
Approximating Fair Use in LicenseScript

Cheun Ngen Chong, Yee Wei Law, Sandro Etalle, and Pieter H Hartel

Faculty of EEMCS, University of Twente, The Netherlands
{chong,ywlaw,etalle,pieter}@cs.utwente.nl

Abstract. Current rights management systems are not able to enforce copyright
laws because of both legal and technological reasons. The contract rights granted
by a copyright owner are often overridden by the users’ statutory rights that are
granted by the laws. In particular, Fair Use allows for “unauthorized but not ille-
gal” use of content. Two technological reasons why fair use cannot be upheld: (1)
the current XML-based rights expression language (REL) cannot capture user’s
statutory rights; and (2) the underlying architectures cannot support copyright
enforcement. This paper focuses on the first problem and we propose a way of
solving it by a two-pronged approach: (1) rights assertion, to allow a user assert
new rights to the license, i.e. freely express her rights under fair use; and (2) audit
logging, to record the asserted rights and keep track of the copies rendered and
distributed under fair use. We apply this approach in LicenseScript (a logic-based
REL) to demonstrate how LicenseScript can approximate fair use.

Keywords: Intellectual property rights, copyright, fair use, rights expression lan-
guage, metadata security.

1 Introduction

Current rights management systems are basically not able to enforce properly copyright
laws. The reason is both legal and technological and lies mainly in the fact that user’s
rights are a result of the reconciliation of two different and often conflicting rulings.
On one hand there are the the rights granted by contract by the copyright owner (e.g.
author or digital library) to a user; these are called contract rights because they are
granted when user agrees on the terms and conditions imposed by the copyright owner.
On the other hand, there exist statutory rights granted by the law.

An example of statutory right is the right of fair use [9]. Contract rights and statu-
tory rights often contradict each other: a contract may for instance forbid making copies
of a given book, while the law grants the user to make copies for educational use. Statu-
tory rights depend on a number of circumstances. For instance, according to the United
States Codes (U.S.C) (http://uscode.house.gov/), Section 107 Title 17 Chap-
ter 1 (Fair Use Doctrine), “fair use of copyrighted content, including reproduction for
purposes such as criticism, comment, news reporting, teaching, scholarship, or research
does not violate or infringe the copyrights”.

In general, statutory rights are restricted by the contract rights in the rights manage-
ment systems. In other words, from the legal perspective, the copyright owner holds far

2 Cheun Ngen Chong, Yee Wei Law, Sandro Etalle, and Pieter H Hartel

more control than the copyright laws endorse [10]. Questions of the legality of overrid-
ing the statutory rights by contract rights are yet to be answered [5], however the legal
perspective is beyond the scope of the paper.

To fully understand why it is impossible to render this situation in current rights
management systems we have to take a look at their structure; which consists of: (1) a
rights expression language (REL) and (2) an underlying architecture. A REL provides
a vocabulary, associated with a set of grammatical rules, to express fine-grained usage
control over digital content. A license is written in a REL and governs the terms and
conditions under which the digital content should be used. The most widely-used RELs
are XML-based: XrML [6] and ODRL [7].

Mulligan and Burstein [8] have pointed out the inadequacies of the aforementioned
XML-based RELs in expressing a user’s statutory rights: (1) the RELs can only describe
contract rights; (2) the RELs provide insufficient support for rights assertion by the user;
and (3) the RELs cannot provide contextual information consistent with the copyright
laws that accommodate the user’s statutory rights. In short, the user’s statutory rights
become “unauthorized” under the contract rights because they cannot be captured in
the license written in an XML-based REL. On the other hand, the user’s statutory rights
must be upheld under the copyright laws. In other words, fair use allows the users to
exercise “unauthorized but not illegal” rights. In addition, it is neither a legal nor a
practical requirement for users to declare these rights explicitly before enjoying these
rights. Last but not least, the architecture cannot determine if some content is used for
non-profit or commercial purposes [4].

Although it is impossible for a REL to capture the semantics of fair use completely
we may approximate fair use [8].

In this paper, we propose a method for implementing a digital right management
system that takes into account statutory right. For this we refer to the LicenseScript
Right Expression Architecture [2], and we use a two two-pronged approach based on (1)
rights assertion; and (2) audit logging (see Figure 1). To the best of our knowledge, this
is the first attempt to approximate fair use by using a REL. We elaborate this approach
in the later sections.

