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Abstract

Fisher's information measure for the item difficulty

parameter in the Rasch model as well as its marginal and

conditional formulations is investigated. It is shown that

expected item information in the unconditional model equals

information in the marginal model, provided the assumption of

sampling examinees from an ability distribution is made. For

the logistic ability distribution considered in this paper,

item information in the two models can be expressed in a

closed form. Also, it is shown that for a random examinee

expected item information in the conditional model is always

less than in the other two models, albeit that the difference

quickly decreases with an increase in test length. If the

distribution of the item difficulties in the test deviates

more and more from the ability distribution, item information

in a21 three models takes smaller and smaller -,n.lues. Results

from a simulation study demonstrate these features

numerically.

Keywords: Item Response Theory, Rasch Model, Fisher's

Information
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Item Information in the Rasch Model

Consider a test consisting of I dichotomously scored items

and let N examinees tame the test. Let the random variables

(rv) Xji (j =1, N. i=1 I` take the value 1 if examinee

j answers item i correctly and 0 otherwise. As usual, local

independence and the assumption of examinees answering the

items independently of one other is made throughout. For the

form of the item response function, i.e., the probability

that an item is answered correctly as a function of the

(unidimensional) latent ability, the oneparameter logistic

is chosen. In other words, we assume that the Rasch (1980)

model holds. To be more specific, let the item difficulty

parameters be denoted by al, ai and the examinee ability

parameter by 01, ..., ON, then

(1) P(Xji = 1;0j,ai) = exp(0jai)/[1 + exp(Oj 0i)),

where cm < .051 < +co0 O.

In this paper, the main interest lies in obtaining

information about the item difficulties al al, whereas

the abilities 01, ,.., ON will be considered as nuisance

parameters. It will be shown that, depending on the way the

nuisance parameters are treated, different forms of Fisher's

information measure for the item parameter can be defined.

The objective is to compare these information measures. The

results of the comparison are relevant to the test

constructor who wants to estimate item parameters under the

7
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most informative model. However, a direct comparison of the

different information measures is, for obvious reasons, not

possible. Therefore, the comparison will be made either for

the experiment of replicated item administrations to a fixed

examinee or for the experiment of an examinee randomly

sampled from a certain ability distribution. The reason for

the choice of the experiments is elucidated below. For these

experiments, an information analysis can be worked out either

analytically or numerically in a fairly easy way.

In the next section, the different information measures

in the Rasch model will be presented. Then, the mathematical

relations between the different information measures is

discussed. As it turns out, all relevant relations are

consequences of a simple theorem which, loosely speaking,

states that average conditional information is always less

than marginal information: The following section gives

(closedform) results for the special case of a logistic

distribution for the ability parameter. Simulated data is

used to illustrate the results numerically. The last section

gives some guidelines for selecting an appropriate model.

Different Information Measures in the Rasch Model

Fisher's information in the sample for a (scalar) parameter

of interest 4 is defined as

a
(2) 1(4) . EvR lnI,(4;X)] 2,
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where L(t;X) is the likelihood function. Under certain

regularity conditions (e.g., Bickel & Doksum. 1977), which

are usually met, the wellknown information inequality for a

statistic T = f(X) can be derived:

(3) Var4(T)
a4

E4(T))2

I(4)

So. Fisher's information can be thought of as providing a

lower bound to the variance of a statistic; the less the

amount of information in the sample, the larger the lower

bound, and hence, likely, the variance itself. For more

detailed information, see a standard textbook on mathematical

statistics.

As already mentioned, item information in the Basch

model depends on the way the ability parameters are treated;

i.e., as fixed (possibly unknown) parameters or as

realizations of a (possibly unknown) rv. These possible views

on the person parameter as well as their consequences for the

definition of the item information measure will now be

considered in more detail.

First, if the ability parameters 01 ..... ON are

considered as fixed but unknown parameters, information on a

single item difficulty parameter a is given by

(4) I(a;01 ON) = Pja(1 Pia),
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where Pia is the probability that person j answers an item

with difficulty a correctly (e.g., Hambleton & Swaminathan,

1985; Lord, 1980). Note that in this case,, for fixed a,

information is an unknown parameter that can only be

estimated by replacing 01 ON by reasonable estimates

61,...,6N Note that these estimates need not be consistent

for I-+00, though (Fischer, 1974; Haberman, 1977).

