
A calculus for timed automata�Pedro R. D'Argenio and Ed BrinksmaDept. of Computer Science. University of Twente.P.O.Box 217. 7500 AE Enschede. The Netherlands.fdargenio,brinksmag@cs.utwente.nlJune, 1996AbstractA language for representing timed automata is introduced. Its semantics isde�ned in terms of timed automata. This language is complete in the sensethat any timed automaton can be represented by a term in the language. Wealso de�ne a direct operational semantics for the language in terms of (timed)transition systems. This is proven to be equivalent (or, more precisely, timedbisimilar) to the interpretation in terms of timed automata.In addition, a set of axioms is given that is shown to be sound for timed bisim-ulation. Finally, we introduce several features like hiding operator, the parallelcomposition and derived time operations like wait, time-out and urgency. Weconclude with an example and show that we can eliminate non-reachable statesusing algebraic techniques.1991 Mathematics Subject Classi�cation: 68Q45, 68Q55, 68Q60.1991 CR Categories: D.3.1, F.3.1, F.3.2, F.4.3.Keywords: process algebra, real time, timed automata, timed transition system.Note: An extended abstract of this report was accepted to be published inthe Proceedings of the Fourth International School and Symposium on FormalTechniques in Real Time and Fault Tolerant Systems, FTRTFT'96 , Uppsala,Sweden, September 1996.
�Supported by the NWO/SION project 612-33-006.1

Contents1 Introduction 32 Models for Timed Systems 42.1 Time, Clocks and Constraints . 42.2 Timed Transition Systems . 52.3 Timed Automata . 63 A Simple Language for Timed Automata 83.1 The Language . 83.2 The Associated Timed Automata . 83.3 Recursion . 104 An Operational Semantics 134.1 The Operational Semantics . 134.2 Comparison . 154.3 �-conversion . 165 Axiomatisation 175.1 Axioms . 175.2 Basic Terms . 206 Other Operators 226.1 Symbolic Bisimulation . 236.2 Hiding Operator . 246.3 Time Operations . 266.4 Parallel Operator . 277 Examples 317.1 The Railroad Crossing . 317.2 An Improved Version of the Railroad Crossing 327.3 Regions . 348 Further Remarks 35A Proof of Claim 4.6 41B Proof of Claim 4.11 49C Proof of Claim 6.9 53
2

1 IntroductionA real-time system is a system whose behaviour is constrained by requirements onthe time in which events can occur. Sometimes, systems are implemented as timedsystems in the sense that they ful�l certain timing conditions to give them an acceptableperformance. Other systems depend on timing conditions in a more essential way, viz.because their functional correctness depends upon certain critical timing conditionsbeing ful�lled. Therefore, it becomes interesting to study the formal veri�cation ofsuch systems.In the last years, several formal techniques have been developed to specify andverify real-time systems. For instance, many well-known process algebras have beenextended with features to manipulate time [Dav92, Yi90, MT90, NS94, BB91, Klu91,Klu93, BB95, BL92, LL94]. But the apparently most successful approaches are timedand hybrid automata [AD94, NSY92, HNSY94, ACH+95]. The formal relation betweenthese two models has been studied in some cases [NSY92, NSY93, Fok94, DOY94].Languages that fully represent timed automata have also been studied [LV94, YPD94].In this paper, we introduce a process algebra to describe timed automata. Sincethe syntax of timed automata becomes unwieldy to specify realistic real-time systems,the process algebra introduced here proposes a higher-level language that is interpretedin terms of timed automata. More speci�cally, we choose a slight variation of theso called timed safety automata [HNSY94]. Basically, the language extends Milner'sCCS [Mil89] restricted to pre�xing, inaction and summation, with some features tomanipulate clocks, namely, clock resetting, invariants and guards. We prove that anytimed automaton can be described by a term in the language together with guardedrecursion.Also, we introduce a direct operational semantics for the language. Thus, a (timed)transition system is associated to each process. We prove that this way of givingsemantics is equivalent (timed bisimilar) to the interpretation of the associated timedautomaton.In order to facilitate the construction of complex system we include the usual processoperations, hiding and parallel composition, and several common operations on time,such as time-out, waiting and urgency.The �rst goal of our paper is to introduce a powerful language to represent timedautomata. Our second goal is to introduce an equational theory for the language thatallows us to manipulate timed automata in order to eliminate redundant information.This is an interesting point, since, to our knowledge, timed automata have not yetbeen studied from an algebraic point of view. The axiomatisation is sound for timedbisimulation and allows to �nd a normal form. Moreover, the additional operators likehiding and parallel composition can be eliminated, thus obtaining equivalent expressionsde�ned just in terms of the basic language.As an example we study the railroad crossing controller of [AD94]. In this exam-ple, we illustrate that we can eliminate redundant states, clocks, and conditions. Inparticular, non-reachable states are eliminated.3

The rest of this paper is structured as follows. Section 2 reviews the models of timedtransition systems and timed automata. In Section 3, we introduce the language andwe study its relation with timed automata. The operational semantics is introduced inSection 4 and the relation with the timed automata model is stated. Section 5 introducesthe axiomatisation for the basic language, and the extension with new operators isstudied in Section 6. The example is presented in Section 7. Extensionality withrespect to CCS, related work, and conclusions are discussed in Section 8.Acknowledgements. This work pro�ted from discussions with Jan F. Groote, RomLangerak, Jan Springintveld, Jan Tretmans, Frits Vaandrager and Sergio Yovine. Inparticular, Sergio Yovine pointed out the related work [YPD94] and Jan Springintveldpointed out the connection with [HKWT95]. Reference [AH94] was pointed out by oneof the referees of FTRTFT'96.2 Models for Timed Systems2.1 Time, Clocks and ConstraintsWe adopt the set IR�0 of non-negative reals as time domain. A clock is a variable xranging over a time domain IR�0. Let C denote a set of clocks. The set �(C) of clockconstraints over C is de�ned inductively by:� ::= d � d0 j x � d j d � x j x� y � d j d � x� y j (� ^ �) j (:�)where d; d0 2 IR�0 and x; y 2 C with x 6= y. The abbreviations tt, � , x = d, x > d,x 2 [d; d0), x � y < d, � _ �0, �) �0, etc. are de�ned as usual. Let var(�) denote theset of clocks occurring in �. A clock constraint is closed if no clocks occur in it. Wedenote the set of closed clock constraints by �c. We could also adopt a richer set ofconstraint (see Section 8).An assignment is a function v : C ! C [IR�0. Let V denote the set of assignments.v is lifted to clocks constraints by the obvious induction over the structure of �. Wealso lift an assignment v to }(C) as usual: v(C) = fv(x)jx 2 Cg. Let f : C ! C 0, withC � C and C 0 � C [IR�0. We de�ne v[f] as follows:v[f](x) def= (f(x) if x 2 Cv(x) if x =2 CWe write [x aw] for f : fxg ! fwg with f(x) = w and [C aw] for f : C ! fwg withf(x) = w for all x 2 C. Let d 2 IR�0. De�ne v + d as follows:(v + d)(x) def= v(x) + dLet v � v0 be the composition of assignments de�ned for all x 2 C, v � v0(x) def= v(v0(x)).Notice that (v � v0)+d = (v+d) � v0 Let � be the identity assignment . An assignment vis a renaming if for all x 2 C, v(x) 2 C. An assignment v is a valuation if for all x 2 C,4

v(x) 2 IR�0. Let Vc � V be the set of all valuations. Notice that for any valuationv and for any clock constraint �, v(�) is a closed clock constraint. For the subset ofclosed clock constraints, we de�ne the satisfaction predicate j=� �c as usual:j= d � d+ d0 j= � j= �0j= (� ^ �0) 6j= �j= (:�)where d; d0 2 IR�0. We generalise j= to all clock constraints (j=� �(C)). Let � 2 �(C)then j= � def() 8v 2 Vc : j= v(�)We de�ne the set �(C) � �(C) of past-closed constraints as follows:� 2 �(C) def() 8v 2 Vc; d 2 IR�0: j= (v + d)(�) =) j= v(�)Notice that this kind of constraints are such that if they hold at time d, they hold atall d0 < d.2.2 Timed Transition SystemsA timed transition system is a labelled transition system that includes informationabout the time. We adopt the model of actions with time stamps.De�nition 2.1 (Timed transition systems)Let A be a set of actions. A timed transition system (TTS) is a structure L =(S;A� IR�0; s0;�!;U) where� S is a set of states, with the initial state s0 2 S;� A is a set of labels;� �! � S � (A� IR�0)� S is the transition relation; and� U � IR�0 � S is the until predicate.We use the following notation: a(d) i� (a; d) 2 A� IR�0, s a(d)�!s0 i� hs; a(d); s0i 2 �! ,Ud(s) i� hd; si 2 U , s a(d)�! i� 9s0 2 S: s a(d)�!s0 and s 6a(d)�! i� :(s a(d)�!).In addition, L should satis�es the following axioms:Until 8d; d0 2 IR�0: Ud(s) ^ d0 < d =) Ud0(s);Delay 8d 2 IR�0: s a(d)�! =) Ud(s). 2
5

The intended meaning of a transition s a(d)�! s0 is that a system which is in state scan change to be in state s0 by performing an action a at time d. Intuitively, Ud(s)together with axiom Until, means that a system can idle in a state s at least d unitsof times. Axiom Delay state that every time that an action may occur in a state s attime d, the system must be idling at that time.Predicate U was introduced in [Klu93]. Here, we formalised its behaviour in arelative time setting by adding the axioms Until and Delay.De�nition 2.2 (Timed bisimulation)Let Li = (Si;A� IR�0; si0; �! i;U i), i 2 f1; 2g, be two TTS. A timed bisimulationis a relation R � S1 � S2 with s10Rs20 satisfying, for all a(d) 2 A� IR�0, the followingtransfer properties:1. if s1Rs2 and s1 a(d)�!1s01, then 9s02 2 S2 : s2 a(d)�! 2s02 and s01Rs02;2. if s1Rs2 and s2 a(d)�!2s02, then 9s01 2 S1 : s1 a(d)�! 1s01 and s01Rs02; and3. if s1Rs2, then U1d (s1) () U2d (s2).If such a relation exists, we say that L1 and L2 are timed bisimilar (notation L1 $ L2).22.3 Timed AutomataIn this paragraph we de�ne a variation of timed automata [AD94]. We use invariants asin [HNSY94, NSY92, NSY93] but, instead of considering clock resettings on the edges,we consider them in the states. The reason for this is that we want to avoid assumptionsabout the initial setting of clocks, which makes the compositionality of the languagemore complicated. Compare [YPD94] (see Section 8).De�nition 2.3 (Timed automata)A timed (safety) automaton is a structure (S;A; C; s0; -; @; �) where:� S is a set of states, with the initial state s0 2 S;� A is a set of actions;� C is a set of clocks;� - � S �A� �(C)� S is the set of edges;� @ : S ! �(C) is the invariant assignment function;� � : S ! }�n(C) is the clocks resettings function.The set of all timed automata is denoted by T . 26

In this case, hs; a; �; s0i 2 - (notation s a;�- s0) intuitively means that when thesystem is in state s it could change to be in state s0 by performing an action a providedthat the clock constraint � holds. The clock setting function states which clocks shouldbe reset as soon as a state is reached. The invariant assignment function states thatthe system can idle in a state s as long as @(s) holds.Notice that our timed automata can be translated into timed automata with reset-tings on the edges by just labelling the edge with the set of clocks to be reset in thetarget state, that is, an edge s a;�- s0 will be translated into s a;�;�(s0)- s0. Conversely, atimed automaton with resettings on the edges could be transformed by \pushing" theclock resetting into the target state, i.e., given an edge s a;�;C- s0 we de�ne s a;�- s0and �(s0) def= C. In case that many edges with di�erent clock resettings go to the samestate, this state is \split" into di�erent states, one for each set of clocks.Formally speaking, a timed automaton can be interpreted as a TTS as follows.De�nition 2.4 (Interpretation of timed automata)Let T = (S;A; C; s0; -; @; �) 2 T be a timed automaton. Let v0 2 Vc beany valuation. The interpretation of T with initial valuation v0 is given by the TTS([T])v0 def= (S � Vc;A� IR�0; (s0; v0); �! ;U) where �! and U are de�ned as the leastsets satisfying the following rules:s a;�- s0 j= (v[�(s) a0] + d)(� ^ @(s))(s; v) a(d)�!(s0; (v[�(s) a0] + d)) j= (v[�(s) a0] + d)(@(s))Ud(s; v) 2Since @(s) 2 �(C) for all s 2 S, it follows that ([T])v0 satis�es axiom Until. More-over, notice that if (s; v) a(d)�!then j= (v[�(s) a0]+d)(@(s)) and so Ud(s; v) which impliesthat axiom Delay holds. Hence, ([T])v0 is indeed a TTS for any initial valuation v0.Isomorphism is a �ne enough equivalence. Thus, proving the existence of an iso-morphism is enough to prove that two timed automata are equivalent in coarser equiv-alences, for instance, timed bisimulation.De�nition 2.5 (Isomorphism of timed automata)Let T = (S;A; C; s0; -; @; �) and T 0 = (S 0;A; C; s00; - 0; @0; �0) be two timedautomata. An isomorphism from T to T 0 is a bijective function � : S ! S 0 such that1. �(s0) = s00,2. s a;�- s0 () �(s) a;�- 0�(s0),3. @(s) = @0(�(s)), and4. �(s) = �0(�(s)).We say that T and T 0 are isomorphic, notation T �= T 0, if there is an isomorphismbetween T and T 0. 27

3 A Simple Language for Timed AutomataIn this section we introduce a simple language that contains the necessary operators torepresent timed automata. We give the semantics of this language in terms of timedautomata. Moreover, we show that any timed automaton could be represented by aterm of this language if we add guarded recursion over expressions.3.1 The LanguageDe�nition 3.1 Let A be a set of actions and let C be a set of clocks. The language Lis de�ned according to the following grammar:p ::= stop j a; p j �7!7!p j p+ p j fjCjg p j �� pwhere a 2 A, � 2 �(C), 2 �(C) and C 2 }�n(C). We refer to the elements of L asprocesses. 2Process stop represents inaction; it is the process that cannot perform any action.The intended meaning of a; p (named (action-)pre�xing) is that action a can be per-formed at any time and then it behaves like p. �7!7!p, the guarding operation, executesany �rst action that p can do whenever � holds. fjCjg p, the clock resetting operation, isa process that behaves like p, but resetting the clocks in C. We will write fjx1; : : : ; xnjg pinstead of fjfx1; : : : ; xngjg p. ��p, the invariant operation, can idle while holds or goon with the process p. p+ q is the choice; it executes either p or q. The choice betweenp and q can be made only by actions, not by the passage of time.De�nition 3.2 (Bound and free variables)Let p 2 L. The set fv(p) of free variables of p and the set bv(p) of bound variablesof p are de�ned as the least set satisfyingfv(stop) = ; bv(stop) = ;fv(a; p) = fv(p) bv(a; p) = bv(p)fv(�7!7!p) = var(�) [fv(p) bv(�7!7!p) = bv(p)fv(p+ q) = fv(p) [fv(q) bv(p+ q) = bv(p) [bv(q)fv(fjCjg p) = fv(p)nC bv(fjCjg p) = C [bv(p)fv(�� p) = var() [fv(p) bv(�� p) = bv(p) 2Notice that the term fjCjg p binds clocks in C that appear in any constraints in p.3.2 The Associated Timed AutomataWe can associate a timed automaton to a process according to the following de�nition.De�nition 3.3 (Associated timed automaton)Let p 2 L. ncv , the predicate of non-con
ict of variables is de�ned inductivelyaccording to rules in Table 1. For all process p such that ncv(p) the timed automatonassociated to p is de�ned by [[p]]T = (L;A; C; p; - ; @; �) where -, @ and � arede�ned as the least sets satisfying the rules of Table 1. 28