This paper is organized as follows. Section 2 introduces our approach to approx-
imating fair use. Section 3 briefly explains the LicenseScript language with a simple
scenario. Section 4 details our approach to approximating fair use in LicenseScript.
Section 5 describes briefly some related work. Finally, section 6 concludes this paper
and presents future work.

2 Our Approach

In this section, we explain how LicenseScript may be used to approximate fair use.
As mentioned in section 1, we are using a two-pronged approach (Figure 1): (1) Rights
assertion: to allow the user assert new fair use-compliant rights in addition to the rights
dictated by the license; and (2) Audit logging: to keep a record of the rights asserted by
the user and the copies of licenses created by the user.

Figure 1 shows that Bob issues a license to Alice, allowing Alice to make copies
of the license (and therefore she is able to copy the licensed content too). Alice in turn

Approximating Fair Use in LicenseScript 3

gives a copy of the license to Charles. Alice perform rights assertion on the license
before making copies of the license. All actions performed by the users (i.e. Alice and
Charles) are logged in the appropriate license.

Using this approach, on one hand

license

license

license

copy
 give

Rights Assertion

Audit Logging

license

Righs Issuance

Bob
 Alice

Alice

Alice

license

Charles

co
py

copy

copy

1
 2

3

Fig. 1. Our approach to approximating fair use.

the users can freely exercise their
statutory rights; on the other hand,
the copyright owner can track the
source of possible copyright infringe-
ment. Note that our proposal is more
advanced than rights issuance, which
is performed by the copyright owner
for issuing and granting rights to
a user. Rights issuance is already
being supported by existing RELs.

We use the following illustra-
tive scenario of a digital library to aid in our explanation in the next two sections:
Example 1. Alice borrows an ebook, entitled “An Example Book” from Bob’s Digital
Library (herefrom we simply call it Bob). Bob sends the license to Alice, allowing her
to view, copy and give the rendered copies of the ebook to other users.

In subsequent sections, we elaborate how the two-pronged approach mentioned ear-
lier can be used to approximate fair use.

2.1 Rights Assertion

Imagine a license for Alice, which states the following rights that are granted to Alice
by Bob: view, copy, give and assert. Suppose Alice wants to print the ebook. The license
does not state the print right. Therefore, Alice must assert a new print right by adding
this right to the license. We believe that the users ability to assert new rights contributes
to fair use because the user can express their rights according to their will, in addition
to the rights granted by the copyright owner.

We make a few what we believe to be reasonable assumptions. Alice must have
a content renderer, in this case an ebook viewer to use the ebook. A set of rules are
embedded in the firmware of this ebook viewer. Bob may define these rules. Bob may
not trust Alice, but he trusts the rules he defines. If Alice’s asserted right in the license
can be exercised by any corresponding rule Bob defines, Bob may logically trust this
right (unless the asserted right causes conflicts in the license, which we will discuss
later). This is because Alice’s asserted rights must conform to the semantics of the
rules. The implicit assumption is that the content renderer is secure.

Bob may specify some of the contextual information, e.g. usage purpose, location
of use etc. that the fair use doctrine refers to (as discussed in section 1) by using Licens-
eScript. Then, Bob can write the rules such that oblige Alice to provide the contextual
information. The rules then validate the provided information using the contextual in-
formation stated in the doctrine. In other words, Alice must declare her intention to
perform fair use. The attestation of this declaration is performed by the underlying ar-
chitecture (presumably by using some cryptographic means). We consider architectural

4 Cheun Ngen Chong, Yee Wei Law, Sandro Etalle, and Pieter H Hartel

support to enforce all this as our future work. Here we are concerned only with a higher
level of abstraction that defines what may or may not happen, and not how actions may
be performed.

2.2 Audit Logging

Alice should not be able to assert arbitrary rights nor must she be able to override exist-
ing rights (in the license) that may undermine the rights management system. While we
might be able to avoid some problems by syntactic checks (e.g. to check for duplication
of rights in the license caused by the rights assertion), many other potential ambiguities
will remain (e.g. if the rights asserted can expire). Therefore, we record all the asserted
rights (along with the user’s identity, the date the right is asserted and the purpose of
asserting the rights) in the license.

Bob may check the record and the license if the asserted rights have overridden
or violated the contract rights. Therefrom, Bob may take further action, e.g. to al-
low/disallow the Alice’s asserted right or to take Alice to court if the asserted rights
violate the copyrights or the contract rights.

