
Declarative Semantics of
Input Consuming Logic Programs

Annalisa Bossi1, Nicoletta Cocco1, Sandro Etalle2,3, and Sabina Rossi1

1 Università di Venezia, {bossi,cocco,srossi}@dsi.unive.it
2 University of Twente s.etalle@utwente.nl

3 CWI, Amsterdam,

Abstract. Most logic programming languages actually provide some
kind of dynamic scheduling to increase the expressive power and to con-
trol execution. Input consuming derivations have been introduced to de-
scribe dynamic scheduling while abstracting from the technical details.
In this paper we review and compare the different proposals given in [9],
[10] and [12] for denotational semantics of programs with input consum-
ing derivations. We also show how they can be applied to termination
analysis.

1 Introduction

1.1 Dynamic Scheduling in Logic Programming

In logic programming the selection rule determines which atom in a query is
selected at each derivation step. The standard selection rule is the left-to-right
one of Prolog, which is simple to implement, but which can cause problems both
with termination and with negation when selected atoms are not fully instanti-
ated. Moreover there are situations – like in the context of parallel executions
or generate-and-test patterns – that require a more flexible control mechanism
(dynamic scheduling) in which the atom to be selected is determined at runtime.

Dynamic scheduling is achieved by using a dynamic selection rule and this
increases the expressive power of the language and allows for a finer control of
the execution. In practical systems, dynamic selection rules are implemented by
means of constructs such as delay declarations (as in Gödel [26] and ECLiPSe
[27]) or block declarations (as in SICStus Prolog [28] – block declarations are
actually a special kind of delay declarations). Alternatively, in concurrent logic
languages such as GHC [43], programs are augmented with guards controlling
the selection of atoms dynamically. For example Moded Flat GHC [45] uses
conditions based on modes and instantiation constraints imposed on individual
clauses.

Delay declarations, advocated by van Emden and de Lucena [46], were intro-
duced explicitly in logic programming by Naish [37, 34]. By associating conditions
to predicate symbols, delay declarations indicate when an atom can be selected
for resolution. Such conditions are based on instantiation: typical delay declara-
tions are ground(X) or nonvar(X) which specify that the associated atom can

be selected for evaluation only if its argument X is respectively a ground term or
a non-variable term. Delay declarations can be also combined together by means
of logical operators, allowing for more complex control.

To see how delay declarations can enforce dynamic scheduling, consider the
following programs APPEND and IN ORDER:

% append(Xs,Ys,Zs) ← Zs is the concatenation of the lists Xs and Ys
append([H|Xs],Ys,[H|Zs]) ← append(Xs,Ys,Zs).
append([],Ys,Ys).

% in order(Tree,List) ← List is an ordered list of the nodes of Tree
in order(tree(Label,Left,Right),Xs) ←

in order(Left,Ls),
in order(Right,Rs),
append(Ls,[Label|Rs],Xs).

in order(void,[]).

together with the query

Q : read tree(Tree), in order(Tree,List), write list(List).

where read tree and write list are defined elsewhere. If read tree cannot
read the whole tree at once – say, it receives the input from a stream – it would
be nice to be able to run the “processes” in order and write list on the
available input. This can be done properly only if one uses a dynamic selection
rule. Prolog’s rule would call in order only after read tree has finished, while
other fixed rules would immediately diverge. For instance, the fixed rule that
selects always the second atom in a clause body, and that selects the first one
only when the body contains only one atom can lead to nontermination, as
the query in order(Tree,List) can easily diverge. The same applies to the
rule that always selects the rightmost atom in a query, with the extra problem
that write list(List) would be called with a non-instantiated argument: if
write list is non-backtrackable (as many IO predicates are) this would imply
that this selection rule yields a wrong output. In the above program, in order
to avoid nontermination one can declare that predicates in order, append and
write list can be selected only if their first argument is not just a variable.
Formally,

delay in order(T,) until nonvar(T).
delay append(Ls, ,) until nonvar(Ls).
delay write list(Ls,) until nonvar(Ls).

These declarations prevent in order, append and write list from being se-
lected “too early”, i.e., when their arguments are not “sufficiently instantiated”.
Note that instead of having interleaving “processes”, one can also select several
atoms in parallel, as long as the delay declarations are respected. This approach
to parallelism has been first proposed by Naish [36] and – as observed by Apt
and Luitjes [5] – “has an important advantage over the ones proposed in the

2

literature in that it allows us to parallelize programs written in a large subset of
Prolog by merely adding to them delay declarations, so without modifying the
original program”.

Compared to other mechanisms for user-defined control, e.g., using the cut
operator in connection with built-in predicates that test for the instantiation of a
variable (var or ground), delay declarations are more compatible with the declar-
ative character of logic programming. Nevertheless, many important declarative
properties that have been proven for logic programs do not apply to programs
with delay declarations. This is mainly due to the fact that delay declarations
can cause deadlock situations, in which no atom in the query respects its delay
declaration and therefore no atom is selectable. Because of this the well-known
equivalence between model-theoretic and operational semantics does not hold.
As an example, consider the query append(X,Y,Z) with the execution mecha-
nism described above: it does not succeed (it deadlocks) and this is in contrast
with the fact that (infinitely many) instances of append(X,Y,Z) are contained
in the least Herbrand model of APPEND.

1.2 Semantics of Logic Programs with Dynamic Scheduling

By introducing dynamic scheduling we obtain more powerful and flexible pro-
grams but we are faced with the problem of finding new techniques for ensuring
correctness and termination of such programs and more generally for analyz-
ing them. The standard semantics and properties are no longer valid when an
atom can be delayed under some condition. In particular the standard semantics
cannot capture the possibility of floundering when no atom in the goal can be
selected. Hence it is not surprising that only relatively few proposals have been
given for a semantics for logic programs with dynamic scheduling despite of their
practical importance.

The first proposal of an operational semantics for dynamic scheduling in the
form of coroutining was given by Naish [35]. He defined SLDF resolution, which
is a straightforward generalization of SLD resolution, where execution of atoms
may be suspended indefinitely. He also considered termination of such programs
and observed that if the set of callable atoms is closed under instantiation, the
termination behaviour is more amenable to analysis. Moreover Naish stressed
the importance of mode information for reasoning about termination of such
programs. An operational semantics for constraint logic programs (CLP) with
dynamic scheduling has been given also by Debray et al. [19].

Falaschi et al. [24, 33, 23] have defined a denotational semantics for CLP pro-
grams with dynamic scheduling where the semantics of a query is given by a set
of closure operators (each operator corresponds to a sequence of rule choices).
They start from an operational semantics for constraint logic programs with dy-
namic scheduling given in terms of derivations from the goals, which is similar
to the one in [19] and in [32]. Then they give a semantics in terms of and-trees,
which captures the structure of a derivation in a compositional way. An and-tree
can be seen as a function mapping an initial constraint to its answer. The deno-
tation of a sequence of atoms is then a set of closure operators, corresponding to

3

the and-trees which have this sequence as root. Their denotational semantics is
the analogue of the bottom-up S-semantics [13] for usual logic programs, where
atoms are mapped to their set of answers.

Such a denotational semantics can be used as a basis for the analysis of logic
programs with dynamic scheduling, since closure operators can be abstracted by
descriptions that capture their behaviour. This idea was followed by Marriott
et al. in [32] where a framework for global dataflow analysis for logic program-
ming languages with dynamic scheduling is developed. Its main use is to give
information on calling patterns. In [17] the analysis is further improved both in
precision and in efficiency. From such proposals also optimization techniques for
logic programs with dynamic scheduling have been derived, such as in [38].

