
Technical Report: Formal model for SECRET

Pascal Durr∗, Lodewijk Bergmans, Mehmet Aksit
University of Twente, The Netherlands
{durr,bergmans,aksit}@ewi.utwente.nl

December 16, 2005

Abstract

This technical report provides a formal model for detecting semantic conflicts
between aspects. The presented model abstracts from any AOP approach specifics.
In [7] we make a preliminary instantiation of this formal model for the Compo-
sition Filter approach, we do plan to extend this work with an instantiation for
AspectJ. The document starts with an example of a semantic conflict, next our
approach is informally explained and finally the formal model is presented.

1 Problem statement
To illustrate the kinds of conflicts we consider, we present an example with two cross-
cutting concerns. One may of course discover numerous other examples of semantic
conflicts between aspects. See for example[3].

Consider a base application which implements a simple protocol. Here, to handle
inbound and outbound messages, the interface of class Protocol provides the methods
sendData and receiveData. Now let us assume that we would like to add two new aspects:
logging and encryption, which are applied to the same methods. The logging aspect,
which is denoted as LoggingAspect is applied to the methods sendData(String) and receive-

Data(String). This aspect prints the arguments of both methods. The encryption aspect
is denoted as EncryptionAspect [6] and provides encryption functionality for all outbound
messages and the decryption for all inbound messages. The base system with both
aspects is shown in figure 1.

In this example, both the logging advice and the encryption advice are applied to
the same method sendData(String). Similarly, the logging advice and the decryption advice
are applied to the same method receiveData(String). These two join points create semantic
interference, which we would like to discuss in this section.

Consider, for example, the method sendData(String). Now assume that the logging
aspect is used for debugging purposes and applied to plain massages only. In this

∗This work has been partially carried out as part of the Ideals project under the responsibility of the
Embedded Systems Institute. This project is partially supported by the Netherlands Ministry of Economic
Affairs under the Senter program.

1

...
...

...
...

...
...

Protocol
sendData(String)
receiveData(String)

EncryptionAspect
encrypt : Advice
decrypt : Advice

LoggingAspect
log : Advice

Base Application

Figure 1: Encryption and Logging example

case, it seems to be a logical option to apply the logging advice before the encryption
advice. However, one could also argue that the reverse order is preferable in a ”hostile”
context where the messages must be encrypted first before sending to the debugger.
The exact order must be considered based on the requirements and therefore cannot be
generalized to all cases. Now let us assume that it is required to apply logging before
encryption. In this case, we consider applying the logging aspect after encryption is
undesired, which is considered as a conflict situation between these two aspects.

Similarly, it is also possible to identify the following conflict for the method re-

ceiveData(String). At this method, the decryption aspect must be applied first before the
logging advice. The opposite order is considered in this example as the second seman-
tic conflict.

Now let us elaborate more on these two conflicting aspects. Individually, both
aspects are consistent with their requirements and therefore they are considered sound.
From the language compiler point of view, even the program with conflicting order is
considered as a valid program without error. In a given requirements context, however,
once these aspects are applied at the same join point, an emerging conflict situation
appears. Such a semantic conflict may lead to undesired errors.

If one is aware of such (potentially) conflicting cases, he/she can enforce an or-
dering. For example, it is possible to enforce an ordering in AspectJ with the declare

precedence construct. In practice, however, detecting emerging conflicts may not be that
easy, especially when conflicting aspects crosscut the entire base application and share
several join points. It is therefore necessary to develop techniques and tools to reason
about the (potentially) semantic conflicts between aspects. By using the example case,
the next section will informally explain our approach.