Additionally, Bob also tracks the copies of the licenses distributed by Alice. We can
put a history record in the license to log this distribution pattern. Thus, the copyright
owner can trace the distribution of the licenses by inspecting the history record in these
licenses. This helps the copyright owner track possible sources of copyrights infringe-
ment. Audit logging requires cryptographic support from the underlying architecture.
We have already addressed the issue of secure audit logging in our previous work [3].

This concludes the introduction to our two-pronged approach towards approximat-
ing fair use. We will now present the details of the approach using LicenseScript.

3 LicenseScript Language

LicenseScript [2] is a language that

Multiset

Rule

Content

Bindings

Old License

Clauses

Content

Bindings

New License

Clauses
Query

Operation

1

2

3

4

5

Fig. 2. Transformation of licenses.

is based on (1) multiset rewriting, which
captures the dynamic evolution of li-
censes; and (2) logic programming,
which captures the static terms and
conditions on a license. LicenseScript
provides a judicious choice of the in-
terfacing mechanism between the static
and dynamic domains.

A license specifies when certain
operations on the object are permit-
ted or denied. The license is associ-
ated with the content, as can be seen
in Figure 2. A license carries bindings, which describe the attributes of the license; and
clauses, which determine if a certain operation is allowed (or forbidden). The license
clauses consult the license bindings for their decision making and may also alter the
values of the license bindings.

Approximating Fair Use in LicenseScript 5

Licenses are represented as terms that reside in multisets. A multiset can be thought
as part of the user’s system. For the specification of a license, we use logic program-
ming. The readers are thus assumed to be familiar with the terminology and the basic
results of the semantics of logic programs.

Figure 2 illustrates that 1© an operation (performed by a subject) 2© invokes a rule
in the multiset. The rule then generates and executes a 3© query on the 4© license clauses
and bindings. The 5© execution result of the rule is a newly generated license. Now we
use a simple illustrative scenario to explain this process:
Example 2. Amanda gets an ebook, titled “A Book” from Ben Publisher. Ben issues a
license with an expiry date fixed at “23/06/2004”.

This license allows Amanda to print two copies of the ebook (L01,...,L14 are line
numbers included for reference purposes, they are not part of the code):

license(ebook:a_book, L01
[(canprint(B1,B2,User) :- L02

get_value(B1,consumer,C), L03
C = User, L04
get_value(B1,expires,Exp), L05
today(D), D>Exp, L06
get_value(B1,printed,P), L07
get_value(B1,max_prints,Max), L08
P < Max, L09
set_value(B1,printed,P+1,B2)], L10

[(company=ben_publisher), L11
(consumer=amanda), L12
(expires=23/06/2004), L13
(max_prints=2), (printed=0)]) L14

A license is represented by a term of the form license(content,C,B), where
content is a unique identifier referring to the real content; C is a list of license clauses
consisting of Prolog programs describing when operations are permitted or denied; and
B is a list of license bindings capturing the attributes of the license. We define two
multiset-rewrite rules, as shown below, to model the interface between the system and
the licenses. The rules can be thought of as a firmware in the user’s system. The user’s
content renderer would contain the rules as embedded firmware. Only the copyright
owner (or a trusted third party on behalf of the copyright owner) can define a set of
rules for the firmware of the content renderer.

The syntax of the rules is based on the Gamma notation [1] of multiset rewriting
(again, R01,...,R04 are line numbers):

print(Ebook,User) : R01
license(Ebook,C,B1) -> R02
license(Ebook,C,B2) R03

<= C |- canprint(B1,B2,User) R04

We will step through the example assuming Amanda would like to print the eBook
with the available license on her system (as shown above):

6 Cheun Ngen Chong, Yee Wei Law, Sandro Etalle, and Pieter H Hartel

1. Amanda’s system wants to know whether she has the print right on the ebook.
This is achieved by applying the print rule (line R01) with appropriate parameters:
print(ebook:a book,amanda).

2. The rule finds the license(ebook:a book,[...],[...]) (line R02, line
L01) in the system. The first list refers to the license clauses (lines L02–L14),
while the second list refers to the set of license bindings (lines L15–L18).

3. The rule then executes a query in the form of canprint(B1,B2,User) (line
R04), where B2 designates the output generated by the query; This will form a new
set of license bindings.

