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Abstract

An algorithm is presented for the best least-squares

fitting correlation matrix approximating a given missing

value or improper correlation matrix. The proposed algorithm

is based upon a solution for Mosier's oblique Procrustes

rotation problem offered by Ten Berge and Navels. It is shown

that the minimization problem belongs to a certain class of

convex programs in optimization theory. A necessary and

sufficient condition for a solution to yield the unique

global minimum of the least- squares function is derived from

a theorem by Shapiro. Empirical verification of the condition

indicates that the occurrence of non-optimal solutions with

the proposed algorithm is very unlikely.

Ley words: missing value correlation, tetrachoric correla-

tion, indefinite correlation matrix, constrained

least-squares approximation, semi-infinite pro-

gram, convex program.
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Least-squares Approximation of an Improper by a Proper

Correlation Matrix Using a Semi-infinite Program

When product-moment correlations of a set of n variables

are computed by any of the missing value correlation methods

described by Frane (1978). it may happen that the resulting

missing value correlation matrix is indefinite, and hence

improper. This can be a serious problem in various multi-

variate data analysis techniques. e.g.. in regression and

factor analysis.

One possible approach to this problem consists of

avoiding an (indefinite) improper correlation matrix entirely

by estimating the missing data themselves. Missing data can

be estimated by maximum likelihood estimation from incomplete

data (Beale & Little. 1975; Dempster. Laird & Rubin. 1917;

Orchard & Woodbury. 1972) and by pragmatic procedures ( Frane.

1976. 1978; Gleason & Staelin. 1975; Timm. 1970).

Another possible approach to the problem is to render

the improper correlation matrix non-negative definite by some

smoothing procedure (Devlin. Gnanadesikan & Kettenring. 1975.

p. 543; Dong, 1985; Frane, 1978).

The purpose of the present paper is to offer a

least-squares smoothing procedure. That is. one may seek the

best fitting (in the sense of least-squares) symmetric. unit-

diagonal, non-negative defiaite matrix G to the given

improper missing value correlation matrix R. Specifically.

the function

7
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(1) e(G) e tr (G - R)2

can be minimized subject to the constraints G = G',

Meg (0) = In and G t 0. For convenience we wri:e Y a 0 and

Y > 0 to denote that a symmetric matrix Y is non-negative

definite and positive definite, respectively.

The minimization problem (1) can be generalized in three

ways. Firstly, the problem can be applied to any improper

correlation matrix. e.J., an indefinite tetrachoric corre-

lation matrix or a correlation matrix obtained by element-

wise robust estimation (Devlin, Gnanadesikan & Kettenring,

1975, 1991, Gnanadesikan & Kettenring. 1972). Secondly, the

problem can be generalized to handle indefinite matrices with

fixed diagonal elements not necessary equal to one. For

example. the scope of the problem can be extended to missing

value covariance matrices with known variances or to product-

moment correlation matrices with known communalities.

Thirdly, it is possible to exclude those product-moment

correlations or covariances which are computed between com-

plete variables (no missing values) from the minimization

procedure. That is. the excluded elements of R can be held

constant in (1). Without loss of generality these elements

can be collected in the ni x nl (0 5 n1 < n) submatrix

Ril t 0 of R. where R is partitioned as

8



R =

R11 R12

R21 R22
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In order to incorporate these three generalizations, we

shall adress the generalized problem of minimizing (1)

subject to the constraints

(2a) G = G'

(2b) G k 0

(2c) G11 = R11 k 0

and

(2d) Diag (G22) = Diag (

where G is partitioned as

G

(411 012

021 022

R22) t 0
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and Gil is of order ni x ni. Note that the constraints (2c)

and (2d) for the problems with ni = 0 and ni = 1 are

equivalent. In the next section a computational solution will

be offered for the generalized problem of minimizing (1)

subject to the constraints (2).

