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Executive Summary

The statistical theory of estimating and testing item response theory (IRT) models for items (questions)
with discrete (correct or incorrect) responses has been thoroughly developed (recall that IRT is a
mathematical model that is typically used to analyze test data). In contrast, the theory for IRT models for
items with continuous responses has hardly received any attention. This omission is mainly due to the fact
that, so far, the continuous response format has hardly been used by the testing industry. An exception may
be the rating scale item format, where a respondent marks a position on a line to express his or her opinion
about a topic. Recently, continuous responses have attracted interest as complementary information to
accompany discrete item responses. One may think of the response time needed to answer an item in a
computerized adaptive testing situation or of computer ratings of tasks performed in a simulated
environment as continuous responses.

In the present report, an existing model for the analysis of continuous responses was extended to include
a procedure for estimating the parameters in the model. Tests for evaluating the fit of the model were
successfully evaluated. These tests can be used to detect problematic items and violations of assumptions of
the model. The tests were also shown to have excellent control of their false positive error rate, as well as
excellent ability to detect true effects.

Abstract

The theory for the estimation and testing of item response theory (IRT) models for items with discrete
responses is by now very thoroughly developed. In contrast, the estimation and testing theory for IRT
models for items with continuous responses has hardly received any attention. This is mainly due to the fact
that the continuous response format is seldom used. An exception may be the so-called analogous-scale item
format where a respondent marks the position on a line to express his or her opinion about a topic. Recently,
continuous responses have attracted interest as covariates accompanying discrete responses. One may think
of the response time needed to answer an item in a computerized adaptive testing situation. In the present
report, the theory of estimating and testing a model for continuous responses, the model proposed by
Mellenbergh in 1994, is developed in a marginal maximum likelihood framework. It is shown that the fit to
the model can be evaluated using Lagrange multiplier tests. Simulation studies show that these tests have
excellent properties in terms of control of Type I error rate and power.

Introduction

Item response theory (IRT) models are stochastic models for two-way data, for instance, the responses of
students to items. An essential feature of these models is parameter separation, that is, the influences of the
items and students on the responses are modeled by distinct sets of parameters. IRT provides the theoretical
underpinning for computer adaptive testing, the use of incomplete assessment designs, equating and linking
of assessments, evaluation of differences between groups, and applications to multilevel analyses as used in
school effectiveness research. Most applications of IRT models pertain to categorical data (Samejima, 1969;
Masters, 1982; Bock, 1972). However, situations may also arise where the responses of students to items are
continuous. One might think of a computer adaptive test where the response time is recorded with every
response to the actual assessment item. In the present report, the IRT model for continuous data proposed by
Mellenbergh (1994) will be elaborated. The model will first be generalized to allow for a multidimensional
proficiency structure, and then a marginal maximum likelihood (MML) estimation procedure and a method
for testing model fit will be proposed. Finally, a number of simulation studies will be conducted to assess the
Type I error rate and the power of the proposed tests.

Consider a two-dimensional data matrix X with entries xnk, for n = 1, ..., N, and k = 1, ..., K. The matrix
contains the response of students to items. It is assumed that the response of the student n on the item k is
normally distributed, that is

P(xnk|h n , a k , b k ) =
1

2 2πσ k

. exp �
��

�
�
�

�

�
�
�

( )xnk nk

k

τ

σ

2

22
.

(1)

The expectation of the item response is a linear function of the explanatory variables

τ nk = α kh
h

H

	



1

θ nh – β k

= a hk
t

n k� β (2)
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where a k is a vector of parameters α k1 , ..., α kh , ..., α kH which are usually called factor loadings and β k is a
location parameter. Further, h n = (θ n1 , ..., θ nh , ..., θ nH ) is the H-dimensional proficiency parameter of student n.
In this report, we assume that the density of h n is described by the normal distribution with average value
lθ and the covariance matrix R θ , which is given by g(h n ; lθ , R θ ). The model is partially identified by the
restriction lθ = 0. Additional restrictions must be imposed to completely identify the model. This will be
returned to below. Further, since the main application envisioned here is modeling response times, we
assume that σ k

2 = 1, for all k. That is, we assume that all the observed responses have the same scale.
In the case of discrete responses, the data are the response patterns of the students, and these counts are

seldom, if ever, transformed. In the case of continuous responses, transformations can be applied to the
responses. For instance, if the model given by (1) is used to analyze response times, the observations xnk
should be the logarithms of the response times.

