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Abstract

Although two-stage testing is not the most efficient form of

adaptive testing, it has some advantages. In this paper

linear programming models are given for the construction of

two-stage tests. In these models practical constraints with

respect to, e g., test composition, administration time,

inter-item dependencies, play an important role. Two-stage

tests can be constructed both sequentially and

simultaneously. Models are formulated for the sequential case

with constraints specified at test and subtest level.

Simultaneous test construction has the disacvantage that a

large number of variables and constraints have to be

considered.

6
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The construction of two-stage tests

Two-stage testing implies that the examinee is first

confronted with a routing test. The choice of the second test

depends on the score on the routing test.

Two-stage tests will be most valuable in situations

where the group tested has a range of ability too wide to be

measured effectively by a peaked conventional test (Lord,

1980. p.146). Other forms of adaptive testing are often more

efficient than two-stage testing. However two-stage tests

can be useful. Their advantages are that they can be

administered by paper and pencil (Lord. 1980; Fischer &

Pendl, 1980). and, under the Rasch model, that the ability

estimates are easily computed (Fischer & Pendl. 1980; Glas,

1988). Wainer and hiely (1987) give a number of problems that

are associated with most forms of adaptive testing, like

context effects, lack of robustness, and item difficulty

ordering (the items administered in the begin4ing are too

difficult for the least able students). In general, two-stage

tests need not be sensitive to these problems if they are

dealt with appropriately when constructing the test.

As pointed out by Yen (1983) linear programming models

(LP models) can be used for the construction of tests

(although we use the word "model" an LP model is in fact a

problem). LP models for the construction of two-stage tests

will be given in this paper. In these models practical

constraints, i.e., demands with respect to the properties of

the test, are taken into account. Practical constraints can,

7
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for iistance, be used to control the test composition and the

administration time. The models are based on the maximin

model for test construction (van der Linden & Boekkooi

Timings. 1989).

Further on. it is assumed that a bank of items

calibrated under an item I3sponse model is available and when

the word "information" is used Fisher's information is meant.

In the maximin model the test constructor has to provide the

relative shape of a target test information function by

giving target values at certain points. The idea is to select

U., items such that they maximize the information in the

test. while the resulting test information function still has

the desired shape.

Define the decision variables xi as follows:

0 item i not in the test
xi =

1 item i in the test.

Let pl. 1 = 1.....L be the relative amount of information

that is required at ability level 81 and Ii(81) the amount of

information at ability level 81 for item i. The maximin model

can then be formulated as follows:

(1) Max. y

subject to

8
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(2) E I, (el )xi ply a 0.
i=1

(3)

I

E xi = n,
i=1

Twostage tests
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1 = 1, 2, L,

(4) xi e (0,1), i = 1, 2 ,I,

(5) y a 0,

where n is the number of items in the test. I is the number

of items in the item bank, and y is a dummy variable. In this

representation it is clear that y can be considered a lower

bound to the weighted sums of decisions variables

Ii=14(81) pl1
xi and that the values of xi are selected such

that this lower bound is maximal.

The maximin model is in the operations research

literature known as a mixed integer linear programming model.

These models can be solved by branchandbound methods, i.e..

methods are available that maximize y and simultaneously

compute the corresponding optimal values for xi, i = 1 ..... I

(Land & Doig, 1960).

Practical Constraints

The linear programming models for the construction of

twostage tests may include a number of practical constraints

as formulated by van der Linden and BoekkooiTimminga (1989).

9
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In most item banks we can distinguish subsets of items. Items

can, for instance, be grouped in subsets on the basis of

their content or format (e.g., multiple choice, completion).

Generally, three different kinds of subsets can be

distinguished:

KJ (j = 1, 2, Jr): At most nic items may be selected

from the subsets Itj;

Ej (j = 1, 2 JE): Exactly nE items should be selected

from the su.,sets Ej:

Gj (j = 1, 2 JG): At least nG items should be selected

from the subsets Gj.