Table 1: Timed automata for Lncv(stop) ncv(p) �(p)C (var(�) \ C = ;)ncv(�7!7!p)ncv(p)ncv(a; p) ncv(p) �(p) = C (var() \ C = ;)ncv(�� p)ncv(p)ncv(fjCjg p) ncv(p) �(p) = C (C \ fv(q) = ;)ncv(q) �(q) = C 0 (C 0 \ fv(p) = ;)ncv(p+ q)�(stop) = ; �(a; p) = ; �(p) = C�(� 7!7!p) = C�(p) = C �(q) = C 0�(p+ q) = (C [C 0) �(p) = C 0�(fjCjg p) = (C [C 0) �(p) = C�(�� p) = C@(stop) = tt @(a; p) = tt @(p) = @(� 7!7!p) = @(p) = @(q) = 0@(p+ q) = (_ 0) @(p) = @(fjCjg p) = @(p) = 0@(�� p) = (^ 0)a; p a;tt- p p a;�0- p0�7!7!p a;�^�0- p0p a;�- p0 @(p) = p+ q a;�^ - p0q + p a;�^ - p0 p a;�- p0fjCjg p a;�- p0 p a;�- p0 �� p a;�- p0
9

The next theorem states that the notion of associated timed automaton is wellde�ned for processes without con
ict of variables.Theorem 3.4 Let p 2 L be a process such that ncv(p). The associated timed automa-ton [[p]]T is indeed a timed automaton.Proof. It is enough to see that for all q 2 L relations @ and � are functions andmoreover, that @(q) 2 �(C). But it can be straightforwardly proven by induction on thedepth of the proof tree taking into account that if ; 0 2 �(C) then ^ 0; _ 0 2 �(C).2Rules in Table 1 capture the behaviour described in Section 3.1 in terms of timedautomata. Notice that stop and a; p have no restriction to idle so @(stop) = @(a; p) =tt, moreover they do not reset any clock. As we said above, a; p can perform an actiona at any time and then it proceeds with the execution of p. �7!7!p can perform anyaction p can perform whenever � holds. A process p+ q can idle as long as one of themcan. Thus @(p + q) () @(p) _ @(q). Moreover p + q can execute any action of p orq as long as it could be executed in its original process. Thus, since an action cannotbe executed after the idling time is �nished, we require that for the execution of anaction, the corresponding invariant must also hold. In principle, processes fjCjg p, ��pcan perform any action process p can since these operators only add information to thestate. Thus, for fjCjg p, clocks in C are reset together with the clocks to be reset by p:�(fjCjg p) = �(p) [C. The invariant of �� p is restricted to satisfy in addition tothe invariant of p, i.e., @(�� p) () @(p) ^ .The condition that processes should not have con
ict of variables is necessary. Ifit were not considered we would have undesirable bindings. For instance, consider theterm p � (x � 2)�� (fjxjg (x = 1)7!7!a; stop). Clearly, x is free in the invariant (x � 2),however, using rules in Table 1, we derive @(p) = (x � 2) and �(p) = fxg. Thus,according to De�nition 2.4 the x in the invariant is captured by the clock resetting.Similar reasoning shows that, in q � ((y � 1)��a; stop)+(fjyjg stop), the free occurrenceof y in the left operand is captured by the clock resetting in the right operand since@(q) = (y � 1) and �(q) = fyg.One important thing to notice is that the edges preserve the property of non-con
ictof variables, that is, if p has no con
ict of variables and p a;�- p0 then p0 has no con
ictof variables. It can be proven by straightforward structural induction.3.3 RecursionWe extend the expressiveness of our language by allowing recursive speci�cations.De�nition 3.5 (Recursive speci�cations)Let V be a set of process variables. We extend the previous language with processvariables. So, let Lv the language de�ned by the following grammar:p ::= stop j a; p j �7!7!p j p+ p j fjCjg p j �� p j X10

where a 2 A, � 2 �(C), 2 �(C), C � C and X 2 V. A recursive speci�cation is aset of recursive equations having the formX = p(V)for each X 2 V, where p(V) 2 Lv. Every recursive speci�cation has a distinguishedprocess variable called root . We extend the notion of free and bound variables by addingthe equations followsfv(X) = fv(q) bv(X) = bv(q)provided X = q 2 E. fv and bv are then de�ned by the least sets that satisfy theequations. 2We recall that fv(p) and bv(p) are de�ned as the least set satisfying the equations inDe�nitions 3.1 and 3.5. Thus, for instance, if X = fjxjg (y � 3 ^ x < 2)�� X thenfv(X) = fyg and bv(X) = fxg.Now, we extend the notion of the associated timed automaton to recursive speci�-cations and we state the correctness of the de�nition.De�nition 3.6 (Associated timed automaton)Let E be a recursive speci�cation such that ncv(E) holds according to rules inTable 1 and Table 2, i.e., E does not have con
ict of variables. The timed automatonassociated to p 2 Lv is de�ned by [[p]]T = (L;A; C; p; -; @; �) where -, @ and �are de�ned as the least set satisfying rules in Table 1 and rules in Table 2. 2Table 2: Timed automata for recursionThe following rules are de�ned for all X = p 2 Encv(X) ncv(p)ncv(X = p) 8X = p 2 E: ncv(X = p)ncv(E)�(p[p=X]) = C�(X) = C @(p[p=X]) = @(X) = p[p=X] a;�- p0X a;�- p0
De�nition 3.7 (Guardedness)An occurrence of X is guarded in a term p 2 Lv if p has a subterm a; q such that thisoccurrence of X is in q. A process variable X is guarded in p if every occurrence of it isguarded. A term p is guarded if all its variables are guarded. A recursive speci�cationis guarded if the right hand side of every recursive equation in it is a guarded process.211

Notice that @ and � are not always well-de�ned in case of (unguarded!) recursion.For instance, take X = (x < 1)�� X, then @ and � are the completely unde�nedfunctions because of nonterminating derivation. Studies on �xed point can be donein these cases. Thus, we would have that @(X) = ^ (x < 1) for all 2 �(C) and�(X) = C for all C 2 C. It seems to be clear that the least �xed point according to setinclusion should be adopted for �. Therefore, �(X) = ;. However, it is not clear whichorder should be consider for @. Compare to the process X = (x < 1)�� a; stop + X.Nevertheless, we can state the following theorem.Theorem 3.8 Let p 2 Lv be a process satisfying ncv(p), which has process variablesde�ned in a guarded recursive speci�cation E without con
ict of variables. The associ-ated timed automaton [[p]]T is indeed a timed automaton.Proof. It can be proved by structural induction that @ and � are de�ned for any guardedterm. In addition, we can see that for all q 2 Lv relations @ and � are functions andmoreover, that @(q) 2 �(C). This can be proven by induction on the derivation of @and �. 2The language presented here, together with a guarded recursive speci�cation, has theproperty of expressing any timed automaton in the sense of Theorem 3.9 below. First,we borrow some de�nitions from transition system theory into timed automaton theory.A timed automaton is image-�nite if the set of outgoing edges of every state labelledwith the same action is �nite, i.e., for any a and any s, the set fs a;�- s0j s0 2 Sg is�nite. It is �nitely sorted if, for each state s, the set of all actions labelling the outgoingedges, i.e., faj 9s0 2 S: s a;�- s0g is �nite. A state s is (symbolically) reachable if thereis a sequence of edges from the initial state s0 to s, i.e., there are a1; : : : ; an, �1; : : : ; �nand s1; : : : ; sn (n � 0) such that s0 a1;�1- s1 � � � an;�n- sn = s. The reachable part of atimed automaton T is the same timed automaton restricted to the set of states thatare reachable. Notice that we are considering a static view but not the usual notion ofreachability in timed automata theory (compare to [ACH+92]).Theorem 3.9 (Representability of timed automata) For every image-�nite and�nitely sorted T 2 T there is a guarded recursive speci�cation E with root Xs0 suchthat the reachable part of T and the reachable part of [[Xs0]]T are isomorphic.Proof. The proof consists of associating a process variable to each state s of Tand de�ning each one of them as the term that resets the clocks of �(s) and has aninvariant @(s) over the summation of the outgoing edges represented by pre�xings withits respective guard. Thus, the isomorphism is given by the function that maps everystate in its corresponding variable.Let T = (S;A; C; s0; - 0; @0; �0). For each state s 2 S de�ne a di�erent variableXs. Let VS be the set of such variables. De�ne the set of recursive speci�cations Ewith root Xs0 and recursive equationsXs = fj�0(s)jg @0(s)�� �X f�7!7!a;Xs0 j s a;�- s0g�12

where Pfpi j i 2 f1 : : : ngg def= p1 + p2 + � � � + pn. In particular, if s has no outgoingtransition thenXs = fj�0(s)jg @0(s)�� stopAccording to De�nition 3.6, [[Xs0]]T = (Lv;A; C; Xs0; -; @; �). De�ne[[Xs0]]T �VS def= (VS;A; C; Xs0; - �VS; @�VS; ��VS)where: - �VS def= - \(VS �A� �(C)� Lv)@�VS def= @ \ (VS � �(C))��VS def= � \ (VS �}(C))Clearly, � : S ! VS de�ned as �(s) def= Xs for all s 2 S, is an isomorphism, whichstraightforwardly implies the theorem. 2In the previous proof, the restriction of [[Xs0]]T to the set VS is merely formal, and itis due to the fact that the associated timed automaton is de�ned considering the wholeset of terms Lv instead of the reachables ones.In order to represent data it could be needed to consider more general timed au-tomata which are not necessarily image �nite or �nitely sorted. This kind of automatacould be represented in the language by de�ning an in�nite summation operator in theexpected way. Thus, Theorem 3.9 could be extended to timed automata with denumer-able branching and denumerable sorts.4 An Operational SemanticsIn this section we give a semantics for Lv in terms of TTS. We state that it coincides(modulo timed bisimulation) with the semantics of the associated timed automaton.Moreover, we study �-conversion in order to give semantic to every term.4.1 The Operational SemanticsDe�nition 4.1 (Operational semantics of Lv)Let E be a recursive speci�cation with process variables V. The TTS of a term p 2Lv with initial valuation v0 2 Vc is de�ned by ([p])�v0 def= (Lv�Vc;A�IR�0; (p; v0); �! ;U)where �! and U are the least set satisfying rules in Table 3. 2([p])�v0 is well de�ned, that is, ([p])�v0 satis�es axioms Until and Delay, which can beproven by straightforward induction on the length of the proof tree. Thus,Theorem 4.2 For all p 2 Lv and for all closed valuation v0, ([p])�v0 is indeed a TTS.13

Table 3: Operational semantics for Lv (a 2 A, d 2 IR�0, v 2 Vc)Ud(stop; v) Ud(a; p; v) Ud(p; v)Ud(�7!7!p; v) Ud(p; v[C a0])Ud(fjCjg p; v)j= (v + d)() Ud(p; v)Ud(�� p; v) Ud(p; v)Ud(p+ q; v) Ud(q + p; v)(a; p; v) a(d)�!(p; v + d) j= (v + d)(�) (p; v) a(d)�!(p0; v0)(�7!7!p; v) a(d)�!(p0; v0)(p; v[C a0]) a(d)�!(p0; v0)(fjCjg p; v) a(d)�!(p0; v0) j= (v + d)() (p; v) a(d)�!(p0; v0)(�� p; v) a(d)�!(p0; v0)(p; v) a(d)�!(p0; v0)(p+ q; v) a(d)�!(p0; v0) (q + p; v) a(d)�!(p0; v0)The following rules are de�ned for all X = p 2 EUd(p[p=X]; v)Ud(X; v) (p[p=X]; v) a(d)�!(p0; v0)(X; v) a(d)�!(p0; v0)
The rules in Table 3 express the intended behaviour of each term in terms of TTS.In this case the execution of a transition or the idling time is made concrete. Thus, forinstance, process �7!7!p can actually perform any action a that p can perform at timed in the valuation v whenever the condition � holds in the valuation v after d units oftime has passed. Or, on the other hand, process �� p can idle d units of times in avaluation v if p also can idle d units of time, and moreover, condition holds in thevaluation v after d units of time.Now, we extend the notion of timed bisimilarity to the terms in the language.De�nition 4.3 Two terms p; q 2 L are timed bisimilar , notation p$ q, if and only iffor all v0 2 Vc, ([p])�v0 $ ([q])�v0 . 2Now, we can prove that all the operators of the language preserve timed bisimulation.14

Theorem 4.4 $ is a congruence for all operations in L.Proof. Suppose p$ q and p0 $ q0. Hence, for all v 2 Vc, there are timed bisimulationsRv and R0v such that (p; v)Rv(q; v) and (p0; v)R0v(q0; v). Then� Rpv def= f(a; p; v); (a; q; v)g [(Sd2IR�0 Rv+d),� Rgv def= f(� 7!7!p; v); (�7!7!q; v)g [Rv,� R+v def= f(p+ p0; v); (q + q0; v)g [Rv [R0v,� Rcv def= f(fjCjg p; v); (fjCjg q; v)g [Rv[C a0], and� Rsv def= f(�� p; v); (�� q; v)g [Rvare timed bisimulations. The proof of this fact is straightforward. 24.2 ComparisonSo far we stated two ways of interpreting a term in L. Function ([])� associates a TTS toeach term and closed valuation. On the other hand, a TTS could be associated to everyp 2 L in two steps, namely, by associating a timed automaton to p (see De�nition 3.3)and then interpreting such a timed automaton in terms of a TTS according to De�-nition 2.4. Theorem 4.5 states that both way of interpreting a process are equivalentaccording to timed bisimulation.Theorem 4.5 Let E be a guarded recursive speci�cation with process variables V.For every p 2 Lv without con
ict of variables and for every closed valuation v0,([p])�v0 $ ([[[p]]T])v0 .Proof. Assume ([p])�v0 = (Lv�Vc;A�IR�0; (p; v0); �! ;U) and ([[[p]]T])v0 = (Lv�Vc;A�IR�0; (p; v0); �! 0;U 0). We state that R def= f((q; v); (q; v))j q 2 L ^ v�fv(q) = v�fv(q)g,with v�C def= v \ (C � IR�0), is a timed bisimulation. Clearly (p; v0)R(p; v0). The restof the proof follows from the next claimClaim 4.6 Let v; v 2 Vc such that v�fv(p) = v�fv(p). Then1. (p; v) a(d)�!(p0; v0) implies that 9v0 2 Vc: (p; v) a(d)�! 0(p0; v0) and v0�fv(p0) = v0�fv(p0)2. (p; v) a(d)�! 0(p0; v0) implies that 9v0 2 Vc: (p; v) a(d)�!(p0; v0) and v0�fv(p0) = v0�fv(p0)3. Ud(p; v) () U 0d(p; v)For the proof of the claim see Appendix A. 2A summary of the studied relations is given in Figure 1, where arrows may be readas \can be interpreted in". 15

