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Executive Summary

Though the development of computerized adaptive testing (CAT) has resulted in more efficient
educational and psychological measurement, it has also generated new practical and theoretical problems.
One theoretical problem that arises is the identification of item score patterns (correct and incorrect
responses) for particular test takers that do not conform to what would be expected based on the
mathematical model being applied. An example of such an aberrant item score pattern would be that of a
test taker who answered many easy items incorrectly and many difficult items correctly. If a test taker has an
item score pattern that does not fit, the pattern is unlikely to give valuable information about the test taker's
ability, but may point toward other behavior during the test. Explanations of aberrant item score patterns in
CAT differ from those in paper-and-pencil testing. For example, in paper-and-pencil testing, answer copying
may result in unexpected item scores, whereas in a CAT, direct answer copying is impossible because
different test takers are administered different tests.

Several recent person-fit methods for CAT were studied. The sampling distributions of these statistics
were studied empirically, and it was shown that the statistics have sufficient power to relate different
patterns of responses to different types of misfit in the test taker's behavior.

Abstract

In this study we discuss recent developments of person-fit analysis in the context of computerized
adaptive testing (CAT). Methods from statistical process control are discussed that have been proposed to
classify an item score pattern as fitting or misfitting the underlying item response theory (IRT) model in a
CAT. Most person-fit research in CAT is restricted to simulated data. In this study, empirical data from a
high-stakes test are used. Alternative methods to generate norm distributions to allow the determination of
bounds are discussed. These bounds may be used to classify item score patterns as fitting or misfitting.
Using bounds determined from the sample, the empirical analysis indicated that different types of misfit can
be distinguished. Possibilities to use this method as a diagnostic instrument are discussed.

Introduction

In computerized adaptive testing (CAT), for each examinee the ability is estimated during test
administration continually, and subsequent items are selected to match the current ability estimate. CAT
originated from the idea that matching item difficulty and ability level will result in a more efficient and
reliable way of testing. Item response theory (IRT) models (e.g., Embretson & Reise, 2000) model response
behavior with distinct parameters for the person’s ability and the item characteristics. IRT models allow the
construction of different tests for different examinees from an item bank and compare their results on the
same latent trait scale. For an introduction to CAT and an overview of recent developments, refer to Wainer
(1990), van der Linden and Glas (2000), and Meijer and Nering (1999).

The development of CAT has resulted in a more efficient way of educational and psychological testing
and new innovations that make testing more reliable and valid. CAT has also generated new practical and
theoretical problems. In this study we will focus on the fit of an item score pattern to an IRT model in CAT, a
research topic that has been underexposed in the literature. For paper-and-pencil (P&P) tests, a large number
of studies have focused on this topic; for a review refer to Meijer and Sijtsma (1995; 2001). The central idea in
these studies is that, although the items in a test may show a reasonable fit to an IRT model, an individual’s
score pattern may be very unlikely given the IRT model. In educational and psychological testing the main
aim is to measure persons, and any indication that a person’s score pattern is very unlikely given the model
is valuable information. It may point at other mechanisms than the assumed interaction between the trait
and item characteristics that is modeled via an IRT model. Therefore, both for P&P tests and CAT,
identifying misfitting item score patterns is important, although the cause of misfit may be different for both
types of tests. For example, in P&P tests, answer-copying may result in unexpected item scores, whereas in a
CAT, answer copying is improbable because different examinees get different tests.

Let us give two examples to illustrate the importance of investigating the fit of an item score pattern in a
CAT and to illustrate the mechanisms underlying aberrant response behavior. Kingsbury and Houser (1999)
describe the situation where a CAT is routinely used as a pretest and posttest to check if short-term changes
in instruction in a curriculum has any effect on the mean achievement level of the candidates. In this
situation, some students may not take the test seriously and may guess the answers to some or all of the
items. This disinterest in the results of the test may result in item score patterns that are unexpected based on
the IRT model that is being used. Note that the number-correct score for these persons on the test may also
be lower than the score they would have obtained if they answered the items according to their own
proficiency. When many persons in this situation do not take the test seriously, the incorrect conclusion
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would be drawn that the curriculum adaptation will result in lower number-correct scores. In general, this
problem exists in all situations in which a test is used as an instrument to assess the quality of a curriculum
and where the results are not primarily used to evaluate the students.