The following constraints are related to the subsets given:

(6) E xi s nrj , J = 1, 2 Jr.Jeri

(7) xi = nEj,
ieEj

j = 1, 2

(8) I xi k AGJ. J = 1, 2, JG.
ieGj

For example, let an item bank for French be partitioned with

respect to its content in a vocabulary, a grammar and a

reading comprehension part and with respect to its format of

items in a multiplechoice and a matching part. A test

10
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constructor has the following demands with respect to the

composition of the test:

1. The number of grammar items in the test is not greater

than 5:

I xi s 5.
JAL:.

where Ki is the subset of grammar items,

2. The number of vocabulary items in the test is equal to

6:

x4 = 6.
ieEl

where E1 is the subset of vocabulary items,

3. The number of reading comprehension items in the test is

greater than 5:

x4 2 6.
le% '

where G1 is the subset of reading comprehension items,

4. The number of multiple choice items in the test is not

greater than 12:

x4 S 12.
ieX2

where E2 is the subset of multiple choice items.

5. The number of matching items in the test is greater than

6:

/ x4 2 7.
ieG2

where G2 is the subset of matching items.

11
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If we also want to restrict the administrations time of

the test, we can do this by including the following

constraint:

I

(9) E tixi s T,
i=1

where ti is an estimate of the time an examinee from the

population needs for answering item i and T is the upper

bound on the administration time for that test.

Another possible kind of constraint reflects the

dependencies among items. It is possible that the item bank

contains subsets of items Vj (J = 1, 2 Jv) from which

it is not allowed to select more than one item, because every

item in such a subset contains information about the answers

to the other items in that subset. This demand can be

formulated in a linear constraint as follows:

(10) / xi s 1,
ieVj

J = 1, 2 4,

It may also be desirable to select either all or none of

the items from a subset Wj (J = 1, 2 Jw):

E xi = IWUxii,
iEWJ

J = 1, 2 Jw,

where IWil is the number of items in Wj and xij is an

12
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arbitrary item in

Sequential Test Construction

If a two-stage test is admit. :ed as a paper and

pencil test, a dec!sion muv be made about the ability levels

at which the second tests should aim. Theunissen (1986) shows

how these ability levels can be computed. if the tests are

constructed sequentially.

If the test is administered by a computer. it is

possible to adapt the second test to the individual ability

of the examinees. because then the ability of the examinees

can be estimated using the score on the routing test.

Therefore. we will base the selection of items for the second

test on the estimated ability. This implies that the subtests

are constructed sequentially.

A test constructor may wish to impose constraints on the

item selection at two levels: the subtest or the test :evel.

Both possibilities will be considered in the followiag two

sections.

Constraints at Subtest Level

In this case only constraints at subtest level are

considered. A general LP model that selects items for the

routing test r can be formulated as follows:

(12) Max. yr

13
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I

(13) E Ii(81)xir Yr t 0.
i=1

1= 1

I
xir = nr.

i=1

(15) E xir s
ieiri

j = 1
jrr'

(16) E xir = nEri.
ieEri

j - 1 JEr.

(17) E xir k nori
ieGri

i = 1,..... JGr.

I
(18) tirxir s Tr.

i=1

(19) E xir s 1.
ieVri

j 1 JVr.

(20) xir =
ieWri

= 1 Jliz

(21) xir e (0.1). i 1

(22) Yr t 0.

14
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The number of items in the routing test is equal to nr. In

this model the values of pl are set to one (see the

constraints in inequality 2). Because an adaptive test is

supposed to measure accurately over the whole ability range,

it is assumed that the test constructor wants the same amount

of information for each ability level. The advantage of this

approach is that the test constructor does not have to

specify the relative amount of information that is required

at 01, 1 = 1, ..., L.

In the case of computerized test administration the

construction of the second test is based on the estimate 0*

of the/ability on the routing test. If the test is

administered as a paper and pencil test, then the number of

ability levels has to be specified in advance. The second

tests are constructed such that they give maximal information

on the specified ability levels. A LP model for the

construction of a second test s at ability level 0* is:

I

(23) Max. E Ii(V)xis
i=1

subject to

(24) E xis = 0,
iEU

(14) (17) with subindex r replaced by s,

15
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I

(25) E Pis(e*)xis s Ts.
i=1

(19) (21) with subindex r replaced by s.

where Er is the set of items selected for the routing test. It

should be noted that Gil and Gs1 can be two totally different

sets of items. In constraint (25) we suppose that the time

needed for answering an item depends on the ability 8*. In

practice. this implies that a large number of response times

must be estimated. These estimates are often not available.

and it will then not be possible to include constraint (25)

in the model. On the other hand, the omission of constraint

(25) will enable the use of simple and efficient algorithms

for solving the LP model (see Appendix). If simple algorithms

cannot be used we have to use heuristics. A heuristic based

on the branchandbound method that can be used for the

present test construction problem is given by Adema (1988).