4. The license interpreter retrieves the value of the license binding consumer from
the list of license bindings B1 (line L03) and compares the retrieved value with
the user identity User (line L04). User is passed in as an argument to the license
clause (line L02).

5. Similarly, the interpreter retrieves the value of the binding expires (line L05).
6. The interpreter calls the primitive (which is discussed later) today(D) (line L06)

to obtain the current time and date.
7. The expiry date of the license must be greater than current time and date (line L07).
8. Similarly, the value of printed is checked if it is smaller than the value of

max prints (lines L07–L09).
9. If all conditions are satisfied (the user is valid, the license has not expired and

the number of printed copies does not exceed the allowable maximum copies), the
query returns yes (line R04) to the interpreter, with the newly generated license
bindings in B2.

10. The value of the license binding printed is incremented (line L10) every time
the print operation succeeds.

11. The value yes indicates that the execution of canprint(B1,B2,User) yields
success in the license clauses C.

12. The rule print(Ebook,User) generates a new license with the newly gener-
ated license bindings license(Ebook,C,B2) (line R03).

There are a number of primitives to model the interface of the system with the
license (interpreter): (1) get value(B,n,V), to report in V the value of n from
B; (2) set value(B1,n,V,B2), to give value V to n in B2; (3) today(D), to
bind D to the current system date/time; and (4) identify(L), to identify the current
environment to L. For further details of the LicenseScript language, see Reference [2].

In the following section, we explain how LicenseScript can be used to approximate
fair use.

4 Fair Use in LicenseScript

As we have seen, licenses are just objects in the multiset. Many other types of objects
can be modelled, such as wallets and policies. We use this LicenseScript-specific feature
to define (1) the license issued by Bob to Alice, which allows her to view, copy and give
the ebook, as well as assert new rights (section 4.1); (2) the doctrine that carries the
contextual information consistent with fair use (section 4.3); (3) the record that logs
Alice’s asserted rights (section 4.2); and (4) the rules defined by Bob as the firmware of
Alice’s system, which include view, copy, give, print and assert (section 4.4).

Approximating Fair Use in LicenseScript 7

4.1 The license

Following Example 1, this is the license that Bob issues to Alice:

license(ebook:an_example_book,
[(canloan(B1,B2,Loaner,User) :-

get_value(B1,digital_library,L), L=Loaner,
get_value(B1,loaned,Loaned), Loaned=false,
set_value(B1,loaned,true,B2), set_value(B1,user,User),
today(D), set_value(B1,expires,D+7,B2)),

(canreturn(B1,B2) :-
set_value(B1,loaned,false,B2)),

(canview(B1,B2,User) :-
get_value(B1,user,U), U=User,
get_value(B1,expires,Exp), today(D), D>Exp),

(cancopy(B1,B2,B3,User) :-
get_value(B1,user,U), U=User, get_value(B1,expires,Exp),
today(D), D>Exp, get_value(B1,copies,N),
append([(User,D),N,NN), set_value(B1,copies,NN,B2),
set_value(B1,copies,NN,B3)),

(cangive(B1,B2,User1,User2) :-
get_value(B1,user,U), U=User1,
set_value(B1,user,User2,B2), get_value(B1,trace,T),
today(D), append([(User1,D,User2)],T,T2),
set_value(B1,trace,T2,B2)),

(canassert(C1,C2,B1,B2,Clause,Binds,User,Purpose) :-
get_value(B1,user,U), U=User,
get_value(B1,expires,Exp), today(D), D>Exp,
get_value(B1,asserted,As),
append([(User,D,Purpose)],Clause,NC),
append(NC,As,As2), set_value(B1,asserted,As2,B2),
append(C1,Clause,C2), append(B1,Binds,B2)),

(canperform(B1,B2,User) :-
get_value(B1,expires,Exp), today(D), D>Exp,
get_value(B1,user,U), U=User)],

[(user=alice), (digital_library=bob), (loaned=true),
(asserted=[]), (trace=[]), (copies=[]), (expires=15/8/03)])

The license clause canloan determines if the ebook can be loaned to the user,
and only by the digital library. The return date (represented by expires) is set at the
seventh day from the date this ebook is loaned. The license clause canreturn is the
counterpart of the license clause canloan. It resets the binding loaned to false.

The license clause canview determines that only Alice (the user) can view the
ebook and the return date expires has not expired. The license clause canassert
allows Alice to assert new rights (represented as the Clause with necessary bindings
Binds).