As another example, consider high-stakes testing, where it is important that a test agency guarantee that
the test has the same psychometric characteristics for each person. Because in CAT different (sub)tests are
given to different persons, it is assumed that the ability is invariant over subtests of the total test, so that
different subtests can be administered to different persons. Violations of invariant ability therefore may be a
serious threat to the comparability of the test scores across persons. Routinely checking the invariant ability
level for each person is therefore important.

Because of the idiosyncrasies of CAT compared to P&P tests, we will (1) discuss the possibility of using
existing person-fit statistics in a CAT, (2) discuss a number of recently proposed person-fit methods for CAT
and discuss their pros and cons, and (3) conduct an empirical study in which we apply one of these methods
to an empirical dataset.

Person-Fit Research

Several statistics have been proposed to investigate the fit of an item score pattern to an IRT model. In
IRT the probability of obtaining a correct answer on item I (I = 1, ..., k) is a function of the latent trait value (θ)
and the characteristics of the item such as the location b (van der Linden & Hambleton, 1997; Embretson &
Reise, 2000). This conditional probability pi(θ) is the item response function (IRF). Let xi denote the binary
(0, 1) score to item I and let x = (x1, ..., xk) denote the binary response vector, ai the item discrimination
parameter, bi the item difficulty parameter, and ci the item guessing parameter. The probability of correctly
answering an item according to the three-parameter logistic IRT model (3PLM) is defined by
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when ci = 0 for all items the 3PLM becomes the two-parameter logistic IRT model (2PLM).
Most person-fit research has been conducted using fit statistics that are designed to investigate the

probability of an item score pattern under the null hypothesis of fitting response behavior. A general form in
which most person-fit statistics can be expressed is
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where the expectation of the statistic equals 0. For example, Wright and Stone (1979) proposed a
person-fit statistic
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Most studies (e.g., Levine and Rubin, 1979; Drasgow, Levine, & Williams, 1985) have been conducted
using some suitable function of the log-likelihood function

l = � �� �x p x pi i i i
i

k

ln ( ) ( )ln ( )θ θ� � �
�
� 1 1

1

.
(4)

Large negative values of this statistic indicate misfitting response behavior. Often a standardization of l
is used with an expectation of 0 and a variance of 1.

For relatively short P&P tests, the variance of this statistic is underestimated (i.e., less than 1), and
corrections can be applied (e.g., Snijders, 2001). Using statistics like U and l in a CAT is problematic. This
will be illustrated on the basis of the item score patterns depicted in Table 1. In Table 1 all possible item score
patterns on a test are depicted with their value on the person-fit statistic M proposed by Molenaar and
Hoijtink (1990). This statistic is equivalent to l using the Rasch (1960) model. Two sets of M-values are
depicted; the first set is based on the item difficulty values (–2, –1, 0, 1, 2) and the second set is based on the
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item difficulty values (–1, –0.5, 0, 0.5, 1). For both item difficulty sets, pattern #1 is the most plausible pattern
and pattern #7 is the least plausible pattern. It can be seen that reducing the variance in the item difficulties
also results in a reduced variance of M. In the extreme case when all items have the same item difficulty, all
item score patterns have the same likelihood.

TABLE 1
M-values for different item score patterns

Pattern

Items M-values

1 2 3 4 5
Difficulty

Set 1
Difficulty

Set 2
1 1 1 0 0 0 3 1.5
2 1 0 1 0 0 2 1.0
3 1 0 0 1 0 1 0.5
4 1 0 0 0 1 0 0.0
5 0 1 0 0 1 –1 –0.5
6 0 0 1 0 1 –2 –1.0
7 0 0 0 1 1 –3 –1.5

Difficulty Set 1 has difficulty values –2, –1, 0, 1, and 2.
Difficulty Set 2 has difficulty values –1, –0.5, 0, 0.5, and 1.
M = –� bixi

The situation with reduced variance in the item difficulties is relevant for person-fit in a CAT. Due to the
relatively modest variability in the item difficulties in a CAT compared to those in a P&P test, fitting and
misfitting item score patterns are difficult to distinguish.

This was illustrated using simulated data by van Krimpen-Stoop and Meijer (1999; see also Reise, 1995)
who showed that in CAT the distributional characteristics of existing person-fit statistics like l are not in
agreement with their theoretical distributions. They found that empirical type I errors are too small
compared to nominal type I errors.