Constraints at Test Level

If the test constructor specifies demands with respect

to the item selection at the level of the test, then the

above specified models are no longer applicable. In this

section models which can be used for the construction of two

stage tests with demands at test level are given. In these

models the constraint on the administration time is omitted

because this constraint can rarely be included in view of a

lack of data. The LP urdel for the construction of the

routing test r can be formulated as follows:

16



(26) Max. Yr

subject to

(13) - (14),

(27) E xir s nEj.
ieEj

(28) E xir s nrj,
Jai

Two-stage tests
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J = 1...... JE.

j= 1......

(29) E xir s 1, j = 1
.

ieVj

(30) E xir = IWjIxijr. j = 1 Jw,

ieWj

(21) - (22).

In the model it is supposed that both the number of items in

the routing and the second tests are specified separately.

The model shows that restrictions on the subsets 0j,

j=1 ..... JG are not needed. The way the constraints in (30)

are formulated does not allow some of the items of Wj to be

in the routing test while the others are in the second test.

The model for the second test is:

I

(31) Max. Z Ii(V)xis
i =1

1
p-1
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subject to

I

(32) E xis = ns.
1=1

(33) E. xis = 0.

(34) E xis s ng4 E xir. 3 = 1 JI.
Jai a ieEj

(35) E xis = nE4 E X1r.
ieEj a ieEj

- 1

(36)
ieGj
Xis k nG4

i eG
E

j
xir. 3 = 1 .

(37) E xis s 1 E xir.
ieVj ieVj

3 = 1 . 4.

(38) E xis = IWjlxijs.
ieWj

j 1 Jw.

(39) xis E {0.1}. - 1 I

where El is the set of items selected for the routing test. In

this model the xir's are no longer variables, because they

are fixed at the value 0 or 1 after the model for the routing

test has been solved. The constraints (31) (33). (38) and

(39) can also be found in the LP model for the construction

18
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of second tests with demands at subtest level. These

constraints are given again for the sake of clarification.

It is possible that no feasible solution for the second

test can be found. This problem can be approached as follows:

Let the integer variables
zE3

(3 = 1, , JE) and

zgj (3 = 1, , J0) denote the minimum number of items from

sets E3 (3 = 1, , JE) and Gj (3 = 1, , J0) to be

selected for the second test. Several criteria can be found

for partitioning an item bank in subsets of items. Let M

denote the number of criteria. The coefficients 602Ej and 6mGj

are now defined as follows:

0 if the items are not in Ej because of criterion m
6mE =

1 if the items are in Ej because of criterion m

0 if the items are not in Gj because of criterion m
6mG =

1 if the items are in Gj because of criterion m.

These variables and coefficients are included in the

constraints in (27) of the model for the routing test as well

as in two new kind of constraints:

(40) Xir + ZEi = nEj,
iaj

j 1 , ,

(41) E xir + zGi trj, j 1 JG,
iEG3

19
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10
6mG(42) L 6mE zE + m = 1 M.

J =1
jzGj s ns,

The constraints in (42) exclude the possibility that, for

instance, at least 7 addition items and exactly 4 subtraction

items must be selected for the second test, while the number

of items in the second test is 10.

Simultaneous Test Construction

If the routing and the second test are constructed

before they are administered, it is possible to construct the

subtests simultaneously instead of sequentially. The choice

of the ability levels of the second tests, however, is a new

problem. In this paper we will suppose that the ability

levels of the second tests can be selected in advance. This

can be done safely, becevse item information functions are

continuous, well behaved smooth functions. If practical

demands with respect to the item selection are specified at

subtext level it is much easier to construct the subtests

sequentially. Therefore, only demands at the level of the

test are considered. The model that will be given is not

always practical, because it includes a large number of

decision variables 'ad constraints. We will return to this

problem at the end of the section. The advantage of

simultaneous test construction compared to sequential test

construction is the better distribution of "good" and "bad"

items over routing and second test.

20



Define the decision variables zip by:

1

0 item i not in subtest p

zip 1 item i in subtest p.