Estimation

Preliminaries

Let n be a vector of model parameters, that is, n consists of the vectors a, b, lθ , and vec(R θ ), where
vec(R θ ) is a vector with all elements of R θ . The marginal log-likelihood function can then be written as

log L(n, X) = log
n

 Pr(xn; n) (3)

where xn is the response pattern of the student n. The MML estimation equations require the vector of
derivatives of the log-likelihood function. These first order derivatives can be derived using Fisher’s identity
(Louis, 1982; Glas, 1992). In the framework of IRT, Fisher’s identity is given by

h(n) =
∂

∂ n
log L (n, X) = E

n

 (bn(n)|xn, n), (4)

where the expectation is with respect to the posterior expectation P(h n |xn, n). Further,

bn(n) =
∂

∂ ξ
log Pr(xn, h n ; n) =

∂

∂ n
[log Pr (xn|h n , α, β) + log g (h n ; lθ , R θ )]. (5)

Notice that the derivative is a sum of the logarithm of the probability of the response pattern and the
logarithm of the density of the student ability parameter. The power of Fisher’s identity is that the
derivatives are very easy to derive, while the derivation of h(n) is a cumbersome enterprise. Moreover, direct
derivation of the matrix of second-order derivatives needed for the computation of the standard errors of the
estimates is even more demanding. However, using Fisher’s identity repeatedly, Louis (1982) shows that the
Fisher information matrix

H(n, n) = –
∂

∂ ∂

2 L )( ,n

n n

X
�

(6)

is the sum over students n of terms (see Appendix A)

– E(Bn(n, n)|xn, n) – E(bn(n)bn(n �) |xn, n) + E(bn(n)|xn, n) E(bn(n)|xn, n �) , (7)

where

Bn(n, n) =
∂

∂ ∂

2 log ( , ;Pr x n n )h n

n n �
.

Glas (1998, 1999) and Glas and Suarez-Falcon (2003) show that in the case of the two- and three- parameter
logistic model and the nominal response model, the second derivatives can be approximated by

H(n, n) � E
n

 (bn(n)|xn, n) E(bn(n)|xn, n �) . (8)

Below, the precision of this approximation will be evaluated empirically.
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The exact expressions for the information matrix derived using (7) and (8) are given in Appendix A.

Application to the IRT Model for Continuous Responses

In this article we consider no missing data. The marginal likelihood function is

L(n|x) = ... p
kn

�� (xnk|h n , a k , β k ) g(h n |R θ )dh n , (9)

where n is the ensemble of item and population parameters n = ( �a , �b , lθ , vec(R θ ) �) . Here, g(nn, h n |R) is the
density of nn and h n , which assumed to follow a multivariate normal distribution with mean vector 0 and
variance-covariance Σ.

The logarithm of the marginal likelihood function is

log L(n|x) = log
n

 ... p

k
�� (xnk) g(h n |R θ )dh n . (10)

The maximization procedure provides the set of equations which can be used to estimate the values of
parameters. To be more specific, the solution of the equation ∂ log L (n|x)/∂ n = 0 is the maximum likelihood
estimate of n.

Applying Fisher’s identity, from maximization of the marginal likelihood with respect to the covariance
matrix, we arrive at

R θ =
1
N

E
n

 (h n h n

t |xn, n) (11)

where

E(h n h n
t |xn, n) = ... h n�� h n

t f [h n |xn, R θ ]dh n

and the posterior density has a form

f [h n |xn, R θ ] =
p x g

p x g d

nk n
k

k
nk n n

( ) ( | ).

... ( ) ( | )

h

h R h

Σ θ

θ



��
.

(12)

In the same way, maximization with respect to β k results in

xnk
n

 = E nk n

n

( | , )τ x n
 . (13)

Finally, for α kh , we obtain

xnk
n

 E(θ nh |xn, n) = E

n

 (τ θnk nh |xn, n). (14)

All these expressions can be solved simultaneously. In practice, this is done by Newton-Raphson,
expectation-maximization (EM) algorithm, or a combination of both (Bock & Aitkin, 1981). Below, we further
comment on the use of the EM algorithm.