Person Fit in CAT

In a few studies person-fit statistics have been proposed to be used in a CAT. McLeod & Lewis (1999)
proposed a statistic Zc that was designed to detect item score patterns that result from memorization. Before
the statistic can be calculated, the item bank is divided into three parts; easy items, items of medium
difficulty, and difficult items. Let Easy[pi (θ) – xi] denote the mean residual for the easy items and
Diff [pi (θ) – xi] the mean residual for the most difficult items in an administered CAT, then Zc is given by

Zc =
� � � �

� �� �� �
Easy p x Diff p x
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i i i i

i i Easy

( ) ( )
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θ θ

θ θ

� � �

� � �1 2 � �� �� �� �Diff p p ni i Diff( ) ( ) /θ θ1 2
;

(5)

Zc is positive when an examinee answered the easy items incorrectly and the difficult items correctly.
Applying this statistic to an operational Graduate Record Examination Quantitative CAT bank with 14%
simulated memorized items resulted, however, in low detection rates. Zc was constructed to detect
examinees with preknowledge of the item scores. A drawback of Zc is that each examinee should receive at
least one easy and one difficult item and, thus, the item selection algorithm should be adapted when using
this fit statistic. In addition, the moderately difficult items of a person are not taken into account, which
results in an incomplete picture of the fit of an examinee’s item score pattern. Another drawback, similar to
person-fit statistics proposed in the context of P&P tests, is that the statistic does not identify where the
misfitting items appear in the order of presentation. As will be seen later, the proposed statistic does provide
this important information.

Drasgow, Levine, and Zickar (1996) discussed a method to detect random response behavior in a CAT.
This method was based on a likelihood ratio test comparing the likelihood of an item score pattern under the
IRT model with the likelihood of the item score pattern under an alternative model (Drasgow & Levine,
1986). As an alternative model, random response behavior was modeled by a two-stage process. In the first
stage, it was assumed that as a result of unfamiliarity with the computer, examinees devoted all their
intellectual resources to learning how to interact with the computer. Consequently, their responses to the first
n1 items can be viewed as essentially random. Then, it was assumed that examinees mastered the mechanics
of responding to a computer test by the time n1 items were administered. Thus, it was assumed that the final
n2 items would be answered according to the model for normal responding.

Given this model, the conditional likelihood of the response pattern x = (x1, x2) for the misfitting
model is

3



Pmisfit = (x|θ) =
1 1

1

1

2g

g

g
P x

x

i

k
x

fit

i i

	



��

�


��

�	



��

�


��

�

�

� ( | )θ
(6)

where 1/g is taken as the probability of a correct response during the subtest of n1 items and g – 1/g is the
probability of an incorrect response. The marginal likelihood can then be obtained by integration with
respect to the density. An important drawback of this method is that in practice it is difficult to come up with
a plausible alternative model. How many items will the examinee guess the answers to? Will he/she
completely guess such that the probability of a correct answer is 1/g?

As an alternative to both methods discussed above, both Bradlow, Weiss, & Cho (1998) and van
Krimpen-Stoop and Meijer (2000) proposed person-fit statistics in which a model-fitting item-score pattern
consists of an alternation of correct and incorrect responses, especially at the end of the test when �θ
converges on θ. A string of consecutive correct or incorrect answers could signal misfit. Sums of consecutive
negative or positive residuals [xi – pi(θ)] can be investigated using a cumulative sum procedure (Page, 1954).
For each item I in the test, a statistic Ti can be calculated that equals a weighted version of [xi – pi(θ)]. A
simple statistic is

T1 = 1/k[xi – pi(θ)]. (7)

Then, the sum of these Tis is accumulated as follows:

Ci
� = max� �0 1, ,T Ci i� �

�

(8)

Ci
� = min� �0 1, ,T Ci i� �

� and (9)

C0
� = C0

� = 0, (10)

where C+ and C– reflect the sum of consecutive positive and negative residuals, respectively. Let UB and LB
be some appropriate upper and lower bounds. Then, when C+ > UB or C– < LB, the item-score pattern can be
classified as not fitting the model; otherwise, the item score pattern can be classified as fitting.