Figure 1: SummaryLv TTTS TTS0$
4.3 �-conversionSo far, all the properties were studied for processes without con
ict of variables. In thissection we show that the behaviour is preserved by �-conversion, which implies thatour restriction to the subset of processes without con
ict of variables is harmless. Webase our studies on [Sto88].De�nition 4.7 (Renaming of clocks in processes)Let v be a renaming. We extend the notion of renaming to terms in L according tothe following recursive de�nition:v(stop) def= stop v(p+ q) def= v(p) + v(q)v(a; p) def= a; v(p) v(fjCjg p) def= fjf(C)jg v[f](p)v(�7!7!p) def= v(�)7!7!v(p) v(�� p) def= v()�� v(p)where f : C ! V is a bijective function with V 2 C such that V \ v(fv(p)nC) = ;. 2De�nition 4.8 (�-conversion)Let ��2 L � L be the least relation satisfying the following rulesstop �� stop p �� qa; p �� a; q � 7!7!p �� � 7!7!q �� p �� �� qp �� q p0 �� q0p+ p0 �� q + q0 f : C ! C 0 is bijective C 0 \ fv(fjCjg p) = ; �[f](p) �� qfjCjg p �� fjC 0jg qIf p �� q then p and q are �-convertibles. 2It can be proven that�� is an equivalence, and hence it is a congruence by de�nition.We refer to [Sto88] for further studies in �-conversion.In the following we sate that for every term there is an �-conversion which does nothave con
ict of variables. Together with Theorem 4.10, we can state that for every term,there is another term which is timed bisimilar and does not have con
ict of variables.The proof of the following theorem is by straightforward structural induction.16

Theorem 4.9 For every p 2 L, there is a q 2 L such that ncv(q) and p �� q.Theorem 4.10 For all p; q 2 L, if p �� q then p$ q.Proof. We state thatR def= f((p; v); (q; v))j 9�: � is a renaming^ �(fv(p)) = fv(q) ^ �(p) �� q ^ v�fv(p) = (v � �)�fv(p)gis a timed bisimulation. Notice that for all v0 2 Vc, if p �� q then (p; v0)R(q; v0). Thus,proving that R is a timed bisimulation is enough to prove that p$ q by De�nition 4.3.But the fact that R is a timed bisimulation follows from the next claim.Claim 4.11 Assume there exists a renaming � such that �(fv(p)) = fv(q), �(p) �� qand v�fv(p) = (v � �)�fv(p). Then:1. (p; v) a(d)�! (p0; v0) implies that exists (q0; v0) such that (q; v) a(d)�! (q0; v0) and 9� 0: � 0is a renaming ^ � 0(fv(p0)) = fv(q0) ^ � 0(p0) �� q0 ^ v0�fv(p0) = (v0 � � 0)�fv(p0)2. (q; v) a(d)�! (q0; v0) implies that exists (p0; v0) such that (p; v) a(d)�! (p0; v0) and 9� 0: � 0is a renaming ^ � 0(fv(p0)) = fv(q0) ^ � 0(p0) �� q0 ^ v0�fv(p0) = (v0 � � 0)�fv(p0)3. Ud(p; v) i� Ud(q; v)For the proof of the claim see Appendix B. 2Because of Theorems 4.9, 4.5 and 4.10, we can associate a timed automaton to everyprocess in L. We know how to associate a timed automata to processes without con
ictof variables. Suppose p 2 L has con
ict of variables. Then, we can choose any q 2 Lwithout con
ict of variables such that p �� q, and so we de�ne [[p]]T def= [[q]]T .5 AxiomatisationIn this section we give a set of axioms that holds in bisimulation models. It followsimmediately that they also hold in any coarser model as for instance the several timedbisimulations with abstraction [Yi90, MT92, Che93, Klu93], timed trace preorder andtimed simulations [LV93, LV94]. By Theorems 4.9 and 4.10 we consider terms modulo�-conversion without loss of generality.5.1 AxiomsAxioms in Table 4 could be explained as follows. The choice is commutativeA1 andassociative A2. Axioms A3 and A30 state a kind of idempotency of + and A4 statesthat stop is the neutral element for + in the context of unbounded idling. Stp statesthat a pre�xed process which does not satis�es its guard condition cannot proceed with17

Table 4: Axioms for L (a; b 2 A, C � C, x; y 2 C, �; �0 2 �(C), ; 0 2 �(C), d 2 IR�0)A1 p + q = q + pA2 (p+ q) + r = p+ (q + r)A3 � 7!7!p+ �0 7!7!p = (� _ �0) 7!7!pA30 �� p + 0�� p = (_ 0)�� pA4 a; p+ stop = a; pStp � 7!7!a; p = stopG0 � 7!7!stop = stopG1 tt 7!7!p = pG2 � 7!7!(�0 7!7!p) = (� ^ �0)7!7!pG3 � 7!7!(�� p) = �� (�7!7!p)G4 � 7!7!(fjCjg p) = fjCjg (�7!7!p) if var(�) \ C = ;G5 � 7!7!(p+ q) = �7!7!p+ � 7!7!qI1 tt�� p = pI2 �� (0�� p) = (^ 0)�� pI3 �� (fjCjg p) = fjCjg (�� p) if var() \ C = ;I4 �� p + �� q = �� (p+ q)I5 �� (� 7!7!a; p) + 0�� (�0 7!7!b; q) = (_ 0)�� ((^ �)7!7!a; p+ (0 ^ �0)7!7!b; q)R1 fjCjg p = p if C \ fv(p) = ;R2 fjC [fy; xgjg p = fjC [fygjg �[x ay](p)R3 fjCjg fjC 0jg p = fjC [C 0jg pR4 fjCjg p+ fjCjg q = fjCjg (p+ q)D1 � 7!7!a; (fjyjg p) = �7!7!a; (fjyjg (x� y2d)�� p) if j= (�) (x2d)) and x 6= yD2 � 7!7!a; p = �7!7!a; ((x� y2d)�� p) if j= (�) (x� y2d))where 2 2 f�; <;�; >;=g
18

its execution. Axioms G0{G5 state the way in which guards can be simplifyed. Noticethat they cannot be eliminated except in the case of tt. In particular, axioms G3, G4and G5 say how to move invariants, clock resettings and summations out of the scopeof a guard. Similarly, axioms I1{I5 state how to simplify the invariant operation. I3says how to take clocks resettings out of the scope of an invariant, while I4 and I5move the invariant out of the scope of a summation. R1 and R2 eliminate redundantclocks. In particular, R2 implies that it is always possible to reduce the amount ofclocks to be reset to at most one for each clock resetting operation. R3 gathers allthe clocks resettings in only one operation and R4 moves clocks out of the scope of asummation. Finally, D1 and D2 state that the di�erence between clocks is invariantand thus it could be \transported" along the execution. In particular, D1 explains howthis di�erence is stated. Notice that axioms do not necessarily preserve free variables.For instance, G1 allows us to prove (x � 0)7!7!p = p.Now, we state without proof two derived axioms that can be useful in the following.Property 5.1 The following properties can be derived from the axioms.1 : p+ p = p 2 : �� p = �� (7!7!p) 3 : ��� stop+ p = pFor 2. and 3., induction is also necessary.Notice that ��� a; p = ��� (� 7!7!a; p) = ��� stop but ��� stop 6$ stop. This isdue to the fact that timed bisimulation can model the halting of the progress of time.It could be understood as a broken machine that is not longer allowed to remain in thesame state and, simultaneously, has no way to leave such a state, i.e., no action can beperformed in order to leave such a state. This phenomenon is known as time deadlock.The di�erence with the ordinary deadlock phenomenon is that a system is in deadlockif it reaches a state that cannot perform any action, but such a state need not have anyrestrictions on idling, which is the case for time deadlock.Axioms in Table 4 are sound for timed bisimulation as it is stated as follows.Theorem 5.2 (Soundness) For all p; q 2 Lv, if p = q is deduced by means ofequational reasoning using axioms in Table 4, then p$ q.Proof. For every axiom p = q, we de�ne the relationR def= f((p; v); (q; v))j v 2 Vcg [Idexcept for R1 for which we de�neR def= f((fjCjg p; v); (p; v))j v 2 Vc ^ C \ fv(p) = ;g[f((p; v); (p; v))j v; v 2 Vc ^ v�fv(p) = v�fv(p)gfor R2 for which we de�neR def= f((fjC [fy; xgjg p; v); (fjC [fygjg �[x ay](p); v))j v 2 Vcg[f((p; v); (q; v))j v; v 2 Vc ^ 9�: � is a renaming^ �(fv(p)) = fv(q) ^ �(p) �� q ^ v�fv(p) = (v � �)�fv(p)g19

for D1 for which we de�neR def= f((� 7!7!a; (fjyjg p); v); (�7!7!a; (fjyjg (x� y2d)�� p); v))j v 2 Vcg[f((fjyjg p; v); (fjyjg (x� y2d)�� p; v))j v 2 Vc^ j= v(�)g [Idand for D2 for which we de�neR def= f((� 7!7!a; p; v); (�7!7!a; ((x� y2d)�� p); v))j v 2 Vcg[f((p; v); ((x� y2d)�� p; v))j v 2 Vc^ j= v(�)g [IdIn every case, R is a timed bisimulation, which proof the theorem. 25.2 Basic TermsAn interesting property that is derived from these axioms is that every term can beexpressed in a normal form.De�nition 5.3 (Basic terms)De�ne the set B � L of basic terms inductively as follows:� stop 2 B0� p 2 B, � 2 �(C) and a 2 A =) �7!7!a; p 2 B0� p; q 2 B0 =) p+ q 2 B0� p 2 B0, 2 �(C) and x 2 C =) fjxjg �� p 2 BB0 is the set of all terms whose clock resettings and invariants are all within the scopeof a pre�x construction. Notice that a basic term has the general format (modulo A1,A2, A3 and A4)p = fjxjg �� Xi2I �i 7!7!ai; pi!where each pi is already a basic term. We adopt the convention thatXi2; �i 7!7!ai; pi = stop: 2Theorem 5.4 For every term p 2 L there is a term q 2 B such that p = q can beproven by means of axioms in Table 4 and �-conversion.
20

Proof. By structural induction.Case stop.stop R1,I1= fjxjg tt�� stopCase a; p. By induction hypothesis assume p is a basic term. Besides, take a freshvariable x. Thena; p G1= tt7!7!a; p R1,I1= fjxjg tt�� (tt7!7!a; p)Case �7!7!p. By induction hypothesis assumep = fjxjg �� Xi2I �i 7!7!ai; pi!.where each pi is already a basic term. Moreover, we can assume that x =2 var(�). Then�7!7!p G4,G3= fjxjg �� � 7!7!Xi2I �i 7!7!ai; pi! G5,G2= fjxjg �� Xi2I(� ^ �i)7!7!ai; pi!Case p+ q. By induction hypothesis assumep = fjxjg �� Xi2I �i 7!7!ai; pi! and q = fjyjg 0�� 0@Xj2J �0j 7!7!bj; qj1A.where each pi and qj are already basic terms. Moreover, by �-conversion, we canconsider x = y. Thenp+ qIH= fjxjg �� Xi2I �i 7!7!ai; pi!+ fjxjg 0�� 0@Xj2J �0j 7!7!bj; qj1AR4,I4= fjxjg 0@Xi2I �� (�i 7!7!ai; pi) +Xj2J 0�� (�0j 7!7!bj; qj)1AA1,A2,A3= fjxjg Xi2I (�� (�i 7!7!ai; pi) + 0�� (�01 7!7!b1; q1))+Xj2J(0�� (�0j 7!7!bj; qj) + �� (�1 7!7!a1; p1))1A

21

I5= fjxjg Xi2I (_ 0)�� ((^ �i) 7!7!ai; pi + (0 ^ �01)7!7!b1; q1)+Xj2J(_ 0)�� ((0 ^ �0j) 7!7!bj; qj + (^ �1) 7!7!a1; p1)1AI4= fjxjg (_ 0)�� Xi2I((^ �i) 7!7!ai; pi + (0 ^ �01) 7!7!b1; q1)+Xj2J((0 ^ �0j)7!7!bj; qj + (^ �1)7!7!a1; p1)1AA1,A2,A3= fjxjg (_ 0)�� 0@Xi2I(^ �i)7!7!ai; pi +Xj2J(0 ^ �0j) 7!7!bj; qj1ACase fjCjg p. By induction hypothesis assumep = fjxjg �� Xi2I �i 7!7!ai; pi!.where each pi is already a basic term. ThenfjCjg p IH= fjCjg fjxjg �� Xi2I �i 7!7!ai; pi!R3= fjC [fxgjg �� Xi2I �i 7!7!ai; pi!R2= fjxjg (�[C ax])�� Xi2I (�[C ax]�i)7!7!ai; (�[C ax]pi)!Case �� p. By induction hypothesis assumep = fjxjg 0�� Xi2I �i 7!7!ai; pi!.where each pi is already a basic term. Moreover, we can assume that x =2 var(). Then �� p IH= �� fjxjg 0�� Xi2I �i 7!7!ai; pi!I3,I2= fjxjg (^ 0)�� Xi2I �i 7!7!ai; pi! 26 Other OperatorsIn this section, we study several operators. We introduce the hiding operator, theparallel composition and several time operations such as wait, time-out and urgency.In order to simplify the proof of soundness in the following we introduce a strongequivalence over timed automata which implies timed bisimulation.22

6.1 Symbolic BisimulationWe introduce the notion of symbolic bisimulation between timed automata. It is a kindof bisimulation de�ned directly on timed automata which implies timed bisimulation ofthe interpreted TTS. The interest of de�ning this equivalence is not to introduce a newsemantic concept but to simplify proofs in the following.De�nition 6.1 (Symbolic bisimulation)Let Ti = (Si;A; C; si0; - i; @i; �i), i 2 f1; 2g be two timed automata. A symbolicbisimulation is a relation R � S1�S2 with s10Rs20 satisfying, for all a 2 A and � 2 �(C),the following transfer properties whenever s1Rs21. s1 a;�- 1s01, then 9s02 2 S2 : s2 a;�0- 2s02, j= (�) �0) and s01Rs02;2. s2 a;�- 2s02, then 9s01 2 S1 : s1 a;�0- 1s01, j= (�) �0) and s01Rs02;3. j= (@1(s1), @2(s2)); and4. �1(s1) = �2(s2).We denote T1$fT2, if there exists a symbolic bisimulation R such that s10Rs20. 2Theorem 6.2 Let T1; T2 2 T such that T1$fT2. Then for all v0 2 Vc, ([T1])v0 $ ([T2])v0 .Proof. Let R be a symbolic bisimulation between T1 and T2.R0 def= f((s1; v); (s2; v))j s1Rs2gcan be straightforwardly proven to be a timed bisimulation. 2Moreover, notice that T1 �= T2 implies T1$fT2. Let p; q 2 Lv. In the following wedenote p$fq whenever [[p]]T$f[[q]]T .The notion of symbolic bisimulation up to $f will simplify considerably severalproofs.De�nition 6.3 (Symbolic bisimulation up to $f)R � Lv � Lv is a symbolic bisimulation up to $f if and only if pRq implies, for alla 2 A and � 2 �(C),1. p a;�- p0, then 9q0; p00; q00 : q a;�0- q0, j= (�) �0) and p0$fp00Rq00$fq0;2. q a;�- q0, then 9p0; p00; q00 : p a;�0- p0, j= (�) �0) and p0$fp00Rq00$fq0;3. j= (@1(p), @2(q)); and4. �1(p) = �2(q). 2Notice that if there is a symbolic bisimulation R up to $f such that pRq, then itcan be proven that p$fq. 23