A very elegant definition of an algebraic and logical semantics for constraint
logic languages with dynamic scheduling has been given by Marriott in [31]. It
corresponds to an operational semantics based on the one given by Naish in [35]
generalized to arbitrary constraints. Delayed atoms are considered as constraints
and then the soundness and completeness results for success and finite failure
for CLP are extended to CLP with dynamic scheduling.

In spite of these proposals some problems remained open. Dynamic schedul-
ing is often introduced to ensure the termination of the program, preventing pos-
sible diverging derivations. Nevertheless, while for pure Prolog programs (i.e.,
logic programs employing the fixed leftmost selection rule) there exist results
characterizing when a program is terminating such as in [7, 18, 14] no such a
characterization was derived for programs with dynamic scheduling from these
semantics.

1.3 Semantics of Input Consuming Derivations

In order to provide a characterization of dynamic scheduling that is reasonably
abstract and amenable to termination analysis, Smaus introduced in [40] input
consuming derivations. The definition of input consuming program relies on the
concept of mode. A moded program is a program in which each atom’s argu-
ments are partitioned into input and output ones. Output arguments are those
produced by the atom during the computation process, while input arguments
are consumed. Roughly speaking, in an input consuming program only atoms
whose input arguments are not instantiated through the unification step are
allowed to be selected.

We believe that – in many cases – the adoption of “natural” delay declara-
tions is equivalent to considering only input consuming derivations [11]. This is
the case, for instance, of the programs mentioned in the example above together
with their natural mode where the first position of in order is considered in
input, while the second one is in output. In fact under normal circumstances,
the adoption of the stated delay declarations enforces nothing but a restriction
to input consuming derivations. Moreover also other control mechanisms, such
as the one in Moded Flat GHC, are similar to requiring input consuming deriva-
tions: the resolution of an atom with a definition must not instantiate the input
arguments of the resolved atom.

4

Input consuming programs allow for simpler definitions of denotational se-
mantics and have nice properties regarding termination. Henceforth they seem
to be a resonable and safe approximation to programs with general dynamic
scheduling. In this paper we review and compare the different proposals given
for denotational semantics of programs with input consuming derivations. We
also show how they can be applied to termination analysis. Our review is based
on [9], [10] and [12].

1.4 Structure of the Paper

The paper is organized as follows. Section 2 contains some preliminary notations
and definitions including input consuming programs. Section 3 introduces a first
denotational semantics capturing computed answer substitutions of successful
derivations. This semantics applies to well and nicely moded input consuming
programs. In Section 4 a second denotational semantics for simply moded input
consuming programs is presented which is able to model also intermediate re-
sults of partial derivations. Section 5 shows how these semantics have been used
to characterize termination properties of input consuming programs. Section 6
concludes the paper.

2 Preliminaries

The reader is assumed to be familiar with the terminology and the basic results
of logic programs and their semantics [1, 2, 29]. In this section we introduce few
notions that will be used in the sequel.

2.1 Terms and Substitutions

Let T be the set of terms built on a finite set of data constructors C and a
denumerable set of variable symbols V. For any syntactic object o, we denote
by Var(o) the set of variables occurring in o. A syntactic object is linear if ev-
ery variable occurs in it at most once. A substitution θ is a mapping from V
to T . Given a substitution σ = {x1/t1, . . . , xn/tn}, we say that {x1, . . . , xn} is
its domain (denoted by Dom(σ)), and Var({t1, . . . , tn}) is its range (denoted
by Ran(σ)). Note that Var(σ) = Dom(σ) ∪ Ran(σ). We denote by ε the empty
substitution: Dom(ε) = Ran(ε) = ∅. The result of the application of a substi-
tution θ to a term t is said an instance of t and it is denoted by tθ. Given a
substitution σ and a syntactic object E, we denote by σ|E the restriction of σ to
the variables in Var(E), i.e., σ|E(x) = σ(x) if x ∈ Var(E), otherwise σ|E(x) = x.
If t1, . . . , tn is a permutation of x1, . . . , xn then we say that σ is a renaming. The
composition of substitutions is denoted by juxtaposition, i.e., xθσ. We say that
t is a variant of t′, written t ≈ t′, if t and t′ are instances of each other. In this
case there exists a renaming θ such that t′ = tθ. A substitution θ is a unifier
of terms t and t′ if tθ = t′θ. We denote by mgu(t, t′) any most general unifier
(mgu, in short) of t and t′.

5

2.2 Programs and Derivations

Let P be a finite set of predicate symbols. An atom is an object of the form
p(t1, . . . , tn) where p ∈ P is an n-ary predicate symbol and t1, . . . , tn ∈ T . Given
an atom A, we denote by Rel(A) the predicate symbol of A. A query is a finite,
possibly empty, sequence of atoms A1, . . . , Am. The empty query is denoted by
2. Following the convention adopted in [2], we use bold characters to denote
sequences of objects: so, for instance, t denotes a sequence of terms, while B is a
query (i.e., a possibly empty sequence of atoms). A (definite) clause is a formula
H ← B where H is an atom (the head) and B is a query (the body). When
B is empty, H ← B is written H ← and is called a unit clause. A (definite)
program is a finite set of clauses. We denote atoms by A,B,H, . . . , queries by
Q,A,B,C, . . . , clauses by c, d, . . . , and programs by P .

Computations are constructed as sequences of “basic” steps. Consider a non-
empty query A, B,C and a clause c. Let H ← B be a variant of c variable
disjoint from A, B,C and assume that B and H unify with mgu θ. The query
(A,B,C)θ is called a resolvent of A, B,C and c with selected atom B and mgu
θ. A derivation step is denoted by A, B,C θ=⇒P,c (A,B,C)θ. The clause H ← B
is called its input clause. The atom B is called the selected atom of A, B,C.

If P is clear from the context or c is irrelevant then we drop the reference to
them. A derivation is obtained by iterating derivation steps. A maximal sequence

δ : Q0
θ1=⇒P,c1 Q1

θ2=⇒P,c2 · · ·Qn
θn+1=⇒P,cn+1 Qn+1 · · ·

is called a derivation of P ∪ {Q0} provided that for every step the standardiza-
tion apart condition holds, i.e., the input clause employed is variable disjoint
from the initial query Q0 and from the substitutions and the input clauses used
at earlier steps.

Derivations can be finite or infinite. If δ : Q0
θ1=⇒P,c1 · · ·

θn=⇒P,cn
Qn is a

finite prefix of a derivation, also denoted by δ : Q0
θ−→ Qn with θ = θ1 · · · θn, we

say that δ is a partial derivation and θ is a partial computed answer substitution
of P ∪ {Q0}. If δ is maximal and ends with the empty query, then θ is called
computed answer substitution (c.a.s., for short). In this case we say that the
derivation is successful. The length of a (partial) derivation δ, denoted by len(δ),
is the number of derivation steps in δ.

2.3 Modes and Input Consuming Programs

Modes are a common tool for verification. A mode is a function that labels as
input or output the positions of each predicate in order to indicate how the
arguments of such a predicate should be used.

Definition 1 (Mode). A mode for a predicate symbol p of arity n, is a function
mp from {1, . . . , n} to {I ,O}.

We call moded atom (clause, program, query), any atom (clause, program,
query) which has a mode associated to its predicate symbols.

6

If mp(i) = I (resp. O), we say that i is an input (resp. output) position of
p (with respect to mp). In the examples, we often indicate the mode by writing
the atom p(mp(1), . . . ,mp(n)), e.g., append(I , I ,O).