Identification of the Model

To identify the model the restriction lθ = 0 was imposed. The model can be identified further in two
ways. The first approach requires setting the covariance matrix to the identity matrix and introducing the
constrains αjq = 0; j = 1, ..., q – 1 and q = j + 1, ..., Q. The latent ability dimensions are independent of each
other. The first item loads on the first dimension only. The second item loads on the first two dimensions
only, and so on, until item Q loads on the first Q – 1 dimensions. All other items load on all dimensions.

The second approach to identify the model is setting the mean equal to the zero and considering the
covariance matrix as a parameter of proficiency distribution that must be estimated. Further, the model is
identified by imposing the restrictions, αjq = 1, if j = q, and αjq = 0, if j � q, for j = 1, ..., Q and q = 1, ..., Q. So,
here, the first item defines the first dimension, the second item defines the second dimension, and the third
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item defines the third dimension. The covariance matrix Σ θ describes the relation between the defined
latent dimensions.

The transformation between the two parametrizations can be done as follows. Let A� and A be the
matrices of discrimination parameters for the first and the second approaches, respectively. According to
Béguin and Glas (2001), h i can be transformed to h i

� by h i
� = L–1h i , where L is the Cholesky decomposition

of R θ . Since L is the lower triangular and Ah i = ALh i
� = A�h i

� , the restrictions αjq = 1, if j = q and αjq = 0,
if j � q for j = 1, ..., Q and q = 1, ..., Q, are transformed into α jq

� = 1 for j = 1, ..., Q – 1 and q = j + 1, ..., Q.
Let us define the lower triangular matrix F as the first Q rows of A� and using h i = Fh i

� , we obtain R θ = FFT

and A = A�F–1, which in turn produces restrictions αjq = 1, if j = q and αjq = 0, if j � q for j = 1, ..., Q and
q = 1, ..., Q.

Computation

For solving the estimation equations, the EM algorithm (Dempster, Laird, & Rubin, 1977) can be used.
This general iterative algorithm for maximum likelihood (ML) estimation in incomplete data problems
handles missing data by first replacing missing values by a distribution of missing values, second,
estimating new parameters given this distribution, and, third, reestimating the distribution of the missing
values assuming the new parameter estimates are correct. This process is iterated until convergence is
achieved. The multiple integrals that appear above can be evaluated using Gauss-Hermite quadrature. A
critical point related to using Gauss-Hermite quadrature is the dimensionality of the latent space, that is, the
number of latent variables that can be analyzed simultaneously. Wood et al. (2002) indicates that the
maximum number of factors is 10 with adaptive quadrature, 5 with nonadaptive quadrature, and 15 with
Monte Carlo integration. In the present study, it is possible to use adaptive quadrature points; however, for
more scales and time points, this procedure may become infeasible. In the discussion section of this paper,
two alternative estimation procedures will be given.

Testing the Model

Preliminaries

The Lagrange Multiplier (LM) test by Aitchison and Silvey (1958) is grounded on the following
rationale: Consider some general parameterized model and a special case of the general model, the so-called
restricted model. The restricted model is derived from the general model by imposing constraints on the
parameter space. In many instances, this is accomplished by fixing one or more parameters of the general
model to constants. The LM test is based on the evaluation of the first-order partial derivatives of the
log-likelihood function of the general model, evaluated using the maximum likelihood estimates of the
restricted model. The unrestricted elements of the vector of first-order derivatives are equal to zero because
their values originate from solving the likelihood equations. The magnitudes of the elements of the vector of
first-order partial derivatives corresponding to restricted parameters determine the value of the statistic: The
closer they are to zero, the better the model fits.