It is a well-known fact that in the Rasch model the

total score Si = (j=1,...,N) is a sufficient statistic

for the ability 0i, and that the conditional likelihood given

S1 =s1, SN=sN equals

(5) Lc(al,...,aI; qi,...,qiisi,...,sN)

n
= exp(-Ei=1 n0 7r (exp( -al), exp( -aI))

where yr(exp(-al), exp(-01)) is the elementary symmetric

function of order r (Andersen, 1980, chap. 6; Fisher, 1974,

chap. 13), nr the number of examinees in the sample with

total score Si = r and qi = x+i, the number of correct

answers on item i.

For this conditional likelihood, Fisher's information on

item difficulty ai is defined as

(6) I(ailsi,...,sN) = 4=0 nrPri(1-Pri),
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where Pri P(Xji = 11Xj+ = r) (Fischer, 1974). Note that the

conditional information in (6) is an observable realization

of the ry I(ai1S1 SN). This means that (6) can be used

for constructing confidence intervals for the item difficulty

parameter. but not for determining the sample size.

If the persons taking the test are randomly sampled from

a certain population. it is reasonable to consider the

abilities as rea..izations 01 ON of the rv's

These rv's will then be considered as independently and

identically distributed with density g(0). The density may or

may not be known, and is usually called the ability density.

Later the case of a lcr_fistic form for g(0) will be considered

in depth; here its form is left unspecified as yet. This new

look at the abilities leads to considering the unconditional

information in (4) as an observable realization

I(a:01 ,ON) of the ry I(a ;01 eN), where a JD the

vector of item difficulties (al aI). Furthermore, it

leads to a different information measure. The marginal

likelihood function is

I

N
. I x..cr )exp(xj+e

i=1 J1 i
(7) Lm(a) = n g(0)d0

I
j=1 n (1+exp(0 a.1 ))

i=1

The information in this marginal distribution on the

difficulty parameter a is
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(8) I(a;g) = f exp(0-0)(1+exp(8-a)11
-2

g(0)de.

For fixed a. marginal information will be considered either

as a known quantity (if g is known) or as an unknown

parameter (if g is unknown). In the latter case, the

information measure can be estimated consistently using a

consistent estimate of the ability density (Engelen, 1987).

In either case, the information measures can be used to

construct approximate confidence intervals for a. Only if g

is (approximately) known in advance, it can be used to

determine the sample size (van der Linden, 1988).

Mathematical Relations between Different

Information Measures

In the preceding section, three different information

measures for the item parameters were presented. Naturally.

the question arises if any relation exists between these

measures. The answer is positive: The link between these

measures is provided by the 'ability' parameter, since a

different way of treating this parameter leads to a different

information measure. Two different cases will be considered:

(1) Ol ON are unknown but fixed parameters; and (2)

01 ON are realizations of el ON with (known or

unknown) density g(0).

If 81, 8N are unknown but fixed parameters. the

pertinent comparison is between the unconditional information

12
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measure I(a;81 ON) in (4) and the conditional measure

I(als1..,..sN) in (6).' However, the latter depends on the

observed realization of Sl.....SN; if the same examinees were

to respond to the same items again, these sufficient

statistics would likely to take different values. As a

result, I(01s1 , sN) would also take a different value,

whereas the unconditional information measure I(a;81 eN)

would remain constant. The obvious approach in this case is

to compare I(a;01 ,,,,, ON) with

E81,
°
a MalS1 SN)J

as a typical value of the former.

If 01 ..... ON are realizations of 81, . ,eN with common

density g, comparisons between all three information measures

in (4), (6) and (8) seem to be obvious. However, the marginal

information measure I(a;g) is a constant for each possible

value of a, whereas the unconditional and conditional

measures I(a;81, 6N) and I(als1 sN) are likely to take

different values for each realization of 81 8N Along

the same lines, it now seems obvious to compare I(a;g) with

the expected unconditional and conditional information

measures

Fg(I(a;191,....ON)]

and
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Eg[I(alS1 Sn)].

respectively.