2 Approach
To reason about the behavior of advice and detect semantic conflicts among them,
we need to introduce a formalization that allows expressing conflict detection rules.
Clearly, a formalization of the complete behavior of advice in general would not only

2

be too complicated to manage, but also include too much detail and raise other issues.
Therefore, an appropriate abstraction must be designed that can both represent the es-
sential behavior of the advices, and be used to detect semantic conflicts among advice.
Our approach is based on a resource-operation model to represent the relevant seman-
tics of advice, and detect conflicts among them. We have chosen to adopt a resource-
operation model, as this is an easy to use model that can represent both very concrete,
low-level, semantics and very high-level, abstract behavior. For more detailed informa-
tion about the model and its usage we refer to [7]. Our approach of conflict detection
resembles the Bernstein[1] read-write sets for detecting possible deadlocks. A similar
approach is also used for detecting and resolving conflicts in transaction systems, like
databases[5]. A key idea is that some resource must be shared among advices for them
to conflict. Hence semantic conflicts can be represented by modeling the operations
that advice perform on some shared resource. In the following, based the example pre-
sented in section 1, we will explain the model intuitively. A more formal explanation
is presented in section 3.

Figure 2 presents the flow diagram of our approach, starting from section A on the
top ending at section D at the bottom. To avoid lengthy texts in the figure, we have
decided to use graphical symbols. Aspects are represented as ellipses. Advices and
crosscut specifications that belong to an aspect are represented respectively as rectan-
gles and diamonds in the corresponding ellipse. Further, a standard UML class notation
is used for base classes.

In part A, the aspects Logging and Encryption, and the base class Protocol are shown.
Part B in the figure shows the situation after the superimposition process, where the

advices are attached at the shared methods. As shown in C, the advices that share a join
point are subsequently composed into a sequence of advices. This could be compiler
determined or explicitly defined by the programmer. Then, as shown in section D of
the figure, for each shared join point, we transform sequences of advices to sequences
of operations on resources and match conflict rules on the resulting sequences. This
results in warnings or further actions if a conflict situation is detected.

2.1 Superimposition and Composition
In section 1, we have discussed the possible conflict situations in superimposing ad-
vices on the same join point. We have also assumed that for the method sendData(String),
the correct order of application of advices should be first the execution of logging and
then the encryption advice.

Figure 3 shows the shared join point and two possibilities of ordering the advices
logging and encryption at this join point. According to the assumed requirements, the
order in figure 3a is valid and the order in figure 3b is invalid. Form the perspective
of our resource-operation model, a join point in fact determines the affected resources
and a sequence of operations on these resources.

2.2 Model Transformation
In this section, we will describe how sequences of advices can be transformed to our
conflict detection model. We start first by identifying the resources and subsequently

3

Log

Logging Encryption

Encr.
Decr.

send
Data

(Protocol)

Encr.Log

send
Data

(Protocol)

Encr.
Log

Protocol
sendData(String)
receiveData(String)

sendData

Encr.
Log

encrypt
read

Arguments
encrypt
read

Superimposition

receive
Data

(Protocol)

Decr.Log

receive
Data

(Protocol)

Log
Decr.

receive Data

Log
Decr.

read
decrypt

Arguments
read
decrypt

Composition

Model transformation

A

B

C

D

Figure 2: Overview approach

we determine the operations on these resources. Secondly, we describe the so called
conflicting patterns, and finally we verify the model.

2.2.1 Resources

According to our resource-operation model, we have identified a set of generic re-
sources that may be affected by the shared advices. One such resource is called argu-

ments, which represent the arguments of received or sent messages. In fact, the logging,
encryption and decryption advices all operate on a resource arguments. For example, the
logging advice reads the argument of a message, whereas the encryption advice modi-
fies the same argument. Similarly, the decryption advice also operates on the resource
arguments.

4

sendData(String)
arguments

Encryption advice

Logging advice
read

encrypt

sendData(String)
arguments

Logging advice

Encryption advice
encrypt

read

(3a) Log before Encryption (3b) Log after Encryption

2.2.2 Operations

The logging advice accesses the arguments, this is a read operation on the arguments

resource. The encryption advice encrypts the same arguments resource. Similarly, the
decryption advice also operates, with a decrypt operation, on the arguments resource.