More formally, let us consider a null hypothesis about a model with parameters g 0 . This model is
derived from the general model with parameters g by fixing one or more parameters to known constants. We
can make a partition of g 0 as g 0 = ( �g 01 , �g 02

�) , and postulate constants described by vector g 02 via c = g 02 . The
partial derivatives of the log-likelihood function of first and second order are h(g) = ∂log L(g)/∂g and H(g, g)
= –∂2 log L(g)/∂g∂ �g accordingly. Then, the LM statistic is given by

LM = h(g 0
�) H(g 0 , g 0 )–1h(g 0 ). (15)

For the case of a partitioned η, at the point of the LM estimates g 01 , the free parameters have partial
derivatives equal to zero, h(g 01 ) = 0. The last equation can be computed through

LM(c) = h(c �) W–1h(c), (16)

where

W = H22(c, c) – H21(c, g 01 )H11(g 01 , g 01 )–1H12(g 01 c), (17)
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and the partitioning of W(η0 , η0 ) is according to the partition g 0 = ( �g 01 , �c �) . The LM statistic has an
asymptotic χ 2 - distribution with degrees of freedom equal to the number of parameters in g 2 (Rao, 1947;
Aitchison & Silvey, 1958).

In the next section, we will introduce three LM statistics to test for differential item functioning, the
shape of the item response curve, and local independence.

Differential Item Functioning

Differential item functioning (DIF) is a difference in item response behavior between equally proficient
members of two or more groups. As an example, consider the difference in response behavior between boys
and girls. It could be that performance of boys on science and mathematical items is better than performance
for girls. On the other hand, the performance of girls on language items could be better than the
performance of boys. By itself, however, this does not indicate DIF. DIF arises when, for a certain item, the
level of performance of equally proficient boys and girls is different, probably because the item refers to
irrelevant knowledge that is more ubiquitous in one population than in the other.

There are several techniques for detection of DIF and most of them are based on the evaluation of
differences in response probabilities between groups conditional on a measure of proficiency.

Let g 01 be a vector of parameters describing the explanatory parameters a, b and the covariance matrix
vec(R θ ) of the ability of students on the different subjects. Thus g 01 = (α, β, vec(R θ )) and we have to deal with
null model. The alternative model is introduced by g 02 which is g 02 = (δk ).

The expectation of the item response τ nk is a linear function of parameters as it was described by (2). The
alternative model, then, can be written as

τ nk = a hk
T

n – βk + δkYn. (18)

If δ = 0, we arrive at τ nk for the null model. This approach can be used to describe the populations of males
and females; we then take Yn to be

Yn =
1
0

if student is male
if student is female.

n

n
�
�
�

(19)

It is easy to see that the difficulty parameters for males and females will be different. For boys we have
βk + δk (alternative model), whereas for girls we obtain βk (null model).

Having an expression for τ nk , we can estimate the first derivatives of the log-likelihood function h(η02 ) =
∂log L(η)/∂δk as

h(η02 ) = xnh
n

 Yn – Yn

n

 E(τ nk |x). (20)

Substitution of this expression into (17) provides the expression for the Lagrange multiplier to
be evaluated:

LM =
x Y Y E xnk n n nk

nn

�
�

�
�

�

�
�

 ( | )τ

W

2

,

(21)

where W now is a scalar. W can be interpreted as the variance of h(η02 ) given the parameter estimates.

Shape of the Item Response Function

We defined a number of boundaries for the score obtained on the other items. Let the item of interest be
labeled k and the other items be labeled j = 1, 2, ..., k – 1, k + 1, ..., K. Let us also introduce the function r(x(k)),
where r(x(k)) is the number-correct score on this partial response pattern, and x(k) is the response pattern
without item k, that is

r(x(k)) = x j
j k�

 . (22)

r(x(k)) is often called a rest score. The range of possible scores r(x(k)) is partitioned into Sk intervals.
Furthermore, we define
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w(s, x(k)) = � �1
0

1if
otherwise,

r r rs n
k

s� � ��
�
�

x ( ) , (23)

for s = 1, ..., Sk with r0 = –� and rSk
= �. So, w(s, x(k)) is an indicator function assuming a value equal to 1 if the

number correct score of response pattern x(k) is in score range s. The expectation of the item response under
the alternative model has the form

τ nk = a hT
k

k
s

s

S

s� �
	

�


β δw x( , )( )

1

1

. (24)

Note that w(s, x(k)) is equal to 1 for only one of the S score segments, so the summation defined in (24) only
selects one of the parameters δ s . The parameter δ s gauges the shift in item parameter β k for score group s.
Finally, note that there is no parameter δS , that is, the highest score level is used as a base line. If δS were also
present, the model defined by (23) would no longer be identified. The expression for the first derivative with
respect to δ s is

h(η02 ) = w
n

 (s, x(k))xnk – w

n

 (s, x(k))E(τ nk |x). (25)

Note that the first-order derivative is the difference between the observed scores and expected scores of
persons in subgroup s. The simplest form of the test emerges if only two score levels are considered, that is,
if Sk = 2. In that case, one could set the cutoff score r1 somewhere in the middle of the score range, say r1 = 0,

and test whether students with a high rest score r(x(k)) perform better or worse as expected on the target
item k.

