of the model

can be tested by a chi-square test.

Secondly, in general it is more desiraole to construct

unidimensional than multidimensional test items because the

interpretation of the responses is less ambiguous. Even if a

multidimensional test or item bank is needed to cover a certain

content domain it is better to construct a number of homogeneous

subsets of items. In that case the models presented in this paper

can be applied to short subtests. Obviously, it is more probable

35
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that short subtests fit the Rasch model than that long subtest do.

For one item the Rasch model is trivially true.

Item bias detection methods using an internal ability criterion,

assume that a good measure of this criterion is available, i.e.

that the item us' 1.: measure this criterion fit the measurement

model. If that is not the case, particularly if one or more of

these items are biased themselves, the results may be erroneous.

Marco (Lord, 1980, p. 228) proposed a procedure to purify a test of

biased items. The total test is analyzed, items that appear to be

biased are removed and the remaining items are used as an internal

ability criterion to test the bias of all the testitems one by one.

Although this procedure does not escape the inherent circularity of

the problem it should suffice if not too many items are biased.

This procedure can also be used with the test presented in this

paper where in the first phase only one item-uniform bias is tested

and in the second cycle the set of unbiased items is combined with

pairs of possibly 'iased items to use the diagnostic tests

presented In this paper.

Finally it should be remarked that the item bias part of the

models may be more elaborate. The models in this paper contain

parameters that indicate deviations due to item bias. Kok and

Mellenbergh (1985) goes further and formulates models that describe

the actual processes involved in the genesis of item bias more

precisely. Our models may be used to give directions as to which of

Kok's models may be appropriate.
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Table 1

Frequency Counts and Structural Zero's in Subgroup

i x Score x Item 1 x x Item 3 Table.

Item Response

Score t

0 1 2 3

xi x2 x3

0 0 0 fi0000
41P

1 0 0 - f
i1100

0 1 0 f
i1010

0 0 1 - f i1001

1 1 0 f
12110

1 0 fi2I01

0 1 1 f
i2011

1 1 1 63111

Note. Dashes denote structurally zero cells.
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Table 2

Quasi-loglinear Models for Detecting Item Bias.

Models with Subgroup-Dependent Item Parameters

a. Rasch + u13(ixi)

b. Rasch u14(ix2)

c. Rasch + u13(ixi) u14(ix2)

d. Rasch + u13(ixi) + u14(ix2) + u34(x1x2)

e. Rasch + u13(ix1) u14(ix2) + u34(x1x2) u134(ix1x2)

Models with Subgroup and Score-Dependent Item Parameters

f. (a) + u23(tx1)

g. (a) + u23(tx1)
u123(itx1)

h. (b)
u24(tx2)

i. (b) u24(tx2) u124(itx2)

J. (c) + u23(tx1)
u24(tx2)

k. (c) + u23(tx1) u24(tx2) u123(itx1) u124(itx2)

1. (d) + u23(tx1) u124(itx2)u24(tx2) u123(itx1)

u234(t4-02)

m. (e) + u23(tx1) + u24(tx2) + u123(itx1) + u124(itx2) +

u234"41x2) u1234(itx1x2)
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Table 3

Comparison of Quasi-loglinear Models to Test u-terms for Item Bias

Hypotheses.

Hypothesis Model Forms Comparison

of Models

Uniform Bias

1. One item uniformly biased

2. Two items uniformly biased

3. Two items with common uniform

bias:

4. Two items with common uniform

bias: subgroup dependent

interaction

ulpy
u13(ix1), u14(ix2)

u34(x1x2)

u134(ix1x2)

Rasch - a

Rasch - c

c - d

d - e

Nonuniform Bias

5. One item nonuniformly biased

6. Two items nonuniformly biased

7. Two items with common non-

uniform bias

8. Two items with common non-

uniform bias: subgroup

dependent interaction

u123(itx1)
u123(itx1), u123(itx2)
u234(tx1x2)

u1234(itx1x2)

:1 9
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Table 4

Multiplication Items in Dutch and Roman Numerals (from Kok 1982)

Item Multiplication Contents

1 7 x 1214 zeven x twaalfhohderdveertien

2 16 x 21 zestien x eenentwintig

3 16 x 14 zestien x veertien

4 6 x 4123 zes x eenenveertighonderd-

driantwintig

5 8 x 214 VIII x CCXIV

6 5 x 1318 V x MCCCXXVIII

40
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Table 5

Likelihood-ratio Tests for Uniform and Nonuniform Item Bias.

Item Uniform Bias Nonuniform Bias

G
2
(Rasch;a) OF Yf;9) OF

1 1.7 1 0.9 4

2 2.4 1 3.2 4

3 3.2 1 0.8 4

4 3.5 1 3.5 4

5 4.8* 1 4.0 4

6 9.9** 1 3.5 4

* p <.05

** p < .005
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