Fundamental to the relations between these different

(expected) information measures is the following general

theorem:

Theorem. Let the random vector X have a density (with respect

to some afinite measure) pa(x), for acE. Let S=s(X) have

density fa(s) and let ga(xls) be the conditional density of X

given S=s. Finally, let I(a) and I(als) be Fisher's

information about a in the densities pa(x) and ga(xls).

respectively. Then, I(o) E[I(o1S)], with equality if and

a
only if --

Da
ln pa(X) and S are uncorrelated.

Proof. We have ln pa(x) = ln fa(s) + ln ga(xls). Thus.

a

I(a) = Var( ln pa(%)]
as

a a
= Var(E(

aa
ln pa(XIS)] + E[Var(aa In pa(XlS)]

? E(Var(-1 ln pa(XlS)]
as

'4
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= E(Var( in ga(XIS)]
as

= E[I(alS)]

a
Equality holds iff VarfE(-- In pa(X)IS)] = 0, that is iff
a aa

In pa(X) and S are uncorrelated.
111

as

The theorem immediately leads to the following

inequalities between unconditional and conditional

information for the case of 01 ..... ON fixed (Proposition 1)

and between marginal and expected conditional information for

the case of 01 ..... et as a realization of 8 ... . et

(Proposition 2):

Proposition 1. If 01 ..... ON are (unknown but) fixed

parameters, the expected value of the conditional information

in (6) cannot exceed the (unknown) unconditional information

in (4), that is

(9) E01,...,0N (I(GIS1 ..... SN)] 5 I(a;01 ..... ON).

Proposition 2. If the abilities 01 ..... ON are realizations of

independently and identically distributed rv's ..... et

with density g(0), the expectation of the conditional

information in (6) cannot exceed the (known or unknown)

marginal information in (8), that is

I 5
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(10) Eg[I(01S1 SN)] 5 I(a;g).

The following proposition is a direct consequence of the

fact that E(E(YIX)) = E(Y), or, equivalently, that a change

of the order of integration is permitted. It shows that the

marginal information measure in (10) may be replaced by the

expected unconditional measure:

Proposition 3. If the abilities 01.....ON are realizations of

iadependently and identically distributed rv's 631 ..... eN

with density g(0), the expectation of the unconditional

information in (4) equals the (known or unknown) marginal

information in (8). that is

(11) E9[I(a;431 es)] = i(a:g).

Note again that different 'averaging' takes place in (9)

and (10) - (11). The latter case will now be explored further

for a common logistic density for the ability parameters.

A Comparison of Different Information Measures

for a Logistic Ability Distribution

This section consists of three parts. In the first part,

item information is computed for the marginal model with a

logistic ability distribution. The second part deals with the

computation of expected i-formation for conditional model
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with the sanie ability distribution. A numerical comparison

between the two is given in the final part.

Item Information in_the_Marainal Model

Item information in the marginal model, given by the integral

in (8), is difficult to "valuate and has to be approximated

numerically for most choices of g(Q). However, as will be

shown here, the choice of a logistic distribution function

permits computation of the integral in closed form. The

logistic distribution does not differ much from the normal

distribution adopted by authors as Andersen and Madsen

(1977), Sanatlianan and Blumenthal (1978), and Thissen (1982).

The logistic density is given by

(12) g(0) = PlexP[(0a)43] (1 + exp( -(e-c) a]

where a is the mean and 1327t2/3 equals the variance of the

distribution. The logistic density with parameters a and p

will henceforth be denoted as L(0;a,P).

Since the Rasch model is not identifiable, a constraint

has to be imposed on either the location of the ability

distribution or the item parameters. Because it will be shown

that this constraint does not lead to severe problems, this

subject will be dropped for the moment; for convenience, the

choice 13 =1 is made. Now, (8) can be computed as
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exp(B-a) exp(a-6)

I(a) = de.

