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Executive Summary

Several statistics have been recommended by researchers for identifying test taker responses to test items
that are different from what would be expected, given what is known about the characteristics of the items
and the estimated ability level of the test taker. Several of these statistics, often called person-fit statistics, are
used for evaluating test taker responses to an entire string of items simultaneously. These statistics allow us
to conclude that a particular item response theory (IRT) model either does or does not fit a person’s set of
responses to items. (Note that IRT is a mathematical model used to analyze test data.) In this sense, these
statistics are for use in a global method that only allows us to identify misfitting responses; that is, they do
not help us to identify the type of behavior that caused the misfit.

Fortunately, we also have statistics, termed local statistics, that allow us to diagnose the misfit. Such methods
may allow us to evaluate if the misfit was caused by violations of one of the assumptions made in applying IRT to
the analysis of test data. One such assumption is that of unidimensionality, which requires that a test measure
only one ability. This paper focuses on person-fit statistics developed for checking the unidimensionality
assumption. Because test data may not be unidimensional, it is worth investigating the effect of
unidimensionality violations on the ability of person-fit statistics to identify violations of this assumption.

We applied both global and local person-fit statistics to multidimensional test data from adaptive testing.
As may have been anticipated, the results show that some statistics are more robust to unidimensionality
violations than others. The context in which certain methods are more useful than others is indicated.

Abstract

Person-fit statistics test whether or not the likelihood of a respondent’s complete vector of item scores on
a test is low given the hypothesized item response theory (IRT) model. This binary information may be
insufficient for diagnosing the cause of a misfitting item-score vector. This paper applies different types of
person-fit analysis in a computer adaptive testing context and investigates the robustness of several methods
to multidimensional test data. Both global person-fit statistics to make the binary decision about fit or misfit
of a person’s item-score vector and local checks are applied. Results showed that there are differences
between the methods with respect to the robustness in a multidimensional context and that some methods
are more useful than other methods.

Introduction

Person-fit researchers have suggested several statistics for identifying misfitting vectors of item scores
on the J items from the test; see for a comprehensive review (Meijer & Sijtsma, 2001). These person-fit
statistics all assume a particular item response theory (IRT) model (e.g., the three-parameter logistic model)
to fit the test data.

By evaluating the whole vector of J item scores simultaneously, person-fit statistics allow the conclusion
that a particular IRT model either does or does not fit a respondent’s item-score vector. In this sense, most
person-fit methods are global methods that identify misfit but do not help to identify the type of behavior
that caused the misfit. An exception is due to Klauer (1991; also, see Meijer, 2003), who proposed a method
that identifies person misfit caused by either violations of unidimensional measurement, item
discrimination, or local independence under the model. Furthermore, person-fit statistics are developed for
unidimensional test data. Because many test data may not be perfectly unidimensional, and sometimes are
multidimensional, it is interesting to investigate what the effect of violations of unidimensionality is on the
power of person-fit statistics. In this study, several person-fit statistics are applied in a computerized
adaptive testing (CAT) environment that are sensitive to different types of aberrant response behavior and
investigate the robustness of these statistics to multidimensionality.

Another concern in person-fit analysis is that for each respondent an item-score vector of only J
observations is available. The number J typically ranges from, say, 10 to 60. This small sample size makes
person-fit hazardous from a statistical point of view. In particular, low power may render misfitting
item-score vectors difficult to detect, resulting in detection rates that are too low. Due to limited testing time for
each ability to be tested, the lengthening of tests to well over, say, a hundred items, is not a realistic option.

An alternative to both the limited value of a binary outcome (that provides little information for
individual diagnosis) and the small sample size (that provides little power, implying modest detection rates)
may be to seek various other sources of information about an item-score vector’s misfit. The combination of
these sources may lead to a more accurate decision about misfit or fit, and also provide insight into the cause
of an item-score vector’s misfit. This study discusses different person-fit analysis that uses various sources of
person-fit information as discussed in Emons, Sijtsma, and Meijer (2005). Global person-fit statistic U3 is
applied (Meijer & Sijtsma, 2001). This is a method that uses kernel smoothing to estimate the person
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response function (PRF) and a local person-fit statistic that evaluates unexpected trends in the PRE.
Furthermore, two methods especially developed in a CAT context are applied. A simulated example shows
how these different methods can be used in practical person-fit analysis.