To illustrate the use of this statistic, consider a 20-item CAT with items selected from a simulated
400-item pool fitting the 2PLM with item parameters ai ~ N (1, 0.2) and bi ~ U (–3, 3). Simulation results (van
Krimpen-Stoop & Meijer, 2000) showed that, when the CUSUM was determined using the statistic T, the
values of UB and LB at α = .05 were .13 and –.13, respectively. To investigate the fit of an item score pattern,
first �θ is determined. In a CAT, two different values of �θ can be chosen to calculate T: the value of the
updated �θk – 1, or the final �θN. Using �θk – 1, the fit can be investigated during test administration; however, �θN
is more accurate and results in more stable results (van Krimpen-Stoop & Meijer, 2000). Therefore, �θN is used
in this example. T is determined for each administered item. Based on the values of T and according to
Equations (7) through (9), C+ and C– are calculated for each administered item.

Consider an examinee taking the 20-item CAT generating the item score pattern given in Table 2. The
final ability estimate, �θN , for this examinee was –0.221. Table 2 gives the values T1, C+, and C– after the
administration of each item. Consider the first three items. The first item score equals 0 and pi (θ) = .411; this
results in T1 = – .021 (Equation 6). Substituting this value in (7) results in C1

� = 0 and in (8) results in C1
� =

–.021. Answering the second item incorrectly results in T2 = –.022, C2
� = 0, and C2

� = –.042. The third item is
answered correctly and thus T3 = .025, C3

� = 0 + .025 = .025 and C3
� = –.042 + .025 = –.017.
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TABLE 2
CUSUM procedure for a fitting item score pattern
Item X P T C+ C–

1 0 .411 –.021 0 –.021
2 0 .439 –.022 0 –.042
3 1 .497 .025 .025 –.017
4 0 .476 –.024 .001 –.041
5 1 .580 .021 .022 –.020
6 0 .463 –.023 0 –.043
7 1 .514 .024 .024 –.019
8 0 .578 –.029 0 –.048
9 1 .664 .017 .017 –.031

10 1 .568 .022 .038 –.009
11 1 .534 .023 .062 0
12 0 .287 –.014 .047 –.014
13 0 .424 –.021 .026 –.036
14 1 .557 .022 .048 –.013
15 0 .411 –.021 .028 –.034
16 0 .421 –.021 .007 –.055
17 1 .679 .016 .023 –.039
18 1 .418 .029 .052 –.010
19 0 .319 –.016 .036 –.026
20 1 .606 .020 .056 –.006

Note that the procedure is running on both sides and that a negative (or positive) value contributes both to
C+ or C–. Because 0 is the smallest value C+ can obtain and the largest value C– can obtain, we can distinguish
strings of positive and negative residuals. For this particular item score pattern, it can be seen (Table 2,
columns 5 and 6) that C+ stays below .13 and C– stays above –.13. The highest value of C+ is .062 (item 11),
and the lowest value of C– is –.055 (item 16). Therefore, this item score pattern is classified as fitting at α = .05.

Consider now an examinee who responds to the 20-item CAT by randomly guessing the correct answers
to all the items with 5 alternatives per item. In Table 3, the item score pattern for this examinee ( �θN = –3.5)
and T, C+ , and C–are given. C+ stays below .13, whereas at the 19th item the value of C– becomes smaller
than –.13. As a result, the item score pattern is classified as misfitting.

TABLE 3
CUSUM procedure for a misfitting (guessing) item score pattern
Item X P T C+ C–

1 0 .005 0 0 0
2 0 .006 0 0 –.001
3 1 .007 .050 .050 0
4 0 .009 0 .049 0
5 0 .012 –.001 .049 –.001
6 0 .026 –.001 .047 –.002
7 0 .060 –.003 .044 –.005
8 0 .070 –.003 .041 –.009
9 1 .134 .043 .084 0

10 0 .082 –.004 .080 –.004
11 0 .149 –.007 .073 –.012
12 0 .251 –.013 .060 –.024
13 0 .277 –.014 .046 –.038
14 0 .259 –.013 .033 –.051
15 0 .330 –.017 .017 –.067
16 0 .304 –.015 .002 –.083
17 0 .359 –.018 0 –.101
18 0 .360 –.018 0 –.119
19 0 .364 –.018 0 –.137
20 1 .305 .035 .035 –.102

Researchers van Krimpen-Stoop and Meijer (2000) used simulated data to investigate the power of this
statistic under different types of misfitting behavior. They simulated random response behavior (chance),
violations of local independence, and noninvariant ability. In the latter case, two different θ values for each
simulee were used to generate responses. At an α-level of .05, they reported detection rates of .60 under the
guessing condition and between .22 and .72 under the noninvariant ability condition depending on the
differences between the thetas. The detection rates under the guessing condition were low at .10.