An algorithm

The constraints G = G' (2a) and G k C (2b) can

equivalently be expressed by the constraint

(3) G = AA'

for some n x m (nl S m s n) matrix A. Considsr the

partitioning

Al

A2

A11 Al2

A21 A22

where Al is of order n1 x m. A11 is of order nl x n1. and Al

is fixed in advance as

(4) Al = R11 I 0 1

10
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This choice of Al satisfies the constraint G11 = R11 (2c) and

can be adopted without loss of generality. because every

matrix A satisfying (3) is determined up to an orthogonal

rotation.

Upon substitution of (3) and (4) for G in (1), the

problem of minimizing (1) subject to the constraints (2) can

be reduced to the problem of minimizing the function

(5) f(A2) % tr (A2Ai R22)2

+ tr (AlAi R12).(A112 R12)

subject to the constraint Diag (A2Ai) = Diag (R22).

In order to simplify the notation, let for any positive

integer 1 the index set be defined by the Cartesian

product

N2 a ( 1 .1 ) x (1 1)

and let T be the symmetric subset of Na defined by

T a ((i.j): i * 3 & (i.J) G n nl ) .

Then the minimization problem (5) can be written as

minimizing

(6) f(A ) = % E E (ea r )2
2 (i,j)cr j ij

11
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subject to the constraints ak'ak = rkk (k = n1+1.....n).

where R (rii) and al.' is row i (i = 1 n) of A. For each

k (k = n1+1 ..... n). (6) can be written as

(7) f(A ) = % E (a'a r )2
2 (i.k)er i k ik

+ % E (a'a r )2
(k.j)ET k j kj

+ X E E (a'a r )2
(i.j)ET i 3 ij
i.jok

= E (a'a r )2 +
Lk(i.k)ET k ik

= E (a'a r )2 + L
i*k i k ik

(0) (0) . (0) (o)
= (A

k
a
k

r
k

) (A
k k

a' r
k

) + L

f (a ) + L
k k k

where Lk is a constant with respect to ak. Ak(o) is the

matrix A with row k replaced by zeroes. and rk(°) is column k

of (R Diag (R)J.

In the context of Mosier's (1939) oblique Procrustes

problem. Ten Berge and Revels (1977) have -given a solution

4'2
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for the global minimum of fk(ak) subject to the constraint

ak'ak = 1. With some minor adjustments, their solution can be

generalized to minimize fk(ak) subject to any arbitrary

constraint ak'ak = rkk Z 0. After taking a suitablo. initial

choice for A2. and row-wise rinimization oi '7) for

k = n1+1 n with the adjusted Ten Berge and Novels

solution, an algorithm for solving (5) is obtained. For each

k (k = n1 +1, n), f(A2) decreases with the row-wise

minimization. alfecting only elements of row k and column k

of Al'. The n2 e n - n1 minimization steps can be repeated

until no significant decrease of f(A2) between two succeeding

iteration cycles occurs. Because f(if decreases

monotonically and f(A2) is bounded below, convergence of the

algorithm is guaranteed. In the next section we shall

describe a necessary and sufficient condition for a global

minimum of fi2).

A necessary and sufficient condition for a global minim

After minimizing fk(ak) with the adjusted Ten Berge and

Novels algorithm, there exists a Lagrange multiplier Ok such

that

(8) 1(0).,(0). a = A(00.r(o)
k -k -k wk k k k

13
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(Mulaik. 1972. p. 505). The Lagrange multiplier ek can be

evaluated directly from the equations (11). (12) and (13) in

Ten Berge and Navels (1977. p. J95) for their cases 1. 2 and

3 respectively. Rewriting (8) yields

(o) (o) (o) (o)(A 'A
k +ae)a (Ak 'rk +ar ) Oa = 0k k k k k kk k k

and hence

(9) A'Aak A'rk ekak = 0

where rk is column k of R. It should be noted that during the

iteration process, (9) holds for the index k only immediately

after the minimization of row k n1 of A2. However, after

convergence of the proposed algorithm. (9) holds simul

taneously for all k (k = n1+1 n). Denote for convenience

a solution of the proposed algorism by A. Then the n2

equations (9) can be collected in the matrix equation

(10) A'Ak'
2

A'R2 A28
22

= 0

where R2 n tR21IR22) and e22 Diag (0121+1 V. Trans
posing (10) and rewriting yields the firstorder necessary

conditions for a minimum of (5)

(11a) (A2Ai R21)A11 (A2A2 R22 4922)A21 =

";4
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and

(11b) (1212 R22
22 )A22 = 0

It should be noted thrt the firstorder necessary

conditions (11) for a minimum of (5) have been obtained from

standard partial differentiation of a constrained function

(cf. Luenberger. 1984. chap. 10). Additional results can be

obtained from a reformulation of the problem in terms of a

semiinfinite convex program (Shapiro. 1985). This will be

pursued next.

