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Executive Summary

The development and operational use of computerized adaptive testing (CAT) depends heavily on the
availability of item response theory (IRT) models. This fact is not surprising, because one of the key features
of IRT models is separate parameters for the properties of the items and the ability of the examinee. Due to
this feature, the examinee’s ability level can be estimated from different sets of items, and items can be
selected to be optimal at ability estimates. Recent developments in nonparametric IRT, however, suggest that
techniques derived from this field may also contribute to the improvement of the psychometric quality of
CAT. An important feature of these techniques is that they are based on very weak assumptions and
therefore nearly always apply.

The aim of this paper is to investigate the possible use of nonparametric IRT in CAT. In particular, we
explore the use of some simple diagnostics statistics derived from nonparametric IRT. As shown by
numerical examples, these statistics are able to check basic properties of item response functions such as
nondecreasing probability of success as the ability of the examinees increases and whether the ordering of
the item difficulties in the pool is the same for each examinee. Checks of the latter property are important to
finding out, for instance, if the ability measured by the CAT is curriculum-independent.

Introduction

In this paper, the usefulness of several nonparametric checks is discussed in a computerized adaptive
testing (CAT) context. Although there is no tradition of nonparametric scalability in CAT, it can be argued
that scalability checks can be useful to investigate, for example, the quality of item pools.

Although IRT models are strongly embedded in the development and construction of CAT, the
development of CAT is strongly related to parametric as opposed to nonparametric IRT modeling. This is not
surprising because one of the key features of a CAT is the item selection procedure on the basis of an
estimated latent trait from a calibrated item pool. Parametric IRT models enable the separate estimation of
item and person parameters and, thus, facilitate this process enormously. The recent developments in
nonparametric IRT, however, also suggest that techniques and statistics used in this IRT field may contribute
to the development and improvement of the psychometric quality of a CAT. Investigating nonparametric
IRT modeling may also help us to gain insight into the assumptions underlying CAT and may help to unify
IRT modeling.

The aim of this paper is to investigate the possible use and application of nonparametric IRT in a CAT.
Moreover, we will explore the use of some simple diagnostics using nonparametric IRT in a CAT. A CAT can
be used in a number of ways. It can be used, for example, for entry testing, certification testing, or growth
assessment. When a CAT is used as a diagnostic instrument, statistics that would pinpoint areas of difficulty
would be extremely useful for a teacher who wants to individualize instruction in the classroom (e.g.,
Kingsbury & Houser, 1999). Students have all sorts of different problems in keeping up with the curriculum,
and it is sometimes very difficult for a teacher to determine content areas in which the student might be
having problems. In this paper, we explore the use of some diagnostic statistics. In fact, several of these
methods may be an effective first step to getting an impression of test results and parts of the curriculum
that are not well-understood by the examinee.

First, we will discuss two often-used nonparametric IRT models and discuss the assumptions underlying
IRT modeling. Second, we will discuss some of these assumptions in a CAT context. Finally, we will discuss
some statistics that may be used to check the quality of data.

IRT Models

Parametric IRT Models

In IRT, the probability of obtaining a correct answer on item g (g = 1, ..., k) is explained by the latent trait
value (θ) and the characteristics of the item (Hambleton & Swaminathan, 1985; van der Linden &
Hambleton, 1997). The conditional probability π g (θ) is the item response function (IRF). Further, we define
X = (X1, ..., Xk) and a realization x = (xl, ..., xk). IRT often assumes that the item scores are locally independent,

P(X = x|θ) = L(θ) = π g
g
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For any cumulative probability distribution of θ, F(θ), θ can be integrated out, which yields

P(X = x) =
θ� π g
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In order to have testable restrictions on the distribution of X, specific choices for π g (θ), for F(θ), or for
both have to be made. Whereas F(θ) sometimes is chosen to be normal, π g (θ) often is specified using the
1-, 2-, or 3-parameter logistic model (1, 2, 3-PLM). The 3-PLM is defined as

π g (θ) = γ g +
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where γ g is the lower asymptote [γ g is the probability of a 1 score for low-ability examinees (θ � –�)]; α g is
the item discrimination parameter; and δ g is the item location parameter. The 2-PLM can be obtained by
fixing γ g = 0 for all items; and the 1-PLM or Rasch model can be obtained by fixing α g = 1 for all items.