6.2 Hiding OperatorWe introduce the hiding operator following LOTOS notation [BB89]. In order to do thatwe introduce a special action � =2 A called silent action. The silent action di�erentiatesfrom the others in the sense that it cannot be observed from the environment. In thiswork, we are not going to pay special attention on the semantic of such kind of action.hideA in p is a process that behaves like p except that all actions in A are renamed into� . Notice that a renaming operator (see [Mil89, BW90]) can be de�ned in a similarway. We leave this task for the interested reader.De�ne A� def= A [f�g. Let A � A. Free and bounded variables are de�ned asfollows.fv(hideA in p) def= fv(p) bv(hideA in p) def= bv(p)Rules for the timed automata and TTS are given in Table 5 and Table 6 respectively.The axiomatic de�nition is given in Table 7.Table 5: Timed automata for the hiding operatorncv(p)ncv(hideA in p) �(p) = C�(hideA in p) = C @(p) = @(hideA in p) = p a;�- p0hideA in p a;�- hideA in p0 a =2 A p a;�- p0hideA in p �;�- hideA in p0 a 2 A
Table 6: Operational semantics for the hiding operator(p; v) a(d)�!(p0; v0)(hideA in p; v) a(d)�!(hideA in p0; v0) a =2 A Ud(p; v)Ud(hideA in p; v)(p; v) a(d)�!(p0; v0)(hideA in p; v) �(d)�!(hideA in p0; v0) a 2 AWe extend the de�nition of renaming and �-conversion according withv(hideA in p) def= hideA in v(p) p �� qhideA in p �� hideA in q24

Table 7: Axioms for the hiding operatorhideA in stop = stop hideA in (�7!7!p) = �7!7!(hideA in p)hideA in (a; p) = a; (hideA in p) if a =2 A hideA in (fjCjg p) = fjCjg (hideA in p)hideA in (a; p) = � ; (hideA in p) if a 2 A hideA in (�� p) = �� (hideA in p)hideA in (p+ q) = hideA in p+ hideA in q
Following the same lines of Theorem 4.5, it can be proven that the behaviours ofhideA in p expressed in the two di�erent ways are equivalent modulo timed bisimulation,i.e., ([hideA in p])�v0 $ ([[[hideA in p]]T])v0 .In addition, for every term hideA in p there is an �-conversion without con
ict ofvariables (see Theorem 4.9). Moreover, Theorem 4.10 still holds if the hiding operatoris added, that is, ��� $ in the extended language. Besides, hideA in preserves $.Theorem 6.4 (Congruence) If p$ q then hideA in p$ hideA in q.Proof. Suppose p$ q. Then, for every v0 2 Vc there is a timed bisimulation Rv0 suchthat (p; v0)Rv0(q; v0). Let R = f((hideA in p0; v); (hideA in q0; v))j (p0; v)Rv0(q0; v)g It iseasy to prove that R is a timed bisimulation. 2Theorem 6.5 (Soundness) For all p and q obtained by extending Lv with the hidingoperator, if p = q is deduced by means of equational reasoning using axioms in Table 4and axioms in Table 7, then p$ q.Proof. The case of axioms in Table 4 was proven in Theorem 5.2. Let p = q any axiomin Table 7. It is easy to prove thatR = f(p; q)g [Idis a symbolic bisimulation. Now, the theorem follows from Theorem 6.2 and Theo-rem 4.10. 2Theorem 6.6 (Elimination) For all term p in the language L extended with the hid-ing operator, there is a q in L such that p = q can be derived from axioms in Table 7.Proof. Consider axioms in Table 7 from left to right as rewrite rules. It is simple toprove that the normal form is a term q 2 L. 2

25

6.3 Time OperationsIn this paragraph we give some axiomatic de�nitions for common operations on time.The operation waitd(p) waits d units of time before starting to execute p. Conversely,befored(p) forces to execute p before d units of time have passed. They can be de�nedas follows, provided x =2 fv(p):� waitd(p) def= fjxjg (x � d)7!7!p� befored(p) def= fjxjg (x � d)�� pWe can modify these operators in order to not include d� wait>d (p) def= fjxjg (x > d)7!7!p� before<d (p) def= fjxjg (x < d)�� pUrgency is de�ned by the operation urgentd(p) that obliges to execute p just afterwaiting d units of time:� urgentd(p) def= befored(waitd(p))More generally we can de�ne the operation between[d; d0](p) which forces the executionof p after waiting d units of time but before d0 units of time have passed:� between[d; d0](p) def= befored0(waitd(p))We can easily generalise this operation to open intervals in the obvious way.Maybe, the most well known operation is the time-out. p timeoutdq forces to executeq just after waiting d units of time if process p does not started execution yet:� p timeoutdq def= before<d (p) + urgentd(q)This time-out is called strong time-out . the weak version could be de�ned as:� pwtimeoutdq def= befored(p) + urgentd(q)Consider, for instance, the process p = wait2(before1(a; stop)). p will never performaction a. This fact arises since the clock of the before operator is started together withthe clock of the wait operator. Another interpretation for the wait operator is given:wait0d(p) = fjxjg ((d � x)7!7!� ; p) provided x =2 fv(p).Here, the silent step is used to force the clocks of p to not start.
26

Table 8: Timed automata for the parallel operatorncv(p) (bv(p) \ var(q) = ;)ncv(q) (bv(q) \ var(p) = ;)ncv(pjjAq) ncv(pjAq) ncv(pjj Aq) ncv(p)ncv(ck(p))�(p) = C �(q) = C 0�(pjjAq) = (C [C 0)�(pjj Aq) = (C [C 0)�(pjAq) = (C [C 0) @(p) = @(q) = 0@(pjjAq) = (^ 0)@(pjj Aq) = (^ 0)@(pjAq) = (^ 0)p a;�- p0pjjAq a;�- p0jjAck(q)qjjAp a;�- ck(q)jjAp0pjj Aq a;�- p0jjAck(q) a =2 A p a;�- p0 q a;�0- q0pjjAq a;�^�0- p0jjAq0pjAq a;�^�0- p0jjAq0 a 2 A
�(ck(p)) = ; @(p) = @(ck(p)) = p a;�- p0ck(p) a;�- p0

6.4 Parallel OperatorWe de�ne a LOTOS-like parallel operator [BB89]. Basically, the process pjjAq executesprocess p and q in parallel and forces synchronisation on actions in set A 2 A. jj A andjA are the left and communication merge respectively, which are needed to give a �niteaxiomatisation of the parallel operator. In order to de�ne associated timed automatawe will require the auxiliary operator ck which is intended to avoid clocks resettings.Free and bound variables are de�ned byfv(pjjAq) = fv(pjj Aq) = fv(pjAq) = fv(p) [fv(q) fv(ck(p)) = �(p) [fv(p)bv(pjjAq) = bv(pjj Aq) = bv(pjAq) = bv(p) [bv(q) bv(ck(p)) = bv(p)Notice that bv(ck(p)) = bv(p)n�(p) is not generally true. A counterexample isp � fjxjg (x < 1)7!7!a; fjxjg (x < 1)7!7!a; stop. So, for the sake of correctness in ourde�nitions, we choose a wide enough set of bound clocks in ck(p).We give the rules for the timed automaton in Table 8. Operators jj A and jA arethe left-merge and the communicating versions of the parallel operator, respectively.Operation ck is needed since if we admitted an edge like pjjAq a;�- p0jjAq instead of27

pjjAq a;�- p0jjAck(q), the clocks of q, which were reset as soon as pjjAq was reached,would be reset again when p0jjAq is reached after performing action a. This last situationwould be incorrect since the time for process q would then not have progressed.Axioms for parallel composition are given in Table 9. Operator ck is just requiredin order to de�ne associated timed automata. Moreover, it does not preserve $ and�-conversion. Thus, we are not interested in giving any axiomatisation of it. However,the information introduced for ck is somehow encoded in the axiomatisation by theoperator B0. Notice that B0(p) holds when p 2 B0 according to De�nition 5.3, i.e.whenever no clock resetting or invariant appears out of the scope of a pre�xing.Table 9: Axioms for parallel compositionPC pjjAq = pjj Aq + q jj Ap+ pjAqLM1 stopjj A(�� q) = �� stop if B0(q)LM2 a; pjj A(�� q) = �� stop if a 2 A ^ B0(q)LM3 a; pjj A(�� q) = �� a; (pjjA(�� q)) if a =2 A ^ B0(q)LM4 (�7!7!p)jj Aq = �7!7!(pjj Aq)LM5 (p+ q)jj Ar = pjj Ar + q jj ArLM6 (fjCjg p)jj Aq = fjCjg (pjj Aq) if C \ fv(q) = ;LM7 (�� p)jj Aq = �� (pjj Aq)LM8 pjj AfjCjg q = fjCjg (pjj Aq) if C \ fv(p) = ;CM0 pjAq = qjApCM1 stopjAstop = stopCM2 stopjAa; p = stopCM3 a; pjAa; q = a; (pjjAq) if a 2 ACM4 a; pjAb; q = stop if a 6= b _ a =2 ACM5 � 7!7!pjAq = �7!7!(pjAq)CM6 (p+ q)jAr = pjAr + qjArCM7 (fjCjg p)jAq = fjCjg (pjAq) if C \ fv(q) = ;CM8 (�� p)jAq = �� (pjAq)UB1 B0(stop) UB2 B0(a; p)UB3 B0(p)B0(�7!7!p) UB4 B0(p) B0(q)B0(p+ q)
28

We extend the de�nition of renaming and �-conversion according withv(pjjAq) def= v(p)jjAv(q)v(pjj Aq) def= v(p)jj Av(q)v(pjAq) def= v(p)jAv(q) p �� p0 q �� q0pjjAq �� p0jjAq0pjj Aq �� p0 jj Aq0pjAq �� p0jAq0It can be proven that for every term pjjAq, pjj Aq and pjAq there is an �-convertibleterm without con
ict of variables (see Theorem 4.9.) Thus, for terms with con
ict ofvariables we just assume their interpretation is the timed automata of some �-conversionwithout con
ict of variables. Moreover, timed bisimulation is a congruence for jjA, jj Aand jA, which is stated in the following.Theorem 6.7 (Congruence) Let p$ p0 and q $ q0. Then, we have pjjAq $ p0jjAq0,p jj Aq $ p0 jj Aq0 and pjAq $ p0jAq0.Proof. First we state the following claim.Claim 6.8 Let p and p0 be two terms in the extended language. Let v0 2 Vc. Let R bea timed bisimulation between ([[[p]]T])v0 and ([[[p0]]T])v0 . Let V � C such that V \ bv(p) =V \ bv(p0) = ;. De�neRV def= f((q; v); (q0; v0))j (q; v)R(q0; v0)^vjfv(q) = vjfv(q) ^ v0jfv(q0) = v0jfv(q0) ^ vjV = v0jV gThen RV is a timed bisimulation between ([[[p]]T])v0 and ([[[p0]]T])v0 .The proof of the claim follows straightforwardly by taking into account De�nition 2.4.Besides, notice that if V � V 0 then RV 0 � RV , and moreover RV 0 = (RV)V 0 .Now, the theorem follows from this other claim.Claim 6.9 Let p and p0 be two terms in the extended language such tha p$ p0. Then,for all v0 2 C, there is a timed bisimulation R between ([[[p]]T])v0 and ([[[p0]]T])v0 . De�ne:S1 def= f((pjjAq; v); (p0jjAq; v0))j (p; v)Rvar(q)(p0; v0)g[f((ck(p)jjAq; v); (ck(p0)jjAq; v0))j (p; v)Rvar(q)(p0; v0)^ v�var(q) = v0�var(q)^ 9d 2 IR�0: (v�var(p) = (v[�(p) a0] + d)�var(p)^ v0�var(p0) = (v0[�(p0) a0] + d)�var(p0))gS 01 def= f((qjjAp; v); (qjjAp0; v0))j (p; v)Rvar(q)(p0; v0)g[f((qjjAck(p); v); (qjjAck(p0); v0))j (p; v)Rvar(q)(p0; v0)^ v�var(q) = v0�var(q)^ 9d 2 IR�0: (v�var(p) = (v[�(p) a0] + d)�var(p)^ v0�var(p0) = (v0[�(p0) a0] + d)�var(p0))g29

S2 def= f((p jj Aq; v0); (p0 jj Aq; v0))g [S1S 02 def= f((q jj Ap; v0); (q jj Ap0; v0))g [S 01S3 def= f((pjAq; v0); (p0jAq; v0))g [S1S 03 def= f((qjAp; v0); (qjAp0; v0))g [S 01All of those relations are timed bisimulation up to $.For the de�nition of timed bisimulation up to $ and the proof of the claim seeAppendix C. 2We state that axioms are sound for timed bisimulation and they allow the eliminationof these new operators.Theorem 6.10 (Soundness) For all p and q obtained by extending Lv with jjA, jj Aand jA, if p = q is deduced by means of equational reasoning using axioms in Table 4and axioms in Table 9, then p$ q.Proof. The case of axioms in Table 4 was proven in Theorem 5.2.For axiom PC it is routine to prove thatR def= f((pjjAq; v); (pjj Aq + q jj Ap+ pjAq; v)g[Id [f((p0jjAq0; v); (q0jjAp0; v))j p0 and q0 are any term gis a timed bisimulation.Let p = q any other axiom in Table 9. It is easy to prove thatR def= f(p; q)g [Idis a symbolic bisimulation except for LM3 and LM8 for which it is a symbolic bisim-ulation up to $f, and for CM0 for whichR def= f(pjAq; qjAp)g [f(p0jjAq0; q0jjAp0)j p0 and q0 are any term gcould be proven to be a symbolic bisimulation. Now, the theorem follows from Theo-rem 6.2. 2Theorem 6.11 (Elimination) For every term p in the language L extended with jjA,jj A and jA, there is a q in L such that p = q can be derived from axioms in Table 4and Table 9.Proof. Consider axioms in Table 9 from left to right as rewrite rules modulo axiomsin Table 4 and CM0. It is simple to prove that the normal form is a term q 2 L. 230

7 Examples7.1 The Railroad CrossingWe take the example of the automatic controller of a gate at a railroad crossing usingthe de�nition from [AD94], except that we have adapted it to include invariants. Thecomponents of the system can be described as follows. A TRAIN communicates tothe controller that it approaches at least 2 minutes before it enters the crossing (in).After leaving the crossing (out), the TRAIN informs the CONTROLLER that it exitedwithin 5 minutes after sending the signal appr.The GATE system receives the information when to lower the gate. This should beput down before 1 minute has passed. Then, the system waits for an order to raise thegate. After that, it is lifted (up) within 1 to 2 minutes.The CONTROLLER waits for a train to approach. After exactly 1 minute, it ordersto lower the gate. Then, it waits until the train exits the crossing and at most 1 minuteafterwards it orders to raise the gate.The components of the system can be described as follows.TRAIN = appr; fjxjg ((x < 5)�� (x > 2)7!7!in;(x < 5)�� out;(x < 5)�� exit;TRAIN)GATE = lower; before<1 (down; raise; between(1; 2)(up;GATE))CONTROLLER = appr; urgent1(lower; exit; before<1 (raise;CONTROLLER))SYSTEM = CONTROLLERjjfappr;exit;lower;raiseg(TRAIN jj;GATE)By using axioms in Table 9 parallel operations can be eliminated. Assuming onlyone clock for each component, the expression obtained at this point will contain 3clocks and 19 states. However, many of those states are not reachable since the systemwill never meet conditions which allow that. These states can be eliminated by usingaxioms in Table 4, using D1 and D2 in particular. Moreover, the number of clocks canbe reduced to 2. In this way, the SYSTEM can be proven equivalent to the followingrecursive speci�cation which has 2 clocks and 10 states.SPEC0 = appr; SPEC1SPEC1 = fjxjg SPEC 01SPEC 01 = (x � 1)�� (x = 1)7!7!lower; SPEC2SPEC2 = fjyjg (y < 1)�� down; SPEC3SPEC3 = (x < 5)�� (x > 2)7!7!in; SPEC4SPEC4 = (x < 5)�� out; SPEC5SPEC5 = (x < 5)�� exit; SPEC6 31

