
 

ABSTRACT 

This paper proposes an architecture of a virtual channel 
router for an on-chip network1. The router has simple 
dynamic arbitration which is deterministic and fair. We show 
that the size of the proposed router is reduced by 49% and 
the speed increases 1.4 times compared to a conventional 
virtual channel router. 

I. INTRODUCTION 

It is expected that interconnection technology will become 
a limiting factor in future system-on-chip (SoC) designs [1]. 
A possible approach for coping with this problem is to use an 
on-chip interconnection network instead of ad-hoc global 
wiring [2]. Such a network provides an on-chip 
communication infrastructure for interconnecting the system 
components.  

Several solutions for on-chip networks have been 
proposed [2][3][4][5]. While all of them are based on simple 
routers interconnected through network channels, (usually in 
a mesh topology), they differ in the techniques used for the 
router implementations.  

In this paper we advocate a packet switching network with 
virtual channel flow control, an approach proposed in [2]. 
We believe it provides the performance, flexibility, area and 
energy efficiency needed in a dynamic SoC. We propose a 
router architecture that simplifies the dynamic arbitration 
compared with a conventional virtual channel router and 
makes it deterministic and fair. 

Paper organization: Section II introduces the SoC where 
our network on-chip is used. Section III presents a traditional 
virtual channel router architecture. In Section IV we propose 
the new router architecture. Section V presents 
implementation results. 

II. BACKGROUND 

To put the proposed router architecture into perspective 
and to simplify its explanation, we first present the SoC 
where it will be used. 

We target our network at a heterogeneous system-on chip, 
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a platform for future wireless multimedia devices, depicted 
in Fig. 1. The system integrates computational units of 
different levels of granularity and configurability (e.g. GPP, 
DSP, FPGA, ASIC). They are interconnected through a 
packet-switched on-chip network that should provide a well-
structured, flexible, and efficient communication 
infrastructure. 

 

 
Fig. 1.  A tiled heterogeneous reconfigurable SoC. GPP – General-Purpose 

Processor; DSP – Digital Signal Processor; ASIC – Application-Specific 

Integrated Circuit; FPGA – Field-Programmable Gate Array; DSRC – 

Domain-Specific Reconfigurable (e.g. [12]) 

 

We assume that the system is organized as a centralized 
system: one node (a GGP tile), called Central Coordination 
Node (CCN), performs system coordination functions. The 
main task of the CCN is to manage the system’s resources. It 

performs mapping of the newly arrived tasks on suitable 

computation units and inter-task communications to network 

channels. It also tries to satisfy Quality of Service (QoS) 

requirements, to optimize the resources usage and to 

minimizing the energy consumption. The CCN does not 

perform scheduling of tasks and communications, but only 

mapping and allocation. 

The centralised mapping of communications on network 

channels requires the use of source routing, where the route 

a packet takes in the network is predetermined and 

completely described in the packet’s header. 

For describing the network traffic in the system, we adopt 

the notation used in [3]. According to the type of services 

required, the following types of traffic can be distinguished 

in the network: 
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- GT (guaranteed throughput) – this is the part of the 

traffic for which the network has to give real-time guarantees 

(i.e. guaranteed bandwidth, bounded latency). 

- BE (best effort) – this is the part of the traffic for which 

the network guarantees only fairness but does not give any 

bandwidth and timing guarantees.  

Furthermore we assume that the traffic in a multimedia 

terminal is often stream based. This means that for a long 

period of time subsequent data items of a stream follow the 

same route. 

III. WORMHOLE ROUTING WITH VIRTUAL-CHANNEL 

FLOW CONTROL 

Wormhole routing with virtual channel flow control is a 

well-known technique from the domain of multiprocessor 

networks [6]. It allows minimization of the size of the 

router’s buffers - a significant source of area and energy 

overhead [3][7], while providing flexibility and good channel 

utilization.  

A general structure of a wormhole router with virtual 

channel flow control is depicted in Fig. 2. In this example 

the router has 5 input/output ports: 4 for connection with the 

neighbour routers and one for connection with the local 

node. At each input port the virtual channels (VCs), 4 in this 

case, are demultiplexed and buffered in FIFOs. Status 

information is kept for each of them. After the FIFOs they 

are multiplexed again on a single channel which goes to a 

crossbar. The operation of the router is controlled by an 

arbitration unit (AU). It determines on a cycle-by-cycle 

basis, which virtual channels may advance.  

 

 
Fig. 2.  General structure of a virtual channel router with 5 ports and 4 
virtual channels. 
 

During the operation of the router a VC can be in one of 

the following states: idle – the VC is not used at the moment; 

busy – there is a packet using the VC; empty – busy VC with 

empty FIFO; ready – busy VC with nonempty FIFO. 