Different Types of Person-Fit Analysis

The technical details of the methods used at each stage are discussed below. First, a global analysis
person-fit statistic U3 and a cumulative sum (CUSUM) procedure (Page, 1954) are used to identify fitting
and misfitting item-score vectors. Second, a graphical analysis is conducted. Kernel smoothing is used to
estimate the person response functions (PRFs) for the misfitting item-score vectors. The PRF gives the
probability of a correct response (scored 1) as a function of the difficulty of the items. This function is
nonincreasing when the J item response functions (IRFs) in a test do not intersect. For each misfitting
item-score vector, the graph of the PRF is inspected for local increases. Third, a local analysis investigates the
deviations from the monotone nonincreasing trend in the PRFs using a statistical test proposed by Rosa,
Swygert, Nelson, and Thissen (2001) and improved by Meijer (2002).

The combination of global testing, graphical inspection of the PRF for misfitting item score vectors, and
local testing of increases found in the PRF together help to better diagnose the misfit.

Item Response Theory

The statistics used in this study are defined in the context of item response theory (IRT). In IRT, the
probability of obtaining a correct answer on item i is a function of the latent trait θ and characteristics of the
item. This conditional probability Pi(θ) is the IRF. Item characteristics that are often taken into account are the
item discrimination (a), the item location (b), and the pseudo-chance level parameter (c). In parametric IRT,
Pi(θ) often is specified using the 1-, 2-, or 3-parameter logistic model (1-, 2-, 3PLM). The 3PLM (Lord &
Novick, 1968, chaps. 17–20) is defined as

Pi(θ) = ci +
( ) exp[ ( )]

exp[ ( )]

1

1

� �

� �

c a b

a b
i i i

i i

θ

θ
. (1)

The 2PLM can be obtained by setting ci = 0 for all items; and the Rasch (1960) model can be obtained by
additionally setting ai = 1 for all items.

Some statistics used in this paper are proposed in the context of nonparametric IRT (NIRT). NIRT
models assume order restrictions on the IRFs. Let Xi(i = 1, ..., I) denote the binary random variable for the
item responses, with realization xi = 1 for a correct or coded response, and xi = 0 otherwise. Let X+ = X ii

I

�� 1
denote the unweighted sum score; let π i (i = 1, ..., I) denote the population proportion of persons with a 1
score on item i; and let �π i = Ni/N (N is the sample size and Ni the frequency of 1s on item i) be the sample
estimate of π i . We assume that the I items in the test are ordered and numbered from easy to difficult: π 1 �
π 2 � ... � π I . The probability of obtaining a 1 score is related to the latent trait θ by the IRF: Pi(θ) = P(Xi = 1|θ).

We assume a scalar θ (unidimensionality assumption; UD). Given UD we assume that item scores are
locally independent (assumption LI). A typical NIRT assumption is that the IRFs are monotone
nondecreasing in the latent trait (assumption M); that is, for two arbitrary fixed values θ a and θ b ,

Pi(θ a ) � Pi(θ b ) for θ a < θ b ; i = 1, ..., I. (2)

NIRT models that satisfy the assumptions of UD, LI, and M imply that the total score X+ stochastically
orders θ . Stochastic ordering justifies the use of X+ for ordering persons on θ and is a useful ordering
property in practice whenever a test is used to order respondents. Mokken’s (1997) monotone homogeneity
model is defined by the assumptions of UD, LI, and M.

For person-fit analysis it is convenient that the IRFs do not intersect because then the same ordering of
items by difficulty applies to each respondent and this facilitates the interpretation of test performance.
Nonintersection for two items j and i means that if we know for a fixed value θ 0 that Pj(θ 0 ) > Pi(θ 0 ), then

Pj(θ) � Pi(θ). (3)

This is the assumption of invariant item ordering (IIO). Mokken’s model of double monotonicity is
defined by the assumptions of UD, LI, M, and IIO. Several methods exist to investigate if the double
monotonicity model fits a set of items.
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The Person Response Function

The PRF for respondent v is defined as the probability of a correct answer to items measuring θ as a
function of their item difficulty. This is formalized by a random variable Sv that takes value 1 for items that
were answered correctly by respondent v and 0 otherwise. Let G(θ) be the cumulative θ distribution. Item
difficulty is defined as