Although the very primitive actions on shared resources are basically read and write
operations, if desired by the programmer, we think that such actions must be modeled at
a higher level of abstraction. For example, in this paper, we will model both encryption
and decryption advices as respectively encrypt and decrypt operations instead of read-
write operations.

There is a subtle difference between changing the content of the arguments and
transforming or encapsulating the data, as is the case with encryption. The intended
meaning of the encryption and decryption advice is not to change the arguments. Also
we would have lost our ability to distinguish between two, semantically, different ac-
tions: encryption and decryption. We chose to model the log action as a read operation
as this adheres to the intended meaning of the advice. In short, the programmer must
be able to choose his/her own higher-level operation definitions on the shared resources
instead of primitive read-write operations only.

2.2.3 Conflict rules

A conflict rule is a requirement on a resource, which is specified as a regular expression
on the sequences of operations per resource.

For example, in the example used in this paper, a conflict situation is specified as:
“if a read operation occurs after an encrypt operation on the same resource, then it
is considered as a conflict”. Another conflict rule is specified as: “if a read opera-
tion occurs before a decrypt operation on the same resource, then it is considered as a
conflict”. These two requirements can be formulated using the following regular ex-
pression: (((encrypt)(read)) | ((read)(decrypt))). In case of detecting error, several
actions can be carried out, such as reporting the conflict to the programmer.

2.2.4 Conflict detection

For each shared join point, there is one sequence of operations on the resource arguments.
In our example, we have thus two sequences, one for the method sendData(String) and one
for method receiveData(String). Now let us assume that the regular expression shown in
the previous section is tried to match against both operation sequences. Now assume
that first an encrypt and then a read operation (caused by the logging concern) occur on
the arguments resource at a shared join point. This would match the regular expression:
(((encrypt)(read)) | ((read)(decrypt))) and therefore raise a conflict.

5

The next section presents the conflict detection model in more detail.

3 Conflict Detection Model
Now we present the conflict detection model. This model is written in the formal
specification language VDM[2]. To illustrate the formal model, figure 4 shows an
overview similar to the overview of the informal approach as seen in figure 2. The
same steps can be found in both figures. The labels for the transitions are replaced with
names of the functions in our formal model.

D

C

B

A

Adv.1

Aspect1 AspectN

Adv.N.

Shared
Join

Point 1

Advice 2Advice 1

ClassA
Operation1
Operation2

Shared
Join

Point 1

operation 1
operation 2

Resource1
operation 1
operation 2

ResolveSuperImposition(..)
ExtractSharedJoinPoints(..)

Shared
Join

Point 2

Advice NAdvice 1

Shared
Join

Point 2

Shared
Join

Point 2

operation 2
operation N

Resource2
operation 2
operation N

ComposeAdvices(..)

ClassZ
Operation1
Operation2

...

Advice 1

Advice 2

Shared
Join

Point 1

Advice 1

Advice N

Advice 1

Advice 2 Advice 1

Advice N

...

...

...

CheckResourceConflict(..)

ComposeAdvices(..)

ComposeResourceUsageMaps(..)
ComposeResourceUsageMaps(..)

Figure 4: Formal approach

We first introduce the following primitives, starting with the type Name which is a
non-empty, i.e. ordered, sequence(+) of characters.

6

Name = char+

Next we define the types Operation and Operator, which is a name.

Operation,Operator = Name

Next we define the type ConflictRule, this is a set of all combinations of operations
and operators among them. For example, in section 2.2.3, we have presented a regular
expression for specifying conflicts. In the specification, the operations are read, encrypt

and decrypt and the operators are denoted by the characters “∗”, “+” and “|”.

ConflictRule = Operation∗ ×Operator∗

We also introduce the types CrossCutLanguage and OrderingLanguage. We do not elabo-
rate further on these types, except for stating that an instance of CrossCutLanguage selects
language units and an instance of OrderingLanguage allows one to express ordering rela-
tions between aspects or advices.

