LCM 3.0
A Language for Describing Conceptual Models
Syntax Definition!

Remco Feenstra? Roel Wieringa
Faculty of Mathematics and Computer Science
Vrije Universiteit
De Boelelaan 1081a
1081 HV Amsterdam
email rbfeens|roelw@cs.vu.nl

December 21, 1993

1This research is partially supported by Esprit Basic Research Action IS-CORE (working group 6071).
2Supported by the Foundation for Computer Science in the Netherlands (SION) with financial support
form the Netherlands Organization for Scientific Research (NWO), project 612-317-408.

Contents

1 Preliminaries
1.1 Terminology« o o
1.2 Extended Backus-Naur Form (EBNF)
2 Lexical syntax
2.1 Lexical elements e e e
2.2 Whitespace e e e e e e e
2.3 Reserved words e e e e e
24 NamMeS o e e e e e e e e e e e e
2.5 Constants e e e e e e e
2.5.1 Number constants e
2.5.2 Character constants e
2.5.3 String constants
2.6 Comments e e e e e e e e e e
3 Names, declarations and scope
3.1 Names and occurrences of aname
3.2 Properties of occurrences of names Lo
3.3 Defining occurrences of anameo
3.4 Scope of a defining occurrenceo
3.5 Determining the defining occurrence for an occurrence of a name
4 The global structure of LCM specifications
5 Values
5.1 Names of built-in and user-defined value types
5.2 Value block e e e e
5.3 Parametrization of value blocks L . L
5.4 Sort expressions.o e e e e e e
5.5 Generalization and specialization of value types
5.6 Functions section L
5.7 Predicates section. e e e e e e
5.8 Axiomssection
5.9 EXPressions i . i e e e e e e e e e e e
5.10 Built-in value types, predicates and functions
5.10.1 Built-in predicates for testing equality
5.10.2 Other built-in predicates
5.10.3 Built-in sorts, constants and functions00 L.

12
12
12
13
13
15

16

6 Objects

6.1 Object class definition
6.2 Generalization and specialization of object classes
6.3 Attribute specification
6.4 Fixed attributes. e
6.5 Injective, surjective and bijective attributeso
6.6 Inverse attributes L
6.7 Unique sets of attributes
6.8 Identifier section e e e e e e
6.9 Predicates specification
6.10 Object existence predicate Lo
6.11 Generation of default internal identifier value types
6.12 Static integrity axioms Lo

7 Relationships

7.1 Relationship block
7.2 Existence dependency of relationships on their components
7.3 Specialization
7.4 Components of a relationship Lo L.

8 Local events

8.1 Local event definition oL
8.2 Referingtoevents
8.3 Failureevent L. L
8.4 Skipevent e
8.5 Specifying the effects and preconditions of an event occurrence
8.6 Effect axioms L
8.7 Precondition axioms L. Lo
8.8 Implicit existence precondition L Lo oL
8.9 Creation and deletion events L Lo
8.9.1 The meaning of creation events
8.9.2 Default creation event L L Lo
8.9.3 Specifying initial values of attributes and predicates in the default creation
eVENL . . . L e e e e

8.9.4 Default deletioneventso o oL

9 Life cycles

9.1 Lifecycledefinition Lo
9.2 Guardedness of lifecycle specificationso 0L
9.3 Default lifecycle

10 DBS transactions
10.1 Service block e

11 Conclusions

A Collected syntax of LCM

31
31
32
33
34
34
37
37
38
38
39
39
39

41
41
42
43
45

47
47
49
49
49
49
50
51
52
53
53
53

54
55

56
56
58
58

60
60

63

64

Chapter 1

Preliminaries

LCM (Language for Conceptual Modeling) is a specification language with which conceptual mod-
els (CM’s) can be specified. We assume that the CM’s specified in LCM are used to represent
some part of reality that is to be represented by a database system (DBS). A subset of LCM is
intended to be executable.

Version 3.0 of the LCM specification language is a revision of version 2 of the language, formerly
known as CMSL (Conceptual Model Specification Language)[12], which in turn is based on the
language described in Wieringa’s Ph.D. thesis [11].

Experience with different styles of writing CMSL specifications suggested many improvements
and extensions to the language. This report describes a revised syntax of the language based on
these (often incompatible) suggestions, while at the same time paying attention to requirements
stemming from the intention to provide computer support for manipulating specifications. These
include restriction of the notation to the ASCII character set, the standardization of names of
built-in functions and many other notational issues.