The license clause canperform determines if the user who performs fair use is the
genuine user who owns the license. The function append is a built-in Prolog program
that produces a new list (C2) by combining two lists (C1 and Clause). The license

8 Cheun Ngen Chong, Yee Wei Law, Sandro Etalle, and Pieter H Hartel

binding asserted records all the rights asserted by the user. The license binding
trace records the distribution of the license when it is given away. The license binding
copies records the user who generates a new copy of this license.

4.2 The record

The record that belongs to Bob and which logs the rigths asserted by Alice to a
license looks like this:

record(ebook:an_example_book,
[(canlog(B1,B2,User,Action) :-

get_value(B1,history,H), today(Date),
append([(User,Action,Date)],H,NH),
set_value(B1,history,NH,B2))],

[(history=[]), (digital_library=bob)])

The term record records (clause canlog) all the actions (the argumentAction)
performed by the user (the argument User) at the current time (the value Date) on the
ebook.

4.3 The doctrine

The doctrine (defined by Bob) that encodes the contextual information of fair use
is:

doctrine(fairuse,
[(canallow(B1,B2,Purpose) :-

get_value(B1,purposes,Ps), member(Purpose,Ps),
identify(Loc), get_value(B1,location,L), L=Loc)],

[(purposes=[criticism,comment,newsreport,
eduction,scholarship,research]),

(location=united_states_of_america)])

The license clause canallow determines if the purpose attested by the user for
using the content is under the fair use context and if the user is in the U.S. The license
bindingpurposes state all the usage purposes allowed under the fair use doctrine. The
license binding location indicates that this doctrine applies in United States. The
copyright owner can define different types of doctrine, e.g. first sale doctrine to
encapsulate the corresponding contextual information.

4.4 The rules

The rules that Bob defines for Alice’s firmware are:

loan(Ebook,User) :
license(Ebook,C,B1) -> license(Ebook,C,B2)

<= C |- canloan(B1,B2,User)
return(Ebook) :

Approximating Fair Use in LicenseScript 9

license(Ebook,C,B1) -> license(Ebook,C,B2)
<= C |- canreturn(B1,B2)

view(Ebook,User,Purpose) :
license(Ebook,C,B1) -> license(Ebook,C,B2)

<= C |- canview(B1,B2,User)
view(Ebook,User,Purpose) :

doctrine(fairuse,Cp,Bp1),license(Ebook,C,B1) ->
doctrine(fairuse,Cp,Bp2),license(Ebook,C,B2)

<= C |- canperform(B1,B2,User), Cp |- canallow(Bp1,Bp2,Purpose)
copy(Ebook,User) :

license(Ebook,C,B1) -> license(Ebook,C,B2),license(Ebook,C,B3)
<= C |- cancopy(B1,B2,B3,User)

copy(Ebook,User,Purpose) :
doctrine(fairuse,Cp,Bp1),license(Ebook,C,B1) ->
doctrine(fairuse,Cp,Bp2),license(Ebook,C,B1),
license(Ebook,C,B2)

<= C |- canperform(B1,B2,User), Cp |- canallow(Bp1,Bp2,Purpose)
give(Ebook,User,Purpose) :

license(Ebook,C,B1) -> license(Ebook,C,B2)
<= C |- cangive(B1,B2,User1,User2)

give(Ebook,User,Purpose) :
doctrine(fairuse,Cp,Bp1),license(Ebook,C,B1) ->
doctrine(fairuse,Cp,Bp2),license(Ebook,C,B2)

<= C |- canperform(B1,B2,User), Cp |- canallow(Bp1,Bp2,Purpose)
print(Ebook,User,Purpose) :

license(Ebook,C,B1) -> license(Ebook,C,B2)
<= C |- canprint(B1,B2,User)

print(Ebook,User,Purpose) :
doctrine(fairuse,Cp,Bp1),license(Ebook,C,B1) ->
doctrine(fairuse,Cp,Bp2),license(Ebook,C,B2)

<= C |- canperform(B1,B2,User), Cp |- canallow(Bp1,Bp2,Purpose)
assert(Ebook,Clause,Binds,User,Purpose) :

license(Ebook,C1,B1),record(Ebook,Cr,Br1) ->
license(Ebook,C2,B2),record(Ebook,Cr,Br2)

<= C1 |- canassert(C1,C2,B1,B2,Clause,Binds,User,Purpose)
Cr |- canlog(Br1,Br2,User,Clause)

The assert rule says: to assert a new Clause with corresponding Binds, the
user must show her identity User and states the Purpose of asserting this right; and
the user’s asserted clause is recorded by the term record (see section 4.2).