Nonparametric IRT Models

The interest in nonparametric item response theory (IRT) models is growing as demonstrated by recent
publications in this area (Sijtsma, 1998, for a comprehensive review). In some articles, characteristics of
nonparametric IRT models are specified (e.g., Mokken & Lewis, 1982; Stout, 1987; van der Linden, 1998)
other articles are concerned with goodness-of-fit statistics (e.g., Mokken & Lewis, 1982; Sijtsma & Meijer,
1992; Rosenbaum, 1987), or present examples of empirical studies in which nonparametric models are
applied (e.g., de Jong, 1984).

Nondecreasing Item Response Functions

In nonparametric IRT models, the particular form of an IRF is not specified. By putting order restrictions
on the IRF, testable consequences can be investigated.

Nonparametric IRT models put order restrictions on the IRF, but refrain from a parametric definition of
the IRF (Sijtsma, 1998). An example of order restriction is that π g (θ) is a nondecreasing function of θ (Junker,
1993; Mokken & Lewis, 1982; Stout, 1990). Let items be indexed by g and h (g, h = 1, ..., k), and examinees be
indexed by i and j (i, j = 1, ..., n). For two arbitrarily chosen values of the latent trait, say θi < θj ,

π g (θi) � π g (θj). (4)

The nonparametric IRT model based on Equations 1 and 4 is the monotone homogeneity model (MHM;
Mokken & Lewis,1982); also see Holland and Rosenbaum (1986) and Ellis and van den Wollenberg (1993).

An important result from the literature is that, when monotonicity in θ holds for a set of IRFs, the
covariance between the items should be positive. This covariance property using different methods of proof
can be found in Mokken (1971), Holland (1981), and van der Linden (1998). Mokken used the notion of
similarly ordered functions. Let π g denote the proportion of examinees responding correctly to item g and
let π gh denote the proportion of persons responding correctly on both items g and h. The covariance between
the scores on items g and h is defined as σgh = π gh – π g π h . Assuming that g > h implies π g < π h , the
maximum covariance is obtained if π gh = π g and σgh(max) = π g (1 – π h ).

Assuming i < j implies θi < θj, two IRFs, π g (θ) and π h (θ), are similarly ordered when for each pair of
function values, θi and θj ,

[π g (θi) – π g (θj)][π h (θi) – π h (θj)] 	 0. (5)

Because of the monotonicity in θ under the MHM it is immediately clear that all IRFs are similarly ordered.
It can be shown (Mokken, 1971) that for two similarly ordered functions,

θ� π g (θ)π h (θ) 	
θ� π g (θ)

θ� π h (θ). (6)
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Integrating across θ yields π gh 	 π g π h or in terms of covariance

σgh = π gh – π g π h 	 0. (7)

When π g (θ) or π h (θ) are constant over the population, π gh = π g π h , the value expected for π gh under the
hypothesis of marginal independence of the two item scores. Note that for a set of items in this case Equation
2 equals

P(X = x) = π g
g
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Although from a point of view of measurement theory the hypothesis of marginal independence
represents unsuccessful measurement, it may serve as a baseline against which the probability of an item
score pattern under the MHM may be compared. One may argue, for example, that under the MHM the
probability of some score patterns should be higher than under marginal independence.

The practical importance of the MHM model is that it implies that the latent trait θ is stochastically
ordered (s.o.) by the unweighted sum of scores on the J items from the test, X = 
Xj . That is, for two values
of X+, say s and t, and any value of θ, say c,

P(θ > c|X+ = s) � P(θ > c|X+ = t) for all s < t.

Nonintersecting Item Response Functions

Another example of an order restriction is that the IRF's are nonintersecting (Mokken & Lewis, 1982;
Rosenbaum, 1987 a, b). This order restriction can be formalized as follows: For a finite set of k items, all
measuring the same unidimensional latent trait θ, we assume that the items can be ordered and numbered
such that

π 1 (θ) 	 π 2 (θ) 	 ... 	 π k (θ), for all θ. (9)

Equation 5 is an order restriction on the k IRFs of the test. The IRFs do not intersect, which means that
the ordering of the probabilities is the same except for possible ties, for all values of θ. If items have an
ordering as in Equation 5, they have a latent scale or invariant item ordering (IIO) (Sijtsma & Junker, 1996).
Mokken (1971) referred to Equation (9) as the model of double monotonicity (MDM). Important is that both
the MHM and the MDM are stochastic versions of the deterministic Guttman model. The Guttman model
(Guttman, 1944, 1950) is defined by

θ < δ g � π g (θ) = 0

and

θ 	 δ g � π g (θ) = 1.