As noted, van Krimpen-Stoop and Meijer (2000) used simulated data to determine the power of the
statistics. We will apply the statistic to empirical data.

5



Method

Data

To compare and investigate the usefulness of different person-fit methods, we analyzed the empirical
data of a high-stakes test. The minimum test length is 70 items, and the maximum test length is 140 items. If
at the end of the administration of 70 items a pass/fail decision is reached with 95% confidence, the
examination ends. If a pass/fail decision cannot be reached with 95% confidence, the examination continues
until a pass/fail decision can be made with 95% confidence, or until the individual has taken 140 items, or
until the time limit of 3 hours is reached. The content is balanced according to a blueprint, and data are
calibrated according to the Rasch model. Each test contains five different subject matters. Furthermore, the
first item is administered near the pass point (θ = 1), and the first 10 items are administered within .10 logits
of the previously administered item difficulty.

Sampling Distribution

To decide if an item score pattern is very unusual under the model, a distribution of the statistics is
needed. In CAT there are different possibilities to choose the distribution f(x) (Bradlow et al., 1998). The main
question is on what information we want to condition. In this study we chose the simplest alternative; that
is, we used the distribution f(x|�θ) where we assumed that the item difficulties were known and fixed. Then,
when we tested at, for example, a 5% level, we first determined for each x the most extreme value and
determined the LB and UB by choosing that value for which 2.5% of the most extreme values lie above (UB)
or below (LB) that value across x. Because the test we analyzed has a variable length, we did not condition
on test length. Some closer inspection of the results for different test length revealed that there was no effect
of test length on the LB and the UB.

An alternative would be to take the stochastic nature of �θ into account and sample from the posterior
predictive density, that is to determine

f(x|xobs) = f� (x|θ)p(θ|xobs)dθ,

or to sample from the prior predictive distribution

f(x) = f� (x|θ)p(θ)dθ.

In general, sampling from the posterior or prior predictive distribution with a normal prior may have
the drawback that the fit of an item score pattern is compared with the fit of a person with average θ. In the
person-fit literature for P&P tests it is shown that the distribution of a person-fit statistic may depend on θ.
Sampling from the prior predictive distribution may then result in incorrect decisions, in particular for θ
values in the tails of the θ distribution. In future research, however, results from these Bayesian simulation
methods should be compared. Another argument against using f(x|�θ) is that we have relatively long tests
(between 70 and 140 items), thus �θ is estimated accurately.

The simplest way to obtain f(x|�θ) is to simulate item score patterns according to the IRT model and the
selection algorithm used. An alternative is to use the empirical dataset at hand and select groups of
examinees with approximately the same θ value and then determine LB and UB values for these groups of
examinees. In this study we both simulated new data and used the empirical dataset to determine the
bounds. A drawback of using the observed item score patterns may be that misfitting item score patterns
could affect the values of the bounds. This effect, however, was considered to be small because the (realistic)
assumption was made that almost all item score patterns would be in line with the underlying IRT model.
Furthermore, we used the CUSUM procedure in this study only to illustrate and to explore its usefulness to
detect unusual item score patterns. We will return to this topic in the discussion section.

Analysis

We analyzed the score patterns using the item ordering of presentation. Note that the method proposed
by van Krimpen-Stoop and Meijer (2000) is based on the order of presentation. Bradlow et al. (1998) note
that, using the order of presentation, warm-up outliers can be detected. Those are examinees who have
trouble settling in or warming-up to the exam due to unfamiliarity or nervousness. As a result, the earliest
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answers are more likely to be incorrect than the later answers. To increase the power, the lower boundary
can be adapted by only taking the first a answers into consideration and by setting the upper bound equal to
a value that can never be reached. For statistic (6) this would suggest setting UB greater than 1. After the first
a answers, the lower bound is set to a value that never can be reached; that is, LB < –1. The choice of a may
be based on a priori expertise knowledge or based on earlier observations. To detect item score patterns with
many incorrect answers at the end of the test (due to, for example, tiredness), the item order can be reversed
and the same methodology can be applied. Also, choosing a1 � k � a2 is possible (Bradlow et al., 1998). A
limitation of this method is that to set these boundaries additional knowledge should be available. In our
case it was difficult to predict how these boundaries should be chosen.