(1+exp(0-a)] 2[1+exp(a-e)]2

Substituting exp(0-a) = z and writing exp(a-a) = T gives for

I(a)

, A
T (1 + z)-2(z + r)

-2
zuz.

0

For T = 1, i.e., a = a, the integrand is (1 + z)-4z, and it

follows that I(a) = 1/6. For r*1, the integrand is a simple

rational function, and hence I(a) can be computed by using a

fraction formula. For r*1, this leads to

I(a) = r((r+1)(r -1)
-3

lnr - 2(T- 1)
-2].

Combining all results leads to

(13) 1(a) =

[(a-a)
(exp(aa) 1)3 (exp(aa) 1)2

exp(a-a),

cc a

1+exp(a-a) 2

1/6 CC = G.

In order to check the continuity of this result in

T = 1, the limit for T -+ 1, or, equivalently, for a -+ a, is

taken, using the Taylor expansion of ln(a-c+1). Writing

y = T-1, and substituting



gives

Hence,
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ln(y+1) = y y2/2 y 3 /3 o(y4).

lim I(a) =
crm

lim f(y+1)y-3 [(y+2)(yy2/2 + y3/3 + o(y4)) 2y]} =

lim (y+1)y-3[y3/6 + o(y4)].
y-40

lim 1(a) = 1/6:
crm

Three different features of (13) can be noticed. First,

and most important, I(a) is a function of aa only, implying

that only the difference between the mean of the ability

distribution and the difficulty of the item is of importance.

Second, a translation of the ability/difficulty scale does

not change the result. Third, marginal item information is

symmetric about zero; substituting (aa) for (aa) gives

the same value. Note that the second feature is also a

property of the Rasch model without the assumption of an

ability distribution, Together these features show that

marginal information has only to be computed for the case

a = 0 and for positive values of the difficulty parameter.

In Figure 1, for a = 0 the information function in (13) is

.19
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plotted on the interval (-3,3). Observe the symmetry around

the yaxis and the nice form of the plot. Larger or smaller

Insert Figure 1 about here

values of a only introduce a translation of the graph along

the xaxis. Some numerical values of (11) for different

values of a are given in Table 1.

Insert Table 1 about here

For comparison with the conditional model, it is noted

that I(a) is a function of the difficulty of the item in

question only, and does not depend on the difficulties of the

other items in the test. Neither do as it depend on the values

of the response variables realized in the sample. Hence, item

information in the marginal model, or in the unconditional

model with sampling o.F examinees (cf. Proposition 3), can be

obtained independently of the test by computing (11) as a

function of a for different values of a.

Item Information in the Conditional Model

Item information in the conditional model (6) is a function

of nr and Pri. However,

20
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(i)
(14) Pri = eiyr_1(E)/Yr(E),

with ei = exp(ci), yr being the 1thorder elementary

symmetric function of the Ei.S, and yr_1(1) the (rl)thorder

function deleting the parameter of item i (Fisher, 1974,

chap. 14). Note that the sum in (14) actually ranges from

r = 1 to r = L-1, because Poi = 0 and P11 = 1. Note further

that (6) depends on the observed vector (n0 ....,n1) and.

through (14), also on the difficulties of the other items in

the test.

Suppose the examinees are sampled from an ability

distribution with a logistic distribution function LO;a43).

Now, since in each distinct sample of size N the item

parameters are estimated conditionally on the sample

distribution of the numbercorrect score, information on the

item parameters should be evaluated across sampling. Hence,

observing that (6) is linear in nr, it follows for the

expected value of the conditional information that

rI
(15) ELII(ailS1 . SN)) = Lr=i

1
Pri(1Pri)EL(Nr).

For a fixed examinee with ability 8, the number right score

distribution is the generalized binomial with parameters

P(81) ..... P(8I) given by (1), which has the moment generating

'.unction

T

(16) 9(t) =
i=0 1

[(Q(e.) + 1(ei))et].

2:
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with Q(Ai) = 1 - P(01) (Kendall & Stuart, 1977, sect. 5.10).

The average total score distribution with respect to L(6;a,0)

gives the values of EL(Nr) needed to compute (15).