The first view rule says: to view the Ebook, the user must present her identity
User and declare to the usage Purpose; the license must contain the license clause
canview. If the first rule does not apply to Alice’s execution, the second rule may be
executed: the usage Purpose attested by the User must conform to the contextual
information stated in the doctrine (see section 4.3).

The rules show how the various objects in the multiset are used, in a cooperative
fashion to achieve fair use. For example, as shown in Figure 1, 1© Alice has asserted a
print right to the license (as shown in section 4.1) on “1/8/2003” for the purpose of
education (by executing the assert rule). The new license is as follows:

10 Cheun Ngen Chong, Yee Wei Law, Sandro Etalle, and Pieter H Hartel

license(ebook:an_example_book,
[...

(canprint(B1,B2,User) :-
get_value(B1,onlyalice,U), U=User)],

[...
(asserted=[(alice,1/8/2003,education),

(canprint(B1,B2,User):-get_value(B1,onlyalice,U),U=User)]),
(onlyalice=alice)])

(Herefrom, the symbol “. . . ” represents the unchanged part of the object.)
The asserted clause canprint allows only Alice to print the ebook (she adds a

new binding, namely onlyalice to the license). Alice can execute the print rule to
print the ebook with the asserted print right. The asserted right is logged at the license
binding asserted and Bob’s record (from section 4.2) becomes:

record(ebook:an_example_book,
[...],
[...

(history=[(alice,
(canprint(B1,B2,User):-get_value(B1,user,U),U=User),
1/8/03)])])

Now, 2© Alice makes an additional copy of the license by executing the copy rule.
The third version of the license becomes:

license(ebook:an_example_book,
[...

(canprint(B1,B2,User) :-
get_value(B1,onlyalice,U), U=User)],

[...
(asserted=[(alice,1/8/2003,education),

(canprint(B1,B2,User):-get_value(B1,onlyalice,U),U=User))]),
(onlyalice=alice), (copies=[(alice,1/8/2003)])])

Alice’s copy action is logged in the binding copies. 3© Alice gives a copy of the
license to Charles on “2/8/03” (by executing the give rule). Charles’ license (given
by Alice) will look like this:

license(ebook:an_example_book,
[...

(canprint(B1,B2,User) :-
get_value(B1,onlyalice,U), U=User)],

[...
(asserted=[(alice,1/8/2003,education),

(canprint(B1,B2,User):-get_value(B1,onlyalice,U),U=User))]),
(onlyalice=alice), (copies=[(alice,1/8/2003)]),
(trace=[(alice,2/8/03,charles)]), (user=charles)])

The distribution is logged in the license binding trace. The value of the binding
user is assigned to charles indicating the transfer of the ownership of this license.

Approximating Fair Use in LicenseScript 11

We have demonstrated how rules can transform the objects in the multiset by using
the example as illustrated in Figure 1. This concludes the detailed description of the
approach to approximating fair use in LicenseScript.

5 Related Work

Mulligan and Burstein [8] suggest several extensions of the XML-based RELs to ap-
proximate fair use. We summarize their suggestions as follows: (1) to define a set of
rights that might simulate some “default” rights the users have with physical copies of
the content, e.g. for a music album, the default rights may be play, rewind, seek, excerpt
and copy; (2) to provide some contextual information description in the REL to support
the fair use modelling, e.g. the usage purpose etc.

Similar to Mulligan and Burstein first suggestion, our approach constrains the con-
tent user’s fair use rights by the firmware rules. However, the copyright owners (or
content providers) cannot make the predictions on how the users would use the content.
Therefore, it is a cumbersome process for the copyright owners to define a set of default
rights for all available content. Our approach, on the other hand, allows user to freely
express their rights. At the same time, the copyright owner may control the user’s fair
use actions to the extent confined by the rules. The copyright owner may flexibly define
some contextual information in LicenseScript that consistent with the fair use that the
rules may comply with.

Secure Telecooperation SIT, Darmstadt and the Fraunhofer Institute for Integrated
Circuits, Erlangen, Ilmenau have developed the Light Weight Digital Rights Manage-
ment System (LWDRM) (http://www.iis.fraunhofer.de/amm/techinf/
ipmp). They introduce two distinct file formats, namely local media format (LMF) and
signed media format (SMF). The LMF is bound to the machine where the content is
generated, whereas the SMF is intended for small-scale distribution. The SMF is gen-
erated when the user mark the content with her personal digital signature.