We assume that each predicate symbol has a unique mode associated to it;
multiple modes may be obtained by simply renaming the predicates. We denote
by In(Q) (resp. Out(Q)) the sequence of terms filling in the input (resp. output)
positions of predicates in Q. Moreover, when writing an atom as p(s, t), we are
indicating that s is the sequence of terms filling in its input positions and t is
the sequence of terms filling in its output positions.

The notion of input consuming derivation was introduced in [40] as a formal-
ism for describing dynamic scheduling in an abstract way.

Definition 2 (Input Consuming Derivation).

– A derivation step A, B,C θ=⇒ (A,B,C)θ is input consuming if In(B)θ =
In(B).

– A derivation is input consuming if all its derivation steps are input consum-
ing.

In the following sometimes we use ic-derivation for input consuming deriva-
tion and we call input consuming program (ic-program) a program when consid-
ered with respect to input consuming derivations only.

Example 3. Consider the program REVERSE with accumulator and the following
modes: reverse(I ,O) and reverse acc(I ,O , I).

reverse(Xs,Ys) ← reverse acc(Xs,Ys,[]).
reverse acc([],Ys,Ys).
reverse acc([X|Xs],Ys,Zs) ← reverse acc(Xs,Ys,[X|Zs]).

The following derivation δ of REVERSE ∪ {reverse([X1,X2],Zs)} is input con-
suming.

δ: reverse([X1,X2],Zs) ⇒ reverse acc([X1,X2],Zs,[]) ⇒
reverse acc([X2],Zs,[X1]) ⇒ reverse acc([],Zs,[X2,X1]) ⇒ 2.

Allowing only input consuming derivations is a form of dynamic scheduling,
since whether or not an atom can be selected depends on its degree of instantia-
tion at runtime. Given a non-empty query, if no atom is resolvable via an input
consuming derivation step and no failure arises, then we say that the query
deadlocks. Therefore, an ic-derivation can either be successful or finitely failing
or infinite or deadlock. Each ic-derivation which is not a deadlock is also an SLD
derivation.

2.4 Classes of Moded Programs

In the sequel we are going to refer to classes of programs that in some way
behave well with respect to the given mode. In particular, we are going to use
the concepts of well moded program (Dembinski and Maluszynski [20]), of nicely
moded program (Chadha and Plaisted [15]) and of simply moded program (Apt
and Etalle [4]).

7

Definition 4 (Well, Nicely and Simply Moded Program).

– Well Moded. A clause p(t0, sn+1) ← p1(s1, t1), . . . , pn(sn, tn) is well
moded if for all i ∈ [1, n + 1]

Var(si) ⊆
i−1⋃
j=0

Var(tj).

If we call producing positions the input positions of the head and the output
positions of the body and consuming positions the other ones, then we can
intuitively say that a clause is well moded if every variable in a consum-
ing position occurs also in an earlier (w.r.t. the indices, which have been
deliberately chosen in this way) producing position.

– Nicely Moded. A clause p(t0, sn+1) ← p1(s1, t1), . . . , pn(sn, tn) is nicely
moded if t1, . . . , tn is a linear sequence of terms, Var(t0)∩Var(t1, . . . , tn) =
∅, and for all i ∈ [1, n]

Var(si) ∩
n⋃

j=i

Var(tj) = ∅.

Intuitively a clause is nicely moded if there are no conflicts among producing
positions, (a variable may appear in at most one producing position with one
exception: a variable may appear twice in a producing position of the head),
and a variable may not be consumed before it is produced.

– Simply Moded. A clause p(t0, sn+1) ← p1(s1, t1), . . . , pn(sn, tn) is simply
moded if it is nicely moded and t1, . . . , tn is a linear sequence of variables.

– A query Q is well (resp. nicely, simply) moded, if the clause q ← Q is well
(resp. nicely, simply) moded, where q is a variable-free atom.
Note that an atomic query p(s, t) is well moded if s is a sequence of ground
terms and it is nicely moded if t is linear and Var(s) ∩Var(t) = ∅.

– A program is well (resp. nicely, simply) moded, if all of its clauses are well
(resp. nicely, simply) moded.

Hence the class of simply moded programs is a subclass of nicely moded ones
and it includes both some well moded and some non-well moded programs.

In [42] permutation well (nicely) moded programs and queries are also de-
fined, i.e., programs and queries which would be well (nicely) moded after a
permutation of the atoms respectively in the bodies and in the queries.

Example 5.

– The program APPEND of the introduction in the mode append(I , I ,O) is well
nicely and simply moded.

– REVERSE with accumulator of Example 3 is well and simply moded.
– Furthermore, consider the following program PALINDROME

palindrome(Xs) ← reverse(Xs,Xs).

8

in the mode palindrome(I), together with the program REVERSE with the
modes reverse(I,O). This program is well moded but not nicely moded
(since Xs occurs both in an input and in an output position of the same
body atom). However, since the program REVERSE is used here for checking
whether a list is a palindrome, its natural modes are reverse(I,I) and
reverse acc(I,I,I). With these modes, the program PALINDROME is both
well moded and simply moded.

Most programs are simply moded (see the mini-survey at the end of [4]) and
often programs that are not simply moded can naturally be transformed into
simply moded ones (see [10]).

The above notions of well, nicely and simply moded are “persistent” with
respect to input consuming derivations. The following lemma is a straightforward
extension of [5, Lemma 30].

Lemma 6. In a input consuming derivation, every resolvent of a well (resp.
nicely, simply) moded query and a well (resp. nicely, simply) moded clause is
well (resp. nicely, simply) moded.

Notice that in the case of nicely and simply moded programs the above
lemma depends on the fact that only input consuming derivations are considered.
Indeed, when “normal” SLD derivations are considered persistence holds only
when the leftmost selection rule is used. Otherwise, speculative bindings might
destroy the property of being nicely moded.

On the other hand, for well moded programs, any SLD resolvent of a well
moded query with a well moded clause is well moded ([2]).

Finally, it is worth reminding that, when considering nicely (respectively
simply) moded, input consuming programs, half of the famous switching lemma
still applies. The following Left-Switching Lemma that has been proven in [10].

Lemma 7. (Left-Switching) Let the program P and the query Q0 be nicely
moded. Let δ be a (partial) input consuming derivation of P ∪ {Q0} of the form

δ : Q0
θ1=⇒c1 Q1 · · ·Qn

θn+1=⇒cn+1 Qn+1
θn+2=⇒cn+2 Qn+2

where

– Qn is a query of the form A, A,B, B,C,
– Qn+1 is a resolvent of Qn and cn+1 w.r.t. B,
– Qn+2 is a resolvent of Qn+1 and cn+2 w.r.t. Aθn+1.

Then, there exist Q′
n+1, θ′n+1, θ′n+2 and a derivation δ′ such that

θn+1θn+2 = θ′n+1θ
′
n+2

and

δ′ : Q0
θ1=⇒c1 Q1 · · ·Qn

θ′n+1=⇒cn+2 Q′
n+1

θ′n+2=⇒cn+1 Qn+2

where δ′ is input consuming and

9

– δ and δ′ coincide up to the resolvent Qn,
– Q′

n+1 is a resolvent of Qn and cn+2 w.r.t. A,
– Qn+2 is a resolvent of Q′

n+1 and cn+1 w.r.t. Bθ′n+1,
– δ and δ′ coincide after the resolvent Qn+2.

2.5 The S-semantics

The aim of the S-semantics approach (see [13]) is modeling the observable beha-
viors for a variety of logic programming languages. The observable we consider
here is the computed answer substitutions. The semantics is defined as follows:

S(P) = { p(x1, . . . , xn)θ | x1, . . . , xn are distinct variables and
p(x1, . . . , xn) θ−→P 2 is an SLD derivation}.