SPEC6 = fjyjg (y < 1)�� raise; SPEC7SPEC7 = fjyjg (y < 2)�� (appr; SPEC8 + (y > 1)7!7!up; SPEC0)SPEC8 = fjxjg (y < 2 ^ x � 1)�� (y > 1)7!7!up; SPEC 01Clock x keeps track of the evolution of the time with respect to the TRAIN andsome activities in the CONTROLLER (particularly the action lower), while y keepstrack of the time of the proper activities of the GATE (namely down and up) andthe activity of raising the gate. Notice, however, that the action up in SPEC8 is alsoconstrained by clock x (viz. the condition x � 1). This would seem to imply that theCONTROLLER also controls the time of lifting the gate (action up). Clearly, this isnot a desirable situation.The timed automaton associated with SPEC0 is depicted in Figure 2. States arerepresented by circles and their numbers are written beside. � and @ are respectivelywritten in the upper and lower part of the circle. Edges are represented by the arrows.Empty sets and true conditions are omitted, and singleton sets are represented by theirelements.Figure 2: The reduced timed automaton of the railroad crossing system0 downy > 1up xx � 11 lowerx = 1 yy < 1lowerx = 1 x < 5inx > 2
2 3appr

exit6 yy < 1 x < 5 5
yy < 2 xx � 1y < 2 y > 1up x < 587 4x � 1 10apprraise out

7.2 An Improved Version of the Railroad CrossingWe shortly describe the three components of the system. A TRAIN communicates tothe controller that it approaches between 3 and 4 minutes before it enters the crossing32

(in). It takes at most 2 minutes to go out. Then it should inform the CONTROLLERthat it exited the crossing within 1 minute.The GATE system receives the information when to lower the gate. This should bedown at most 1 minute afterwards. Then, the system waits for an order to raise thegate. After that, it is lifted (up) within 1 to 2 minutes. If instead, before the gate isup, a new order to lower the gate is received, then the system does not raise the gatebut waits for a new order of raising it.The CONTROLLER waits for a train to approach. After exactly 1 minute, it ordersto lower the gate. Then, it waits until the train exits the crossing and at most 1 minuteafterwards it orders to raise the gate. However, another TRAIN could approach beforethe CONTROLLER gives such an order. In this case the order of raising the gateshould not be sent; instead, the CONTROLLER waits for the train to exit.Thus, each component of the system can be modeled as follows.TRAIN = appr; between[3; 4](in; before2(out; before1(exit;TRAIN)))GATE = lower; before1(down;GATE 0)GATE' = raise; (before2(lower;GATE 0) + between(1; 2](up;GATE))CONTROLLER = appr; urgent1(lower;CONTROLLER0)CONTROLLER' = exit; before1(appr;CONTROLLER0+ raise;CONTROLLER)SYSTEM = CONTROLLERjjfappr;exit;lower;raiseg(TRAIN jj;GATE)By using axioms in Table 9 parallel operations can be eliminated. Assuming onlyone clock for each component, the expression obtained at this point will contain 3 clocksand 26 states. However, many of those states are not reachable since the system willnever meet conditions which allow that. As before, this states can be eliminated. Thus,the SYSTEM can be proven equivalent to the following recursive speci�cation whichhas 2 clocks and 11 states.SPEC0 = appr; SPEC1SPEC1 = fjxjg SPEC 01SPEC 01 = (x � 1)�� (x = 1)7!7!lower; SPEC2SPEC2 = fjyjg (y � 1)�� down; SPEC3SPEC3 = (x � 4)�� (x � 3)7!7!in; SPEC4SPEC4 = fjxjg (x � 2)�� out; SPEC5SPEC5 = fjxjg (x � 1)�� exit; SPEC6SPEC6 = fjxjg (x � 1)�� (appr; SPEC7 + raise; SPEC8)33

SPEC7 = fjxjg SPEC3SPEC8 = fjyjg (y � 2)�� (appr; SPEC9 + (y > 1)7!7!up; SPEC0)SPEC9 = fjxjg (y � 2 ^ x � 1)�� ((x = 1)7!7!lower; SPEC3 + (y > 1)7!7!up; SPEC 01)The timed automaton associated to SPEC0 is depicted in Figure 3.Figure 3: The reduced timed automaton of the railroad crossing systemxx � 1 y 210 lowerx = 1 y � 1down
out

exitraiseyy � 28
y > 1up y > 1upx � 110

xy � 2x � 1
lowerx = 1 x � 4 3inx � 3lowerx = 1 xx � 2 4

xx � 1 5xx � 47
xx � 16

x � 3in9

appr

appr appr
7.3 RegionsUsing the axioms we can calculate regions. Take for instance the state SPEC9. Noticethat it is reached from SPEC8 after performing an appr which can be proven to beguarded by (0 � y � 2). Thus(0 � y � 2)7!7!appr; SPEC9 D1= (0 � y � 2)7!7!appr; fjxjg (0 � y � x � 2)�� SPEC 934

So, we calculatefjxjg (0 � y � x � 2)�� SPEC9�-conv.,I3,R2,I2= fjxjg (y � 2 ^ x � 1 ^ 0 � y � x � 2)��((y � 2 ^ x = 1)7!7!lower; SPEC3+ (1 < y � 2 ^ x � 1)7!7!up; SPEC10)Prop. 5.1.2= fjxjg (x � y � 2� x ^ x � 1)��((1 = x � y � 2)7!7!lower; SPEC3+ (1 < y � 2� x ^ x � 1)7!7!up; SPEC10)Henceforth, we obtained that the system can idle in state SPEC9 whenever x � y �2� x^ x � 1, the action lower is enabled in the state SPEC9 whenever 1 = x � y � 2,and the action up is enabled in the state SPEC9 whenever 1 < y � 2� x^ x � 1. Thisis depicted in Figure 4.Figure 4: Regions related to state SPEC9
��
��
��

��
��
��

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
������

�
�
�
�
�

�
�
�
�
�
�

����

��
��
��

��
��
��

both actions are enabledonly lower is enabledonly up is enabledno action is enabled
x

y

8 Further RemarksMilner's Synchronisation Trees and our LanguageBasically, our calculus is an extension of Milner's synchronisation trees [Mil89] (i.e.,CCS with only pre�xing, inaction and summation) with operations to manipulate clocks35

(clock resettings, invariants and guards). Moreover, we can state that our calculus is anoperational conservative extension up to (timed) bisimulation, that is, for every pair ofterms obtained by using only pre�xing, stop and summation (the untimed terms), theyare (strong) bisimilar if and only if they are timed bisimilar. It can be easily provenfrom the following facts.1. Let p 2 L be an untimed term, let v; v0 2 Vc. Then, if there is a d 2 IR�0 such that(p; v) a(d)�!(p0; v0), then for all d0 2 IR�0 there is a v 2 Vc such that (p; v) a(d0)�!(p0; v)and p0 is an untimed term. Moreover for all d 2 IR�0, Ud(p; v).2. p a�! p0 if and only if, for all v 2 Vc, (p; v) a(d)�! (p0; v0) for some d 2 IR�0 andv0 2 Vc.Furthermore, the equational theory given for L (see Table 4) is an equational conser-vative extension of the equational theory for synchronisation trees (i.e. commutativity,associativity, idempotency and stop as neutral element of +). Thus, for each equalityp = q of untimed terms that can be proven in Milner's theory, it can also be proven inour theory and vice versa. These fact can be easily stated. Clearly Milner's axioms canbe derived from our theory which proves the \only if". Since our theory is sound andMilner's theory is complete, the \if" follows from the operational conservativity result.Related WorksNicollin, Sifakis & Yovine [NSY92, NSY93] give an interpretation of ATP [NS94] interms of timed automata with invariants, considering a dense time domain. [Yov93]shows that such a translation preserves timed branching bisimulation. ATP is basi-cally an extension of CCS [Mil89] including a timeout operation, an execution delayor watchdog operation and the notion of urgent actions. No clocks nor time vari-ables are considered in ATP. Basically the same study was done by Daws, Olivero &Yovine [DOY94] for ET-LOTOS [LL94]. In this case, also timed branching bisimulationis shown to be preserved. In neither of these works an inverse study was carried out,i.e., to express a timed automata in terms of the process algebra. In particular, it canbe shown that ET-LOTOS is less expressive than T , the set of timed automata.Fokkink [Fok93, Fok94] sketches an interpretation of ACP with pre�x integra-tion [Klu91, Klu93, BB91] into timed automata without invariants. Moreover, theclass of strongly regular processes and timed automata turn out to be equivalent whencertain restrictions (namely non-Zenoness and fairness) are not present in the behaviourof the timed automata. Thus ACP with pre�x integration is more expressive than timedautomata. For instance, consider the (�nite!) ACP processZv<1 a[v] � Zw=v b[w] � stopthat records in v the time when a was performed, and after v units of time executesb. In our language, an unguarded recursive expression would be needed to de�ned itif the time domain were denumerable. If instead the set of real numbers is considered,36

such a process cannot be expressed. However, if we allow more expressive constraintsby allowing comparison between clocks, we can de�ne fjxjg (x < 1)�� a; (fjyjg (2y �x)�� (2y = x) 7!7!b; stop). Such an extension would, of course, a�ect the tractability ofthe language.Lynch & Vaandrager [LV94] introduce a language that explicitly manages clocks.Such a language has the same expressive power as timed automata w.r.t. (weak) timedtrace equivalence.Alur & Henzinger [AH94] study the extension of programming languages withclock variables. They discuss their semantics in terms of the so called real-time pro-grams [HNSY94] which are easily translated into timed safety automata (see [HNSY94]).Yi, Pettersson & Daniels [YPD94] give an algebra that represents timed automatawithout invariants. Basically, the algebra is a syntax for the timed automata includingCCS parallel composition and restriction. In particular, the pre�xing operation has theform (�; a; C):p with � 2 �(C) and C � C, and it is the only one that can manage clocks.It could be understood as our term � 7!7!a; fjCjg p. Thus, since terms with conditions intheir �rst actions unavoidably become open terms, it is necessary to consider an initialvaluation in its semantics for which [C a0] is taken. That is rather annoying since evenwhen terms like, for instance, (x < 1; a; ;):stop and (y < 1; a; ;):stop, show the samebehaviour, they become di�erent in the context (tt; b; fxg): . Moreover, notice thatthis language is strictly less expressive than ours, since it does not include invariantoperations.ConclusionsThe contribution of this paper is a language for timed automata. This language is ba-sically an extension of Milner's synchronisation trees with operators to handle clocks,namely clocks resettings, invariants and guards. The language has the ability to repre-sent any (image-�nite) timed automata by means of guarded recursion, and moreover,any guarded recursive expression can be interpreted as an (image-�nite) timed au-tomata. It is extended with the usual process operations: parallel composition andhiding. Moreover, some common time operations including time-out, waiting and ur-gency, are algebraically de�ned in terms of the basic language.As a secondary goal we introduce a symbolic bisimulation which is not meant tobe considered as a proper semantic concept because its discrimination degree, but toconclude, whenever it is possible, timed bisimilarity without the need of using thesemantic level, i.e., the timed transition systems.Also, an equational theory has been given. We have stated that it is sound withrespect to timed bisimulation and, moreover, a normal form can be found for each termby using the axioms. With an example we have shown that redundant states, clocksand conditions can be eliminated.It is interesting to notice that our theory is a conservative extension of Milner's syn-chronisation trees. We have chosen to use LOTOS-like parallel composition, however,it would also be possible to de�ne the CCS-like parallel composition, restriction and37

renaming. In such a case, a conservative extension of the CCS calculus could easily beobtained.Further study includes reachability analysis by using the equational theory, mini-mality of clocks according to [HKWT95], completeness of the axiomatisation, particu-larly whether it is necessary to include an operator like ACP integration [BB91], andaxiomatisation of other semantic relations as, for instance, timed trace preorder [LV94].References[ACH+92] R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-Toi. Mini-mization of timed transition systems. In W.R. Cleaveland, editor, Proceed-ings CONCUR 92, Stony Brook, NY, USA, volume 630 of Lecture Notesin Computer Science, pages 340{354. Springer-Verlag, 1992.[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,X. Nicollin, A. Olivero, J.Sifakis, and S. Yovine. The algorithmic anal-ysis of hybrid systems. Theoretical Computer Science, 138:3{34, 1995.[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical ComputerScience, 126:183{235, 1994.[AH94] R. Alur and T.A. Henzinger. Real-time system = discrete system + clockvariables. In T. Rus and C. Rattray, editors, Theories and Experiencesfor Real-Time System Development | Papers presented at First AMASTWorkshop on Real-Time System Development, Iowa City, Iowa, November1993, pages 1{29. World Scienti�c, 1994.[BB89] T. Bolognesi and E. Brinksma. Introduction to the ISO speci�cation lan-guage LOTOS. In P.H.L. van Eijk, C.A. Vissers, and M. Diaz, editors,The formal description technique LOTOS, pages 23{73. Elsevier SciencePublishers, 1989.[BB91] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal ofFormal Aspects of Computing Science, 3(2):142{188, 1991.[BB95] J.C.M. Baeten and J.A. Bergstra. Real time process algebra with in�nites-imals. In A. Ponse, C. Verhoef, and S.F.M. van Vlijmen, editors, Algebra ofCommunicating Processes, Utrecht, 1994, Workshops in Computing, pages148{187. Springer-Verlag, 1995.[BK90] J.C.M. Baeten and J.W. Klop, editors. Proceedings CONCUR 90, Amster-dam, volume 458 of Lecture Notes in Computer Science. Springer-Verlag,1990.
38

[BL92] T. Bolognesi and F. Lucidi. Timed process algebras with urgent in-teractions and a unique powerful binary operator. In de Bakker et al.[dBHRR92], pages 124{148.[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts inTheoretical Computer Science 18. Cambridge University Press, 1990.[Che93] L. Chen. Timed Processes: Models, Axioms and Decidability. PhD thesis,Department of Computer Science, University of Edinburgh, 1993.[Dav92] J. Davies et al. Timed CSP: Theory and practice. In de Bakker et al.[dBHRR92], pages 640{675.[dBHRR92] J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors.Proceedings REX Workshop on Real-Time: Theory in Practice, Mook, TheNetherlands, June 1991, volume 600 of Lecture Notes in Computer Science.Springer-Verlag, 1992.[DOY94] C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs withKRONOS. In Hogrefe and Leue [HL94], pages 207{222.[Fok93] W.J. Fokkink. An elimination theorem for regular behaviours with inte-gration. In E. Best, editor, Proceedings CONCUR 93, Hildesheim, Ger-many, volume 715 of Lecture Notes in Computer Science, pages 432{446.Springer-Verlag, 1993.[Fok94] W.J. Fokkink. Clocks, Trees and Stars in Process Theory. PhD thesis,University of Amsterdam, December 1994.[HKWT95] T.A. Henzinger, P.W. Kopke, and H. Wong-Toi. The expressive power ofclocks. In P. Wolper, editor, Proceedings 22th ICALP, Li�ege, volume 939of Lecture Notes in Computer Science, pages 417{428. Springer-Verlag,1995. Full version available as Technical Report TR 95-1496, Departmentof Computer Science, Cornell University, Ithaca, New York, April 1995.[HL94] D. Hogrefe and S. Leue, editors. Proceedings of the 7 th InternationalConference on Formal Description Techniques, FORTE'94. North-Holland,1994.[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic modelchecking for real-time systems. Information and Computation, 111:193{244, 1994.[Klu91] A.S. Klusener. Completeness in real time process algebra. In J.C.M. Baetenand J.F. Groote, editors, Proceedings CONCUR 91, Amsterdam, volume527 of Lecture Notes in Computer Science, pages 376{392. Springer-Verlag,1991. 39