Local Independence

The assumption of local stochastic independence requires the association between the items to vanish
given the parameters. If, for instance, we want to test whether an item response depends on the previous
item, we define the indicator function

w(s, xi(k –1)) =
1
0

1 1if
otherwise

r x rs i k s� �� ��
�
�

( ) ,
,

(26)

for s = 1, ..., Sk with r0 = –� and rSk
= �. As before, the simplest form of the test emerges if only two score

levels are considered, and tests whether students with a high score on the previous item perform better or
worse than expected on the target item.

The expression for expectation of the item response τ nk has the form

τ nk = a hT
k� �β w( , )( )s xi k s

s

S

�
	

�


 1
1

1

δ , (27)

and the last contribution describes the effect of item k – 1 on item k. The parameter δk reflects the alternative
model and we can get the expression for first derivative:

h(η02) = xnk
n

w
 (s, xi(k – 1)) – w
n

 (s, xi(k – 1)) E(τ nk |x). (28)

Note that, analogous to the test for the shape of the response functions, in this case, the first-order derivative
is equal to the difference between the observed scores and expected scores of persons in subgroup s again.
Also in this case, the simplest form of the test emerges if only two score levels are considered, that is, if Sk =
2. In that case, one could set the cutoff score r1 somewhere in the middle of the score range of item
k – 1 and test whether students with a high score on item k – 1 perform better or worse than expected on the
target item k.
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Simulation Study on the Type I Error Rate and Power of the Tests

The Type I error rate or significance level of a test is the probability of rejecting the null hypothesis of
perfect model fit when the null model is true. In the present study, a significance level of 10% was used. On
the other hand, power is the probability of rejecting the null hypothesis when a model violation occurs. One
could call this the detection rate or hit rate. For all three tests described above, both the Type I error rate and
the power were studied using simulation studies. In these studies, data were generated according to the
model under the null hypothesis or the model under the alternative hypothesis, that is, under the null model
with an added model violation. In all studies, the sample size was varied as 500, 1,000 and 4,000, and the
number of items was varied as 10, 20, and 40. A unidimensional version of the model was used where the
student parameters θ n were drawn from a standard normal distribution. The item location parameters β
were equally spaced between –1.0 and 1.0. Finally, the item discrimination parameters α were all equal to 0.5.
In Appendix B, it is shown that in this way, the reliability of the scores, that is, the ratio of the within- and
between-person variance, was equal to 0.60 for a test length of 10 items, 0.80 for a test length of 20 items, and
0.90 for a test length of 40 items.

Type I Error Rate

The study with respect to the Type I error rate was conducted using both the exact expressions for the
second-order derivatives given in (7) and Appendix A, and the approximation given by (8). The number of
replications in the simulation study was 100 for each combination of the sample size and test length. For the
test on DIF, the numbers of simulees in each group were equal. For the tests for the item response function
and local independence, two score groups were formed (so Sk = 2 for all k) and the cutoff score was always
equal to zero. The Type I error rate was computed as the number of significance tests significant at the 10%
level aggregated over all items. The results are presented in Table 1.

TABLE 1
Type I error rate of three test statistics computed using exact and approximated matrices of second-
order derivatives

N K
DIF Test IRF Test LID Test

Exact Approx. Exact Approx. Exact Approx.
500 10 .10 .11 .08 .07 .06 .07

20 .10 .08 .09 .08 .08 .13
40 .10 .13 .10 .16 .06 .14

1,000 10 .10 .09 .14 .08 .07 .08
20 .13 .10 .09 .09 .11 .11
40 .10 .12 .11 .13 .10 .15

4,000 10 .11 .10 .11 .09 .08 .11
20 .10 .10 .11 .11 .07 .09
40 .10 .13 .11 .13 .10 .13

It can be seen that the control of Type I error rate was generally good. There were no main effects of
sample size and test length. Further, there were no striking differences between the two versions of
the statistic.