This semantics enjoys all the valuable properties of the least Herbrand model
as summarized below in the following. To present the main results on the S-
semantics we need to introduce two further concepts: Let P be a program, and
I be a set of atoms closed under variance.

– The immediate consequence operator for the S-semantics is defined as:

TS
P (I) = { Hθ | ∃ H ← B variant of a clause of P

∃ C ∈ I, renamed apart4 w.r.t. H,B
θ = mgu(B,C)}.

– I is called an S-model of P if TS
P (I) ⊆ I.

Falaschi et al. [25] showed that TS
P is continuous on the lattice of term interpreta-

tions, that is sets of possibly non-ground atoms, with the subset-ordering. Powers
of the operator TS

P are defined in the standard way as follows: TS
P ↑ 0(I) = I,

TS
P ↑ (i + 1)(I) = TS

P (TS
P ↑ i(I)), and TS

P ↑ ω(I) =
⋃∞

i=0 TS
P ↑ i(I). We

abbreviate TS
P ↑ ω(∅) to TS

P ↑ ω. In [25] they proved the following:

– S(P) = least S-model of P = TS
P ↑ ω.

Therefore, the S-semantics enjoys a declarative interpretation and a bottom-
up construction, just like the Herbrand one. In addition, we have that the S-
semantics reflects the observable behavior in terms of computed answer substi-
tutions, as shown by the following well-known result.

Theorem 8 ([25]). Let P be a program, A be a query. The following statements
are equivalent.
4 Here and in the sequel, when we write “C ∈ I, renamed apart w.r.t. some expression

e”, we naturally mean that I contains the atoms C′
1, . . . , C

′
n, and that C is a renaming

of C′
1, . . . , C

′
n such that C shares no variable with e and that two distinct atoms of

C share no variables with each other.

10

– There exists an SLD derivation A ϑ−→P 2,
– There exists A′ ∈ S(P) (renamed apart w.r.t. A), such that σ = mgu(A,A′),

where Aσ ≈ Aϑ.

Example 9. Let us see this semantics applied to the programs APPEND and REVERSE
so far encountered.

– S(APPEND) = { append([],X,X),
append([X1],X,[X1|X]),
append([X1,X2],X,[X1,X2|X]), . . . }.

– S(REVERSE) = { reverse([],[]),
reverse([X1],[X1]),
reverse([X1,X2],[X2,X1]), . . .

reverse acc([],X,X),
reverse acc([X1],X,[X1|X]),
reverse acc([X1,X2],X,[X2,X1|X]), . . . }.

2.6 Semantics of Input Consuming Programs

In Sections 3 and 4 we present two semantics for input consuming programs
which are related to S-semantics. To define such semantics, the observables we
focus on are the computed answer substitutions. First, we consider a seman-
tics given by the computed answer substitutions of successful derivations. This
corresponds to the S-semantics of logic programming [13] when restricted to a
particular set of queries. Given a program P and a set of queries C, this semantics
can be defined formally as

Oic
s (P,C) = {Aθ| A ∈ C and there exists an ic-derivation A θ−→P 2}.

While this semantics appears very natural, it can be unsuitable for modelling
the reactive nature of input consuming programs. In fact, as we mentioned in
the introduction, input consuming derivations can be used to model dynamic
scheduling and parallelism, and in this context it is very important to model the
results of partial computations. Indeed, the standard semantics for concurrent
logic languages such as ccp [39, 22] and GHC [44] often capture such intermedi-
ate results, or in any case, also the results of non-successful computations [16].
In fact, the (partial) result of a computation may trigger another computation
by instantiating sufficiently the input positions of another atom so that it be-
comes resolvable. Because of this, when one wants to characterize for instance
termination, the adoption of a semantics which is able to model intermediate re-
sults becomes essential, as shown in Section 5. Thus we also consider a semantics
capturing the results of partial input consuming derivations. Given a program
P and a set of queries C, this semantics can be defined formally as

Oic
p (P,C) = {Aθ| A ∈ C and there exists an ic-derivation A θ−→P B}.

where B is any query.

11

3 Semantics of Well Moded Input Consuming Programs

To characterize our two semantics for ic-programs, we start from the simplest
case: when one is interested only in the successful derivations. Then – if one does
not restrict to ic-derivations – the observables (given by successful derivations)
can be captured by the S-semantics of classical logic programs.

In this section we show that the standard S-semantics is compositional and
correct also for input consuming programs, provided that the programs are well
and nicely moded and that only nicely moded queries are considered. The results
reported in this section are proved in [9].

Proposition 10. Let P be a well and nicely moded program, A be a nicely moded
atomic query. The following statements are equivalent:

(i) there exists an input consuming derivation A
ϑ−→P 2,

(ii) there exists A′ ∈ S(P) (renamed apart w.r.t. A), and σ = mgu(A,A′) such
that In(A)σ ≈ In(A),

where Aσ ≈ Aϑ.

To extend Proposition 10 to arbitrary (non-atomic) queries we need the fol-
lowing definition.

Definition 11. Let A = p1(s1, t1), . . . , pn(sn, tn) be a query. We define

VIn∗(A) :=
n⋃

i=1

{x| x ∈ Var(si) and x 6∈
i−1⋃
j=1

Var(tj)}.

VIn∗(A) denotes the set of variables occurring in an input position of an atom
of A but not occurring in an output position of an earlier atom. Note that if A
is well moded then VIn∗(A) = ∅.

Theorem 12. Let P be a well and nicely moded program, A be a nicely moded
query and NM be the class of nicely moded queries. The following statements
are equivalent:

(i) there exists Aϑ ∈ Oic
s (P,NM),

(ii) there exists A′ ∈ S(P) (renamed apart w.r.t. A), and σ = mgu(A,A′) such
that Aσ|VIn∗(A) ≈ A,

where Aσ ≈ Aϑ.

The condition Aσ|VIn∗(A) ≈ A above says that the substitution σ just renames
the variables occurring in an input position of A but not occurring in an output
position of an earlier atom. In case of an atomic query A := A, we might
substitute this condition with the somewhat more attractive condition In(A)σ ≈
In(A) of Proposition 10.

Theorem 12 shows thus that S(P) is compositional and correct for input
consuming programs, provided that programs are well and nicely moded and

12

that queries are nicely moded. In other words, given the restrictions on programs
and queries, the S-semantics is correct with respect to the observables given by
the computed answer substitutions of successful ic-derivations.

Example 13. Consider the program APPEND of the introduction with the mode
append(I,I,O). S(APPEND), reported in Example 9, allows us to draw a number
of conclusions:

– append([X,b],Y,Z) has an input consuming successful derivation.
In particular, it has an input consuming derivation with c.a.s. {Z/[X, b|Y]}.
This can be derived by just looking at S(APPEND), from the fact that A =
append([X1,X2],X3,[X1,X2|X3]) ∈ S(P) and that append([X,b],Y,Z) is
- in its input positions - an instance of A.

– append(Y,[X,b],Z) has no input consuming successful derivations.
This is because there is no A ∈ S(P) such that append(Y, [X, b], Z) is an
instance of A in the input positions.

– Observe that the query append(Y,[X,b],Z) has infinitely many successful
SLD derivations and no failures. Therefore it does not fail also when we con-
sider ic-derivations. Since, as noted above, the query has no input consum-
ing successful derivations, this implies that – in presence of input consuming
derivations – append(Y,[X,b],Z) will eventually either deadlock or run into
an infinite derivation.