A Numerical Comparison

Unlike the information function for the marginal model with

logistic ability in (13), a representation of (15) in closed

form seems not possible for logistic ability. Hence, in order

to compare item information in the conditional model with

information in the marginal and unconditional models, a

numerical comparison was made. Since the distribution of the

Nr's in (15) also depends on the number of items as well as

the distribution of their parameter values in the test,

comparisons were made for different cases: Tests with 5 and

20 items were simulated. The distribution of the item

parameter values was chosen to be uniform, skewed to the

right, or normal on the intervals (-3,3), (-3,1), (-1,1) and

(-5,-4). The last interval was selected to simulate the case

of an ill-matched, far-too-easy test. To realize the shape of

the above item parameter distributions as closely as possible

for a finite number of items, the actual item parameter

values were chosen to be equal to the expected values of the

order statistics on the interval of possible values for the

distributions considered. For example, -2 is the expected

value of the smallest value in a random sample of size 5 from

a uniform distribution on (-3,3) (see Table 2 below).
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For each of the tests, (15) was calculated by generating

the abilities of 10,000 examinees from the L(8;0,1)

distribution. For each examinee the expected distribution of

total scores was computed using the generalized binomial in

(16). The average of these distributions over all examinees

gave the expected total score distribution for the ability

distribution concerned, i.e., the expected values of the Nr's

in (15).

Tables 2-5 give the results; they show the percentages

Insert Tables 2-5 about here

by which the (expected) information in the marginal and

unconditional model in (13) exceeds the conditional model for

the given values of a in the test. For example, for the 20

item test with a skewed distribution of the item parameter

values in Table 2, the

0.52 yielded values

measure that were

marginal/unconditional

items with parameters values 1.85 and

for Fisher's (expected)

9% and 6% larger

model than

model. From the tables it is clear

for the

that for

information

for the

unconditional

all simulated

tests conditional information was less than marginal or

unconditional information. The differences were larger for

the tests of 5 items; the 20item tests typically resulted in

differences in the 5-10% range. Also, conditional information

tended to be relatively large for items with parameter values

P0
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close to the mean of the ability distribution. This feature

is manifest in each of the tables, but can also be observed

when the results for tests with parameter values on (-1,1)

are compared with those on (-3,3).

It is recalled that in the conditional model, the

information measure in (15) is not based on response vectors

with all items correct or wrong; such data are simply

"conditioned out" by the model. In the marginal model,

however, all data are used to estimate the item parameters.

Since the probability of a response vector with all items

correct or wrong depends on the number of items in the test

and the distribution of their parameter values relative to

the ability distribution, the pattern in Tables 2-5 could be

explained by this phenomenon. Table 6 gives the percentages

Insert Table 6 about here

of response vectors with all items wrong or correct. Although

the percentages resemble the pattern in Tables 2-5, the loss

of information in the conditional model is not completely

explained by the loss of data.

Conclusions

The general impression from the numerical results is that for

practical test lengths and distributions of item parameter
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values that are on target, the loss of information in the

conditional model relative to the marginal and unconditional

models is less than ten percent. Roughly speaking, this means

that for the conditional model the sample sizes have to

exceed those for the marginal and conditonal models by the

same percentage to guarantee an equal amount of information.

The results in this paper suggest the following

guidelines for selecting

available:

(I) If the abilities are considered

parameters,

one of the three Rasch models

as unknown but fixed

conditional information should be used. This is a

known function of a whose value depends on

sufficient statistics in the sample. The

the observed

unconditional

information measure is less useful; it depends on the unknown

abilities, which can not be estimated consistently unless the

test length also tends to infinity (Haberman, 1977). Since

conditional information is known only after the data have

been observed, it can be used to construct confidence

intervals for the item parameters, but not to determine

optimal sample sizes.

(ii) If the abilities are sampled from a distribution with

unknown density function g, the choice of the proper

information measure depends on the sample size. Engelen

(1987) has shown that g can be estimated consistently along

with the item parameters. Hence, for large samples,

Proposition 2 suggests the use of the estimated marginal

measure I(a:g): because of Pic.pc,sicion 3, this is equal to
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the expected unconditional measure. Again, the information

measures can only be used to construct confidence Intervals,

not for determining sample sizes.