Twostage tests
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P=1 . P

The routing test is denoted by p = 1. So there are P 1

second tests. In the model yr is equal to the minimum of

I

E zit
i=1

for 1 = 1, L and ys is equal to the minimum of

I

E I (0*) z .

i=1
p

ip

where 8* is the ability level at which second test p is

peaked for p = 2, ..., P. The objective function of the model

is to maximize these minima simultaneously. Because the value

of yr respectively ys is influenced by the number of items in

the routing test respectively the second tests, we have to

weight the variables yr and ys by 1/nr or 1/ns respectively

in the objective function. So if we assume that the items in

the routing test and the second tests are equally important.

then we can formulate the following model:

(43) Max. Triar ys /ns

21



subject to

I
(44) X k Yr.

i=1

I

(45) E Ii(9p)zip k Ys.
i=1

(46)

(47)

(46)

I
X zii =
i=1

I
X Zip = Zs.

i=1

E xii + Z sip 5 nii,
isij ieij

(49) X zii + E sip = nE3.
icEj ieEj

(50) E zi1 + sip

A3j.
iEOj ieGj

(51)
1 Vj

zii + iiVj zip 5 1,
I

22
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1 - 1. L

p = 2 . P.

p - 2 P.

=1. JS;

p = 2 P

- 1 4 ;

p = 2 P

= 1 JO;

p - 2 P

= 1. JV;

p = 2 , P .
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(52) I xii + I
rip

= Mixi 1
+

Wilxi p.
Jai ieiii i i

1 = 1 . Jw;

p = 2 , P ,

(53) xii + Xip s 1. p - 2 P;

i - 1 , I ,

(54) xip E (0,1), p = 1 P;

i - 1 I ,

(55) yr, ys a 0.

The above model for simultaneous test construction is

not very practical, because the numbers of constraints and

variables are so large that the amount of CPU-time and

computer memory needed for solving the model may be

prohibitive (see Examples). However, it may be possible to

make use of the special structure of the model and develop

heuristics that are capable of solving the model under

realistic conditions.

Multi-stage Testing

Multi-stage testing differs from two-stage testing in

that more than one subtest is administered after the routing

test. The choice of each subtest depends on the scores on the

preceding test. The linear pros amming models for the

23
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construction of second-stage tests with constraints at

subtest level can also be used for the construction of multi-

stage tests, provided that one modification is taken into

account. In this case, set U in the constraint in (24) must

be redefined as the set of items selected for the preceding

subtests. The models with constraints specified at test level

can also be modified in a straight-forward way, so that they

are useful for the construction of multi-stage test

procedures. Extension of the model to simultaneous test

construction is also possible; but will enlarge the problems

associated with large numbers of variables and constraints.

Examples

In this section two examples are given. In the first

example a two-stage test is constructed sequentially with the

demands specified at test level. In the second example the

two-stage test is constructed simultaneously. A simulated

item bank for French with 300 items that fitted the 3-

parameter model (ai U(0.5,1.5); bi U(-3,3); ci = 0.2) was

used for both examples. The item bank was partitioned with

respect to its content in a vocabulary (items 1-100), a

grammar (items 101-200), and a reading comprehension part

(items 201 - 300). The first 100 items of those subsets were

of the multiple-choice type. The other items were of the

matching type.

The demands of the test constructor in both examples

were:
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- The ability levels at which the target information function

is specified for the routing test is e1 = -1. 02 = 0, and

03 = 1.

- The second tests are peaked at the ability levels -1 and 1.

- The number of items in the routing test and second tests is

20.

- The examinee should answer in total less than 15 vocabulary

exactly 12 grammar, and more than 15 reading comprehension

items.

- The number of multiple-choice items the examinee should

answer is smaller than 25. For the matching items this

number is greater than 13.

The linear programming models with 0-1 variables that

were used in the examples can be solved by a branch-and-bound

method (Land & Doig, 1960). The models were solved on a DEC-

2060 computer with a modified version of the program Lando

(Center for Mathematics and Computer Science). The

modifications in the branch-and-bound part of the algorithm

are described by Adema (1988). The CPU-times in the examples

do not include the time needed for reading the input file,

for the initialization and for writing to thy) output file.

The CPU-times are shown to give an impression about the

practicality of the approaches.