1 – π i = [ ( )] ( )1 �� P dGi θ θ
θ

, i = 1, ..., I, (4)

and sample estimates (1 – �π i ) can be used to estimate the ordering of the items. It may be noted that under
an IIO, theoretically the item difficulties, 1 – π i (i = 1, ..., I), have the same ordering as the response
probabilities, Pi(θ), i = 1, ..., I. The probability for respondent v to give correct answers as a function of item
difficulty, 1 – π, can be written as

Pv(1 – π) = P(S = 1|1 – π, θ v ). (5)

This conditional probability is defined on the continuous scale (1 – π) with domain [0,1]. The PRF,
Pv(l – π), is nonincreasing under NIRT models that have an IIO. However, Meijer & Sijtsma (2001) showed
that person-fit decisions were quite robust against violations of IIO. Kernel smoothing was used to obtain a
(quasi-) continuous estimate of the PRF. This estimate was convenient for the localization and the
interpretation of misfit.

Kernel Smoothed Estimates of the PRF

Kernel smoothing is a nonparametric regression technique (Ramsay, 1991, 2000). It takes a focal
observation, here an item difficulty, for example, 1 – π i( )0 , and several of its neighbor item difficulties, and
then estimates Pv(1 – π i( )0 ) as the weighted mean of the item scores xvi( )0 and the xvi ’s of the neighbor items.
Weights are assigned by the kernel function, K(.). A subset of observations that is used for estimating one
function value is called a window. Each observation 1 – π i (i = 1, ..., I) is focal point once, and windows move
from left to right. Windows for items at or near the endpoints of the item ordering contain less data. Special
precautions take care of the resulting inaccuracy in estimation.

The bandwidth determines the number of observations used in the estimation of the function values. A
broader bandwidth means that adjacent estimated function values are more alike because the windows used
for estimation are almost identical. Thus, the PRF is estimated relatively accurately (little variance) but
interesting details may get lost (much bias). A narrower bandwidth has the opposite effect: Function values
are different because subsequent windows contain few observations as they quickly enter and exit the
window as it moves along. Particular jags in the PRF are visible (little bias) at the expense of statistical
accuracy (much variance). Thus, for a particular application the choice of the bandwidth involves finding the
balance between bias and inaccuracy. This will be explained in more detail shortly.

Let zi = [(1 – π i ) – (1 – π i( )0 )]/h = (π i( )0 – π i )/h, where h is the bandwidth to be defined shortly, and let
K(zj) be the kernel function. The nonparametric regression function we use is defined as

� ( )
( )

( )
( )P

K z x

K z
v i

i vii

I

ii

I
1 0

1

1

� �
�

�

�
�

π . (6)

For the kernel function we use the standard normal density,

K(zi) =
1
2

2 2

π
exp /�zi , (7)

which is a common choice. Using the standard normal kernel function, each window in fact uses all J
observations, but observations further away from the focal observation receive small weights and truncation
eliminates the influence of distant observations.
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The Person Response Function and Local Person Fit

Discrete PRF Estimate

For local person-fit testing, a discrete estimate of the PRF was used as in Emons, Sijtsma, and Meijer
(2005). Notice in the following equation that this discrete estimate may be seen as an extreme version of
kernel smoothing, with uniform kernels that do not overlap. First, the J items are ordered by increasing
(1 – π) values. Then, they are divided into K ordered disjoint subsets, denoted Ak with k = 1, ..., K. For
simplicity’s sake (but not by necessity), each subset contains m items, such that A1 = {X1, ..., Xm}, A2 = {Xm + l ,
..., X2m}, ..., AK = {XI – m + 1, ..., XI}. For respondent v, the expected proportion of correct answers to the items in
Ak equals τvk = m–1� �j Ak

Pi(θ v ). Given an IIO, an ordering of the items according to the (l – π i )s implies that
for each respondent v,

m P m Pi v i v
i Ai A kk

� �

� ��

� ��1 1

1

( ) ( )θ θ . (8)

For the K item subsets it follows that

τv 1 � τv 2 ��� τvK . (9)

Let Xvj denote the score of person v on item j. The ordering in Equation 9 is estimated using sample
fractions

�τvk = m X vi
i Ak

�

�
�1 . ( 10)