The previous results hold also in case the programs are permutation well and
nicely moded and queries are permutation nicely moded [42].

While in the context of SLD (not input consuming) derivations the S-semantics
is also fully abstract, when considering input consuming program this is not so.
Consider the following two trivial programs:

P1 = { c1: p(X).
c2: p(a). }

P2 = { p(X). }

In both programs the mode is p(I). These two programs, despite being different,
yield exactly the same computed answer substitutions for all queries when ic-
derivations are considered. In fact the extra clause c2 in P1 can resolve an atom
A only if A contains the term a in its input position, but in this case c2 behaves
exactly as c1 does5. Nevertheless, the S(P1) = {p(X), p(a)} 6= {p(X)} = S(P2),
demonstrating that the S-semantics is not fully abstract when considering ic-
derivations. In the next section we present a more complex semantics, which is
also fully abstract for ic-derivations.

5 The only observable difference between P1 and P2 lies in the multiplicity of the
answers: the query q(a) succeeds twice in P1 and only once in P2, but answer mul-
tiplicity is not an observable we consider here.

13

4 Semantics of Simply Moded Input Consuming
Programs

The semantics presented in the previous section applies only when we are in-
terested in the computed answer substitutions of successful derivations. As we
discussed before, there are many situations in which we also want to model
the (intermediate) results of partial derivations. For instance, this will be the
case when – in the next section – we study the termination of input consuming
programs.

In this section we define a somewhat more complex denotational semantics
which has the advantage of modelling the observables given by both successful
and partial derivations in a rather symmetric way. The two semantics we are
going to introduce are compositional, correct and fully abstract with respect
to the operational semantics of input consuming simply moded programs and
queries, i.e., Oic

s (P,SM) and Oic
p (P,SM), where SM is the class of simply moded

queries. As in the standard S-semantics, this is a denotational semantics that
can be built by means of a bottom-up construction.

4.1 Simply Local Substitutions and Simply Local Models

When input consuming derivations are applied to simply moded programs and
queries, important properties follow from the way clauses become instantiated
along the derivations. The notion of simply local substitution is introduced in
[12] to reflect this instantiation mechanism. A clause c = H ← B1, . . . , Bn be-
comes instantiated by its “caller” (the atom that is resolved using c) and its
“callees” (the clauses used to resolve the body atoms of c). Thus, a simply local
substitution is defined as the composition of several substitutions, σ0, σ1 . . . , σn,
one for each atom in the given clause, such that σ0 binds the input variables of
the head of the clause, and each σi (i > 0) creates a binding from the output
variables to input terms of Biσ0, . . . , σi−1.

Definition 14 (Simply Local Substitution). Let θ be a substitution. We
say that θ is simply local w.r.t. the clause H ← B1, . . . , Bn if there exist substi-
tutions σ0, σ1 . . . , σn and disjoint sets of fresh (w.r.t. c) variables v0, v1, . . . , vn

such that θ = σ0σ1 · · ·σn where

– Dom(σ0) ⊆ Var(In(H)) and Ran(σ0) ⊆ v0,
– for i ∈ [1..n],

Dom(σi) ⊆ Var(Out(Bi)) and Ran(σi) ⊆ Var(In(Bi)σ0σ1 · · ·σi−1) ∪ vi.

The substitution θ is simply local w.r.t. a query B if θ is simply local w.r.t. the
clause q ← B where q is any variable-free atom.

Example 15. Consider the program APPEND together with the mode append(I,I,O)
and its recursive clause

c : append([H|Xs], Ys, [H|Zs]) ← append(Xs, Ys, Zs).

14

The substitution θ = {Xs/[], Ys/W, Zs/W} is simply local w.r.t. c. In fact θ =
σ0σ1 where σ0 = {Xs/[], Ys/W} and σ1 = {Zs/W}. Consider now the query

Q : append([a, X, c], Ys, Zs), append(Zs, [b], Ls).

The substitution θ = {Zs/[a,X,c|Ys]} is simply local w.r.t. Q. In fact θ = σ1σ2

where σ1 = {Zs/[a,X,c|Ys]} and σ2 is the empty substitution.

The denotational semantics we are about to define is based on a restricted
notion of model. Here and in the sequel interpretations are sets of moded atoms
closed under variance.

Definition 16 (Simply Local Model). Let M be a set of moded atoms. We
say that M is a simply local model of a clause c : H ← B1, . . . , Bn if for every
substitution θ simply local w.r.t. c,

if B1θ, . . . , Bnθ ∈M then Hθ ∈M . (1)

M is a simply local model of a program P if it is a simply local model of each
clause of it.

Clearly a simply local model is not necessarily a model in the classical sense,
since the substitution θ in (1) is required to be simply local. For example, given
the program {q(1)., p(X)← q(X).} with modes q(I), p(O), a model must contain
the atom p(1), whereas a simply local model does not necessarily contain p(1),
since {X/1} is not simply local w.r.t. p(X) ← q(X).

A minimal simply local model exists and it is bottom-up computable by
applying the following operator [12].

Definition 17. Given a program P and a set of moded atoms I, we define

TSL
P (I) = I ∪ {Hθ | ∃ c : H ← B variant of a clause of P,

θ is simply local w.r.t. c,
Bθ ∈ I}

TSL
P is monotonic and continuous on the lattice where sets of moded atoms

are ordered by set inclusion.
In the following we denote by SM P the set of all simply moded atoms of the

extended Herbrand universe of P . In [12] it is proven that if P is simply moded
and I ⊆ SM P then

TSL
P ↑ ω(I) is the least simply local model of P containing I (2)

This allows us to define our models.

Definition 18. Let P be a program. We define

– M SL
P is the least simply local model of P ,

– PM SL
P is the least simply local model of P containing SM P .

The existence of these models is guaranteed by (2), in fact (2) also shows how
to construct them, as it implies that

M SL
P = TSL

P ↑ ω(∅), and PM SL
P = TSL

P ↑ ω(SMP) (3)

15

4.2 Relation among Denotational and Operational Semantics

To relate the M SL
P and PM SL

P to Oic
s (P,SM) and Oic

p (P,SM) we need to re-
late TSL

P to the results of input consuming derivations; this is achieved in the
following lemma, proved in [12].

Lemma 19. Let the program P and the query A be simply moded and I ⊆ SM P

be a set of moded atoms. The following statements are equivalent:

(i) there exists an input consuming derivation A ϑ−→P C with C ⊆ I,
(ii) there exists a substitution θ simply local w.r.t. A, such that Aθ ⊆ TSL

P ↑
ω(I),

where Aϑ ≈ Aθ.

We can now prove that M SL
P and PM SL

P fully characterize the semantics of ic-
derivations for simply moded programs and queries, namely they are equal to
Oic

s (P,SM) and Oic
p (P,SM), respectively.

Theorem 20. Let P be simply moded. Then

(i) M SL
P = Oic

s (P,SM).
(ii) PM SL

P = Oic
p (P,SM).

Proof. Immediate by (3), Lemma 19 and the definitions of Oic
s (P,SM) and

Oic
p (P,SM).

An example follows.

Example 21. Let us consider again the program APPEND.

1. First let us consider its successful ic-derivations. Hence we have to build
M SL

APPEND

M SL
APPEND = {append([t1, . . . , tn], s, [t1, . . . , tn|s]) | n ∈ [0..∞],

and t1, . . . , tn, s are any terms}.