[Klu93] A.S. Klusener. Models and axioms for a fragment of real time processalgebra. PhD thesis, Department of Mathematics and Computing Science,Eindhoven University of Technology, December 1993.[LL94] G. Leduc and L. L�eonard. A formal de�nition of time in LOTOS. InRevised draft on enhancements to LOTOS, 1994. Annex G of documentISO/IEC JTC1/SC21/WG1/Q48.6.[LV93] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations{ part II: Timing-based systems. Report CS-R9314, CWI, Amsterdam,March 1993. Also, MIT/LCS/TM-487.b, Laboratory for Computer Sci-ence, Massachusetts Institute of Technology, Cambridge, MA. Submitted.To appear in Information and Computation.[LV94] N.A. Lynch and F.W. Vaandrager. Action transducers and timed au-tomata. Report CS-R9460, CWI, Amsterdam, November 1994. Also,Technical Memo MIT/LCS/TM-480.b, Laboratory for Computer Science,Massachusetts Institute of Technology, Cambridge, MA, October 1994. Toappear in Formal Aspects of Computing.[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall International,Englewood Cli�s, 1989.[MT90] F. Moller and C. Tofts. A temporal calculus of communicating systems.In Baeten and Klop [BK90], pages 401{415.[MT92] F. Moller and C. Tofts. Behavioural abstraction in TCCS. In W. Kuich,editor, Proceedings 19th ICALP, Vienna, volume 623 of Lecture Notes inComputer Science, pages 559{570. Springer-Verlag, 1992.[NS94] X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theoryand application. Information and Computation, 114(1):131{178, 1994.[NSY92] X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time speci�cationsinto extended automata. IEEE Transactions on Software Engineering,18(9):794{804, September 1992.[NSY93] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs andhybrid systems. Acta Informatica, 30(2):181{202, 1993.[Sto88] A. Stoughton. Substitution revisited. Theoretical Computer Science,59:317{325, 1988.[Yi90] W. Yi. Real-time behaviour of asynchronous agents. In Baeten and Klop[BK90], pages 502{520.
40

[Yov93] S. Yovine. M�ethodes et outils pour la v�eri�cation symbolique de syst�emestemporis�es. PhD thesis, Institut National Politechnique de Grenoble,France, May 1993.[YPD94] W. Yi, P. Pettersson, and M. Daniels. Automatic veri�cation of real-timecommunicating systems by constraint-solving. In Hogrefe and Leue [HL94],pages 223{238.AppendixIn this appendix we include several proofs with the aim of completeness of this work.We include them appart because of their complexity and length.A Proof of Claim 4.6We state the following two proposition without proofProposition A.1 For all p; p0 2 L and v; v0 2 Vc, (p; v) a(d)�! (p0; v0) implies fv(p0) �fv(p) [�(p).Proposition A.2 For all p 2 Lv and X = q 2 E, fv(p) = fv(p[q=X])Claim 4.6. Let v; v 2 Vc such that v�fv(p) = v�fv(p). Then1. (p; v) a(d)�!(p0; v0) implies that 9v0 2 Vc: (p; v) a(d)�! 0(p0; v0) and v0�fv(p0) = v0�fv(p0)2. (p; v) a(d)�! 0(p0; v0) implies that 9v0 2 Vc: (p; v) a(d)�!(p0; v0) and v0�fv(p0) = v0�fv(p0)3. Ud(p; v) () U 0d(p; v)Proof of the claim.We prove every case by induction on the depth of the proof tree by considering eachcase separatedly. Because of Theorem 3.8, � and @ are always de�ned, so we are nogoing to remark this fact along the proof.1.Case stop. This case is trivial since (stop; v) 6a(d)�!.Case a; p. By De�nition 4.1(a; p; v) a(d)�!(p; v + d).Besides, by De�nition 3.3,a; p a;tt- p, �(a; p) = ; and @(a; p) = tt.41

Since j= (v[; a0] + d)(tt ^ tt), by De�nition 2.4,(a; p; v) a(d)�! 0(p; v + d).But v�fv(p) = v�fv(a; p) = v�fv(a; p) = v�fv(p), so (v + d)�fv(p) = (v + d)�fv(p) thatproves this case.Case �7!7!p. Suppose (�7!7!p; v) a(d)�!(p; v0) By De�nition 4.1(p; v) a(d)�!(p; v0) and j= (v + d)(�).By assumption v�fv(� 7!7!p) = v�fv(� 7!7!p) which implies v�fv(p) = v�fv(p). Thus, byinduction hypothesis,(p; v) a(d)�! 0(p; v0) and v0�fv(p0) = v0�fv(p0)Moreover, since v�var(�) = v�var(�),j= (v + d)(�).Because of De�nition 2.4,p a;�0- p0 and j= (v[�(p) a0] + d)(�0 ^ @(p)),moreover v0 = v[�(p) a0] + d. Thus, by De�nition 3.3,�7!7!p a;�^�0- p0.Since ncv(� 7!7!p),j= (v[�(p) a0] + d)(� ^ �0 ^ @(p)).Hence, by De�nition 2.4,(�7!7!p; v) a(d)�! 0(p; v[�(p) a0] + d)which proves this case.Case p+ q. Suppose (p+ q; v) a(d)�!(p0; v0). By De�nition 4.1 suppose(p; v) a(d)�!(p0; v0).By assumption v�fv(p+ q) = v�fv(p+ q) which impliesv�fv(p) = v�fv(p).Hence, by induction hypothesis9v0 2 Vc: (p; v) a(d)�! 0(p0; v0) and v0�fv(p0) = v0�fv(p0).Because of De�nition 2.4,p a;�- p0 and j= (v[�(p) a0] + d)(� ^ @(p)),moreover v0 = v[�(p) a0] + d. Since ncv(p+ q),j= (v[�(p+ q) a0] + d)(� ^ @(p)). 42

Hence, taking into account De�nition 3.3,p+ q a;�^@(p)- p0 and j= (v[�(p + q) a0] + d)(� ^ @(p) ^ @(p + q)).Thus, by De�nition 2.4,(p+ q; v) a(d)�! 0(p0; v[�(p + q) a0] + d).Besides, since fv(p0) � fv(p)[�(p) by Proposition A.1, then fv(p0)\�(q) � �(p) becausencv(p+ q). Thusv0�fv(p0) = (v[�(p) a0] + d)�fv(p0) = (v[�(p+ q) a0] + d)�fv(p0)which prove this case.The case when (q; v) a(d)�!(p0; v0) follows similarly.Case fjCjg p. Suppose (fjCjg p; v) a(d)�!(p0; v0). Then, by De�nition 4.1,(p; v[C a0]) a(d)�!(p0; v0).Since v�fv(fjCjg p) = v�fv(fjCjg p) and fv(p) � C [fv(fjCjg p), thenv[C a0]�fv(p) = v[C a0]�fv(p).So, by induction hypothesis9v0 2 Vc: (p; v[C a0]) a(d)�! 0(p0; v0) and v0�fv(p0) = v0�fv(p0).Because of De�nition 2.4,p a;�- p0 and j= (v[C a0][�(p) a0] + d)(� ^ @(p))and moreover, v0 = v[C a0][�(p) a0] + d = v[�(fjCjg p) a0] + d. Now, by De�nition 3.3,fjCjg p a;�- p0 and j= (v[�(fjCjg p) a0] + d)(� ^ @(fjCjg p))which implies, by De�nition 2.4,(fjCjg p; v) a(d)�! 0(p0; v[�(fjCjg p a0] + d)and so, this case is proven.Case �� p. Suppose (�� p; v) a(d)�!(p0; v0). Then, by De�nition 4.1,(p; v) a(d)�!(p0; v0) and j= (v + d)().Since v�fv(�� p) = v�fv(�� p) then v�fv(p) = v�fv(p) So, by induction hypothesis9v0 2 Vc: (p; v) a(d)�! 0(p0; v0) and v0�fv(p0) = v0�fv(p0).Because of De�nition 2.4,p a;�- p0 and j= (v[�(p) a0] + d)(� ^ @(p)).Moreover, v0 = v[�(p) a0] + d. In addition, because ncv(�� p),(v + d)�var() = (v + d)�var() = (v[�(p) a0] + d)�var().43

That impliesj= (v[�(p) a0] + d)(� ^ (@(p) ^)).Thus, by De�nition 3.3, �� p a;�- p0 and j= (v[�(�� p) a0] + d)(� ^ @(�� p))which implies, by De�nition 2.4,(�� p; v) a(d)�! 0(p0; v[�(�� p) a0] + d)and so, this case is proven.Case X. Suppose X = p 2 E and (X; v) a(d)�!(p0; v0). Then, by De�nition 4.1,(p[p=X]; v) a(d)�!(p0; v0)Taking into account Proposition A.2, v�fv(p[p=X]) = v�fv(p) = v�fv(X) = v�fv(X) =v�fv(p) = v�fv(p[p=X]). Thus, by induction hypothesis,(p[p=X]; v) a(d)�! 0(p0; v0) and v0�fv(p0) = v0�fv(p0).Because of De�nition 2.4,p[p=X] a;�- p0 and j= (v[�(p[p=X]) a0] + d)(� ^ @(p[p=X])).Now, by De�nition 3.3,X a;�- p0 and j= (v[�(X) a0] + d)(� ^ @(X))and by De�nition 2.4,(X; v) a(d)�! 0(p0; v0)which proves this case.2.Case stop. This case is trivial since (stop; v) 6a(d)�! 0.Case a; p. Suppose (a; p; v) a(d)�! 0(p; v0). By De�nition 2.4v0 = v[�(a; p) a0] + d = v + d.By De�nition 4.1(a; p; v) a(d)�!(p; v + d).Finally, since v�fv(a; p) = v�fv(a; p), then (v + d)�fv(p) = (v + d)�fv(p) which provesthis case.Case �7!7!p. Suppose (�7!7!p; v) a(d)�! 0(p; v0). By De�nition 2.4�7!7!p a;�^�0- p0 and j= (v[�(�7!7!p) a0] + d)(� ^ �0 ^ @(� 7!7!p)).44

Moreover, v0 = v[�(� 7!7!p) a0] + d. By De�nition 3.3,p a;�0- p0, �(�7!7!p) = �(p) and @(� 7!7!p) = @(p).Thus, j= (v[�(p) a0] + d)(�0 ^ @(p)) which implies by De�nition 2.4(p; v) a(d)�! 0(p; v0).Hence, by induction hypothesis,(p; v) a(d)�!(p; v0) and v0�fv(p0) = v0�fv(p0).Since ncv(� 7!7!p), v�var(�) = v�var(�), implying thusj= (v + d)(�).So, by De�nition 4.1(�7!7!p; v) a(d)�!(p; v0).which proves this case.Case p+ q. Suppose (p+ q; v) a(d)�! 0(p0; v0). By De�nition 2.4,p+ q a;�- p0 and j= (v[�(p + q) a0] + d)(� ^ @(p + q)).Moreover, v0 = v[�(p+ q) a0] + d. By De�nition 3.3, supposep a;�0- p0 with � = �0 ^ @(p).Since ncv(p+ q),(v[�(p + q) a0] + d)�(fv(p) [�(p)) = (v[�(p) a0] + d)�(fv(p) [�(p))which impliesj= (v[�(p) a0] + d)(�0 ^ @(p)).Thus, by De�nition 2.4,(p; v) a(d)�! 0(p0; v[�(p) a0] + d).Now, by induction hypothesis,9v0 2 Vc: (p; v) a(d)�!(p0; v0) and v0�fv(p0) = (v[�(p) a0] + d)�fv(p0).By De�nition 4.1,(p+ q; v) a(d)�!(p0; v0)Besides, fv(p0) � fv(p) [�(p) by Proposition A.1, which implies fv(p0) \ �(q) � �(p)since ncv(p+ q). Thus,v0�fv(p0) = (v[�(p) a0] + d)�fv(p0) = (v[�(p+ q) a0] + d)�fv(p0),which proves this case.The case when q a;�0- p0 is similar. 45

Case fjCjg p. Suppose (fjCjg p; v) a(d)�! 0(p0; v0). By De�nition 2.4,fjCjg p a;�- p0 and j= (v[�(fjCjg p) a0] + d)(� ^ @(fjCjg p)).Moreover, v0 = v[�(fjCjg p) a0] + d. By De�nition 3.3,p a;�- p0 and j= (v[C [�(p) a0] + d)(� ^ @(p)).Thus, j= (v[C a0][�(p) a0] + d)(� ^ @(p)). Now, by De�nition 2.4,(p; v[C a0]) a(d)�! 0(p0; v[C a0][�(p) a0] + d),Since v�fv(fjCjg p) = v�fv(fjCjg p) and fv(p) � C [fv(fjCjg p), then v[C a0]�fv(p) =v[C a0]�fv(p). Hence, by induction hypothesis,9v0 2 Vc: (p; v[C a0]) a(d)�!(p0; v0) and v0�fv(p0) = v0�fv(p0)So, by De�nition 4.1,(fjCjg p; v) a(d)�!(p0; v0).which implies this case.Case �� p. Suppose (�� p; v) a(d)�! 0(p0; v0). By De�nition 2.4, �� p a;�- p0 and j= (v[�(�� p) a0] + d)(� ^ @(�� p)).Moreover, v0 = v[�(�� p) a0] + d. By De�nition 3.3,p a;�- p0 and j= (v[�(p) a0] + d)(� ^ (@(p) ^)).Thus, j= (v[�(p) a0] + d)(� ^ @(p)). Now, by De�nition 2.4,(p; v) a(d)�! 0(p0; v[�(p) a0] + d),Since v�fv(�� p) = v�fv(�� p), then v�fv(p) = v�fv(p). Hence, by induction hypoth-esis,9v0 2 Vc: (p; v) a(d)�!(p0; v0) and v0�fv(p0) = v0�fv(p0)Furthermore, since ncv(�� p), j= (v[�(p) a0] + d)() impliesj= (v + d)().Now, since v�var() = v�var(), thenj= (v + d)().So, by De�nition 4.1,(�� p; v) a(d)�!(p0; v0).which implies this case.Case X. Suppose X = p 2 E and (X; v) a(d)�! 0(p0; v0). Then, by De�nition 2.4,X a;�- p0 and j= (v[�(X) a0] + d)(� ^ @(X)).46