Differential Item Functioning

In the simulation study on the power of the tests to detect differential item functioning (DIF), three
values were chosen for the effect size: δ = 0.1, δ = 0.2, and δ = 0.5. Following the terminology of Cohen (1988),
these effect sizes can be labeled as minimal, small, and large. Within every one of the 100 replications, the
model violation was imposed on one randomly chosen item. The results are given in Table 2.
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TABLE 2
Detection of differential item functioning

DIF Test IRF Test LID Test

N K δ Hits
False

Hits
False

Hits
False

Alarms Alarms Alarms
500 10 .1 .69 .12 .09 .07 .10 .07

.2 1.00 .15 .09 .07 .07 .07

.5 1.00 .29 .13 .07 .08 .09
20 .1 .68 .12 .10 .10 .09 .11

.2 1.00 .13 .10 .09 .09 .11

.5 1.00 .17 .11 .10 .13 .10
40 .1 .74 .14 .19 .15 .15 .13

.2 1.00 .14 .14 .15 .13 .14

.5 1.00 .15 .12 .15 .13 .14
1,000 10 .1 .90 .12 .09 .08 .09 .08

.2 1.00 .19 .10 .08 .05 .07

.5 1.00 .45 .24 .08 .09 .08
20 .1 .94 .11 .11 .09 .13 .12

.2 1.00 .13 .14 .08 .12 .12

.5 1.00 .20 .14 .09 .10 .12
40 .1 .96 .12 .10 .14 .11 .15

.2 1.00 .13 .12 .13 .17 .14

.5 1.00 .14 .14 .13 .11 .14
4,000 10 .1 1.00 .15 .11 .09 .12 .12

.2 1.00 .45 .24 .10 .07 .12

.5 1.00 .91 .62 .11 .07 .14
20 .1 1.00 .11 .14 .11 .23 .21

.2 1.00 .21 .10 .09 .22 .20

.5 1.00 .45 .31 .10 .14 .23
40 .1 1.00 .11 .14 .11 .24 .25

.2 1.00 .12 .09 .11 .23 .25

.5 1.00 .20 .13 .11 .15 .25

The columns labeled “Hits” give the proportion of replications for which the test on the differentially
functioning item was significant at the 10% level. The columns labeled “False Alarms” give the proportion of
significant results for the items conforming to the model, aggregated over replications and all model
conforming items.

Note that the test on DIF displayed the largest proportion of hits; in most instances, this proportion was
equal to 1.00. Note further that the proportion of hits for the test targeted to DIF has main effects of test
length and sample size. Finally, the control of Type I error rate, that is, the proportion of false alarms,
remained generally close to the nominal significance level. The main exceptions occurred for the large effect
size in combination with a short test. The explanation is that in these cases the imposed model violation was
such that every combination led to a global model violation affecting all items. The two other statistics had
both the proportion of hits and false alarms at the nominal significance level. From a diagnostic perspective,
it is desirable that tests have power against specific model violations, so this is a positive result.

Item Response Functions

The results of the simulation studies with respect to the power of the three tests to detect violation of
the item response function (IRF) are shown in Table 3. The power is reported in the columns labeled “Hits.”
It can be seen that in the present case the test on DIF had no power. The test on the fit of the IRF had the
highest power. But the test targeted at local independence (local item dependence (LID) test column) also
had power to detect violation, although its power was of course less than the power of the specific test. In
both cases, there were clear main effects of the effect size δ, sample size, and test length. Further, it can be
seen that the Type I error rate was well under control.
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TABLE 3
Detection of violation of the item response function

