

ABSTRACT

This paper proposes an architecture of a virtual channel
router for an on-chip network1. The router has simple
dynamic arbitration which is deterministic and fair. We show
that the size of the proposed router is reduced by 49% and
the speed increases 1.4 times compared to a conventional
virtual channel router.

I. INTRODUCTION

It is expected that interconnection technology will become
a limiting factor in future system-on-chip (SoC) designs [1].
A possible approach for coping with this problem is to use an
on-chip interconnection network instead of ad-hoc global
wiring [2]. Such a network provides an on-chip
communication infrastructure for interconnecting the system
components.

Several solutions for on-chip networks have been
proposed [2][3][4][5]. While all of them are based on simple
routers interconnected through network channels, (usually in
a mesh topology), they differ in the techniques used for the
router implementations.

In this paper we advocate a packet switching network with
virtual channel flow control, an approach proposed in [2].
We believe it provides the performance, flexibility, area and
energy efficiency needed in a dynamic SoC. We propose a
router architecture that simplifies the dynamic arbitration
compared with a conventional virtual channel router and
makes it deterministic and fair.

Paper organization: Section II introduces the SoC where
our network on-chip is used. Section III presents a traditional
virtual channel router architecture. In Section IV we propose
the new router architecture. Section V presents
implementation results.

II. BACKGROUND

To put the proposed router architecture into perspective
and to simplify its explanation, we first present the SoC
where it will be used.

We target our network at a heterogeneous system-on chip,

1 This work is partially supported by the Dutch Organization for
Scientific Research NWO and IST-FP6

a platform for future wireless multimedia devices, depicted
in Fig. 1. The system integrates computational units of
different levels of granularity and configurability (e.g. GPP,
DSP, FPGA, ASIC). They are interconnected through a
packet-switched on-chip network that should provide a well-
structured, flexible, and efficient communication
infrastructure.

Fig. 1. A tiled heterogeneous reconfigurable SoC. GPP – General-Purpose

Processor; DSP – Digital Signal Processor; ASIC – Application-Specific

Integrated Circuit; FPGA – Field-Programmable Gate Array; DSRC –

Domain-Specific Reconfigurable (e.g. [12])

We assume that the system is organized as a centralized
system: one node (a GGP tile), called Central Coordination
Node (CCN), performs system coordination functions. The
main task of the CCN is to manage the system’s resources. It

performs mapping of the newly arrived tasks on suitable

computation units and inter-task communications to network

channels. It also tries to satisfy Quality of Service (QoS)

requirements, to optimize the resources usage and to

minimizing the energy consumption. The CCN does not

perform scheduling of tasks and communications, but only

mapping and allocation.

The centralised mapping of communications on network

channels requires the use of source routing, where the route

a packet takes in the network is predetermined and

completely described in the packet’s header.

For describing the network traffic in the system, we adopt

the notation used in [3]. According to the type of services

required, the following types of traffic can be distinguished

in the network:

A Virtual Channel Router for On-chip Networks

Nikolay Kavaldjiev, Gerard J. M. Smit, Pierre G. Jansen

Department of EEMCS, University of Twente, the Netherlands
{nikolay, smit, jansen}@cs.utwente.nl

- GT (guaranteed throughput) – this is the part of the

traffic for which the network has to give real-time guarantees

(i.e. guaranteed bandwidth, bounded latency).

- BE (best effort) – this is the part of the traffic for which

the network guarantees only fairness but does not give any

bandwidth and timing guarantees.

Furthermore we assume that the traffic in a multimedia

terminal is often stream based. This means that for a long

period of time subsequent data items of a stream follow the

same route.

III. WORMHOLE ROUTING WITH VIRTUAL-CHANNEL

FLOW CONTROL

Wormhole routing with virtual channel flow control is a

well-known technique from the domain of multiprocessor

networks [6]. It allows minimization of the size of the

router’s buffers - a significant source of area and energy

overhead [3][7], while providing flexibility and good channel

utilization.

A general structure of a wormhole router with virtual

channel flow control is depicted in Fig. 2. In this example

the router has 5 input/output ports: 4 for connection with the

neighbour routers and one for connection with the local

node. At each input port the virtual channels (VCs), 4 in this

case, are demultiplexed and buffered in FIFOs. Status

information is kept for each of them. After the FIFOs they

are multiplexed again on a single channel which goes to a

crossbar. The operation of the router is controlled by an

arbitration unit (AU). It determines on a cycle-by-cycle

basis, which virtual channels may advance.

Fig. 2. General structure of a virtual channel router with 5 ports and 4
virtual channels.

During the operation of the router a VC can be in one of

the following states: idle – the VC is not used at the moment;

busy – there is a packet using the VC; empty – busy VC with

empty FIFO; ready – busy VC with nonempty FIFO.