Notice that this model is different from S(APPEND), reported in Example 9.
We are going to relate S(P) and MSL

P later in this section.
2. Now let us consider the results of partial derivations. Recall that PM SL

APPEND

is obtained by repeatedly applying TSL
P to each simply moded atom. Simply

moded atoms are append(s, t, x) where s and t are arbitrary terms but x is
a variable not occurring in s or in t. We obtain

PM SL
APPEND = M SL

APPEND

∪ {append(s, t, x) | x is a fresh variable }
∪ {append([t1, . . . , tm|s], t, [t1, . . . , tm|x]) | x is a fresh variable}

where s, t, t1, . . . , tm are arbitrary terms.
Consider now the query append([a, b, c|X], Y, Z). It is straightforward to

16

check that the substitution θ={Z/[a, b|Z′]} is simply local w.r.t. it, and that
append([a, b, c|X], Y, Z)θ ∈ PM SL

APPEND. Therefore, by using Theorem 20, we
can conclude that there exists a partial derivation starting in append([a, b, c|X], Y, Z),
with computed answer θ. Following the same reasoning, one can also con-
clude that the query has a partial derivation with computed answer θ′ =
{Z/[a|Z′]}.

4.3 Relation between S-semantics and Denotational Semantics for
IC-programs

In this section we compare the denotational semantics MSL
P with the S-semantics

S(P) of simply moded programs.
First, we need a new definition: let I be a set of moded atoms, the input

closure of I is defined as:

InCl(I) = {Aθ | A ∈ I and Var(A) ∩Var(θ) ⊆ Var(In(A))}

So the input closure of an atom is obtained by instantiating its input positions
in all possible ways, provided that no new links are created between the input
and the output positions.

Theorem 22. Let P be a well and simply moded program, then

MSL
P = InCl(S(P))

Proof. First observe that the class of simply moded programs is contained in
the class of nicely moded programs, hence Theorem 12 is applicable also when
we consider well and simply moded programs and simply moded queries.

- MSL
P ⊆ InCl(S(P)). Let A be simply moded and assume Aϑ ∈MSL

P . Then,
by Theorem 20, Aϑ ∈ Oic

s (P,SM). By Theorem 12 there exists A′ ∈ S(P)
(renamed apart w.r.t. A), and σ = mgu(A,A′) such that In(A)σ ≈ In(A) and
Aσ ≈ Aϑ. Since A is simply moded, we can choose σ such that Dom(σ) ∩
Var(A′) ⊆ Var(In(A′)). Therefore Aϑ ≈ Aσ = A′σ ∈ InCl(S(P)).

- MSL
P ⊇ InCl(S(P)). Let Aθ ∈ InCl(S(P)) and A = p(s, t) ∈ S(P). There

exist a simply moded atom A′ = p(s′, z), renamed apart w.r.t. A, and a substi-
tution σ such that σ = mgu(A,A′), In(A′)σ = In(A′) and A′σ = Aσ ≈ Aθ. By
Theorem 12 there exists ϑ such that A′ϑ ∈ Oic

s (P,SM) and A′ϑ ≈ A′σ ≈ Aθ.
Hence, by Theorem 20, Aθ ∈MSL

P .

5 Semantic-Based Verification of Termination

There have been only few proposals which tackled the specific problem of ver-
ifying the termination of logic programs with dynamic scheduling, namely by
Apt and Luitjes [5], Marchiori and Teusink [30] and Smaus. Input consuming
derivations were indeed introduced by Smaus in [40] to simplify the study of
program properties which depend on selection rules and in [41] he started to
study in particular the problem of termination of input consuming derivations.

17

In [10] and [12] we study two classes of programs terminating with respect
to input consuming derivations and well-formed queries. The two classes differ
in various aspects. First of all, two different classes of well-formed queries are
considered: nicely moded queries in [10], simply moded queries in [12]. To give
an uniform presentation, in [12] we consider a parametric class of programs in
which all input consuming derivations terminate. The parameter is a given class
C of queries.

Definition 23 (Input Termination w.r.t. a class C of queries). Let C be
a class of queries. A program is called input terminating with respect to C if all
its input consuming derivations started in a query in C are finite.

The second difference among the two classes of terminating programs in [10]
and [12] is in the termination proof techniques. The first class follows the style of
[3, 8] and it uses a simple (syntactic) termination condition, but it is also a rather
restrictive class. The second class follows the style of [6, 7], that is based on a
more complex model theoretic approach, and it uses the semantics introduced
in Section 4; this is a significantly larger class of programs.

Let us consider first the more restrictive and simple class introduced in [10]:
The class of nicely moded quasi recurrent programs. Its definition is based on
the notion of well moded level mapping, first introduced in [21]. Here we use
well moded level mappings extended to all the terms on BEP as in [10]. BEP , the
extended Herbrand base of P , is the set of equivalence classes of all (possibly
non-ground) atoms, modulo renaming, whose predicate symbols appear in P .

Definition 24 (Moded Level Mapping). Let P be a program and BEP be the
extended Herbrand base for the language associated with P . A function | | is a
moded level mapping for P if:

– it is a function | | : BEP → N from atoms to natural numbers;
– for any t and u, |p(s, t)| = |p(s,u)|.

For A ∈ BEP , |A| is the level of A.

Definition 25 (Quasi Recurrency). Let P be a program.

– A clause of P is called quasi recurrent with respect to a moded level mapping
| | if for every instance H ← A, B,C of it,

if Rel(H) ' Rel(B) then |H| > |B|6.

– P is called quasi recurrent with respect to | | if all its clauses are. P is
called quasi recurrent if it is quasi recurrent with respect to some moded
level mapping | | : BEP → N.

Theorem 26. Let P be a nicely moded program. If P is quasi recurrent then P
is input terminating with respect to the class of nicely moded queries.
6 Given two predicate symbols defined in a program P we denote by p ' q the fact

that the definitions of the two predicates are mutually recursive.

18

The proof of this theorem can be found in [10].
Thus, the quasi recurrent condition is a sufficient condition for input ter-

mination of nicely moded programs and nicely moded queries. But it is not a
necessary condition: there are nicely moded programs input terminating on all
nicely moded queries which are not quasi recurrent as shown by the following
simple example taken from [10].

Example 27. Consider the following program with moding p(I, O).

p(X,a) ← p(X,b).
p(X,b).

This program is clearly input terminating, however it is not quasi recurrent.
For the first clause to be quasi recurrent it would have to be the case that
|p(X, a)| > |p(X, b)|, for some moded level mapping | |. On the other hand, since
p(X, a) and p(X, b) differ only for the terms filling in their output positions,
by definition of moded level mapping, |p(X, a)| = |p(X, b)|. Hence, we have a
contradiction.

A full characterization can be obtained only by further restricting the class
of programs, passing from nicely moded to simply moded and input-recursive
programs.

Definition 28 (Input-Recursive Program). Let P be a program.

– A clause H ← A, B,C of P is called input-recursive if

if Rel(H) ' Rel(B) then Var(In(B)) ⊆ Var(In(H)).

– A program P is called input-recursive if all its clauses are.

Input-recursive is a syntactic condition on a clause requiring that the set
of variables occurring in the arguments filling in the input positions of each
recursive call in the clause body is a subset of the set of variables occurring in
the arguments filling in the input positions of the clause head. The class of input-
recursive programs has strong similarities with the class of primitive recursive
functions and recurrent logic programs. It does not include programs whose
termination depend on the so-called inter-argument relations such as quicksort.

Quasi recurrency fully characterizes input termination of simply moded and
input-recursive programs with respect to nicely moded queries.

Theorem 29. Let P be a simply moded and input-recursive program. P is quasi
recurrent if and only if P is input terminating with respect to the class of nicely
moded queries.