Furthermore, we use a person-fit statistic that quantifies the result that in any item subset the correct
answers are most likely to be given to the relatively easy items. Define any item vector Y (e.g., combine
subsets Ak and Ak + l into one set) in which items are ordered by ascending difficulty. Then, count the number
of item pairs in Y in which the easiest item is answered incorrectly while the more difficult item is answered
correctly. This is the number of Guttman errors. For respondent v the number of (0, 1) patterns on all possible
item pairs (including pairs that contain the same item twice) equals

Gv = ( )1
11

�
��
�� Y Yvj vi
i

I

j

JY

. (11)

Next, we show that the function f(Y) = G is increasing in transposition (IT), to be explained shortly. The
IT property of f(Y) is needed for deriving an approximate Type I error probability for the number of Guttman
errors given that the items in Y have an IIO. In general, a function f(Y) is IT if interchanging a 0 and a 1 score
in a realization y, such that the 1 score is positioned further to the right, has the effect of increasing f(Y). For
example, for y1 = (110010), function f(y1) = 2. Interchanging the second 0 and the second 1 yields y2 =
(100110) and f(y2) = 4.

Person-misfit in Y is revealed by an exceptionally high G value given the expected G value under the
postulated NIRT model. For sum score Y+ = �Yi and realization y+, and the number of items IY, we evaluate
the probability P(G � g|y+, IY) using a theorem proven by Rosenbaum (1987). This theorem compares the
expectation of an IT function like f(Y) = G given that the IRFs have an IIO, with the expectation of f(Y) = G
given that Y follows the exchangeable distribution; that is, given that all possible item score vectors Y
containing y+ 1s have equal probability. Under an NIRT model, Y follows the exchangeable distribution if
and only if the response probabilities, Pi(θ)(i = 1, ..., I), are equal for all items. This means that the IRFs are
flat and coincide completely. The theorem says, essentially, that given that the IRFs have an IIO (Equation 1),
the number of Guttman errors cannot exceed the corresponding number expected under the exchangeable
distribution. Because under an NIRT model we cannot evaluate P(G � g|y+, IY) directly, we compare it to the
corresponding probability under the exchangeable distribution. The latter is at least as great as the former,
and thus provides an upper bound.

How is statistic G distributed under the exchangeable distribution? Molenaar and Hoijtink (1990)
showed that G is a linear function of the sum of ranks. Thus, under the exchangeable distribution, P(G �
g|y+, IY) can be obtained from the Wilcoxon rank-sum distribution. This probability provides an
upperbound for P(G � g|y+, IY) under IIO. For item subsets containing fewer than 20 items, tables may be
used to obtain probabilities of exceedance. For item subsets containing at least 20 items, G is approximately
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normally distributed. Meijer and Sijtsma (2001) concluded from a simulation study that for many tests the
Type I error rate of G often ranged from 0.02 to 0.03 (nominal alpha = 0.05), with slightly better results for
higher θs. This was found for both item sets with and without an IIO.

Methods Especially Developed for CAT

As an alternative to both methods discussed above, Bradlow, Weiss, and Cho (1998) and van Krimpen-
Stoop and Meijer (2001) proposed person-fit statistics based on the cumulative sum (CUSUM) procedure
(Page, 1954). Note that in CAT a model-fitting item-score pattern consists of an alternation of correct and
incorrect responses, especially at the end of the test when �θ converges on θ. A string of consecutive correct
or incorrect answers could indicate misfit or a bad bank. Sums of consecutive negative or positive residuals
[xi – pi (θ)] can be investigated using a CUSUM. For each item i in the test, a statistic Ti can be calculated that
equals (a weighted version of) [xi – pi(θ)]. A simple statistic is

T = 1/k[xi – pi(θ)]. (12)

Then, the sum of these Tis is accumulated as follows

C T Ci i i
�

�
�� �max[ , ],0 1 (13)

C T Ci i i
�

�
�� �min[ , ],0 1 and (14)

C C0 0 0� �� � , (15)

where C+ and C– reflect the sum of consecutive positive and negative residuals, respectively. Let UB and LB
be some appropriate upper and lower bounds. Then, when C+ > UB or C– < LB the item-score pattern can be
classified as not fitting the model; otherwise, the item score pattern can be classified as fitting.