Let D(T) denote the set of symmetric n x n matrices

lxij) such that xij = 0 whenever (i.j) * T. Then the

matrix G can be written as

(12) G = C +

where I a 0(T) and C (cij) such _Jt cij = 0 whenever

(i.j) a T and cij = rij otherwise. In (12) G is decomposed as

the sum of a matrix C containing the (n1)2 + n2 known (fixed)

elements of G. and a matrix X containing the unknown (free)

elements of G. Inserting (12) in (1) leads to the restatement

of the minimization problem

(13) g(X) e(G) = % tr (C + E R)2

subject to the constraints X a 0(T) and (C + k 0.
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Replacing the constraint (C I) t 0 by the equivalent

constraint

(14) h(Z.u) u'(C X)u t 0

for all 1.1 e T (u a m": u'u m 1) makes problem (13) a

semi-infinite program.

Assuming that we have R11 > 0 it can be verified that

the semiinfinite program defined by (13) and (14) has the

following nine properties:

(P1) fl(T) is convex.

(P2) g(X) is convex.

(P3) h(.02) is concave for all u a T.

(P4) The Slater (1950) condition (cf. Stoer & Witzgall.

1970. p. 247, holds. i.e. there exists a matrix

e viz., Xo = 0, such theAt h(Xo.u) > 0 for all

u e NV.

(P5) 'P is compact.

(P6) g(X) is continuously differentiable.

(P7) h(..u) is continuously differentiable for all u E T.

(P8) h(X,u) is continuous.

(P9) grads h(Lu) is continuous.

Properties (P1) through (P3) make the program a convex

program tad properties (P4) through (P9) are regularity

conditions.
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For semi infinite programs satisfying the conditions

(P1) through (P9), Theorem 2.2 of Shapiro (1985) is

applicable, which states: A feasible X E 0(T). i.e. (C + e)

t 0, is a solution of the minimization problem if and only if

there exist: an n x n matrix B Ibij] satisfying

(i) B = B'

(ii) (C + X*)B = 0

(iii) grad g(X)Ix.x* = PT(B) .

where PT(B) is the projection of B onto the space

0(T) defined by

bij whenever (i,j) E T .

IPT(B)Jij (

0 otherwise

(iv) B k 0 .

In order to assess whether these neces,ary and

sufficient conditions are satisfied after convergence of the

proposed algorithm, we shall use the following lemma.

LIMMA.A. For the matrix

(15) B W'B22W .
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where W [4121A111 In
2

) and 822 (A2A2 R22 022). the

conditions (i) through (iii) are satisfied, and condition

(iv) is equivalent to the condition B22 k 0.

Proof. Condition (i) is obviously satisfied.

To prove condition (ii). note that

(16) B22WA = ( 0
( B22-422 )

Rewriting (11b) as B22A22 = 0 and transposing (16) yields

VW.B22 = 0

and hence

(17) AA 14.1322W = 0

Substituting (C + X") = AA' and (15) in (17) proves condition

To prove condition (iii). the matrix 8 is written out as

B =

-4 -4
(B22/121A11)./121/111

1

-(B22a211111).

-1
-B22A21A11

8

B22



From (11a) it follows

-1
(19) B22A21A11 = -(A2A1 - R21) .

Inserting (19) in (18) yields

B -

-4
-(AlAi R12)A21A11

LS Approximation
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AlA2 - R12

A2A1 R21

which can be written as

(20) B = kk' - R -

= C + X R -

where

Om

(Alki - 1212)A211171

A2A2 R22 en

0

0 022

From (20) it is easily shown that PT(B) = (C + X* - R). which

equals grad g(X)IX=X* This proves condition (iii).
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Regarding condition (iv). it is obvious from (15) that

the condition B a 0 is equivalent to the condition B22 k 0.