The proof of this theorem can be found in [10].
To consider a larger class of input terminating programs we can follow the

same approach pursued by Apt and Pedreschi in defining acceptable programs
and use a model to capture the inter-argument relations between the atoms in

19

a query. Intuitively, the model represents all the possible contexts in which a
specific atom in a query can be called. Standard models suffice when standard
left-to-right derivations are considered, that is when the contexts depends only
on the computed answers of the atoms occurring on the left of the considered
one. When input consuming derivations are considered, the description of all the
possible contexts is much more complex since there may be atoms in the query
which are only partially computed when the considered atom is selected. Hence a
computed answer semantics does not provide enough information, which is why
we need to capture partial computed answers of input consuming derivations.

The semantics defined in [12] and the concept of simply local model give us
the right tools and allow us to identify a large class of input terminating programs
which includes also programs employing a non-trivial recursion scheme such as
quicksort, permute, transpose. In fact, based on the notion of simply local
models, in [12] we introduced the notion of simply acceptable programs which
corresponds to the notion of acceptable programs introduced in [6].

Definition 30 (Simply Acceptable Program). Let P be a program and M
a simply local model of P containing SM P .

– A clause c of P is simply acceptable with respect to a moded level mapping
| | and M if for every variant H ← A, B,C of c and every substitution θ
simply local with respect to c,

if Aθ ∈M and Rel(H) ' Rel(B) then |Hθ| > |Bθ|.

– P is simply acceptable with respect to M if there exists a moded level map-
ping | | such that each clause of P is simply acceptable with respect to | | and
M . We also say that P is simply acceptable if it is simply acceptable with
respect to some M and moded level mapping | |.

Simple acceptability fully characterizes input termination of simply moded
programs with respect to simply moded queries.

Theorem 31. Let P be a simply moded program. P is simply acceptable if and
only if it is input terminating with respect to simply moded queries.

The following example shows how we can use the above theorem to reason
about termination of a program.

Example 32. Consider the following PERMUTE program

permute([X|Xs],Ys) ← insert(Zs,X,Ys), permute(Xs,Zs).
permute([],[]).

insert([],X,[X]).
insert([U|Xs],X,[U|Zs]) ← insert(Xs,X,Zs).

We consider it with two different modes.

20

1. First, consider the mode permute(O , I), insert(O ,O , I).
Notice that the program is not input terminating in this mode: by repeat-
edly selecting the rightmost atom, the query permute(Xs,Ys) generates an
infinite input consuming derivation. By Theorem 31, we can prove it by show-
ing that PERMUTE in this mode cannot be simply acceptable with respect to
PM SL

PERMUTE and a moded level mapping which is invariant under renaming.
First note that PM SL

PERMUTE contains every atom of the form insert(Us, U, t)
where Us and U are disjoint from t, i.e., every simply moded atom whose pred-
icate is insert. Therefore, in particular, insert(Us, U, Vs) ∈ PM SL

PERMUTE. The
substitution θ = {Ys/Vs, Zs/Us, X/U} is simply local w.r.t. the first clause.
Therefore, for this clause to be simply acceptable, by Theorem 31, there
would have to be a moded level mapping, invariant under renaming, such
that |permute([U|Xs], Vs)| > |permute(Xs, Us)|. This is a contradiction since
a moded level mapping depends only on the input arguments (the second ar-
gument of permute) and we are considering a level mapping invariant under
renaming.
Thus Theorem 31 can be used to diagnose a program, in that we can pinpoint
why it does not input terminate.

2. Now consider the program PERMUTE together with the mode permute(I ,O),
insert(I , I ,O).
In this case, in order to make the program simply moded we have to permute
the two body atoms of the first permute clause7. I.e., permute is redefined
as

permute([X|Xs],Ys) ← permute(Xs,Zs), insert(Zs,X,Ys).
permute([],[]).

Notice that the program is now input terminating with respect to simply
moded queries. This is in fact the natural mode of the PERMUTE program.
To demonstrate the termination one can apply Theorem 31 using any sim-
ply local model containing SM P together with the following moded level
mapping:

|permute(l,)| = len(l),
|insert(l, ,)| = len(l).

6 Conclusion

In this paper, we have illustrated two denotational semantics proposed in [9],
[10] and in [12] for input consuming derivation in logic programs and we have
shown how these semantics have been used for studying termination properties
of such programs.
7 Actually, everything we state applies to the class of permutation simply moded

programs, i.e., those programs and queries that are simply moded possibly after a
permutation of body atoms. For the sake of notation simplicity, we avoid to refer to
this in a structural way.

21

While the first semantics (introduced in [9]) models exclusively the results
of successful derivations and requires programs to be well moded and nicely
moded, the second one (introduced in [12]) models also the results of incomplete
derivations and requires programs and queries to be simply moded.

As mentioned in the introduction, in the context of parallel and concurrent
programs, one can have derivations that never succeed, and yet compute sub-
stitutions [36]. Thus we have provided a denotational semantics also for such
programs, which goes beyond the usual success-based SLD resolution mecha-
nism of logic programming.

Input consuming derivations bear a certain resemblance with derivations in
the language of Moded (Flat) GHC [45]. Actually, input consuming programs can
be seen as a simplified version of moded (F)GHC. We want to note however that
Moded (F)GHC is a full-fledged programming paradigm, while input consuming
programs are meant for abstraction purposes.

As a concluding remark, we want to stress the relation between ic-programs
and programs that use delay declarations. A significant class of programs with
delay declarations whose derivations are input consuming derivations has been
identified in [11].

References

1. K. R. Apt. Logic Programming. In J. van Leeuwen, editor, Handbook of Theoret-
ical Computer Science, volume B: Formal Models and Semantics, pages 495–574.
Elsevier and The MIT Press, Amsterdam and Cambridge, MA, 1990.

2. K. R. Apt. From Logic Programming to Prolog. Prentice Hall, London, 1997.
3. K. R. Apt and M. Bezem. Acyclic programs. New Generation Computing,

9(3&4):335–363, 1991.
4. K. R. Apt and S. Etalle. On the unification free Prolog programs. In

A. Borzyszkowski and S. Sokolowski, editors, Proceedings of the Conference on
Mathematical Foundations of Computer Science (MFCS’93), volume 711 of Lecture
Notes in Computer Science, pages 1–19, Berlin, Germany, 1993. Springer-Verlag.

5. K. R. Apt and I. Luitjes. Verification of logic programs with delay decla-
rations. In A. Borzyszkowski and S. Sokolowski, editors, Proceedings of the
Fourth International Conference on Algebraic Methodology and Software Technol-
ogy, (AMAST’95), volume 936 of Lecture Notes in Computer Science, pages 1–19,
Berlin, Germany, 1995. Springer-Verlag.

6. K. R. Apt and D. Pedreschi. Proving termination of general Prolog programs.
In T. Ito and A. Meyer, editors, Proceedings of the International Conference on
Theoretical Aspects of Computer Software, Lecture Notes in Computer Science 526,
pages 265–289, Berlin, Germany, 1991. Springer-Verlag.

7. K. R. Apt and D. Pedreschi. Reasoning about termination of pure Prolog programs.
Information and Computation, 106(1):109–157, 1993.

8. M. Bezem. Strong termination of logic programs. Journal of Logic Programming,
15(1&2):79–97, 1993.

9. A. Bossi, S. Etalle, and S. Rossi. Semantics of well-moded input-consuming logic
programs. Computer Languages, 26(1):1–25, 2000.

10. A. Bossi, S. Etalle, and S. Rossi. Properties of input-consuming derivations. Theory
and Practice of Logic Programming, 2(2):125–154, 2002.