(iii) If the abilities are sampled from a known density

function g. Proposition 2 motivates the choice of I(a;g) for

all sample sizes. Now the information measure can also be

used to determine sample sizes.
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Table 1

Item information in the marginal model wi g a logistic

ability distribution at different locations.

a a

0.50 1.00 1.50 2.00

-2.88 0.059 0.044 0.032 0.022

-2.64 0.067 0.051 0.037 0.027

-2.40 0.076 0.058 0.043 0.032

-2.16 0.086 0.067 0.050 0.037

-1.92 0.096 0.076 0.058 0.043

-1.68 0.106 0.085 0.066 0.050

-1.44 0.116 0.095 0.075 0.057

-1.20 0.126 0.105 0.084 0.065
-0.96 0.135 0.115 0.094 0.074
-0.72 0.144 0.125 0.104 0.083

-0.48 0.152 0.135 0.114 0.093

-0.24 0.158 0.143 0.124 0.103
0.00 0.163 0.151 0.134 0.113
0.24 0.166 0.157 0.143 0.123
0.48 0.167 0.162 0.150 0.133
0.72 0.166 0.165 0.157 0.142
0.96 0.163 0.167 0.162 0.150
1.20 0.159 0.166 0.165 0.156

1.44 0.153 0.164 0.167 0.162

1.68 0.145 0.159 0.166 0.165

1.92 0.137 0.153 0.164 0.167

2.16 0.127 0.146 0.160 0.166
2.40 0.118 0.138 0.154 0.164
2.64 0.107 0.128 0.147 0.160
2.88 0.097 0.118 0.138 0.154



Item Information

25

Table 2

Information in the marginal modal relative to the conditional

model for distributions of item parameter values on (-3.3)

No. of
Items

Type of Distribution

Uniform

a S

Skewed

a

Normal

5

20

-2.00
-1.00
0.00
1.00
2.00

-2.89
-2.27
-1.85
-1.52
-1.23
-0.97
-0.74
-0.52
-0.31
-0.10
0.10
0.31
0.52
0.74
0.97
1.23
1.52
1.85
2.27
2.89

50
39
37
38
48

11
10
9

8

8

8

7

7

/

7

6

6

6

6

7

7

7

7

8

9

-2.34
-1.65
-0.80
0.32
3.00

-2.85
-2.69
-2.53
-2.37
-2.20
-2.02
-1.84
-1.65
-1.45
-1.24
-1.03
-0.80
-0.55
-0.29
0.00
0.32
0.67
1.10
1.66
3.00

40
38
42
60
28

8

8

8

7

7

7

7

7

7

7

7

7

7

7

8

8

9

9

11
18

-1.68
-0.80
0.00
0.80
1.68

-2.71
-2.43
-2.14
-1.86
-1.57
-1.29
-1.00
-0.71
-0.43
-0.14
0.14
0.43
0.71
1.00
1.29
1.57
1.86
2.14
2.43
2.71

43
34
:)2

33
42

10
10
9

9

8

8

8

7

7

7

7

7

7

7

7

7

7

7

8

8
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Table 3

Information in the marginal model relative to the conditional

model for distributions of item _parameter values on (-3.1)

No. of
Items

Type of Distribution

Uniform

a X

Skewed

a X

Normal

a

5

20

-2.33
-1.67
-1.00
-0.34
0.34

-2.81
-2.62
-2.43
-2.24
-2.05
-1.86
-1.67
-1.48
-1.29
-1.10
-0.90
-0.71
-0.52
-0.33
-0.14
0.05
0.24
0.43
0.62
0.81

31
28
29
34
46

8

7

7

7
7

7

7

7

7

6

6

6

6

7

7

7

7

7

8

9

-2.58
-2.10
-1.53
-0.79
1.00

-2.90
-2.80
-2.69
-2.58
-2.46
-2.35
-2.23
-2.10
-1.97
-1.83
-1.68
-1.53
-1.37
-1.19
-1.00
-0.79
-0.55
-0.26
0.11
1.00