Relation between test length and misfit. Because the CAT we used had a varying test length, this enables us
to investigate the relation between misfitting behavior and test length. In general it is expected that the
proportion of misfitting item score patterns among the long tests may be an indication of misfitting behavior,
in particular misfit at the start of the test. Of course long tests may also be the result of, for example, extreme
θ values for which no “matching” item difficulties are available in the item bank. Therefore, long tests may
not be identical with misfitting item score patterns, but misfitting item score patterns may result in long tests.

Results

Descriptive Statistics and Bounds

We analyzed the item score patterns of 1,392 examinees; 75.3% of the examinees obtained the minimum
test length of 70 items, whereas to 11.1 % of the examinees the maximum test length of 140 items was
administered. The mean of the final �θ = 1.83 with SD = .77. The distribution of the final �θ is given in Figure 1.
The mean item difficulty in the bank was 0.02 with a standard deviation of 1.04.

To analyze the item score patterns, we considered the item order as administered for each person.
Because we need an upper and a lower bound to classify a pattern as fitting or misfitting, we determined
these bounds by (1) considering all the 1,392 item score patterns in the sample and (2) conditioning on the θ
level; this was done to investigate the effect of θ level on the height of the statistic. Note that the second
strategy is in line with simulating item score patterns f(x|�θ), where �θ now was chosen as a class of values. To
investigate the effect of conditioning on θ on the height of the LB and UB, we split the sample into three parts
containing 33% of the lowest (θ < 1.536), medium (1.536 � θ < 2.187), and highest θ values (θ � 2.187)
respectively and determined the LB and UB in these subsamples.

Using all θ values to determine the lower and upper bound at a 5% level, we found LB = –0.086 and UB
= 0.109. For θ < 1.536 we found (0.113; –0.089); for 1.536 � θ < 2.187 we found (0.108; –0.084) and for θ � 2.187
we found (0.108; –0.077). Thus, the bounds in these subsamples were almost the same as for the whole
sample. These values are somewhat different from the values found in van Krimpen-Stoop and Meijer
(2000). They found LB = –0.13 and UB = 0.13. The difference can probably be explained by the different
item selection algorithm and the different distribution of the item difficulties. In their study, they used
bi ~ N(–3, 3), whereas in this study the distribution of the item difficulties were normally distributed. To
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investigate the influence of misfitting item score patterns, we also simulated 3,000 item score patterns based
on the same distribution of �θ as discussed above and the same item bank using the Rasch model.

Similar bounds as discussed above were obtained. The response behavior of some of the persons with
values below the LB and above the UB are presented in Figure 2.

Examples of misfitting item score patterns

For examinees #38, #262, and #488 the CUSUM crosses the LB and for examinees #312, #451, #503, and
#683 the CUSUM crosses the UB. Let’s consider these patterns in more detail. The CUSUM of examinee #38
with �θ = 0.136 crosses the LB at the end of the test. Thus, at the end of the test many unexpected incorrect
answers are given. Inspecting the pattern of item scores at the end of the test reveals that of the 17 last
administered items (items #54–#70) 11 are answered incorrectly. Moreover, the mean bs of the incorrectly
answered items equaled –0.560, which is unexpected given �θ = 0.136. The same pattern occurs for person
#262. For person #488 it is interesting that there are relatively many incorrect scores in the middle of the CAT.
Inspecting the item scores of person #488 (�θ = 1.458) revealed that of the first 13 administered items 11 were
correctly answered, which resulted in a θ value around 2.0, but in the next 20 items, 14 are answered
incorrectly with 7 items with bs between 0.36–1.590. At the second part of the CAT, 33 out of the 40 items
were answered correctly, resulting in �θ = 1.458. Note that the plot of the CUSUM gives information about the
part of the test where misfitting behaviors occur, which may point at different types of deviant behavior.
Many incorrect answers at the end of the CAT may be the result of tiredness, whereas many incorrect
answers in the middle of the CAT may point at a temporary loss of concentration.