Now, because of De�nition 3.3,p[p=X] a;�- p0 and j= (v[�(p[p=X]) a0] + d)(� ^ @(p[p=X]))and by De�nition 2.4,(p[p=X]; v) a(d)�! 0(p0; v0)Taking into account Proposition A.2, v�fv(p[p=X]) = v�fv(p) = v�fv(X) = v�fv(X) =v�fv(p) = v�fv(p[p=X]). Thus, by induction hypothesis,(p[p=X]; v) a(d)�!(p0; v0) and v0�fv(p0) = v0�fv(p0).So, by De�nition 4.1,(X; v) a(d)�! 0(p0; v0)which proves this case.3.Case stop. For all v 2 Vc and d 2 IR�0, Ud(stop; v) by De�nition 4.1. On theother hand, since @(stop) = tt (see De�nition 3.3), and for all v 2 Vc and d 2 IR�0,j= (v[; a0]+d)(tt), U 0d(stop; v) by De�nition 2.4. So, for all v; v 2 Vc, Ud(stop; v) ()U 0d(stop; v).Case � 7!7!a; p. By De�nition 4.1, for all v 2 Vc and d 2 D, Ud(a; p; v). Furthermore,for all v 2 Vc and d 2 D, j= (v + d)(tt), which implies, because of De�nition 3.3,j= (v[�(a; p) a0] + d)(@(a; p)). So, U 0d(a; p; v) by De�nition 2.4. Thus Ud(a; p; v) ()U 0d(a; p; v) for all v; v 2 Vc.Case �7!7!p. By De�nition 4.1, for all d 2 D,Ud(�7!7!p; v) () Ud(p; v).Since v�fv(� 7!7!p) = v�fv(�7!7!p), then v�fv(p) = v�fv(p). So, by induction hypothesis,Ud(p; v) () Ud(p; v).Thus, by De�nition 2.4,Ud(p; v) () j= (v[�(p) a0] + d)(@(p)).So, because of De�nition 3.3,j= (v[�(p) a0] + d)(@(p) () j= (v[�(p) a0] + d)(@(�7!7!p))and hence, by De�nition 2.4,j= (v[�(p) a0] + d)(@(�7!7!p)) () U 0d(�7!7!p; v)Case p+ q. By De�nition 4.1,Ud(p+ q; v) () Ud(p; v) _ Ud(q; v).Since fv(p) � fv(p+ q) and fv(q) � fv(p+ q), by induction hypothesis,47

Ud(p; v) _ Ud(q; v) () U 0d(p; v) _ U 0d(q; v).By De�nition 2.4,U 0d(p; v) _ U 0d(q; v) () j= (v + d)(@(p))_ j= (v + d)(@(q)).Because of De�nition 3.3,j= (v + d)(@(p))_ j= (v + d)(@(q)) () j= (v + d)(@(p+ q)).Finally, by De�nition 2.4,j= (v + d)(@(p+ q)) () U 0d(p+ q; v).Case fjCjg p. Because of De�nition 4.1,Ud(fjCjg p; v) () Ud(p; v[C a0]).Since fv(p) [var() � fv(�� C; p) [C, then by induction hypothesis,Ud(p; v[C a0]) () ^U 0d(p; v[C a0]).By De�nition 2.4,U 0d(p; v[C a0]) () j= (v[C a0][�(p) a0] + d)(@(p)).By De�nition 3.3,j= (v[C [�(p) a0] + d)(@(p)) () j= (v[�(fjCjg p) a0] + d)(@(�� C; p)).Finally, by De�nition 2.4,j= (v[�(fjCjg p) a0] + d)(@(fjCjg p)) () U 0d(fjCjg p; v).Case �� p. Because of De�nition 4.1,Ud(�� p; v) () j= (v + d)() ^ Ud(p; v).Since v� �� fv(p) = �fv(�� p), then v�var() = v�var(). So, by induction hypothe-sis,j= (v + d)() ^ Ud(p; v) () j= (v + d)() ^ U 0d(p; v).By De�nition 2.4,j= (v + d)() ^ U 0d(p; v) () j= (v + d)()^ j= (v[�(p) a0] + d)(@(p)).Since ncv(�� p), v�var() = v[�(p) a0]�var(). Thus,j= (v + d)()^ j= (v[�(p) a0] + d)(@(p)) () j= (v[�(p) a0] + d)(@(p) ^).By De�nition 3.3,j= (v[�(p) a0] + d)(@(p) ^) () j= (v[�(�� p) a0] + d)(@(�� p)).Finally, by De�nition 2.4,j= (v[�(�� p) a0] + d)(@(�� p)) () U 0d(�� p; v).
48

Case X. Suppose X = p 2 E. Because of De�nition 4.1,Ud(X; v) () Ud(p[p=X]; v).Because of Proposition A.2, v�fv(p[p=X]) = v�fv(p) = v�fv(X) = v�fv(X) = v�fv(p) =v�fv(p[p=X]). So, by induction hypothesis,Ud(p[p=X]; v) () U 0d(p[p=X]; v).Now, by De�nition 2.4,U 0d(p[p=X]; v) () j= (v[�(p[p=X]) a0] + d)(@(p[p=X]))and by De�nition 3.3,j= (v[�(p[p=X]) a0] + d)(@(p[p=X])) () j= (v[�(X) a0] + d)(@(X)).Finally, because of De�nition 2.4,j= (v[�(X) a0] + d)(@(X)) () U 0d(X; v). 2B Proof of Claim 4.11Claim 4.11. Assume there exists a renaming � such that �(fv(p)) = fv(q), �(p) �� qand v�fv(p) = (v � �)�fv(p). Then:1. (p; v) a(d)�! (p0; v0) implies that exists (q0; v0) such that (q; v) a(d)�! (q0; v0) and 9� 0: � 0is a renaming ^ � 0(fv(p0)) = fv(q0) ^ � 0(p0) �� q0 ^ v0�fv(p0) = (v0 � � 0)�fv(p0)2. (q; v) a(d)�! (q0; v0) implies that exists (p0; v0) such that (p; v) a(d)�! (p0; v0) and 9� 0: � 0is a renaming ^ � 0(fv(p0)) = fv(q0) ^ � 0(p0) �� q0 ^ v0�fv(p0) = (v0 � � 0)�fv(p0)3. Ud(p; v) i� Ud(q; v)Proof of the claim.1. By structural induction on p.Suppose p � stop. This case is trivial.Suppose p � a; p0. By the hypothesis and considering De�nition 4.7, there exists arenaming � such that �(fv(a; p0)) = fv(q) anda; �(p0) �� q ^ v�fv(a; p0) = (v � �)�fv(a; p0). (1)So, by De�nition 4.8,q � a; q0 with �(p0) �� q0. (2)Thus, by De�nition 4.1,(a; q0; v) a(d)�!(q0; v + d).We know that fv(a; p0) = fv(p0). Now, choose � 0 = �. So, from (1) and (2) we have49

9� 0: � 0 is a renaming ^ � 0(fv(p0)) = fv(q0) ^ � 0(p0) �� q0 ^ v0�fv(p0) = (v0 � � 0)�fv(p0)that proves this case.Suppose p � � 7!7!p0. By the hypothesis and considering De�nition 4.7, there exists arenaming � such that �(fv(�7!7!p0)) = fv(q) and�(�)7!7!�(p0) �� q ^ v�fv(� 7!7!p0) = (v � �)�fv(�7!7!p0). (3)So, by De�nition 4.8,q � �0 7!7!q0 with �(�) = �0 ^ �(p0) �� q0.Suppose that(�7!7!p0; v) a(d)�!(p00; v0).By De�nition 4.1,(p0; v) a(d)�!(p00; v0) and j= (v + d)(�).Because fv(p0) � fv(p), by induction hypothesis, there exists (q00; v0) such that(q0; v) a(d)�!(q00; v0) and (4)9� 0: � 0 is a renaming^ � 0(fv(p00)) = fv(q00) ^ � 0(p00) �� q00 ^ v0�fv(p00) = (v0 � � 0)�fv(p00).Considering (3), for all d 2 IR�0,(v + d)�fv(p) = ((v � �) + d)�fv(p) = ((v + d) � �)�fv(p).Because of that,((v + d) � �)(�) = (v + d)(�(�)) = (v + d)(�0).Thus,j= (v + d)(�0)So, together with (4), by De�nition 4.1,(�0 7!7!q0; v) a(d)�!(q00; v0)which proves this case.Suppose p � p0 + p00. By the hypothesis and considering De�nition 4.7, there exists arenaming � such that �(fv(p0 + p00)) = fv(q) and�(p0) + �(p00) �� q ^ v�fv(p0 + p00) = (v � �)�fv(p0 + p00). (5)So, by De�nition 4.8,q � q0 + q00 with �(p0) �� q0 and �(p00) �� q00. (6)Suppose that(p0 + p00; v) a(d)�!(p; v0) 50

and, by De�nition 4.1, assume it is the case that(p0; v) a(d)�!(p; v0)Since fv(p0) � fv(p), and considering (5) and (6), we can apply induction hypothesis.So, there exists (q; v0) such that(q0; v) a(d)�!(q; v0) and 9� 0: � 0 is a renaming^� 0(fv(p)) = fv(q) ^ � 0(p) �� q ^ v0�fv(p) = (v0 � � 0)�fv(p).Now, by De�nition 4.1,(q0 + q00; v) a(d)�!(q; v0)which prove this case.The proof is analogous if we consider the subcase (p00; v) a(d)�!(p; v0).Suppose p � fjCjg p0. By the hypothesis and considering De�nition 4.7, there exists arenaming � such that �(fv(fjCjg p0)) = fv(q) and(9f : C ! V: f is bijective ^�(fv(p0)nC) \ V = ; ^ fjf(C)jg �[f](p0) �� q) (7)^ v�fv(fjCjg p0) = (v � �)�fv(fjCjg p0). (8)So, by De�nition 4.8,q � fjC 0jg q0 withC 0 \ fv(fjf(C)jg �[f](p0)) = ;^(9g : f(C)! C 0: g is bijective ^ �[g] � �[f](p0) �� q0) (9)If x 2 C, thenv[C a0](x) = 0 = v[C 0 a0](g � f(x)) = (v[C 0 a0] � �[g] � �[f])(x)Suppose now, x 2 fv(p)nC. Thus, considering (8), we havev[C a0](x) = v(x) = v(�(x)).Because x 2 fv(p), �(x) 2 fv(q) = fv(fjC 0jg q0). So �(x) =2 C 0. Thus,v(�(x)) = v[C 0 a0](�(x)).Now, since (7) and x =2 C,v[C 0 a0](�(x)) = (v[C 0 a0](�[f](x))) = (v[C 0 a0] � (�[g] � �[f]))(x).So, we have thatv[C a0]�(C [fv(p)) = (v[C 0 a0] � (�[g] � �[f]))�(C [fv(p)).In particular, since fv(p0) � C [fv(p),v[C a0]�fv(p0) = (v[C 0 a0] � (�[g] � �[f]))�fv(p0). (10)Suppose(fjCjg p0; v) a(d)�!(p00; v0).By De�nition 4.1, 51

(p0; v[C a0]) a(d)�!(p00; v0).By (9) and (10), we can apply the induction hypothesis. So, there exists (q00; v0) suchthat(q0; v[C 0 a0]) a(d)�!(q00; v0) and 9� 0: � 0 is a renaming^ � 0(p00) �� q00 ^ v0�fv(p00) = (v0 � � 0)�fv(p00).which implies, by De�nition 4.1,(fjC 0jg q0; v) a(d)�!(q00; v0).which prove this case.Suppose p � �� p0. By the hypothesis and considering De�nition 4.7, there exists arenaming � such that �(fv(�� p0)) = fv(q) and�()�� �(p0) �� q ^ v�fv(�� p0) = (v � �)�fv(�� p0). (11)So, by De�nition 4.8,q � 0�� q0 with �() = 0 ^ �(p0) �� q0.Suppose that(�� p0; v) a(d)�!(p00; v0).By De�nition 4.1,(p0; v) a(d)�!(p00; v0) and j= (v + d)().Because fv(p0) � fv(p), by induction hypothesis, there exists (q00; v0) such that(q0; v) a(d)�!(q00; v0) and (12)9� 0: � 0 is a renaming^ � 0(fv(p00)) = fv(q00) ^ � 0(p00) �� q00 ^ v0�fv(p00) = (v0 � � 0)�fv(p00).Considering (11), for all d 2 IR�0,(v + d)�fv(�� p0) = ((v � �) + d)�fv(�� p0) = ((v + d) � �)�fv(�� p0).Because of that((v + d) � �)() = (v + d)(�()) = (v + d)(0).Thus,j= (v + d)(0)So, together with (12), by De�nition 4.1,(0�� q0; v) a(d)�!(q00; v0).which proves this case. 2
52

C Proof of Claim 6.9Let Li = (Si;A � IR�0; si0; �! i;U i), i 2 f1; 2g. So far, we introduce the notationL1 $ L2 to mean that there is a timed bisimulation between the initial states of thoseTTS. Ambiguously, we will say that two states s1 2 S1 and s2 2 S2 are timed bisimilar(notation s1 $ s2) if (S1;A� IR�0; s1; �! 1;U1)$ (S2;A� IR�0; s2; �! 2;U2). Now,we de�ne:De�nition C.1 (Timed bisimulation up to $) Let Li = (Si;A � IR�0; si0; �!i;U i), i 2 f1; 2g, be two UTS. A timed bisimulation up to $ is a relation R � S1�S2with s10Rs20 satisfying, for all a(d) 2 A� IR�0, the following transfer properties:1. if s1Rs2 and s1 a(d)�! 1s01, then 9s02 2 S2 : s2 a(d)�! 2s02 and s01 $ s10Rs20 $ s02 where si0is the initial state of some TTS Li (i 2 f1; 2g);2. if s1Rs2 and s2 a(d)�! 2s02, then 9s01 2 S1 : s1 a(d)�! 1s01 and s01 $ s10Rs20 $ s02 where si0is the initial state of some TTS Li (i 2 f1; 2g); and3. if s1Rs2, then U1d (s1) () U2d (s2). 2It is not di�cult to prove that if there is a timed bisimulation up to $ betweentwo TTS, then they are timed bisimilar.Claim 6.9. Let p and p0 be two terms in the extended language such that p $ p0.Then, for all v0 2 C, there is a timed bisimulation R between ([[[p]]T])v0 and ([[[p0]]T])v0 .De�ne:S1 def= f((pjjAq; v); (p0jjAq; v0))j (p; v)Rvar(q)(p0; v0)g[f((ck(p)jjAq; v); (ck(p0)jjAq; v0))j (p; v)Rvar(q)(p0; v0)^ v�var(q) = v0�var(q)^ 9d 2 IR�0: (v�var(p) = (v[�(p) a0] + d)�var(p)^ v0�var(p0) = (v0[�(p0) a0] + d)�var(p0))gS 01 def= f((qjjAp; v); (qjjAp0; v0))j (p; v)Rvar(q)(p0; v0)g[f((qjjAck(p); v); (qjjAck(p0); v0))j (p; v)Rvar(q)(p0; v0)^ v�var(q) = v0�var(q)^ 9d 2 IR�0: (v�var(p) = (v[�(p) a0] + d)�var(p)^ v0�var(p0) = (v0[�(p0) a0] + d)�var(p0))gS2 def= f((p jj Aq; v0); (p0 jj Aq; v0))g [S1S 02 def= f((q jj Ap; v0); (q jj Ap0; v0))g [S 0153