The Guttman model thus excludes a correct answer on a relatively difficult item h and an incorrect
answer on an easier item g by the same examinee: Xh = 1 and Xg = 0, for all g < h. Such item score
combinations (0,1) are called errors or inversions. Item score patterns (1,0) are permitted and are known as
Guttman patterns or conformal patterns.

Note that the MHM model is a special case of the often used three and two parameter logistic models.
Both the MHM model and the logistic models assume nondecreasing IRFs, but the MHM model refrains
from the logistic function.
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Nonparametric IRT and CAT

Nondecreasing Item Response Functions

Based on the property of stochastic ordering of the total score in θ and the property of positive
covariances between the items, several test and item fit statistics have been proposed for paper-and-pencil
tests. To be able to use these statistics in a CAT, it is necessary to investigate when the property of s.o. applies
in a CAT.

Stochastic ordering of the response variable in the latent trait does not, however, automatically follow for
adaptive testing. For a CAT, van der Linden (1998) showed that any nondecreasing function of the response
vector stochastic ordering in the latent trait only applies for a fixed-length adaptive test from a 1-PLM item
pool when maximum information is used for the item selection and expected a posteriori estimation is used
for the ability parameter. Then, the response variables are s.o. in the latent trait and it is thus possible to
check for positive covariances between the items selected in the test. It is important to realize that this does
not apply for the items in the item pool. That is, stochastic ordering only holds for a realization of a test.

Given these restrictions, it may be helpful to check for positive covariances between the items for
examinees that obtain the same set of items (test) in a CAT research program. Checking the covariances may
be helpful to check if the items are in agreement with the model. For example, when items are often used,
they may become known, and the unidimensional structure under the model is violated, which will be
reflected in the covariance structure underlying the items. This analysis may especially be helpful when item
pools are relatively small and numbers of persons are relatively small. This may be the case when items are
calibrated and not many students are available due to motivation problems in large scale testing, or when
CAT is used in small applications, for example in classroom testing or diagnostic testing.

This check may also be used in testlet-based computer adaptive testing where a testlet is a group of
items developed as a unit, for example, covering the same content or based on a common reading passage.
In a testlet-based CAT, there is a fixed number of predetermined paths that an examinee may follow (Wainer
& Kiely, 1987). In a CAT based on testlets, the first testlet selected is based on an initial estimate of θ. After
each testlet θ is estimated, the next testlet selected is the testlet with maximum information at the updated �θ.
The CAT ends when the precision of �θ is adequate or when a certain number of testlets is administered.
Examinees with the same item score patterns may be compared.

Nonintersecting Item Response Functions

Although it is not often discussed in the selection procedure of a CAT, when selecting items from an item
pool it is assumed that the item difficulty ordering is the same for each examinee. This is the case because in
a CAT the next item is selected based on the current θ estimate and it is assumed that the item ordering is the
same for each person. If this is not the case, it may lead to inefficient use of the item pool. This assumption of
IIO in a CAT can be checked by methods proposed by Mokken (1971) and Rosenbaum (1984) although these
methods assume a complete item-by-person matrix, which is not realistic in a CAT.

Diagnostic Checks

On the person level, invariant item ordering statistical tests are available that compare subtest scores on
subsets of items that have different mean item difficulties. Different subtests may be compared to investigate
consistency of answering behavior, or preknowledge of items of subgroups of items. Well-known
nonparametric statistics may be used to control for individuals that do not have the assumed alternation of
correct and incorrect responses.

For example, the method proposed by Sijtsma & Meijer (2001) can be used to obtain information on
which parts of the item score pattern deviant behavior is present. This may help the researcher to interpret
the type of aberrant behavior. For example, many unexpected item scores at the beginning of the test may
indicate careless behavior (Trabin & Weiss, 1983). Sijtsma & Meijer (2001; see also Trabin & Weiss, 1983)
discussed a statistical method in which an item score pattern is divided into k subsets of items, so that A1
contains the m easiest items, A2 contains the next m easiest items, and so on. Let X+e denote the total score on
the easiest subtest and let subsets Ag of m increasingly more difficult items be collected in disjoint and
mutually exclusive vectors Yg such that Y = (Y1, Y2, ..., YG). Consider newly defined vectors A(g), each of
which contains two adjacent subsets Ag and Ag + 1 : Y(1) = (Y1, Y2), Y(2) = (Y2, Y3), ..., (Y(G – 1)) = (Y(G – 1),YG). The
statistical method also applies to each pair in Y(g). A useful question in CAT research is whether the number
of correct answers on the less difficult items is exceptionally low given the total score and the subtest scores.
To test this, Sijtsma and Meijer (2001; see also Rosenbaum, 1984) showed that for each pair, a conservative
bound (denoted ϑ) based on the hypergeometric distribution can be calculated for the probability that a
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person has at most X+e = x+e 1s on the easiest item subset. If for a particular pair ϑ is lower than, say 0.05,
then the conclusion is that the total score on the first subset in this pair is unlikely given that all items in the
first subset are easier than the items in the second subset. Although this method is based on item response
functions that are nonintersecting, Sijtsma & Meijer (2001) showed that the results are robust against
violations of this assumption. Note that items may be ordered according to their item difficulty δ or to the
item proportion correct score π.