This revision process included changing the name of the language from CMSL to LCM, because
the abbreviation CMSL proved to be unpronouncable to most people. Besides, it suggests its
relation to MCM (Method for Conceptual Modeling), which is described in a companion report[13].
A second companion report describes the application of MCM to a case study, in which a LCM
specification is developed[14].

This document intends to serve as a reference for the specifier in the area of syntactic issues
of LCM 3.0.

Although the text and examples in this document suggest informally a meaning of the specifica-
tions, the formal semantics of LCM 3.0 is not given here. The interested reader should consult [11]
for more on a formal semantics of LCM.

1.1 Terminology

We start by fixing some terminology that will be used throughout this report.

e By an object we mean a communicating system. That is, an object is an observable part
of the world with a state space, state transitions, a life cycle, and communications with
other objects. The life cycle of an object o is composed of events, and each event may be
a communication with other objects and may cause a state transition in the life of 0. Each
state transition of o is caused by an event in the life of o.

e The subject of an event is the object in whose life the event occurs.

This concept of object is liberal and also includes relationships between objects. So if we wish,
we can regard the employment relationship between a person and his or her employer as itself an
object, with a state space, state transitions, etc.

A basic distinction in conceptual modeling is that between a database system (DBS) and the
universe of discourse (UoD) of the database system. A DBS is a system that can register data.
The UoD is that part of the world about which the DBS registers data. A message from the UoD
to the DBS that an event has occurred in the UoD is called a registration event.

Objects may exist in the UoD or in the DBS. Examples of UoD objects are persons, chairs,
factories and students, examples of DBS objects are windows, records, cursors, and files. (We may
of course maintain a DBS about objects in another DBS. The second DBS is then the UoD of the
first DBS.)

e An identifier is a proper name for an object such that the designation relation between
the name and the object is 1-1 and monotonically growing. This means tant

1. that each identifier names at most on object out of a set of possible objects called an
objectspace,

2. that each object is named by at most on identifier from a set of possible identifiers
called a namespace, and

3. that the designation relation between an identifier and an object, once it exists, never
changes.

The first two requirements are also called the singularity requirements.

For each identifier, we must indicate its objectspace, its namespace and the state space in
which the identifier is unchanging. For example, the employee number in use in a company is an
identifier with all employees of the company as objectspace, all strings with a certain structure as
namespace, and the set of all possible states of the identified employees as state space.

It is clear that the concept of an identifier is an idealization. Fraud with employee numbers,
children and dependants who are identified by the employee number of another person, errors
in assigning employee numbers, reorganizations of the namespace of employee numbers, etc. are
examples of cases where at least one of the three identifier conditions is violated. These violations
can occur in most identifiers, such as social security numbers, student identification numbers, etc.
Problems with object identification are discussed in detail by Wieringa and de Jonge [15].

Each identifier must be generated so as to guarantee its uniqueness in a namespace, and assigned
to an object in order to guarantee singularity with respect to an objectspace. Finally, rigidness
must be guarded, enforced, guaranteed, etc. These tasks may be done by one or more persons,
organizations or machines.

e An internal identifier is an identifier generated by a DBS and assigned to internal objects.
The three identifier requirements are usually guaranteed by the DBS.

e An external identifier is an identifier assigned to external objects, whose identifier require-
ments are guaranteed by persons, organizations or machines other than the DBS. External
identifiers are not usually generated by a DBS.

Examples of an internal identifier is a unique identification of database records, unique process
identifications, etc. Examples of external identifiers are student numbers, social security num-
bers, employee numbers etc. The important property of internal identifiers, as far as the DBS
is concerned, is that their generation and assignment to objects is done by the DBS itself and
that their monotonic designation is enforced by the DBS itself. This means that the namespace,
objectspace and state space of internal identifiers are known to the DBS itself. Again, the concept
of an internal identifier is an idealization. For example, namespaces may be finite and this causes
names to be reused as identifiers for different internal objects. In LCM, however, we use the ideal
concept of internal identifiers.