Examigiml

In this example we consider the case of sequential test

construction with demands at test level.
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Bn LP model for constructing a routing test that

fulfilled the demands was formulated. The routing test

constructed with this model was composed as follows: 7

vocabulary items; 4 grammar items; 9 reading comprehension

items, 8 multiple-choice items and 12 matching items. The

test information value was 4.050 at 81, 5.809 at 82, and

4.037 at 83.

Given the composition of the routing test, the

restrictions on the composition of the second teats were:

- The second tests should contain less than 8 vocabulary,

exactly 8 grammar, and more than 6 reading comprehension

items.

- The second tests should contain less than 17 multiple-

choice items and more than 1 matching item.

The information values of the second tests were:

Second test at 0* = -1: 5.052;

Second test at 8* = 1: 5.690.

The total CPU-time for constructing the routing test and

second tests was 7.3 seconds.

Examals2

In this example the routing test and second tests were

constructed simultaneously with LP model (43) - (55). For the

constructed routing test the test information value was 3.689

at 01, 5.608 at 82, and 3.742 at 83. The information values

of the second tests were:

Second test at 0* = -1: 5.758;

Second test at 0* = 1: 5.758.

26
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The CPU-time needed for computing a solution was 659.3

seconds.

Discussion

22

In this paper linear programming models for the

construction of two-stage testing procedures are proposed.

The model for simultaneously constructing the subtests has

theoretical value as yet, because of the large number of

(0,1)-variables and constraints in the model and the problem

of specifying the ability levels of the second stage tests.

However, it may be possible to develop heuristics for special

cases. More promising were the models for sequential test

construction. Especially the model with constraints at

subtest level is easy to apply, because the routing test and

the second test can be constructed separately. When the test

constructor specifies the constraints at test level, some

problems will arise because we will have to take into account

the construction of the second-stage test in the model for

the routing test and reverse. These problems can be solved by

introducing the constraints in (40) through (42).

There are other forms of adaptive testing which may be

more efficient than two-stage testing. The construction of

such adaptive tests, using mathematical programming models is

not always practical and can be too difficult if not

impossible. As an example, the case of tailored te.'cing is

considered. In tailored testing one item is selected at a

time so that the selection of the best item is easy: Select

2.7
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the item that gives the most information at the current

ability estimate of the examinee and also satisfies the

practical constraints. After the selection of an item the

practical constraints have to be adjusted, just like we

adjusted the constraints in model (31)(39) to the items

...fleeted for the routing test. In fact, model (31)(39) can

be used for the construction of tailored tests by adapting

the model in a straightforward way and choosing ns = 1.

Appendix

In this appendix a simple algorithm is given for solving

a model with objective, function (23) and constraints (14)

through (17) with subindex r replaced by s where the

intersection of the subsets is empty. In the first part of

the algorithm the items giving the most information at

ability level 0* are selected from the subsets Ej(j = 1.

JE) and Gi(j = 1. JG) such that the =constraints are

satisfied and equality yields for the zconstraints. In the

second part of the algorithm the rest of the n items are

selected from the subsets Gj(i = 1. JG) and Ki(j = 1,

Jk) such that the 5constraints are satisfied and the

information at ability level 0* is maximized. For

convenience, subscript s is omitted in the following

description of the algorithm.

2.8
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Algorithm:

Step 1: Sort the items in the subsets E1, EJE, G1,

GJG in sequence of decreasing information at ability

level 0". Go to Step 2.

Step 2: The first nEj (J = 1,...., JE) and nej (J = 1,

JG) items from the subsets E1, EJE, G1, GJG

are selected for the test. Go to Step 3.

Step 3: Put the items of L1, IJK and the items of

G1 GJG that are not selected in a queue. Sort

the items in the queue in sequence of decreasing

information at ability level O. Go to Step 4.

Step 4: If n items are selected the algorithm stops. If less

then n items are selected, then take the first item

from the queue. Check whether the selection of this

item is feasible for the s constraints. If so, add

the item to the test. Repeat Step 4.

We can adapt the algorithm so that it can also solve other

problems. For instance, it is easy to include constraints

(19) with r replaced by s. The purpose of this appendix was

just to show that ' is sometimes possible to solve a 0-1 LP

model by a simple and efficient algorithm.
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