Another approach was discussed by Rosa et al. (2001) and strongly related to the PRF approach. For the
sake of simplicity we change our notation a little bit. Let, again, the score on item i be denoted by Xi, let the
item score vector be denoted by x, and the sum score for a set of items be denoted by x. The likelihood for
any summed score is

Lx(θ) = L
U xi( ) �
� (x|θ), (16)

where the summation is over all response patterns that contain x correct responses. That is, given θ the
likelihood of a summed score is obtained as the sum of the likelihoods of all response patterns that have that
summed score. The probability of each score x is then

Px = Lx� (θ)φ(θ)dθ (17)

where φ(θ) is the population density. An algorithm to compute Lx(θ) was proposed by Lord and Wingersky
(1984) and discussed in Thissen, Pommerich, Billeaud, and Williams (1995). This algorithm assumes that the
individual Pi(θ) are estimated under a specified IRT model.

To investigate unexpected sum scores on subtests of items, a generalization of Equation 5 can be used.
Assume that there are two subtests x and 	x . The likelihood of a combination of sum scores can be calculated by

Lxx 	(θ) = Lx(θ)Lx 	(θ) (18)

and the probability of the response pattern of the summed scores {x, 	x } equals

Pxx 	 = Lxx 	� (θ)φ(θ)dθ. (19)
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If a score combination is very unlikely, values of Pxx 	 can be calculated for each score combination x and
	x and plotted in a diagram (Rosa et al., 2001) and Pxx 	 can then be used to construct a (1 – α) 100% “highest

density region” (HDR) for the response combinations. In Table 1 an example of such a diagram is given.
Before discussing this diagram, it is important to note that the values of Pxx 	 cannot be interpreted as
reflecting likely or unlikely events in any absolute sense because the magnitude of the individual Pxx 	

depends on the number of row and column score points. To construct the HDR, first the cells should be
ordered from largest to smallest Pxx 	. The 95% HDR can then be determined by considering all cells that
contribute to the first 95% of the cumulative total of Pxx 	. According to the model, 95% of the examinees
should obtain score combinations in that list of cells. Cells that are outside this region represent score
combinations that are thus unlikely given the model. No particular parametric form for the item response
function is assumed in the formulation of the recursive algorithm that is used to calculate Equation 5. All
that is needed is a probability under an item response theory model.

TABLE 1
An HDR table for a division of a test into two subtests of the four easiest items and the five most difficult items and 99% HDR. The
unshaded area in the table contains the 99% HDR; the score combinations in the shaded area are thus unlikely at the 1% level

Sum score
Subtest 2/1 0 1 2 3 4

0 .013138 .041424 .068642 .068949 .035001
1 .005951 .029073 .072723 .108833 .081653
2 .001485 .010954 .040824 .090294 .100122
3 .000248 .002727 .015018 .049094 .081105
4 .000027 .000445 .003621 .017634 .043975
5 .000002 .000038 .000463 .003400 .013138

A Simulation Study

For each CAT we used a similar simulation study as in Robin (2002). One thousand examinees at low,
medium, or high ability level were generated. Normal scores were generated according to the normal
response model using the three-parameter logistic item parameters. Spuriously low aberrant responses were
simulated with a probability of correct answer choice of 0.20. This mimics response behavior on five-choice
items that may occur when an examinee has trouble concentrating on the task at the beginning of the test, is
unmotivated, or runs out of time. In the case of CATs, tests tend to be short with item difficulty ranging from
medium difficulty and around examinee’s true ability level. We are interested in understanding and
evaluating what may happen in typical or idealized conditions without content and security constraints
before trying to address a specific one in follow-up studies. The tests contained 40 items with a- parameters
set at .90, b-parameters equally spaced from –2.0 to 0.0, –1.0 to 1.0, and 0.0 to 2.0 for examinees at –1.5, 0.0,
and 1.5 ability levels, respectively, and c-parameters set to .15. Now taking into account the general effect of
aberrant responses on tests delivered to high and medium ability examinees, examples of aberrant CATs
were simulated by shifting the item difficulties of the normal CATs down by 1.0 in the early aberrant case
and by 0.5 in the medium and late aberrant case.

For d traits the number of correlations between pairs is d(d – 1)/2; thus many relationships could be
studied. Here the simplest case was investigated. For d = 2 case, the joint distribution of the latent traits θ1
and θ2 was standard normal. Four correlations were investigated: ρ = .5, .6, .7, and .8. These values represent
values often found in multidimensional datasets with a hierarchical structure where a common factor is
measured by means of different subtests. Forty items were used. Items 1 through 20 measured θ1 and items
21 through 40 measured θ2. For all statistics a significance level of 5% was used.