30
29
32
40
94

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

8

8

9

10
15

-1.97
-1.46
-1.00
-0.54
-0.03

.2.67

-2.31
-2.07
-1.88
-1.71
-1.56
-1.43
-1.30
-1.18
-1.06
-0.94
-0.82
-0.70
-0.57
-0.44
-0.29
-0.12
0.07
0.31
0.67

28
26
27
30
38

7

7

7

7

6

6

6

6

6

6

6

6

6

6

6

6

7

7

7

9
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Table 4

Information in the marginal model relative to the conditional

model for distributions of item parameter values on ( -1.1k

No. of
Items

Type of Distribution

Uniform

a X

Skewed

a X

Normal

a

5

20

-0.67
-0.33
0.00
0.33
0.67

-0.90
-0.81
-0.71
-0.62
-0.52
-0.43
-0.33
-0.24
-0.14
-0.05
0.05
0.14
0.24
0.33
0.43
0.52
0.62
0.71
0.81
0.90

28
26
25
26
28

6

6

6

6

6

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

-0,79
-0.55
-0.26
0.10
1.00

-0.95
-0.90
-0.84
-0.79
-0.73
-0.67
-0.61
-0.55
-0.48
-0.41
-0.34
-0.26
-0.18
-0.09
0.00
0.10
0.22
0.37
0.55
1.00

28
27
27
27
34

6

6

6

6

6

5

5

5

5

5

5

5

5

5

5

5

5

5

6

6

-0.69
-0.39
0.00
0.69
0.39

-1.81
-0.93
-0.76
-0.62
-0.50
-0.40
-0.30
-0.21
-0.13
-0.04
0.04
0.13
0.21
0.30
0.40
0,50
0.62
0.76
0,93
1,81

29
26
25
26
28

7

6

6

6

6

6

5

5

5

5

5

5

5

5

5

5

5

5

6

6

32
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Table 5

Information in the margii model relative to the conditional

model for distributions of_itembnarameter values on

No. of
Items

Type of Distribution

i,niform

a x

Skewed

a x

Normal

a

5

20

-4.83
-4.67
-4.50
-4.33
-4.17

-4.95
-4.90
-4.86
-4.81
-4.76
-4.72
-4.67
-4.62
-4.57
-4.52
-4.48
-4.43
-4.38
-4.33
-4.29
-4.24
-4.19
-4.14
-4.10
-4.05

23
26
29
33
38

8

8

8

8

8

8

8

8

8

9

9

9

9

9

9

9

10
10
10
10

-4.94
-4.78
-4.63
-4.45
-4.00

-4.98
-4.95
-4.92
-4.89
-4.87
-4.84
-4.80
-4.78
-4.74
-4.71
-4.67
-4.63
-4.59
-4.55
-4.50
-4.45
-4.39
-4.32
-4.22
-4.00

24
25
27
30
45

8

8

8

8

8

9

9

9

9

9

9

9

9

9

9

9

10
10
10
11

-4.74
-4.61
-4.50
-4.39
-4.26

-4.92
-4.83
-4.77
-4.72
-4.67
-4.64
-4.61
-4.58
-4.55
-4.52
-4.49
-4.46
-4.43
-4.39
-4.36
-4.32
-4.28
-4.23
-4.17
-4.08

25
27
29
32
35

8

8

8

8

8

8

8

8

9

9

9

9

9

9

9

9

9

9

10
10
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Table 6

Percentages of response vectors with all items correct or all

items incorrect

Test Length Range of Item Type of Distribution

Parameter Values Uniform Skewed Normal

5

20

(-3,3)

(-3,1)

(-1,1)

(-5,-4)

(-3,3)

(-3,1)

(-1,1)

(-5,-4)

20

32

31

87

5

9

9

69

15

29

30

87

4

12

9

71

24

35

31

87

4

10

8

69
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Figure Caption

Figure 1. Item information in the marginal model with a

logistic ability distribution (a=0)
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