After initialization all VCs are in the idle state. When a

new packet arrives on a certain VC, the state of this VC is

changed to busy. In order to start forwarding of the newly

arrived packet the router needs the following information:

output port (p) – number of the output port the packet

has to go

output VC (v) – number of the VC of the output port the

packet has to be sent on.

In the sequel we refer to these values as p and v respectively.

Since we use source routing (see Section II), the values for

p and v are obtained from the packet’s header. Each packet

consists of a multi-flit header followed by data flits and

terminated by a tail flit. For each router the packet passes

there is one corresponding header flit. The header flit

contains three fields: a value for v, a value for p and id (the

function of the last one will be explained later). Every router

examines the first header flit, extracts the values for p, v and

id from it, stores them as state information for the

corresponding input VC and then removes the flit from the

packet. The values for p, v and id are the address information

a tile in the system needs in order to send a message on the

network. They are generated by the CCN during the task

mapping stage and provided to the source tile at the tile

configuration stage.

After the router has obtained values for p and v it can start

forwarding the packet. The packet’s VC starts competing for

a crossbar connection to the output port p. The competition

is governed by the AU. Each cycle the AU decides which of

the ready input VCs may advance.

The main task of the arbitration unit is to solve the

following possible conflicts between VCs:

- conflicts at the inputs – at each cycle only one VC can

advance from an input port

- conflicts at the outputs – at each cycle an output port can

accept data from one input VC only.

The arbitration has to be fair and give equal chances to all

competing VCs. It also has to aim at maximal utilization of

the output channels to obtain a high network throughput.

These last two requirements are contradicting as for many

traffic patterns maximal throughput can only be achieved if

fairness is sacrificed. Moreover, to allow handling of the GT

traffic the arbitration has to be deterministic.

In our first implementation of the virtual channel router we

used the general structure presented in Fig. 2 and a SLIP

arbiter [10]. The SLIP arbiter is fair, has good performance,

but is nondeterministic and so cannot handle the GT traffic.

In the next section we propose an architecture which

overcomes this problem. It is smaller in size, has fair

deterministic arbitration and high throughput.

IV. PROPOSED ROUTER ARCHITECTURE

The proposed architecture is shown in Fig. 4. It differs
from the traditional one in that the VCs are not multiplexed
after the FIFOs in each input block, but connected directly to
the crossbar. The multiplexers for the request and
acknowledge signals are also integrated in the crossbar.

Since there are no conflicts at the inputs anymore, the AU
can be reduced to a small round robin arbiter (RRA) [11] for
each output port. The arbitration is deterministic and fair.
We can give an upper bound for the latency a packet
experiences when passing through the router. Since the
arbitration is based on round robin arbiters without any
dependencies between them, each VC, if ready, is served
every 4-th cycle and thus receives at least ¼ of the channel

bandwidth (this in a case of 4 VCs per port). Because there

are conflicts only at the out ports, this router can achieve a

throughput of an output queued switch (100%) [13].

Fig. 4. A virtual channel router with simplified arbitration.

The crossbar is asymmetric and larger than before. If N is

the number of router’s ports and V is the number of VCs per

port, then we need a crossbar of size (V×N)×N. We see that
this solution is not efficient for routers with large number of
ports (or VCs), but since on-chip networks will most
probably use two-dimensional topologies we expect the
routers to have N=5 ports.

The request/acknowledge multiplexers are uniformly
distributed in the crossbar. Each cross point of the crossbar,
together with the 3-state drivers, contains a simple

decoding/multiplexing circuit.
A simplified cross point is shown in Fig. 5. The function

of the circuits presented there is to multiplex the
request/acknowledge signals between the input VC and the
desired output VC. One comparator recognises if this is the
cross point to the destination output port (p=P). If so, the
arbitration request, REQ, is demultiplexed to the destination
output request line. All the requests to an output VC are
collected by an OR chain spanning along the crossbar
column. Finally, the requests to all VCs (Req_0, Req_1,

Req_2, Req_3) are sent to the arbiter (RRA) of that port.
The RRA arbitrates only between those output VCs for

which a request is sent and for which there is free buffer
space in the next router. Whether there is free buffer space
for each VC is indicated by the signals Rdy_0, Rdy_1,
Rdy_2, and Rdy_3 coming from the next router. Every cycle
the RRA issues the number of the granted output VC
(Vc_ack) which spans back along the crossbar column. In the
cross point a comparator recognizes whether the requested
output VC is granted and if so, enables the 3-state driver and
sends an acknowledge signal, ACK, to the input VC (again
through an OR chain).

Fig. 5. Request/acknowledge multiplexing circuits in a crossbar’s cross

point.