This method can easily be implemented in CAT research by ordering the items for each person from easy
to difficult according to their item difficulty from IRT or the item proportion correct score. Another strategy
is to stratify the item bank in easy, medium, and difficult items and then compare scores of the examinees on
easy and difficult items. This method may be interesting comparing different subject matters especially.

This method can also be combined when subgroups of items are used as when testlets are used in a CAT
(testlets, again, are item clusters such that when an examinee gets one item he/she also gets a number of the
other items from the cluster). Item score patterns of examinees with the (almost) same item scores can be
checked. As discussed above, for these patterns, item covariances should be positive (item-fit) and also the
expected correct answers should be in agreement with the observed answers.

A second diagnostic method can be used to investigate whether an examinee has difficulty in getting
started; the examinee’s response on the first items may be incorrectly answered due to start-up problems
and not due to lack of knowledge. As a fit statistic, the number of correct answers may be taken on the first
a items

W = X g
g

a

�



1

.
(10)

Note that when all items have the same item response functions, W is binomially distributed. When the
items have different item response functions, as is usually the case, the distribution of W follows the
generalized binomial distribution (Lord, 1980, p. 45; Kendall & Stuart, 1969, 5.10). This distribution cannot
be written in a simple form but the mean equals

µ = π g
g

a

�



1 (11)

and the variance

σ 2 = π g
g

a

�



1

(1 – π g ).
(12)

However, the generalized binomial distribution can be approximated (Lord, 1980, p. 45) by the binomial
distribution using π, the mean proportion correct score across items

a

x
x a x�


�

�

�
� � �π π( ) .1

(13)

The major difference between the generalized binomial distribution and the binomial approximation in
(13) is that the variance of the generalized binomial distribution (σ 2 ) is always less than the binomial
variance using mean π. That is, the variance of the binomial using mean π is aπ x(1 – π)a – x. Let σ π

2 be the
variance between the π values; then the difference between the two variances is

σ 2 = aπ(1 –π) – aσ π
2 (14)

Note that when π = π for all items, the variances for the binomial distribution and the generalized
binomial distribution are the same. When items are selected with π values that are similar, the binomial and
the generated binomial distributions are similar. Note that although the proportion correct score is
dependent on the latent trait distribution, this is not a problem as long as one is interested in a specific
population as we often will be in classroom diagnostic testing.
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To illustrate this, suppose that we are interested in checking whether the number correct score on the
first items on an a test is unexpectedly low given the π values of the items. We can use the same ordering as
the order in which the items are presented or we can use the order according to the item difficulty. As an
example, we use the π-values of the first four items of a simulated CAT with π1 = .69, π2 = .87, π3 = .93, and
π4 = .81. Suppose now an examinee generates an item score pattern (0, 0, 0, 1), then according to (13) the
probability of occurrence, denoted η, of such a pattern is 0.018. Furthermore, aσ π

2 = .042 and aπ(1 – π) = 0.577.
Thus, the difference of the variance of the generated binomial and the approximation with the binomial with
mean π values is small. An obvious drawback of this method is that the number correct score is not taken
into account. Therefore, this method is only useful when the researcher first selects examinees with respect to
the total score and then selects a subset of the test for which it would be very strange to have a lot of zero scores.
For example, we used this method to detect examinees with many incorrect scores in the beginning of the test.

A third method is particularly based on the alternations of correct and incorrect scores on a CAT and is
based on the runs test. Suppose an examinee responds to an adaptive test of length k. Let the vector
X = (Xg, ..., Xk) be the dichotomous item score vector. Let n0 denote the number of incorrect responses, n1 the
number of correct responses, and r the total number of runs in a specific response vector. A run is defined as
the number of consecutive one scores or zero scores. The probability distribution of TNR, the total number of
runs of n = n0 + n1 is known (e.g., Gibbons and Chakraborti, 1992, pp. 72–73) and can be used to classify an
item score pattern as normal or aberrant. Because few runs may indicate aberrant response behavior, the
significance probability of the observed response vector is the probability of r runs or less.