S3 def= f((pjAq; v0); (p0jAq; v0))g [S1S 03 def= f((qjAp; v0); (qjAp0; v0))g [S 01All of those relations are timed bisimulation up to $.Proof of the claim. First, we notice that it can be straightforwardly proven that, forany p and q, (ck(p)jjAq; v) $ (ck(ck(p))jjAq; v). Moreover, we recall that the identityrelation is a timed bisimulation, but in this case we are not going to make any explicitmention. We only prove the case of S1, the rest can be proven similarly.1. We prove the �rst transfer property.Suppose (pjjAq; v) a(d)�!(r; v̂). Now, three subcases arises.� (pjjAq; v) a(d)�!(p0jjAck(q); v[�(pjjAq) a0] + d).By De�nition 2.4,pjjAq a;�- p0jjAck(q) and j= (v[�(pjjAq) a0] + d)(�) ^ @(pjjAq)).By rules in Table 8, a =2 A andp a;�- p0, �(pjjAq) = �(p) [�(q) and @(pjjAq) = @(p) ^ @(q).Since ncv(pjjAq),j= (v[�(p) a0] + d)(�) and j= (v[�(p) a0] + d)(@(p)).Now, by De�nition 2.4,(p; v) a(d)�!(p0; v[�(p) a0] + d).Since (p; v)Rvar(q)(p0; v0),(p0; v0) a(d)�!(p00; v0[�(p0) a0]+d) and (p0; v[�(p) a0]+d)Rvar(q)(p00; v0[�(p0) a0]+d).By De�nition 2.4,p0 a;�0- p00, and j= (v0[�(p0) a0] + d)(�0 ^ @(p0)).and by rules in Table 8,p0jjAq a;�0- p00jjAck(q), �(p0jjAq) = �(p0) [�(q) and @(p0jjAq) = @(p0) ^ @(q).Moreover, since ncv(p0jjAq),j= (v0[�(p0jjAq) a0] + d)(�0) and j= (v0[�(p0jjAq) a0] + d)(@(p0jjAq)).54

So, by De�nition 2.4,(p0jjAq; v0) a(d)�!(p00jjAck(q); v0[�(p0jjAq) a0] + d).Furthermore, (p0; v[�(p) a0] + d)Rvar(q)(p00; v0[�(p0) a0] + d) implies(v[�(p) a0] + d)�var(q) = (v0[�(p0) a0] + d)�var(q)and so(v[�(pjjAq) a0] + d)�var(q) = (v0[�(p0jjAq) a0] + d)�var(q).Since fv(p0) \ bv(q) = fv(p00) \ bv(q) = ;,(v[�(pjjAq) a0] + d)�fv(p0) = (v[�(p) a0] + d)�fv(p0)and (v[�(p0jjAq) a0] + d)�fv(p00) = (v[�(p0) a0] + d)�fv(p00)Now, because var(q) = var(ck(q)),(p0; v[�(pjjAq) a0] + d)Rvar(ck(q))(p00; v0[�(p0jjAq) a0] + d).Thus,(p0jjAck(q); v[�(pjjAq) a0] + d)S1(p00jjAck(q); v0[�(p0jjAq) a0] + d).� (pjjAq; v) a(d)�!(ck(p)jjAq0; v[�(pjjAq) a0] + d).By De�nition 2.4,pjjAq a;�- ck(p)jjAq0 and j= (v[�(pjjAq) a0] + d)(� ^ @(pjjAq)).By rules in Table 8, a =2 A andq a;�- q0, �(pjjAq) = �(p) [�(q) and @(pjjAq) = @(p) ^ @(q).Again, by rules in Table 8,p0jjAq a;�- ck(p0)jjAq0, �(p0jjAq) = �(p0) [�(q) and @(p0jjAq) = @(p0) ^ @(q).Since (p; v)Rvar(q)(p0; v0), Ud(p; v) implies Ud(p0; v0), thus, by De�nition 2.4,j= (v0[�(p0) a0] + d)(@(p0)).Moreover, v�var(q) = v0�var(q), and since ncv(pjjAq) and ncv(p0jjAq),j= (v0[�(p0jjAq) a0] + d)(� ^ @(p0jjAq)).So, by De�nition 2.4,(p0jjAq; v0) a(d)�!(ck(p0)jjAq0; v0[�(p0jjAq) a0] + d).55

Furthermore, because ncv(pjjAq), ncv(p0jjAq) and var(q0) � var(q),(v[�(pjjAq) a0] + d)�var(q0) = (v0[�(p0jjAq) a0] + d)�var(q0). (13)Now, suppose x 2 var(p), then x =2 �(q), which implies(v[�(pjjAq) a0] + d)�var(p) = (v[�(p) a0] + d)�var(p). (14)Similarly,(v0[�(p0jjAq) a0] + d)�var(p0) = (v0[�(p0) a0] + d)�var(p0). (15)Now, since var(q0) � var(q), Rvar(q) � Rvar(q0) which implies(p; v)Rvar(q0)(p0; v0). (16)Finally, because of (13), (14), (15) and (16),(ck(p)jjAq0; v[�(pjjAq) a0] + d)S1(ck(p0)jjAq0; v0[�(p0jjAq) a0] + d).� (pjjAq; v) a(d)�!(p0jjAq0; v[�(pjjAq) a0] + d).By De�nition 2.4,pjjAq a;�^�00- p0jjAq0 and j= (v[�(pjjAq) a0] + d)((� ^ �00) ^ @(pjjAq)).By rules in Table 8, a 2 A andp a;�- p0, q a;�00- q0, �(pjjAq) = �(p) [�(q) and @(pjjAq) = @(p) ^ @(q).Since ncv(pjjAq),j= (v[�(p) a0] + d)(� ^ @(p)).Now, by De�nition 2.4,(p; v) a(d)�!(p0; v[�(p) a0] + d).Since (p; v)Rvar(q)(p0; v0),(p0; v0) a(d)�!(p00; v0[�(p0) a0]+d) and (p0; v[�(p) a0]+d)Rvar(q)(p00; v0[�(p0) a0]+d).By De�nition 2.4,p0 a;�0- p00, and j= (v0[�(p0) a0] + d)(�0 ^ @(p0)).and by rules in Table 8,p0jjAq a;�0^�00- p00jjAq0, �(p0jjAq) = �(p0) [�(q) and @(p0jjAq) = @(p0) ^ @(q).56

Moreover, since ncv(pjjAq) and ncv(p0jjAq),j= (v0[�(p0jjAq) a0] + d)((�0 ^ �00) ^ @(p0jjAq)).So, by De�nition 2.4,(p0jjAq; v0) a(d)�!(p00jjAq0; v0[�(p0jjAq) a0] + d).Furthermore, since var(q0) � var(q), Rvar(q) � Rvar(q0). Then(p0; v[�(p) a0] + d)Rvar(q0)(p00; v0[�(p0) a0] + d)which implies(v[�(p) a0] + d)�var(q0) = (v0[�(p0) a0] + d)�var(q0)and so(v[�(pjjAq) a0] + d)�var(q0) = (v0[�(p0jjAq) a0] + d)�var(q0).Since fv(p0) \ bv(q) = fv(p00) \ bv(q) = ;,(v[�(pjjAq) a0] + d)�fv(p0) = (v[�(p) a0] + d)�fv(p0)and (v[�(p0jjAq) a0] + d)�fv(p00) = (v[�(p0) a0] + d)�fv(p00)Now,(p0; v[�(pjjAq) a0] + d)Rvar(q0)(p00; v0[�(p0jjAq) a0] + d).Thus,(p0jjAq0; v[�(pjjAq) a0] + d)S1(p00jjAq0; v0[�(p0jjAq) a0] + d).Suppose (ck(p)jjAq; v) a(d)�!(r; v̂). Now, three subcases arises.� (ck(p)jjAq; v) a(d)�!(p0jjAck(q); v[�(ck(p)jjAq) a0] + d).By De�nition 2.4,ck(p)jjAq a;�- p0jjAck(q) and j= (v[�(ck(p)jjAq) a0] + d)(� ^ @(ck(p)jjAq)).By rules in Table 8, a =2 A andp a;�- p0, �(ck(p)jjAq) = �(q) and @(ck(p)jjAq) = @(p) ^ @(q).By de�nition of S1, there exists v, v0 and d0 such thatv�var(p) = (v[�(p) a0] + d0)�var(p),v0�var(p0) = (v0[�(p0) a0] + d0)�var(p0) and (p; v)Rvar(q)(p0; v0). (17)57

Hence, since ncv(ck(p)jjAq),j= (v[�(p) a0] + d0 + d)(� ^ @(p)).Thus, by De�nition 2.4(p; v) a(d)�!(p0; v[�(p) a0] + d0 + d).which implies,(p0; v0) a(d)�!(p00; v0[�(p0) a0] + d0 + d)and (p0; v[�(p) a0] + d0 + d)Rvar(q)(p00; v0[�(p0) a0] + d0 + d). (18)By De�nition 2.4,p0 a;�0- p00 and j= (v0[�(p0) a0] + d0 + d)(�0 ^ @(p0)).and by rules in Table 8,ck(p0)jjAq a;�0- p00jjAck(q), �(ck(p0)jjAq) = �(q) and @(ck(p0)jjAq) = @(p0)^ @(q).Moreover, since ncv(ck(p0)jjAq),j= (v0[�(ck(p0)jjAq) a0] + d)(�0 ^ @(ck(p0)jjAq)).So, by De�nition 2.4,(ck(p0)jjAq; v0) a(d)�!(p00jjAck(q); v0[�(ck(p0)jjAq) a0] + d).Furthermore, by de�nition of S1, v�var(q) = v0�var(q), which implies(v[�(ck(p)jjAq) a0] + d)�var(q) = (v0[�(ck(p0)jjAq) a0] + d)�var(q).and because of (17), and since ncv(ck(p0)jjAq), var(p0) � var(p) and var(p00) �var(p0)(v[�(ck(p)jjAq) a0] + d)�var(p0) = (v[�(p) a0] + d0 + d)�var(p0)and (v0[�(ck(p0)jjAq) a0]+ d)�var(p00) = (v0[�(p0) a0]+ d0+ d)�var(p00).Now, since var(q) = var(ck(q)), and considering (18),(p0; v[�(ck(p)jjAq) a0] + d)Rvar(ck(q))(p00; v0[�(ck(p0)jjAq) a0] + d)which implies(p0jjAck(q); v[�(ck(p)jjAq) a0] + d)S1(p00jjAck(q); v0[�(ck(p0)jjAq) a0] + d):
58

� (ck(p)jjAq; v) a(d)�!(ck(ck(p))jjAq0; v[�(ck(p)jjAq) a0] + d).By De�nition 2.4,ck(p)jjAq a;�- ck(ck(p))jjAq0, and j= (v[�(ck(p)jjAq) a0]+ d)(�^ @(ck(p)jjAq)).By rules in Table 8, a =2 A andq a;�- q0, �(ck(p)jjAq) = �(q) and @(ck(p)jjAq) = @(p) ^ @(q).Again, by rules in Table 8,ck(p0)jjAq a;�- ck(ck(p0))jjAq0,�(ck(p0)jjAq) = �(q) and @(ck(p0)jjAq) = @(p0) ^ @(q).Now, (p; v)Rvar(q)(p0; v0) for some v, v0 and d0 2 IR�0 such thatv�var(p) = (v[�(p) a0] + d0)�var(p)and v0�var(p0) = (v[�(p0) a0] + d0)�var(p0). (19)Thus j= (v[�(p) a0]+d0+d)(@(p)), which implies Ud0+d(p; v) by De�nition 2.4. SoUd0+d(p0; v0) and, by De�nition 2.4,j= (v0[�(p0) a0] + d0 + d)(@(p0)).Moreover, since v�var(q) = v0�var(q), ncv(ck(p)jjAq) and ncv(ck(p0)jjAq),j= (v0[�(ck(p0)jjAq) a0] + d)(� ^ @(ck(p0)jjAq)).So, by De�nition 2.4,(ck(p0)jjAq; v0) a(d)�!(ck(ck(p0))jjAq0; v0[�(ck(p0)jjAq) a0] + d).We know that(ck(ck(p))jjAq0; v[�(ck(p)jjAq) a0] + d) $ (ck(p)jjAq0; v0[�(ck(p)jjAq) a0] + d)(20)and(ck(ck(p0))jjAq0; v0[�(ck(p0)jjAq) a0] + d) $ (ck(p0)jjAq0; v0[�(ck(p0)jjAq) a0] + d)(21)Besides, since var(q0) � var(q), (p; v)Rvar(q)(p0; v0) implies(p; v)Rvar(q0)(p0; v0) (22)and moreover 59

(v[�(ck(p)jjAq) a0] + d)�var(q0) = (v0[�(ck(p0)jjAq) a0] + d)�var(q0). (23)Furthermore, because of (19) and the fact that ncv(ck(p)jjAq) and ncv(ck(p0)jjAq),(v[�(ck(p)jjAq) a0] + d)�var(p) = (v[�(p) a0] + d0 + d)�var(p)and (v0[�(ck(p0)jjAq) a0] + d)�var(p0) = (v[�(p0) a0] + d0+ d)�var(p0). (24)Finally, because of (22), (23) (24), (20) and (21),(ck(ck(p))jjAq0; v[�(ck(p)jjAq) a0] + d)$ S1 $(ck(ck(p0))jjAq0; v0[�(ck(p0)jjAq) a0] + d):� (ck(p)jjAq; v) a(d)�!(p0jjAq0; v[�(ck(p)jjAq) a0] + d).By De�nition 2.4,ck(p)jjAq a;�^�00- p0jjAq0 and j= (v[�(ck(p)jjAq) a0]+d)((�^�00)^@(ck(p)jjAq)).By rules in Table 8, a 2 A andp a;�- p0, q a;�00- q0, �(ck(p)jjAq) = �(q) and @(ck(p)jjAq) = @(p) ^ @(q).By de�nition of S1, there exists v, v0 and d0 such thatv�var(p) = (v[�(p) a0] + d0)�var(p),v0�var(p0) = (v0[�(p0) a0] + d0)�var(p0) and (p; v)Rvar(q)(p0; v0). (25)Hence, since ncv(ck(p)jjAq),j= (v[�(p) a0] + d0 + d)(� ^ @(p)).Thus, by De�nition 2.4(p; v) a(d)�!(p0; v[�(p) a0] + d0 + d).which implies,(p0; v0) a(d)�!(p00; v0[�(p0) a0] + d0 + d)and (p0; v[�(p) a0] + d0 + d)Rvar(q)(p00; v0[�(p0) a0] + d0 + d).By De�nition 2.4,p0 a;�0- p00 and j= (v0[�(p0) a0] + d0 + d)(�0 ^ @(p0)).and by rules in Table 8, 60

ck(p0)jjAq a;�0- p00jjAq0, �(ck(p0)jjAq) = �(q) and @(ck(p0)jjAq) = @(p0) ^ @(q).Moreover, since ncv(ck(p0)jjAq) and (25),j= (v0[�(ck(p0)jjAq) a0] + d)((�0 ^ �00) ^ @(ck(p0)jjAq)).So, by De�nition 2.4,(ck(p0)jjAq; v0) a(d)�!(p00jjAq0; v0[�(ck(p0)jjAq) a0] + d).Moreover, since var(q0) � var(q), Rvar(q) � Rvar(q0). Then(p0; v[�(p) a0] + d)Rvar(q0)(p00; v0[�(p0) a0] + d) (26)By de�nition of S1, v�var(q) = v0�var(q), and since var(q0) � var(q),(v[�(ck(p)jjAq) a0] + d)�var(q0) = (v0[�(ck(p0)jjAq) a0] + d)�var(q0). (27)Furthermore, because of (25), and since ncv(ck(p0)jjAq), var(p0) � var(p) andvar(p00) � var(p0)(v[�(pjjAq) a0] + d)�var(p0) = (v[�(p) a0] + d0 + d)�var(p0)and (v[�(p0jjAq) a0] + d)�var(p00) = (v[�(p0) a0] + d0+ d)�var(p00) (28)Finally, because of (26), (26) and (28)(p0jjAq0; v[�(ck(p)jjAq) a0] + d)S1(p00jjAq0; v0[�(ck(p0)jjAq) a0] + d).2. This transfer property is symmetric to the �rst one.3. We omit this proof. It follows similar reasoning to the �rs one. 2

61