After initialization all VCs are in the idle state. When a 

new packet arrives on a certain VC, the state of this VC is 

changed to busy. In order to start forwarding of the newly 

arrived packet the router needs the following information:  

output port (p) – number of the output port the packet 

has to go 

output VC (v) – number of the VC of the output port the 

packet has to be sent on. 

In the sequel we refer to these values as p and v respectively.  

Since we use source routing (see Section II), the values for 

p and v are obtained from the packet’s header. Each packet 

consists of a multi-flit header followed by data flits and 

terminated by a tail flit. For each router the packet passes 

there is one corresponding header flit. The header flit 

contains three fields: a value for v, a value for p and id (the 

function of the last one will be explained later). Every router 

examines the first header flit, extracts the values for p, v and 

id from it, stores them as state information for the 

corresponding input VC and then removes the flit from the 

packet. The values for p, v and id are the address information 

a tile in the system needs in order to send a message on the 

network. They are generated by the CCN during the task 

mapping stage and provided to the source tile at the tile 

configuration stage.  

After the router has obtained values for p and v it can start 

forwarding the packet. The packet’s VC starts competing for 

a crossbar connection to the output port p. The competition 

is governed by the AU. Each cycle the AU decides which of 

the ready input VCs may advance. 

The main task of the arbitration unit is to solve the 

following possible conflicts between VCs: 

- conflicts at the inputs – at each cycle only one VC can 

advance from an input port 

- conflicts at the outputs – at each cycle an output port can 

accept data from one input VC only. 

The arbitration has to be fair and give equal chances to all 

competing VCs. It also has to aim at maximal utilization of 

the output channels to obtain a high network throughput. 

These last two requirements are contradicting as for many 

traffic patterns maximal throughput can only be achieved if 

fairness is sacrificed. Moreover, to allow handling of the GT 

traffic the arbitration has to be deterministic.  

In our first implementation of the virtual channel router we 

used the general structure presented in Fig. 2 and a SLIP 

arbiter [10]. The SLIP arbiter is fair, has good performance, 

but is nondeterministic and so cannot handle the GT traffic. 

In the next section we propose an architecture which 

overcomes this problem. It is smaller in size, has fair 

deterministic arbitration and high throughput. 



 

IV. PROPOSED ROUTER ARCHITECTURE 

The proposed architecture is shown in Fig. 4. It differs 
from the traditional one in that the VCs are not multiplexed 
after the FIFOs in each input block, but connected directly to 
the crossbar. The multiplexers for the request and 
acknowledge signals are also integrated in the crossbar. 

Since there are no conflicts at the inputs anymore, the AU 
can be reduced to a small round robin arbiter (RRA) [11] for 
each output port. The arbitration is deterministic and fair. 
We can give an upper bound for the latency a packet 
experiences when passing through the router. Since the 
arbitration is based on round robin arbiters without any 
dependencies between them, each VC, if ready, is served 
every 4-th cycle and thus receives at least ¼ of the channel 

bandwidth (this in a case of 4 VCs per port). Because there 

are conflicts only at the out ports, this router can achieve a 

throughput of an output queued switch (100%) [13]. 

 

 
Fig. 4.  A virtual channel router with simplified arbitration. 
 

The crossbar is asymmetric and larger than before. If N is 

the number of router’s ports and V is the number of VCs per 

port, then we need a crossbar of size (V×N)×N. We see that 
this solution is not efficient for routers with large number of 
ports (or VCs), but since on-chip networks will most 
probably use two-dimensional topologies we expect the 
routers to have N=5 ports. 

The request/acknowledge multiplexers are uniformly 
distributed in the crossbar. Each cross point of the crossbar, 
together with the 3-state drivers, contains a simple 

decoding/multiplexing circuit.  
A simplified cross point is shown in Fig. 5. The function 

of the circuits presented there is to multiplex the 
request/acknowledge signals between the input VC and the 
desired output VC. One comparator recognises if this is the 
cross point to the destination output port (p=P). If so, the 
arbitration request, REQ, is demultiplexed to the destination 
output request line. All the requests to an output VC are 
collected by an OR chain spanning along the crossbar 
column. Finally, the requests to all VCs (Req_0, Req_1, 

Req_2, Req_3) are sent to the arbiter (RRA) of that port. 
The RRA arbitrates only between those output VCs for 

which a request is sent and for which there is free buffer 
space in the next router. Whether there is free buffer space 
for each VC is indicated by the signals Rdy_0, Rdy_1, 
Rdy_2, and Rdy_3 coming from the next router. Every cycle 
the RRA issues the number of the granted output VC 
(Vc_ack) which spans back along the crossbar column. In the 
cross point a comparator recognizes whether the requested 
output VC is granted and if so, enables the 3-state driver and 
sends an acknowledge signal, ACK, to the input VC (again 
through an OR chain). 