We also allow the definition of external identifiers, but the identity requirements for external
identifiers cannot be specified in a DBS specification, because the namespace, objectspace and state
space may not be known to the DBS. For example, there may be more social security numbers

DBS UoD

Figure 1.1: The internal identifier ¢ is assigned to the internal object s, which is used to represent
a car o in the UoD.

than those known to the DBS, there may be more persons with social security numbers than those
known to the DBS, and the assignment of social security numbers to persons may change without
the DBS being able to prevent it. The use of external identifiers is supported in LCM by allowing
an object attribute to be declared unique and fixed. To repeat, this does not guarantee that the
attribute is an external identifier.

There are two identifier-related concepts in databases, that of key and surrogates.

e A key is a combination of attributes that is unique in every possible state of the world.
e A surrogate is an identifier generated by a DBS with an external objectspace.

The combination of name, birthplace, birthdate has been used as key for persons, and employee
numbers are often treated as keys rather than as identifiers. It is possible that a key of an object
changes, so that monotonic designation is violated and one object may have two keys in its life. It
is also possible that two objects, that exist at different times, have the same key, so that singularity
is violated. LCM provides a facility to define keys by allowing a combination of object attributes
to be declared unique in every state of the world.

An example of a surrogate is a userid generated by a DBS and used to identify users of a
DBS. (One person may be different users.) Surrogates are usually required to be invisible for
users. LCM has no facilities to support the definition of surrogates by users. However, we will use
internal identifiers as surrogates. This is done as follows.

Each UoD object is represented in the DBS by an internal DBS object. For example, a car
in the UoD is represented in the DBS by an internal object o, that has a state space, state
transitions, a life cycle and a communicating behavior that mirrors that of the represented car.
At any moment, this object exists as a part of the state of a computer. For each DBS object, an
internal identifier s is generated by the DBS and assigned to the internal object by the DBS. This
is illustrated in figure 1.1.

The DBS will use this internal identifier as reference to the internal object 0. The domain of
this identifier is the set of all internal DBS objects, the namespace of the identifier is the set of
all possible internal identifiers. This means that the internal identifier s is used as a surrogate for
the real-world car.

e A class is the set of all possible objects, also called class instances, that share a number
of properties.

e The existence set of a class in a state of the UoD is the set of existing objects of that class
in that state of the UoD.

Examples of classes are PERSON, STUDENT, CAR etc. In each state of the UoD, a subset of
the set of all possible persons exist and this is the existence set of PERSON.

e A value is an abstract, unobservable entity. Values are often called data.

e A value sort is the set of all possible values that share a number of properties. Value sorts
are often called data types.

Examples of value sorts are the set of all integers, the set of all strings, etc. We regard characters
and strings as values, i.e. abstract and unobservable entities. However, characters and strings may
have concrete, observable notations, just as integers and rational numbers have concrete, visible
notations.

e The type of a set of entities is the set of all properties shared by the entities in the set.
If the entities are objects, we speak of object type, if they are values, we speak of value

type.

For each class, we can define its corresponding type, i.e. the set of all properties shared by all
possible instances of the class. Since one object may be an element of several classes at the same
moment, one object may have several types. A similar observation is applicable to values.

For each class C, there is a value sort of the same namethat contains all internal identifiers for
objects of that class. As pointed out above, these internal identifiers are surrogates for real-world
objects.

1.2 Extended Backus-Naur Form (EBNF)

In order to define the syntax of the LCM specification language we will use natural language
combined with Extended Backus-Naur Form (EBNF) expressions. The latter is used in two
different contexts, with a slightly different meaning. First, we use it in chapter 2 to define the
lexical grammar, which deals with the appearance of items such as numbers and names, and
describe how these are built from single characters. In this case white space in the EBNF rules is
significant. Second, we use it in the other chapters to describe the context free grammar of LCM,
using the top-level nonterminals of the lexical definitions as terminal symbols of the context-free
grammar. The nonterminals in each of the specifications are written between a “(” and a “)”, such
as (Name) and (LCMSpecification), or as themselves in typewriter font in the case of symbols and
keywords, e.g. axioms and &. For convenience, EBNF uses the following constructs in its rules:

e (NonTerminal)* means zero or more occurrences of (NonTerminal),
e (NonTerminal)+ means one or more occurrences of (NonTerminal),

e { (NonTerminal) (separator) }4+ means one or more occurrences of (NonTerminal), separated
by (separator)s between them,

e [(NonTerminal) | means zero or one occurrence of (NonTerminal),
e (NonTerminall) | (NonTerminal2) means (NonTerminall) or (NonTerminal2).