From our Lemma 1 and Shapiro's Theorem 2.2 it is obvious

that B22 a 0 is a necessary and sufficient condition for a

feasible X* e C(T) to be a solution of the minimization

problem (13). It should be noted that, after convergence of

the proposed algorithm, en can be evaluated hence the

condition B22 t 0 can be verified. Moreover, when B22 a 0, it

follows immediately from the strict convexity of g(I) that X*

is the unique solution of the minimization problem (13).

which means that if and only if B22 a 0 the unique global

minimum of e(G) subject to the constraints (2) has been

attained for 0* = (C + X*).

In the derivation of the necessary and sufficient

condition for a solution to yield the unique global minimum

of e(0). it has to be assumed that R11 > 0. In the case of

singular R11 the Slater condition (P4) does not hold and

A11 -1 does not exist, hence it cannot be verified whether the

obtained solution yields the unique global minimum of e(G).

However, for singular R11. Alexander Shapiro (personal

communication. August 11. 1986) has shown that the problem of

minimizing (1) subject to the constraints (2) can be

transformed to a problem of (lowftl) dimensionality (rank

(R11) + n2), with a (transformed) fixed submatrix R;1 > 0.

For reasons of availibility, we give the proof which is due

to Shapiro.

Firstly. the function e(G) can be written as

20fv
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(21) e(G) = % tr [P(G R)P')2 = ) tr (PGP' PRP')2.

for any orthogonal matrix P of order n x n. Secondly. let us

take P in the form

P

such that

P11 0

0 In
2

1
(22) Pl1R111)11 =

.1_:12._

0 11

with 1211 > 0. Then the constraints ;21 become

(23a) PGP' = PG'P'

(23b) PGP' -

G2iPil

P11G12

G22

21

t 0
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(23c) Pl1G11Pil = P11R11Pi1 k 0

and

(23d) Diag (G22) = Diag (R22) Z 0

From (22) and (23c) it follows that the first (n1 - rank

(Rai)) diagonal elements of PGP' are zero. From this and

(23b) it follows that the first (ni - rank (R10) rows and

columns of PGP' are zeroes. Hence the problem of minimizing

(21) subject to the constraints (23) is reduced to a problem

of dimensionality (rank (RII) + n2] < n.

In order to verify the necessary and sufficient

condition B22 a 0 for a solution G* = AA' to yield the unique

global minimum of e(G) subject to the constraints (2), a

computer program has been implemented yielding the solution

of the minimization problem with the proposed algorithm and

evaluating the smallest eigenvalue of B22. The computer

program was run on 100 symmetric unit-diagonal indefinite

matrices, where n ranged from 5 to 25, n1 ranged from 0 to

min (10, n - 2) and the column order m of A was set equal to

n. With changes in each (free) element of G between two

succeeding iteration cycles less than 10-4 as convergence

criterion, the algorithm never took more than 10 iteration

cycles until convergence. Computation time never exceeded 1

minute CPU time on a VAI8650 computer. In all cases, the

obtained solution satisfied the condition B22 a 0 within

22
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accuracy limits. From these results, it can be concluded that

the proposed algorithm tends to produce the unique globally

optimal solution.

In the following lemma, another important property of

the solution is stated.

Lemma 2. The rank of Gs equals n if and only if R > 0.

proof. Suppose first that R > 0. Then, Gs = R > 0, and hence

the rank of Gs equals n.

Conversely, let the rank of Gs = (C + 1(s) equal n. From

condition (ii) it follows that B = 0, and from condition

(iii) that grad g(X) IX=Xs = 0. From this it follows that

PT(B) = (C + Is R) = (Gs R) = 0 and hence G* = R > 0.