 
Fig. 5.  Request/acknowledge multiplexing circuits in a crossbar’s cross 

point. 

 

The mechanisms described above works properly if only 
one input VC uses a certain output VC. The CCN can 
provide that condition. If the CCN guarantees for a network 
connection that it is the only user of the VCs it traverses, 
then the packets of this connection will always find the VCs 
free. Hence they can immediately attain them without 
experiencing any latency. Since the router arbitration is 
deterministic, after the packet has attained a VC we can give 
an upper bound for the latency. If L is the length of the 
packet in flits and V is the number of VCs per port, then the 
number of cycles, T, it takes for the packet to traverse the 



 

router is: L ��7���9×L. Thus, we can handle the GT traffic 
When the CCN allows a VC to be shared between several 

connections, a packet of such a connection may find the VC 
busy and experience nondeterministic latency before attain it 
(this latency can be estimated only statistically). Thus no 
guarantees can be given for such connection and they can 
only be used for BE traffic. 

In a case of a shared VC we have to arbitrate between all 
the input VCs willing to use the same output VC at a time 
and to allow only one of them to attain it. The arbitration 
takes place when an input VC goes from Idle to Busy state, 
or in other words when a new packet arrives. From that 
moment the VC starts competing for the desired output VC 
until attains it.  

For implementing this arbitration in each cross point we 
add the circuits shown in Fig. 6. For each input VC there are 
two new signals: hold and vcb (VC is busy). The vcb signal 
shows whether the desired output VC is busy or not. The 
input VC activates its hold signal when attains the desired 
output VC. In the selected cross point (p=P) the hold is 
demultiplexed to the desired VC and collected by an OR-
chain. The OR-chains produce signals (Busy_0, Busy_1, 

Busy_2, and Busy_3) showing whether the corresponding 
output VC is busy or not. In the cross point the respective 
Busy signal is selected by a multiplexer and sent through an 
OR chain to the input VC as the vcb signal. 

 

 
Fig. 6.  Additional multiplexing circuits in a crossbar’s cross point 

 

In order to simplify the arbitration circuits we 
implemented the following solution. Each of the VCs 
competing for a certain output VC has a unique identifier, id, 
which is provided on a higher system level by the CCN. In 
the router there is a counter, cntr, that counts each clock 
cycle and which value is distributed to all input VCs. A 
competing VC attains the desired output VC only if the 
output VC is not busy (the signal vcb is not active) and the 
current counter value equals the VC’s id. When attaining an 

output VC the input VC activates its hold signal and thus 

makes the output VC busy. When the packet finishes, the 

input VC goes in idle state and deactivates its hold signal, 

which releases the output VC. 

The uniqueness of the id guaranties that the arbitration is 

conflict free. Because the counter counts permanently and 

independently of the state of the VCs, at the moment of 

arbitration we find it generally in a random state. This 

randomness provides fairness of the arbitration.  

The stream communications can be handled by 

representing the stream as a packet of infinite length. This 

network allows that as it does not put any restrictions on the 

packet length. To open a stream the source just sends a 

packet header. To close the stream a tail flit has to be sent. 

Since VCs used by the stream cannot be shared, the streams 

always belong to the GT part of the traffic. 

V. RESULTS 

Below we present the implementation results for two 

virtual channel routers – the first one with a traditional 

architecture (Fig. 2) and a SLIP arbiter, the second one with 

the architecture proposed in Section IV (we refer to these 

two architectures as “Reference architecture” and “Proposed 

architecture”). Both routers have the same parameters: 5 

input ports, 16 bit channels, 4 virtual channels per port, and 4 

word buffers depth.  

To get an indication about the size and speed difference 

the routers were synthesized for Xilinx Vitrex-II FPGA and 

standard 0.5 m ASIC technologies. For size indication we 

took the number of utilised CLB slices in the FPGA and the 

number of utilised gates in the ASIC.  

We experimented with two implementations for the 

FPGA. In the first one OR-chains were used, as it was 

described in Section IV. In the second one we replaced the 

OR-chains with 3-state driven lines taking advantage of the 

fact that the 3-state buffers in Virtex technology are weakly 

pulled up. Thus we emulated a wired-OR line.  

 
TABLE I.  IMPLEMENTATION RESULTS 
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The results are presented in Table I. It gives the total 
amount of CLB slices and gates used and also their 
distribution between the buffers, crossbar and arbitration. It 
also gives the maximal clock frequency reported by the 
synthesis tool (Leonardo Spectrum). 