Please note the subtle difference between “” and “[” appearing in EBNF definitions: the first
symbol is part of EBNF and indicates zero or one occurrences, whereas the second is the literal
square bracket character that represents itself.

The start symbol of the context free grammar of LCM is (LCM-Specification).

Chapter 2

Lexical syntax

The language described here is designed to be usable on hardware that only supports ASCII input
and output facilities.

In this chapter, we give a grammar that defines the appearance of syntactic entities that occur
als terminals in the context-free grammar of the next section. The reserved words and predefined
names appear as themselves in the context-free grammar. The symbols (Name), (ZeroConstant),
(RationalConstant), (PosIntConstant), (CharacterConstant) and (StringConstant) are nonterminals
in the grammar of this chapter. In the grammars in the next chapters, however, they are treated
as additional terminal symbols.

2.1 Lexical elements

A LCM specification consists of a (possibly empty) sequence of various kinds of lexical elements.
The boundaries between the lexical elements occurring in the specification are determined by the
next EBNF definition, together with the following

Lexical item identification rule The next lexical item starting at some posi-
tion (if any) is the longest possible substring of the specification text starting at that
position that constitutes a valid (LexicalElement).

(LCM-SpecificationText) — (LexicalElement)*

(LexicalElement) — (ReservedWord) | (Name) | (Constant) | (WhiteSpace)

LCM is case sensitive: upper case characters are considered to be different from their lower
case counterparts. This applies not only to names, but also to reserved words.
In the sections below, we will discuss the structure of the various lexical elements.

Example
Consider the following specification text:

begin
CLASS classification

It is split into the following (LexicalElement)s:
o a (WhiteSpace) for the 4 leading space characters,

e the keyword begin,

e another (WhiteSpace) (the newline), a (Name) (although class is a reserved word, CLASS
isn’t, because LCM is case-sensitive),

e a (WhiteSpace) and a (Name) (although classification starts with the same characters as
the reserved word class, the substring classification is longer than the substring class,
which is a reserved word),

e a final (WhiteSpace) for the newline.

2.2 White space
White space consists of the juxtaposition of one or more occurrences of white space elements:

(WhiteSpace) — (WhiteSpaceElement)+

The following characters each count as one white space element:
. the space character (ASCII SP)

—_

2. the carriage return character (ASCII CR)

3. the newline character (ASCII LF)

4. the horizontal tabulation character (ASCII HT)
5. the form feed character character (ASCII FF)
6. the vertical tab character (ASCII VT)

7

. a comment (see 2.6).

White space has no significance except to separate (Name)s, reserved words and (Constant)s.
It can be added freely by the author of a specification to increase readability, as long as the rules
for partitioning the specification text into (LexicalElements) are kept in mind to avoid accidentally
splitting up other (LexicalElement)s.

Example

As an example how the inclusion of white space can influence the meaning of a specification by
defining the boundaries between lexical elements, consider the difference between Route66 and
Route 66. The first is a (Name), whereas the latter is a (Name) followed by (WhiteSpace) followed
by a (PosIntConstant). Although the (WhiteSpace) is ignored in the context free grammar, the
difference between one and two other {LexicalElements) should be clear.

2.3 Reserved words

The reserved words of LCM are:

(ReservedWord) — after | and | attributes | axioms | begin | bijection | by | class | components |
creation | cycle | decompositions | deletion | div | empty | end | events | fail |
fails | fixed | forall | function | functions | identifiers | if | In | initially |
injection | inverse | keys | life | necessarily | not | object | of | only | or |
partitioned | possibly | predicate | predicates | relationship | services |
skip | specialization | specialized | succeeds | surjection | transactions |
type | Value | 5 |, [:: [CID [DT [=>]<>]+|=[*[/]&|II]|.]=]
<|<=|>=|>]|"]!=

2.4 Names
A name can be used to refer to a construction in a LCM specification. A (Name) has the appear-

ance as described below, with the additional constraint that a (Name) cannot consist of the same
sequence of characters as a (ReservedWord).

(Name) — (NameStartCharacter) (NameContinuationCharacter)*

(NameStartCharacter) — (Letter) |

(NameContinuationCharacter) — (Letter) | (DecimalDigit) | _
(Letter) — a|b|c|---|z|A|B|C|---|2Z
(DecimalDigit) — 0 | (NonZeroDecimalDigit)
(NonZeroDecimalDigit) — 1 |2 |3]|4|5|6|7|8]|9

Some (Name)s are predefined, and may not be redefined. These are the (PredefinedSortName)s
(see section 5.1), the built-in nullary and unary predicate names shown in tables 5.3 and 5.4 and
the built-in prefix function names of table 5.8.