In practice it seems to be true that the rank of Gs is

alweys less than or equal to the number p of positive

eigenvalues of R. Since computation time heavily depends upon

the column order m of A, it is advised to take m = p. A

further reduction of computation time can be accomplished by

setting a suitable initial value for A. A reasonable initial

value A(°) can be based upon an eigen-decomposition of R

R ,

where I is an orthogonal matrix of order n x n containing as

columns the normalized eigenvectors of R and A is a diagonal

matrix containing the n eigenvalues of R. Let Ap be the

23
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diagonal matrix of order p with diagonal elements the p

positive eigenvalues of R, and let '10 be the matrix of order

n x p with columns the p corresponding (normalized)

eigenvectors. In the case n1 = 0. it is advised to take as

initial value for A

(24) A(°) = (Diag (R))(Din (Kti r)3 %106pT
-P P-P

where T is an arbitrary orthogonal matrix of order p x p. In

the case nl > 0 one can take T such that the upper p x p

submatrix of A(0) is in lower triangular form and replace the

submatrix A1(0) by (4). For the 100 least-squares problems

used above. total computation time could be reduced by more

than 50% using (24) as initial value. and the condition B22

was again satisfied in all cases after convergence of the

algorithm.

A numerical example

As an illustration and for reasons of possible checks.

an indefinite 6 x 6 matrix R of polychoric correlations

(smallest eigenvalue .0626) published by De Leeuw (1983, p.

121) has been analyzed with various values of nl (R11 > 0 for

nl s 4). In order to have R11 > 0 for nl = 5 too, the fifth

and sixth variable have been interchanged. The matrix R is

given in Table 1.

24
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Insert Table 1 about here

Table 2 gives the residual matrices (G* - R) for various

values of n1. together with the values of e(G"). Because the

constraints (2) for the problems with n1 = 0 and n1 = 1 are

equivalent. the solutions are equal. In all cases, the

solution satisfies the condition B22 t 0 within accuracy

limits.

Insert Tabie 2 about here

It can be verified that the value of e(G") increases as n1

increases, as is to be expected.

Discussion

A monotone convergent algorithm has been constructed for

the test least-squares non-negative definite approximation of

an improper correlation or covariance matrix, preserving the

diagonal elements. Additionally a verifiable necessary and

sufficient condition for a solution to yield the unique

global minimum of the least-quares function has been derived.

rp
1' IJ
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Moreover. this condition tends to be satisfied in practice.

Thus a possibly useful alternative to existing smoothing

procedures has been found.

However. the solution G* is singular except in the

trivial case R > 0 (cf. Lemma 2) hence the inverse of G* does

not 'mist. When inversion of 0 is required for a particular

subsequent multivariate analysis, one may impose the

additional constraint to (2) that all eigenvalues of 0 are

greater than or equal to an arbitrary positive constant 6. An

algorithm for the latter optimization problem is in progress.

but is beyond the scope of the present paper.
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TABLE 1

De Lames t.Irget matrix R of polychoric correlations
with the fifth and sixth variable interchanged

R

var 1 2 3 4 5 6

1

2

3

4

5

6

1.0000

.4770

.6440

.4780

.6510

.8260

1.0000

.5160

.2330

.6820

.7500

1.0000

.5990

.5810

.7420

1.0000

.7410

.8000

1.0000

.7980 1.0000
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TABLE 2

The values of e(G*) and the lower-triangular parts of the

residual matrices (G* - R) using De Leeuw's target matrix.

for various values of nl (structural zeroes omitted)

n1 CG*) var

(G* - R)

1 2 3 4 5

0.1 .002760 2 .0108

3 -.0011 -.0015

4 .0125 .0173 -.0017

5 -.0063 -.0088 .0009 -.0101

6 -.0178 -.0248 .0025 -.0286 .0144

2 .002884 3 -.0012 -.0016

4 .0131 .0180 -.0019

5 -.0067 -.0092 .0009 -.0105

6 -.0189 -.0259 .0027 -.0296 .0151

3 .002888 4 .0132 .0181 -.0020

5 -.0067 -.0092 .0010 -.0105

6 -.0189 -.0259 .0028 -.0296 .0151

4 .003515 5 -.0083 -.0116 .0016 -.0133

6 -.0225 -.0312 .0043 -.0359 .0185

5 .004062 6 -.0243 -.0349 .0057 -.0403 .0245
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