DIF Test IRF Test LID Test
False False False

N K δ Hits Alarms Hits Alarms Hits Alarms
500 10 .1 .09 .11 .24 .06 .09 .07

.2 .12 .12 .71 .07 .12 .08

.5 .15 .11 1.00 .08 .23 .08
20 .1 .09 .12 .27 .10 .14 .11

.2 .10 .12 .86 .10 .18 .10

.5 .09 .12 1.00 .11 .29 .10
40 .1 .17 .14 .49 .15 .19 .14

.2 .15 .13 .96 .14 .20 .14

.5 .18 .14 1.00 .13 .29 .14
1,000 10 .1 .11 .19 .26 .07 .14 .06

.2 .10 .12 .94 .07 .24 .07

.5 .13 .10 1.00 .08 .42 .07
20 .1 .07 .11 .37 .09 .20 .12

.2 .09 .10 .97 .10 .23 .11

.5 .09 .10 1.00 .09 .37 .11
40 .1 .11 .12 .60 .13 .18 .14

.2 .09 .12 1.00 .13 .29 .15

.5 .13 .12 1.00 .11 .43 .13
4,000 10 .1 .10 .10 .69 .10 .21 .11

.2 .09 .10 1.00 .09 .53 .09

.5 .08 .10 1.00 .10 .90 .08
20 .1 .14 .10 .91 .11 .34 .20

.2 .15 .10 1.00 .11 .59 .19

.5 .10 .10 1.00 .13 .88 .20
40 .1 .13 .10 .97 .11 .44 .24

.2 .06 .10 1.00 .10 .60 .24

.5 .10 .10 1.00 .11 .86 .24

Local Independence

The results for the detection of violations of local independence are shown in Table 4. It can be seen that
this test has now attained the highest power. The test on the shape of the IRFs had considerable power, but
the power of the test on DIF hardly exceeded the nominal significance level. For all three tests, the Type I
errors were virtually similar to their nominal levels.
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TABLE 4
Detection of violation of local independence

DIF Test IRF Test LID Test

Hits
False

Hits
False

Hits
False

N K δ Alarms Alarms Alarms
500 10 .1 .11 .10 .09 .08 .11 .07

.2 .14 .11 .13 .08 .41 .08

.5 .09 .11 .23 .08 .95 .07
20 .1 .14 .11 .11 .10 .17 .10

.2 .10 .11 .12 .11 .40 .11

.5 .09 .12 .14 .10 .93 .10
40 .1 .14 .13 .14 .15 .17 .13

.2 .12 .14 .17 .15 .38 .13

.5 .17 .14 .18 .15 .90 .14
1,000 10 .1 .09 .10 .11 .08 .12 .06

.2 .12 .10 .12 .07 .69 .08

.5 .10 .10 .40 .08 1.00 .08
20 .1 .10 .11 .14 .09 .13 .12

.2 .11 .11 .12 .09 .64 .11

.5 .10 .11 .26 .09 .98 .12
40 .1 .09 .11 .10 .13 .11 .15

.2 .13 .11 .12 .13 .60 .15

.5 .12 .12 .14 .13 1.00 .14
4,000 10 .1 .10 .10 .19 .10 .38 .11

.2 .09 .11 .49 .10 1.00 .11

.5 .12 .10 .91 .13 1.00 .10
20 .1 .09 .10 .12 .09 .18 .21

.2 .09 .10 .29 .10 .99 .22

.5 .13 .10 .57 .10 1.00 .21
40 .1 .10 .10 .12 .11 .20 .25

.2 .11 .10 .19 .11 .95 .25

.5 .11 .10 .27 .11 1.00 .25

Conclusion

An MML framework for estimation and testing of an extension of a model for continuous responses
proposed by Mellenbergh (1994) was presented, and simulation studies were conducted to test the Type I
error rate and power. The simulation studies showed that these tests had excellent properties.

An advantage of MML estimation is that the item parameters and the covariance matrix can be estimated
simultaneously. A disadvantage is the limited number of time points or the limited number of latent variables
that can be analyzed. Earlier, it was mentioned that the maximum number of factors is 10 with adaptive
quadrature, 5 with nonadaptive quadrature, and 15 with Monte Carlo integration. There are two alternatives
that do not have these limitations. The first is a Bayesian procedure using a Markov Chain Monte Carlo (MCMC)
algorithm (see, for instance, Gelman, Carlin, Stern, & Rubin, 1995) which was suggested by Béguin and Glas
(2001). In this procedure, apart from the identification restrictions, the structure of the matrix factor loadings
αih is entirely free. The second approach specifically applies to the case of a simple structure with unidimensional
subscales loading on specific unidimensional latent variables used above. For that case, Rubin and Thomas (2001)
discuss a two-stage procedure with a first stage consisting of calibrating the unidimensional subscales using
a unidimensional IRT model, such as the Generalized Partial Credit Model (GPCM), and the second stage
consisting of estimating the covariance matrix between the latent variables using a combination of parameter
expansion and the EM algorithm.