CrossCutLanguage,OrderingLanguage = . . .

The Resource composite type is defined as an Abstract Data Type[4], it is a 3-tuple
with a name, a set of possible operations and a set of conflict rules. The conflict rules
can be, in principle, in any suitable matching language, e.g. regular expressions, tem-
poral logic or Prolog.

compose Resource of
name : Name,

alphabet : Operation-set,
conflictrules : ConflictRule-set,

end
We define Resources as the set of all possible resources.

Resources = Resource-set

Once we have defined the resources and operations we can describe which opera-
tions are carried out on what resource. This is managed by a ResourceUsageMap, which is
defined below.

ResourceUsageMap = Resource m−→ Operation∗

inv dom ResourceUsageMap ⊆ Resources

ResourceUsageMap keeps track of all operations on a specific resource. It maps a
Resource to the corresponding, possibly empty, sequence of Operations. The invariant(inv)
states that the domain(dom) of the mapping should be a subset of all resources.

3.1 Superimposition
Once we have defined the primitives of our conflict detection model we can define
an advice, in terms of these primitives. In our model we abstract from specific AOP
approaches, like AspectJ, Composition Filters, etc. To this end we abstract from imple-
mentation details and only consider the semantic implications of the advices. We do not
propose a complete meta model here, we only focus on the semantic implications of an

7

AOP model, with respect to conflicts. An advice has a name and a ResourceUsageMap de-
scribing the operations on resources carried out by this advice, the VDM specification
is shown below.

compose Advice of
name : Name,
rum : ResourceUsageMap

end
Now we define an Aspect as a set of advices and a set of crosscut specifications, it

also has a name.

compose Aspect of
name : Name,

advices : Advice-set,
crosscuts : CrossCutLanguage-set

end
Subsequently, we define a JoinPoint1 as a composite type with an id, a set of advices

and a set of ordering specifications.

compose JoinPoint of
id : Name,

advices : Advice-set,
orderspecs : OrderingLanguage-set

end
We can now define the function ResolveSuperImposition. See the gray region A in figure

4. The process of interpreting the CrossCutLanguage and resolving the superimposition
depends very much on the chosen AOP approach. We therefore, only present the sig-
nature of such a function. ResolveSuperImposition is a function from the cross product of a
set of advices and a set of crosscuts, to a set of join points.

ResolveSuperImposition :Advice-set × CrossCutLanguage-set
→ JoinPoint-set

ResolveSuperImposition(advices, crosscuts) 4

. . .

SharedJoinPoints = JoinPoint-set

ExtractSharedJoinPoints is a function from a set of join points to a set of join points. See
the gray region A in figure 4. The function iterates over all join points and concate-
nates(indicated by the rounded arrow) a new shared join point to the old (indicated
with a reversed arrow on top) SharedJoinPoints. This is only done if the number of ad-
vices(card) in the set of advices for a join point is equal or greater than two.

1We assume that the same advice is only applied once to each join point.

8

ExtractSharedJoinPoints : JoinPoint-set → JoinPoint-set

ExtractSharedJoinPoints(joinpoints) 4

SharedJoinPoints =
↼−−−−−−−−−−−−
SharedJoinPoints ∪

∀jp ∈ ResolveSuperImposition(advices, crosscutspec) · jp

pre card jp.advices ≥ 2

3.2 Composition of Advices
Abstracting over all composition mechanisms at shared join points of all AOP lan-
guages is hard. For our semantic conflict detection, we do not make any assumptions
about the composition model, but mainly we restrict the composition mechanisms to
only produce a single sequence of advices. For example, we do not introduce con-
currency in advice executions. We introduce the function ComposeAdvices which returns
a sequence of Advices, given a set of advices and a possible ordering specification.
This composition mechanism is language specific and is thus, not specified here. This
function is shown the gray region B in figure 4.

ComposeAdvices :Advice-set ×OrderingLanguage-set → Advice∗

ComposeAdvices(advices, orderingspecs) 4

. . .