The mechanisms described above works properly if only
one input VC uses a certain output VC. The CCN can
provide that condition. If the CCN guarantees for a network
connection that it is the only user of the VCs it traverses,
then the packets of this connection will always find the VCs
free. Hence they can immediately attain them without
experiencing any latency. Since the router arbitration is
deterministic, after the packet has attained a VC we can give
an upper bound for the latency. If L is the length of the
packet in flits and V is the number of VCs per port, then the
number of cycles, T, it takes for the packet to traverse the

router is: L ��7���9×L. Thus, we can handle the GT traffic
When the CCN allows a VC to be shared between several

connections, a packet of such a connection may find the VC
busy and experience nondeterministic latency before attain it
(this latency can be estimated only statistically). Thus no
guarantees can be given for such connection and they can
only be used for BE traffic.

In a case of a shared VC we have to arbitrate between all
the input VCs willing to use the same output VC at a time
and to allow only one of them to attain it. The arbitration
takes place when an input VC goes from Idle to Busy state,
or in other words when a new packet arrives. From that
moment the VC starts competing for the desired output VC
until attains it.

For implementing this arbitration in each cross point we
add the circuits shown in Fig. 6. For each input VC there are
two new signals: hold and vcb (VC is busy). The vcb signal
shows whether the desired output VC is busy or not. The
input VC activates its hold signal when attains the desired
output VC. In the selected cross point (p=P) the hold is
demultiplexed to the desired VC and collected by an OR-
chain. The OR-chains produce signals (Busy_0, Busy_1,

Busy_2, and Busy_3) showing whether the corresponding
output VC is busy or not. In the cross point the respective
Busy signal is selected by a multiplexer and sent through an
OR chain to the input VC as the vcb signal.

Fig. 6. Additional multiplexing circuits in a crossbar’s cross point

In order to simplify the arbitration circuits we
implemented the following solution. Each of the VCs
competing for a certain output VC has a unique identifier, id,
which is provided on a higher system level by the CCN. In
the router there is a counter, cntr, that counts each clock
cycle and which value is distributed to all input VCs. A
competing VC attains the desired output VC only if the
output VC is not busy (the signal vcb is not active) and the
current counter value equals the VC’s id. When attaining an

output VC the input VC activates its hold signal and thus

makes the output VC busy. When the packet finishes, the

input VC goes in idle state and deactivates its hold signal,

which releases the output VC.

The uniqueness of the id guaranties that the arbitration is

conflict free. Because the counter counts permanently and

independently of the state of the VCs, at the moment of

arbitration we find it generally in a random state. This

randomness provides fairness of the arbitration.

The stream communications can be handled by

representing the stream as a packet of infinite length. This

network allows that as it does not put any restrictions on the

packet length. To open a stream the source just sends a

packet header. To close the stream a tail flit has to be sent.

Since VCs used by the stream cannot be shared, the streams

always belong to the GT part of the traffic.

V. RESULTS

Below we present the implementation results for two

virtual channel routers – the first one with a traditional

architecture (Fig. 2) and a SLIP arbiter, the second one with

the architecture proposed in Section IV (we refer to these

two architectures as “Reference architecture” and “Proposed

architecture”). Both routers have the same parameters: 5

input ports, 16 bit channels, 4 virtual channels per port, and 4

word buffers depth.

To get an indication about the size and speed difference

the routers were synthesized for Xilinx Vitrex-II FPGA and

standard 0.5 m ASIC technologies. For size indication we

took the number of utilised CLB slices in the FPGA and the

number of utilised gates in the ASIC.

We experimented with two implementations for the

FPGA. In the first one OR-chains were used, as it was

described in Section IV. In the second one we replaced the

OR-chains with 3-state driven lines taking advantage of the

fact that the 3-state buffers in Virtex technology are weakly

pulled up. Thus we emulated a wired-OR line.

TABLE I. IMPLEMENTATION RESULTS

U
ni

ts
 Reference

architectur
e

Proposed
architecture
/OR chains/

Proposed
architectir
e /3-states/

Buffers 764 600 600

Arbiter 733 53 53

Crossbar 335 672 278

Total

C
L

B
 s

lic
es

1832 1325 931 V
ir

te
x-

II

Fmax MHz 66 86 97

Buffers 25467 24718 -

Arbiter 21719 1043 -

Crossbar 5782 15198 -

Total

G
at

es

52968 40959 - A
SI

C
 0

.5
um

Fmax MHz 68 96 -

The results are presented in Table I. It gives the total
amount of CLB slices and gates used and also their
distribution between the buffers, crossbar and arbitration. It
also gives the maximal clock frequency reported by the
synthesis tool (Leonardo Spectrum).

The area distribution for the FPGA and ASIC
implementations is presented graphically in Fig. 7 and Fig. 8
respectively. There we see that in the reference architecture
the arbitration unit area is much larger than the crossbar area,
while the proposed architecture changes this proportion and
also reduces the total router area. The area reduction is 23%
for the ASIC, 26% for the FPGA using OR-chains, and 49%
for the FPGA using wired-OR.