There are three levels of functionality defined in the LWDRM. The first level is the
LWDRM player, to play the SMF/LMF content. The second level allows the user to
generate LMF from the content. This level offers more extensive features to the user,
e.g. improved compression algorithms etc. The third level allows the user to sign the
LMF content, i.e. to generate the SMF content. Thereby, the user could distribute and
use this SMF content in other machines. LWDRM may track the leak the copyright
infringement by using the signature. However, the user must willingly sacrifice her
privacy to perform fair use. Our approach is complementary to the SIT approach, in
that we manipulate licenses where SIT manipulate content.

6 Conclusion and Future Work

Current rights management system can only enforce contract rights that are granted
by the copyright owners to the users. Other rights, such as the statutory rights granted
by copyright laws cannot be enforced in the rights management systems. Fair use is
an example of statutory rights, because fair use allows “unauthorized but not illegal”
actions.

12 Cheun Ngen Chong, Yee Wei Law, Sandro Etalle, and Pieter H Hartel

In this paper, we focus on one aspect of the technological issues related to the rights
expression language (REL). We argue that current RELs (1) cannot capture user’s statu-
tory rights, (2) do not support rights assertion performed by the users, and (3) cannot
provide useful contextual information that is consistent with the fair use. We have in-
troduced a two-pronged approach for approximating fair use in LicenseScript: rights
assertion and audit logging. Then, we have demonstrated the use of LicenseScript to
approximate fair use.

We would also like to investigate if LicenseScript is capable of expressing other
copyright laws, e.g. first-sale doctrine as well as privacy protection in the future. In
addition, we are implementing our architecture for LicenseScript, namely the Licens-
eScript Engine.

Acknowledgement

We would like to thank (in alphabetical order) Aaron Burstein, Séverine Dusollier, Lu-
cie Guilbault, Pamela Samuelson and Mark Stefik for their valuable help with this paper.

References

1. J-P. Banâtre, P. Fradet, and D. L. Métayer. Gamma and the chemical reaction model: Fifteen
years after. In C. Calude, G. Paun, G. Rozenberg, and A. Salomaa, editors, Workshop on
Multiset Processing (WMP), volume 2235 of Lecture Notes in Computer Science, pages 17–
44. Springer-Verlag, Berlin, August 2001.

2. C. N. Chong, R. Corin, S. Etalle, P. H. Hartel, W. Jonker, and Y. W. Law. LicenseScript:
A novel digital rights language and its semantics. In 3rd International Conference on Web
Delivering of Music (WEDELMUSIC), page to appear, Los Alamitos, California, United
States, September 2003. IEEE Computer Society Press.

3. C. N. Chong, Z. Peng, and P. H. Hartel. Secure audit logging with tamper-resistant hard-
ware. In 18th IFIP International Information Security Conference (IFIPSEC), pages 73–84.
Kluwer Academic Publishers, May 2003.

4. E. W. Felten. A skeptical view of DRM and fair use. Communications of ACM, 46(4):57–59,
April 2003.

5. L. Guibault. Copyright limitations and contracts: Are restrictive click-warp license valid?
Journal of Digital Property Law, 2(1):144–183, November 2002.

6. H. Guo. Digital rights management (DRM) using XrML. In T-110.501 Seminar
on Network Security 2001, page Poster paper 4, 2001. http://www.tml.hut.fi/Studies/T-
110.501/2001/papers/.

7. R. Iannella. Open digital rights management. In World Wide Web Consortium (W3C) DRM
Workshop, page Position paper 23, January 2001. http://www.w3.org/2000/12/drm-ws/pp/.

8. D. Mulligan and A. Burstein. Implementing copyright limitations in rights expression lan-
guages. In J. Feigenbaum, editor, Proceedings of 2002 ACM CCS-9 Workshop on Security
and Privacy in Digital Rights Management, volume 2696 of Lecture Notes in Computer
Science, page To appear. Springer-Verlag, November 2002.

9. D. K. Mulligan. Digital rights management and fair use by design. Communications of ACM,
46(4):31–33, April 2003.

10. P. Samuelson. Digital rights management {and,or,vs.} the law. Communications of ACM,
46(4):41–45, April 2003.