The ordering specification is domain or application specific information. The im-
plementation of the ComposeAdvices function itself incorporates, implicitly, the AOP ap-
proach specific language constraints, e.g. in AspectJ, before advice is always executed
before after advice. The result of composition is thus a sequence of Advice called Com-

posedAdvicesSeq:

ComposedAdvicesSeq =
ComposeAdvices(advices, orderingspecs)

3.3 Detection of conflicts
Given the sequence of advices we can now transform this sequence to our model. First
we define a ComposeResourceUsageMaps operation, which provides, given a sequence of
advices and a resource, a composed sequence of operations for this resource. The
preconditions(pre) state that resource r should be in the set of Resources and that advice
sequence adviceseq may not be an empty sequence. The postcondition(post) states that
for each advice in advieseq the corresponding operations for r are concatenated with the
old operationseq. This operation is shown in the gray region C in figure 4.

ComposeResourceUsageMaps (r :Resource, adviceseq :Advice∗)
operationseq :Operation∗

pre r ∈ Resources, adviceseq 6= []

post operationseq =
↼−−−−−−−−
operationseq y

∀advice: adviceseq · advice.rum[r]

9

We define a helper function, MatchConflictRule which tries to match a conflict rule, rule,
on a sequence of operations, operationseq. This function returns true if the rule matches
the sequence, and false otherwise. The implementation of this function is beyond the
scope of this paper, but in principle this can be any matching language.

MatchConflictRule :ConflictRule ×Operations∗ → B
MatchConflictRule(rule, operationseq) 4

. . .

With the ComposeResourceUsageMaps and MatchConflictRule operations we can now de-
fine the CheckResourceConflict function which determines, given a resource r, whether this
resource is conflict free. The result is a boolean value, this is only true if there is a
conflict in the operation sequence for this resource, and false otherwise. This operation
is shown in the gray region D in figure 4.

CheckResourceConflict (r :Resource) result : B
pre r ∈ Resources
post let crum = ComposeResourceUsageMaps

(r ,ComposedAdvicesSeq) in
result = ∀rules ∈ r .conflictRules ·
MatchConflictRule(rule, crum)

We define a shared join point to be conflict free if and only if:

∀resource ∈ Resources ·
CheckResourceConflict(resource) 6= true

References
[1] A. J. Bernstein. Program analysis for parallel processing. IEEE Trans. on Elec-

tronic Computers, EC-15:757–762, 1966.

[2] J. Dawes. The VDM-SL reference guide. Pitmann, 1991.

[3] P. Durr, T. Staijen, L. Bergmans, and M. Aksit. Reasoning about semantic con-
flicts between aspects. In EIWAS ’05: The 2nd European Interactive Workshop on
Aspects in Software, Brussel, Belgium, September, 1-2 2005.

[4] D. Kapur and S. Mandayam. Expressiveness of the operation set of a data abstrac-
tion. In POPL ’80: Proceedings of the 7th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 139–153, New York, NY, USA,
1980. ACM Press.

[5] N. A. Lynch, M. Merritt, W. E. Weihl, and A. Fekete. Atomic Transactions : In
Concurrent and Distributed Systems. Morgan Kaufmann, 1993.

[6] L. Z. Minwell Huang, Chunlei Wang. Toward a reusable and generic security
aspect library. In AOSD:AOSDSEC ’04: AOSD Technology for Application-level
Security, Lancaster, UK, March, 23 2004.

10

[7] Pascal Durr. Detecting Semantic Conflicts Between Aspects. In
Detecting Semantic Conflicts Between Aspects, pages 57–70, 2004.
http://www.cs.utwente.nl/˜durr/papers/ Master Thesis Pascal Durr.pdf.

11

	Problem statement
	Approach
	Superimposition and Composition
	Model Transformation
	Resources
	Operations
	Conflict rules
	Conflict detection

	Conflict Detection Model
	Superimposition
	Composition of Advices
	Detection of conflicts