Virtex-II

0 500 1000 1500 2000

1

2

3

CLB slices

Buffers

Arbiter

Crossbar

Fig. 7. Router area distribution for FPGA implementation. Bar 1 –

Reference architecture. Bar 2 – Proposed architecture /OR-chains/. Bar 3 –

Proposed architecture /3-states/

For the FPGA implementation we see that the buffer area
is also reduced. This is because the reported area is in fact
for the whole input block including the multiplexers and
demultiplexers, routing logic and the VC state logic. In the
proposed architecture we have removed the multiplexers
after the FIFOs.

ASIC

0 10000 20000 30000 40000 50000 60000

1

2

Gates

Buffers

Arbiter

Crossbar

Fig. 8. Router area distribution for ASIC implementation. Bar 1 -

Reference architecture. Bar 2 - Proposed architecture.

For the Virtex, when using 3-state drivers (wired-OR)
instead of OR-chains we allow the synthesizer to utilize the
unused 3-state drivers in already used CLB slices instead of
allocating new CLB slices. That is the reason for the area
reduction gained when using wired-OR.

VI. CONCLUSION

In this paper we presented an architecture for a 5-port
virtual channel router with simplified dynamic arbitration.
The simplification allows fair and deterministic arbitration,
capable of handling guaranteed throughput traffic as well as
best effort traffic. The architecture shows to be efficient in
area and suitable for on-chip networks with two-dimensional
topologies. We showed that the size of the proposed router is
reduced by 49% for the FPGA implementation and 23% for
the ASIC implementation and that the speed is improved 1.4
times compared to a conventional router. The router can
achieve the maximal throughput of an output queued switch,
100%.

REFERENCES
[1] Luca Benini, Giovanni De Micheli, “Networks on Chips: A New SoC

Paradigm.”, IEEE Computer, January 2002 (Vol. 35, No. 1), pp. 70-

78.

[2] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-Chip

Interconnection Networks”, DAC, June 2001, pp. 684-689.

[3] E. Rijpkema, K. G. W. Goossens, A. Radulescu, J. Dielissen, J. van

Meerbergen, P. Wielage, and E. Waterlander, "Trade offs in the

design of a router with both guaranteed and best-effort services for

networks on chip", Proceedings of Design Automation and Test
Conference in Europe, March 2003.

[4] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff,

Fae Ghodrat, Ben Greenwald, Henry Hoffman, Jae-Wook Lee, Paul

Johnson, Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan

Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe and

Anant Agarwal, ‘The Raw Microprocessor: A Computational Fabric

for Software Circuits and General Purpose Programs”, IEEE Micro,

March/April 2002.

[5] J. Liang, S. Swaminathan, and R. Tessier, “aSOC: A Scalable, Single-

Chip Communications Architecture.”, In the Proceedings of the IEEE
International Conference on Parallel Architectures and Compilation
Techniques, Philadelphia, PA. October 2000.

[6] W. J. Dally, “Virtual-channel flow control”, IEEE Transactions on
Parallel and Distributed systems, vol. 3, no. 2, pp. 194-205, March,

1992.

[7] Hang-Sheng Wang, Li-Shiuan Peh and Sharad Malik, "A Power

Model for Routers: Modeling Alpha 21364 and InfiniBand Routers.",

In IEEE Micro, Vol. 23, No. 1, January/February 2003 (Selected

articles from Hot Interconnects 10).

[8] McKeown N., Anderson T.E., "A quantitative comparison of

scheduling algorithms for input-queued switches", Computer
Networks & ISDN Systems, vol. 30, n. 24, Dec. 1998, pp. 2309-26.

[9] Li-Shiuan Peh, "Flow Control and Micro-Architectural Mechanisms

for Extending the Performance of Interconnection Networks.", Ph.D.

Thesis, Stanford University, August 2001

[10] Nick McKeown, "iSLIP: A Scheduling Algorithm for Input-Queued

Switches" IEEE Transactions on Networking, Vol 7, No.2, April

1999.

[11] Pankaj Gupta and Nick McKeown, "Designing and Implementing of a

Fast Crossbar Scheduler", IEEE Micro Magazine, Jan-Feb 1999.
[12] Heysters P.M., Smit G.J.M. & Molenkamp E.: “A Flexible and

Energy-Efficient Coarse-Grained Reconfigurable Architecture for

Mobile Systems”, The Journal of Supercomputing, volume 26,

number 3, Kluwer Academic Publishers, Boston, U.S.A., November

2003, ISSN 0920-8542.

[13] M. Karol, M. Hluchyj, and S. Morgan, "Input versus output queueing

on a space-division packet switch," IEEE Transactions on
Communications, vol. 35, no. 12, pp. 1347--1356, December 1987.