To illustrate the type of item score patterns with extreme positive CUSUM values, consider the
examinees #451, #501, and #638. Person #451 (�θ = 2.62) answered 6 out of the first 13 items incorrectly, which
resulted in the administration of relatively easy items starting from item #14. Then, because of the many
correct answers to the next items, this examinee obtains a relatively high θ value, which makes the incorrect
answers to the first items unexpected. This same phenomena can be observed for person #503 ( �θ = 2.29). A
different CUSUM pattern can be observed for examinee #638. This examinee with �θ = 0.745 answers
relatively many items correctly in the first part of the test, resulting after 28 items in a CUSUM value larger
than the UB. This high occurance of correct item scores are unexpected, because in the second part of the
CAT many easier items than the items in the first part are answered incorrectly. As a result the θ value levels
off and becomes �θ = 0.745. In particular the correct answers to items #6–#12 with b between 1.6 and 2.47 and
#25–#32 with b between 1.3–1.25 are unexpected and result in a CUSUM value above the UB.

Because the test consists of different content areas, a possible explanation for this misfitting behavior is
that the examinee masters some content areas better than others. Therefore, we determined the number of
correct scores on the different content areas for the examinees with the CUSUM plots depicted in Figure 2.
We did not, however, find a relation with content. Also, there was no relation between misfitting behavior
and test length. Longer tests were administered to examinees with final �θ around the pass point.
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FIGURE 2. Examples of the CUSUM for different examinees



Discussion

In this study, we discussed three different methods to detect misfitting item score patterns in a CAT and
applied one of these methods to illustrate the usefulness of this method to detect misfitting item score
patterns. As the empirical analysis illustrated, item score patterns with values outside the bounds can be
interpreted as having an item score pattern with unexpected responses. Note, however, that in performing
an empirical analysis we do not know the true misfitting item score patterns, so we cannot report the
detection rate. One of the advantages of using a CUSUM procedure as compared to paper-and-pencil
person-fit statistics is that from the plots it is immediately clear where the aberrant behavior occurred in
order of presentation as was illustrated above. This is a nice additional feature of the CUSUM procedure
compared to general person-fit statistics. Model data fit can thus be investigated by local inspection of the
CUSUM plot and this seems to be more useful than an overall statistic that only leads to the conclusion that
an item score pattern does not fit the model. Moreover, by using the CUSUM procedure positive and
negative strings can be distinguished.

Inspection of the CUSUM plots allowed us to distinguish different types of unexpected answering
behavior. By using the order of presentation, it was possible not only to distinguish a warming-up effect, but
also to detect examinees who may have become tired.

In this study we used the final �θ to calculate the CUSUM. An alternative may be to use the �θs that are
estimated during the test administration. This would allow online information to be obtained concerning
whether the examinee’s responses are fitting the assumed IRT model. The problem with using the updated �θ,
however, is that it is based on few items (in particular at the first part of the test), which results in large
standard errors. In practice this will not invalidate the use of the statistic, because, after an examinee has
completed the test, researchers may want to investigate if the item score pattern is in agreement with the test
model. If it is not, different actions can be taken depending on the type of test. If it is a low-stakes test used
as a diagnostic tool in, for example, classroom assessment, valuable information about content may be
obtained. To obtain that knowledge, the researcher can group the items according to their content and use
the CUSUM to detect examinees that have difficulty in particular subject matters. Note that in this case
additional information can be obtained and used by the teacher.

In high-stakes testing, the testing agency may use the CUSUM procedure to routinely check the data and
compare the examinees outside the LB or UB across versions to ensure that the quality of the examination is
the same across versions (using a fixed LB and UB for all versions). In addition, the possibility of
preknowledge can be studied by checking the number of examinees falling outside the UB. Test takers may
find the information useful. For example, consider person #38 who incorrectly answered many items at the
end of the examination, items that according to the estimated ability and the responses earlier in the
examination should have been answered correctly. This person might feel more confident in preparing for
the next administration knowing that he/she had performed well early and being careful to guard against
fatigue next time. This information is not available normally when the score reports contain only content
subscores where, generally, the content is spread evenly across the examination.
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