The area distribution for the FPGA and ASIC 
implementations is presented graphically in Fig. 7 and Fig. 8 
respectively. There we see that in the reference architecture 
the arbitration unit area is much larger than the crossbar area, 
while the proposed architecture changes this proportion and 
also reduces the total router area. The area reduction is 23% 
for the ASIC, 26% for the FPGA using OR-chains, and 49% 
for the FPGA using wired-OR.  
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Fig. 7.  Router area distribution for FPGA implementation. Bar 1 – 

Reference architecture. Bar 2 – Proposed architecture /OR-chains/. Bar 3 – 

Proposed architecture /3-states/ 

 

For the FPGA implementation we see that the buffer area 
is also reduced. This is because the reported area is in fact 
for the whole input block including the multiplexers and 
demultiplexers, routing logic and the VC state logic. In the 
proposed architecture we have removed the multiplexers 
after the FIFOs. 
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Fig. 8.  Router area distribution for ASIC implementation. Bar 1 - 

Reference architecture. Bar 2 - Proposed architecture.  

 

For the Virtex, when using 3-state drivers (wired-OR) 
instead of OR-chains we allow the synthesizer to utilize the 
unused 3-state drivers in already used CLB slices instead of 
allocating new CLB slices. That is the reason for the area 
reduction gained when using wired-OR.  

VI. CONCLUSION 

In this paper we presented an architecture for a 5-port 
virtual channel router with simplified dynamic arbitration. 
The simplification allows fair and deterministic arbitration, 
capable of handling guaranteed throughput traffic as well as 
best effort traffic. The architecture shows to be efficient in 
area and suitable for on-chip networks with two-dimensional 
topologies. We showed that the size of the proposed router is 
reduced by 49% for the FPGA implementation and 23% for 
the ASIC implementation and that the speed is improved 1.4 
times compared to a conventional router. The router can 
achieve the maximal throughput of an output queued switch, 
100%. 

REFERENCES 
[1] Luca Benini, Giovanni De Micheli, “Networks on Chips: A New SoC 

Paradigm.”, IEEE Computer, January 2002 (Vol. 35, No. 1), pp. 70-

78. 

[2] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip 

Interconnection Networks”, DAC, June 2001, pp. 684-689. 

[3] E. Rijpkema, K. G. W. Goossens, A. Radulescu, J. Dielissen, J. van 

Meerbergen, P. Wielage, and E. Waterlander, "Trade offs in the 

design of a router with both guaranteed and best-effort services for 

networks on chip", Proceedings of Design Automation and Test 
Conference in Europe, March 2003. 

[4] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, 

Fae Ghodrat, Ben Greenwald, Henry Hoffman, Jae-Wook Lee, Paul 

Johnson, Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan 

Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe and 

Anant Agarwal, ‘The Raw Microprocessor: A Computational Fabric 

for Software Circuits and General Purpose Programs”, IEEE Micro, 

March/April 2002. 

[5] J. Liang, S. Swaminathan, and R. Tessier, “aSOC: A Scalable, Single-

Chip Communications Architecture.”, In the Proceedings of the IEEE 
International Conference on Parallel Architectures and Compilation 
Techniques, Philadelphia, PA. October 2000. 

[6] W. J. Dally, “Virtual-channel flow control”, IEEE Transactions on 
Parallel and Distributed systems, vol. 3, no. 2, pp. 194-205, March, 

1992. 

[7] Hang-Sheng Wang, Li-Shiuan Peh and Sharad Malik, "A Power 

Model for Routers: Modeling Alpha 21364 and InfiniBand Routers.", 

In IEEE Micro, Vol. 23, No. 1, January/February 2003 (Selected 

articles from Hot Interconnects 10). 

[8] McKeown N., Anderson T.E., "A quantitative comparison of 

scheduling algorithms for input-queued switches", Computer 
Networks & ISDN Systems, vol. 30, n. 24, Dec. 1998, pp. 2309-26. 

[9] Li-Shiuan Peh, "Flow Control and Micro-Architectural Mechanisms 

for Extending the Performance of Interconnection Networks.", Ph.D. 

Thesis, Stanford University, August 2001 

[10] Nick McKeown, "iSLIP: A Scheduling Algorithm for Input-Queued 

Switches" IEEE Transactions on Networking, Vol 7, No.2, April 

1999. 

[11] Pankaj Gupta and Nick McKeown, "Designing and Implementing of a 

Fast Crossbar Scheduler", IEEE Micro Magazine, Jan-Feb 1999. 
[12] Heysters P.M., Smit G.J.M. & Molenkamp E.: “A Flexible and 

Energy-Efficient Coarse-Grained Reconfigurable Architecture for 

Mobile Systems”, The Journal of Supercomputing, volume 26, 

number 3, Kluwer Academic Publishers, Boston, U.S.A., November 

2003, ISSN 0920-8542. 

[13] M. Karol, M. Hluchyj, and S. Morgan, "Input versus output queueing 

on a space-division packet switch," IEEE Transactions on 
Communications, vol. 35, no. 12, pp. 1347--1356, December 1987. 