An alternative is to use the length of the longest run. Let rvw denote the number of runs of type v = 0, 1
which are of length w = 1, ... , nv. Let l denote the length of the longest run observed in the response pattern
U. Longer runs are more improbable; thus, the significance probability of the random variable LLR, the
length of the longest run of n = n0 + n1 objects, is the probability of getting at least one run of length l or more
of either type 1 or 0. This probability was derived by Mosteller (1941).

Examinees can be classified as nonfitting when the significance probability of the total number of
runs and/or the length of the longest run is smaller than some predefined significance level α; that is,
p* (TNR) < α and/or p* (LLR) < α.

An Example

Five datasets consisting of 10,000 fitting adaptive item score vectors were constructed at five different θ
levels: θ = –2, –1, 0, l, and 2. An item bank of 400 items fitting the 2-PLM with ai ~ N(1.0, .2) and bi ~ U(–3, 3)
was used to simulate adaptive item score patterns with fixed test length N = 30 items.

An adaptive item score pattern was simulated as follows. First, the true θ of a simulee was drawn from
N(0; 1) truncated to the interval [–2.5, 2.5]. Then, the item with maximum Fisher information (given θ = 0)
was selected as the first item (e.g., Hambleton & Swaminathan, 1985, pp. 101–124). To simulate the answer
(1 or 0), a random number, y, was drawn from a uniform distribution on the interval [0, 1]. When y < P (θ),
the response to item I was set to 1 (correct response); the response was set to 0, otherwise (incorrect
response). The next three items selected also had maximum Fisher information for θ = 0. Based on the
responses to the first four items, �θ was obtained. The next item selected was the item with maximum
information given �θ. P(θ) was then computed for the fifth item, and a response was simulated. Again, θ was
estimated, and then the next item was selected based on maximum information given �θ. This procedure was
repeated until the test contained N = 30 items.

To simulate aberrant answering behavior, we assumed that an examinee answered the test using two
different θ levels. When an examinee has a different θ value during the first half of the test than during the
second half, that examinee is said to have “noninvariant ability” (Klauer, 1991). Carelessness and fumbling
can cause noninvariant θs. Response vectors were simulated for a two-dimensional value of θ. It was
assumed that during the first half of the test an examinee had a different θ value than during the second half.
Datasets containing response vectors with a two-dimensional θ were simulated by drawing the first ability
value, θ1, from the standard normal distribution truncated [–2.5, 2.5], and the second ability value was
determined as θ2 = θ1 + r, where r = 2 was used. Thus, during the first half of the test, P(θ1) was used and,
during the second half, P(θ2) was used to simulate the responses to the items. An example of response
behavior with r = 2 is a warming-up effect in the first half of the test.

Detection rates for all four methods discussed were determined.

Results

In Table 1, the detection rates for ϑ, η, and TNR and LLR are given. It can be seen that ϑ has the highest
overall detection rate. Also, the detection rate increases when θ increases. This can be explained by the fact
that the probability of correct answers increased in θ.
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TABLE 1
Detection rate using the cumulative hypergeometric ϑ, the generalized binomial distribution, η,
TNR, and LLR, for invariant ability simulees
θ α ϑ η LLR TNR

–2 0.05 0.017 0.003 0.091 0.092
0.10 0.062 0.006 0.099 0.104

–1 0.05 0.096 0.012 0.096 0.145
0.10 0.174 0.040 0.174 0.220

0 0.05 0.302 0.048 0.102 0.426
0.10 0.451 0.112 0.251 0.423

1 0.05 0.450 0.134 0.350 0.531
0.10 0.652 0.256 0.452 0.412

2 0.05 0.548 0.347 0.583 0.473
0.10 0.798 0.449 0.678 0.560

Discussion

Depending on the application envisaged, a standard remark can be attached to the test scores if the
pattern fits the model. This can be fully automated and is very easy to implement. In fact, an example of a
personnel “validity index” is implemented in the New Hampshire Educational and Improvement
Assessment program, a statewide paper-and-pencil assessment program administered to grades 3, 6, and 10.
This index is used to communicate about the regularity of item score patterns of an examinee to parents. If a
pattern is suspicious, this is communicated by a remark on the paper that the irregularity may be caused by
lack of motivation, illness, etc. Fit of item score patterns to a test model may even be crucial in high stakes
testing when examinees may question the fairness of the test model to select items. Item and person fit may
then be used to back up decisions made.
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