A final remark concerns the relative merits of the likelihood-based and Bayesian methods. As mentioned, the
main drawback of MML estimation is the possible limitation on the dimensionality of the latent space. Bayesian
estimation methods based on the MCMC algorithm, usually combined with data augmentation methods, do not
have these limitations. On the other hand, two potential problems with the Bayesian framework must also be
considered. First, there are indications (Hendrawan, 2004; Dagohoy, 2005) that the MCMC estimation procedure is
not robust to model violations. The reason may be that model violations cause disturbances in the data
augmentation scheme that may lead to very slow convergence of the MCMC algorithm. Second, the procedures
for testing model fit in a Bayesian framework are not yet satisfactorily developed. At this moment, two
approaches to testing model fit based on a philosophy comparable to the one used above are being studied. The
first approach is to use likelihood-based statistics as posterior predictive checks (Hoijtink, 2001; Glas & Meijer,
2003). As a general approach, this may have problems because, as was pointed out by Maris (2005), the power
characteristics of posterior predictive checks are far from optimal. An alternative approach labeled Bayesian
modification indices has been recently proposed by Fox and Glas (2005) but this approach has not yet been
tested broadly for a general class of models. So for the time being, the proven robustness of MML estimation
and testing methods still justifies their widespread use.
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Appendix A

The information matrix is the sum over students n of terms

–E(Bn(n, n)|xn, n) – E(bn(n)bn(n �) |xn, n) + E(bn(n)|xn, n) E(bn(n)|xn, n �) , (29)

where

bn(n) =
∂

∂ n
log Pr(xn, h n ; n) (30)

and

Bn(n, n) =
∂

∂ ∂

2 log ( , ; )Pr x n nh n

n n �
.

(31)

The last term in (29) can be directly inferred from the estimation equations given by (14) and (13).

The kernel of the log-likelihood per student and item is given by

log Lnk = –
1
2

(xnk – τnk)
2, with τnk = α θkh nh

h

 – β k .

For the items, the following derivatives are easily checked:

∂

∂ α

log Lnk

kh

= θ τnh nk nkx( )�

∂

∂ β

log Lnk

k

= ( )xnk nk� τ

∂

∂ α2

2 log Lnk

kh

= � θ nh
2

∂

∂ β2

2 log Lnk

k

= �1

∂

∂ α ∂ α

2 log Lnk

kh kp

= � θ θnh np

∂

∂ α ∂ β

2 log Lnk

kh k

= θ nh

Inserting these identities into (29) gives the information matrix for the items.
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Appendix B

The reliability of a test is the ratio of systematic variance and total variance. It can be inferred from the
variance decomposition

Var(θ) = E(Var(θ|x)) + Var(E(θ|x)),

where θ is the ability parameter and x stands for a response pattern. Reliability is defined as

ρ =
Var E x

Var
( ( | ))

( )
θ

θ

=
Var E Var x

Var

( ) ( ( | ))

( )
.

θ θ

θ

�

In the simulations reported above, Var(θ) = 1.0. The term Var(θ|x) can be defined using the concept of Fisher
information. Fisher information is the negative of the second-order derivative of the log-likelihood.
Information is additive in the item responses for locally dependent items. So we have

∂ θ

∂ θ

log ( )Lx n

n

nk =
∂

∂ θ n

� � �( ( ))xnk k n k

k

α θ β

σ

2

22

	
� �α α θ β

σ
k nk k n k

k

x( ( ))
2

and

∂ θ

∂ θ

∂

∂ θ

α α θ β

σ

α

σ

2

2 2

2

2

log ( ) ( ( ))L xx n

n n

k nk k n k

k

k

k

nk 	
� �

	 � .

Note that the second-order derivative does not depend on the response pattern. Therefore, we can drop the
subscript n and write

E(Var(θ| ))x =
1

2

2

α

σ
k

kk

.

Above, σ k
2 = 1.0 and α k = 0.5 for all items, so the reliability was equal to 0.60 for a test length of 10 items, 0.80

for a test length of 20 items, and 0.90 for a test length of 40 items.
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