Measures

Because the scales had fairly high discrimination, global person-fit was analyzed using U3 as a
descriptive statistic. Extreme U3 values appeared in the right tail of the distribution like in the Emons,
Meijer, and Sijtsma (2005) study. We classified the score vectors into three X+ levels, denoted low, medium,
and high. For each selected item-score vector, kernel-smoothing was used to estimate a (quasi-) continuous
PRF. We used a bandwidth h = 0.09. Most misfitting PRFs increased at relatively easy items, but not at the
easiest items. The PRFs at high X+ levels typically showed a brief increase at medium to high item difficulty.
The PRFs at high X+ levels rarely showed misfit at the easiest items. At high X+ levels, incorrect answers
were rare but sometimes scattered throughout the test. Also, note that when an easy item was failed but
several more difficult items were succeeded, this failure received much weight and produced a high U3, but
did not affect the shape of the PRF. Local increases of the PRFs were tested for significance using the number
of Guttman errors, G. We divided the items into K = 2 disjoint subsets, each containing m = 20 items.
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Results

Table 2 gives the results of the person-fit tests. To illustrate this consider an item score vector Y with JY =
20 and Y+ = 13. We considered these subsets as one vector, Y, and counted the number of Guttman errors, G.
The upper bound for the significance probability was obtained from the Wilcoxon rank-sum distribution. For
Case 1, G = 75, which was significant at the .01 level. The value of G may be compared to the maximum
number of Guttman errors (Gmax), given the number of items (JY) and the number of correct answers (Y+). For
an item-score vector Y with JY = 20 and Y+ = 13, we have Gmax = Y+(J – Y+) = 13 
 (20 – 13) = 91. The normed
number of Guttman errors (denoted by G*) is defined as G* = G

Gmax
, which in this example equals .82. A

practical rule of thumb for interpreting G* for a small number of items (e.g., 10 � J � 20) is that values of 0.82
and higher indicate serious misfit.

TABLE 2
Detection rate of several person-fit statistics

Multidimensional

Statistic
Unidimensional ρ = .5 ρ = .6 ρ = .7 ρ = .8

θ = –1.5 θ = 0 θ = 1.5 θ = –1.5 θ = 0 θ = 1.5 θ = –1.5 θ = 0 θ = 1.5 θ = –1.5 θ = 0 θ = 1.5 θ = –1.5 θ = 0 θ = 1.5
U3 .34 .39 .41 .25 .28 .32 .28 .28 .34 .28 .32 .38 .33 .41 .41
PRF .36 .41 .42 .27 .27 .31 .29 .29 .33 .30 .31 .31 .35 .39 .40
Gv .32 .31 .38 .24 .26 .35 .26 .27 .35 .28 .28 .32 .27 .29 .37
Pxx 	 .42 .45 .49 .40 .39 .41 .40 .41 .42 .38 .40 .44 .42 .43 .50
CUSUM .45 .49 .49 .32 .35 .31 .34 .34 .31 .36 .42 .51 .45 .47 .51

Comparing the detection rates of the different statistics it can be concluded that the power of Pxx 	 is
somewhat higher than the power of U3, G, and the CUSUM procedure, across most conditions. Furthermore,
the influence of multidimensionality seems negligible for ρ = .8. For ρ = .8 through ρ = .5 there is descending
trend for the U3 and the CUSUM statistics in the sense that the power decreases, probably due to
multidimensionality. However, for Pxx 	 the power is the same across different ρ levels. This is probably due to
the fact that this method capitalizes on the different types of subsets. On the item level the lower correlation
between the subsets results in more unexpected item scores.

Discussion

The mismatch between the examinee’s performance on one subset of items and another may mean that
the examinee cheated or that something else went wrong. The context of high-stakes testing, which is
expensive in time and money for the examinee may add further considerations. Several possible courses of
action include online extension of the test, either switching from a CAT system to a linear form. Other
possible actions include cancellation and retesting.

In this study we showed that Pxx 	 had higher power than the other statistics and that multidimensionality
may have an effect on the power of a person-fit statistic. In future research, person-fit statistics that are
sensitive to multidimensionality are important tools for further exploring the validity of item-score patterns.
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