22

11. A. Bossi, S. Etalle, S. Rossi, and J.-G. Smaus. Semantics and termination of simply-
moded logic programs with dynamic scheduling. In D. Sands, editor, Proceedings
of the European Symposium on Programming, volume 2028 of Lecture Notes in
Computer Science, pages 402–416, Genova, Italy, 2001. Springer-Verlag.

12. A. Bossi, S. Etalle, S. Rossi, and J.-G. Smaus. Termination of simply-moded logic
programs with dynamic scheduling. ACM Transactions on Computational Logic
(TOCL), 2004. To appear.

13. A. Bossi, M. Gabrielli, G. Levi, and M. Martelli. The S-semantics approach: Theory
and applications. The Journal of Logic Programming, 19 & 20:149–198, May 1994.

14. A. Bossi, S. Etalle N. Cocco, and S. Rossi. On Modular Termination Proofs of
General Logic Programs. Theory and Practice of Logic Programming, 2(3):263–291,
2002.

15. R. Chadha and D.A. Plaisted. Correctness of unification without occur check in
Prolog. Technical report, Department of Computer Science, University of North
Carolina, Chapel Hill, N.C., 1991.

16. F.S. de Boer and C. Palamidessi. A fully abstract model for concurrent constraint
programming. In S. Abramsky and T.S.E. Maibaum, editors, Proc. of the Interna-
tional Joint Conference on Theory and Practice of Software Development, (TAP-
SOFT/CAAP), volume 493 of Lecture Notes in Computer Science, pages 296–319,
Brighton, UK, 1991. Springer-Verlag.

17. M. Garcia de la Banda, K. Marriott, and P. Stuckey. Efficient analysis of logic
programs with dynamic scheduling. In J. Lloyd, editor, Proc. Twelfth International
Logic Programming Symposium, pages 417–431. The MIT Press, 1995.

18. D. De Schreye and S. Decorte. Termination of logic programs: the never-ending
story. Journal of Logic Programming, 19-20:199–260, 1994.

19. S. Debray, D. Gudemann, and P. Bigot. Detection and optimization of suspension-
free logic programs. In M. Bruynooghe, editor, Proc. Eleventh International Logic
Programming Symposium, pages 487–504. The MIT Press, 1994.

20. P. Dembinski and J. Maluszynski. AND-parallelism with intelligent backtracking
for annotated logic programs. In Proceedings of the International Symposium on
Logic Programming, pages 29–38, Boston, 1985.

21. S. Etalle, A. Bossi, and N. Cocco. Termination of well-moded programs. Journal
of Logic Programming, 38(2):243–257, 1999.

22. S. Etalle, M. Gabbrielli, and M. C. Meo. Transformations of ccp programs. ACM
Transactions on Programming Languages and Systems, 23(3):304–395, 2002.

23. M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Constraint logic
programming with dynamic scheduling: a semantics based on closure operators.
Information and Computation, 137(1):41–67, 1997.

24. M. Falaschi, M. Gabrielli, K. Marriott, and C. Palamidessi. Compositional analysis
for concurrent constraint programming. In Proceedings of the IEEE Symposium
on Logic in Computer Science. IEEE, 1993.

25. M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative modeling of the
operational behavior of logic languages. Theoretical Computer Science, 69(3):289–
318, 1989.

26. P. M. Hill and J. W. Lloyd. The Gödel programming language. The MIT Press,
1994.

27. IC Parck, Imperial College London. The ECLiPSe Constraint Logic Programming
System, 2003. http://www-icparc.doc.ic.ac.uk/eclipse/.

28. Intelligent Systems Laboratory, Swedish Institute of Computer Science,
PO Box 1263, S-164 29 Kista, Sweden. SICStus Prolog Page, 2003.
http://www.sics.se/sicstus/.

23

29. J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation – Arti-
ficial Intelligence. Springer-Verlag, Berlin, Berlin, Germany, 1987. Second edition.

30. E. Marchiori and F. Teusink. Termination of logic programs with delay declara-
tions. Journal of Logic Programming, 39(1–3):95–124, 1999.

31. K. Marriott. Algebraic and logical semantics for CLP languages with dynamic
scheduling. Journal of Logic Programming, 32(1):71–84, 1997.

32. K. Marriott, M. Garcia de la Banda, and M. Hermenegildo. Analyzing logic pro-
grams with dynamic scheduling. In Proc. 21st Annual ACM Symp. on Principles
of Programming Languages, pages 240–253. ACM Press, 1994.

33. K. Marriott, M. Falaschi, M. Gabrielli, and C. Palamidessi. A simple semantics
for logic programming languages with delay. In Proceedings of the Eighteenth
Australian Computer Science Conference, 1995.

34. L. Naish. Negation and control in Prolog, volume 238 of Lecture Notes in Computer
Science. Springer-Verlag, New York, 1986.

35. L. Naish. Coroutining and the construction of terminating logic programs. Aus-
tralian Computer Science Communications, 15(1):181–190, 1993.

36. L. Naish. Parallelizing NU-Prolog. In K. A. Bowen and R. A. Kowalski, editors,
Proceedings of the Fifth International Conference/Symposium on Logic Program-
ming, pages 1546–1564, Seattle, Washington, August 1988. The MIT Press.

37. L. Naish. An introduction to MU-Prolog. Technical Report 82/2, Department
of Computer Science, University of Melbourne, Melbourne, Australia, March 1982
(Revised July 1983).

38. G. Puebla, M. Garcia de la Banda, K. Marriott, and P. Stuckey. Optimization of
logic programs with dynamic scheduling. In ICLP 1997, pages 93–107, 1997.

39. V. A. Saraswat and M. Rinard. Concurrent constraint programming. In Proc. of
the Seventeenth ACM Symposium on Principles of Programming Languages, pages
232–245, San Francisco, California, 1990. ACM, New York.

40. J.-G. Smaus. Modes and Types in Logic Programming. PhD
thesis, University of Kent at Canterbury, 1999. Available from
http://www.cs.ukc.ac.uk/pubs/1999/986/.

41. J.-G. Smaus. Proving termination of input-consuming logic programs. In D. De
Schreye, editor, Proceedings of the 16th International Conference on Logic Pro-
gramming, pages 335–349, Las Cruces, New Mexico, USA, 1999. The MIT Press.

42. J.-G. Smaus, P. M. Hill, and A. M. King. Termination of logic programs with
block declarations running in several modes. In C. Palamidessi, editor, Proceed-
ings of the 10th Symposium on Programming Language Implementations and Logic
Programming, volume 1490 of Lecture Notes in Computer Science, pages 73–88,
Pisa, Italy, 1998. Springer-Verlag.

43. K. Ueda. Guarded Horn Clauses, a parallel logic programming language with the
concept of a guard. In M. Nivat and K. Fuchi, editors, Programming of Future
Generation Computers, pages 441–456. North Holland, Amsterdam, 1988.

44. K. Ueda and K. Furukawa. Transformation rules for GHC Programs. In Proc. of the
International Conference on Fifth Generation Computer Systems, pages 582–591,
Tokyo, Japan, 1988. Institute for New Generation Computer Technology, Tokyo,
OHMSHA Ltd. Tokyo and Springer-Verlag.

45. K. Ueda and M. Morita. Moded flat GHC and its message-oriented implementation
technique. New Generation Computing, 13(1):3–43, 1994.

46. M. H. van Emden and G. J. de Lucena. Predicate logic as a language for parallel
programming. In K.L. Clark and S.-A. Tärnlund, editors, Logic Programming,
London, 1982. Academic Press.

24