Names starting with a underscore (_) are reserved, and cannot be used by the authors of
specifications.

Examples

Some examples of (Name)s are: MEMBER, date_borrowed, true (the reserved word True is capi-
talized), Married and Agent007.

The following are not valid names: #times_borrowed (starts with a non-letter), cycle, True
(they are reserved words) and Fish&Chips (contains other characters than letters, digits and
underscore. _fine is a valid name, but since it starts with an underscore it is reserved.

See also section 3.4 on the scope of names.

2.5 Constants

2.5.1 Number constants

We distinguish three kinds of number constants: (ZeroConstant)s, that represent the number
zero, and (PoslntConstant)s, that represent positive integers and (RationalConstants), that repre-
sent rational numbers in decimal notation.

(NumberConstant) — (ZeroConstant) | (PosIntConstant) | (RationalConstant)
(ZeroConstant) — (Zero)+

(Zero) — 0

(PosIntConstant) — (Zero)+ (NonZeroDecimalDigit) (DecimalDigit)*

(RationalConstant) — (DecimalDigit)+ . (DecimalDigit)+

Examples

Some examples of (NumberConstant)s are: The (PosIntConstant) 42, the (PosIntConstant) 007, the
(ZeroConstants) 0 and 000000, and the (RationalConstant)s 1.0, 3.14 and 0.0 (the latter is not a
(ZeroConstant).

Note that leading signs are not part of a number constant; -10 is an expression consisting of the
unary negation operator applied to the constant 10 of sort POSINT, turning it into an expression
of sort NEGINT.

2.5.2 Character constants

The exact set of character constants is implementation dependent, but it is required that it
includes at least all printable characters in the ASCII set, with the following special conventions
that may be used for the unprintable ones (or as alternatives for the printables).

(CharacterConstant) — ’ (CharacterSpecification) ’

(CharacterSpecification) — any single printable character | (SpecialCharacterConstant)
(SpecialCharacterConstant) — \n | \r | \f | \t | \b | \" | \(OctalDigits)

(OctalDigits) — (OctalDigit) | (OctalDigit) (OctalDigit) | (OctalDigit) {(OctalDigit) (OctalDigit)
(OctalDigit) — 0| 1|2 |3|4|5]|6]|7

The intended meaning of the (SpecialCharacterConstant)s, which are notations for nonprintable
characters are:

1. \n is the newline character (ASCII LF),

2. \r is the carriage return character (ASCII CR),

3. \f is the form feed character (ASCII FF),

4. \t is the tab character (ASCII VT),

5. \b is backspace character (ASCII BS),

6. \" is the double quote character (only needed inside (StringConstant)s, see 2.5.3).

7. The octal digits after the backslash represent the character with ASCII code given by the
(Octal-digits).

2.5.3 String constants

(StringConstant) — " (CharacterSpecification)* "

A string consists of a sequence of (CharacterSpecification)s, which have the same form as in
(CharacterConstant)s. Null characters may appear as part of the string constants. To include a
double quote character in a string constant, use the (SpecialCharacterConstant) \", otherwise it
will signal the end of the (StringConstant) (see also 2.5.2).

10

Examples

"Basil Fawlty", "" and "\"" are all valid (StringConstant)s, the second being an example of an
empty string constant, whereas the third is an example of a string constant containing the double
quote character.

2.6 Comments

A comment may be used to clarify the specification text to human readers, but has no meaning
except that it separates (LexicalElement)s. Tts syntax is:

(Comment) — -- (NonNewLineCharacter)*

As a consequence of this definition, comments cannot be nested.

Examples

The following five lines each contain exactly one (Comment):

-- This is a comment. Testing 1, 2, 3,...
-- Comments do -- not —-- nest.
-- "this is --not-- a string constant."

As a consequence of the rule that the lexical item starting at some position is the longest possible
substring of the specification text starting at that position that constitutes a valid (LexicalElement),
two adjacent hyphens occuring inside a (StringConstant) like

"a string constant with ---- hyphens inside"
will not signal the start of a comment. Along the same lines, the text
--3

does not start with the (ReservedWord) -, but with the (longer) (LexicalElement) {(Comment)! If we
really wanted to write the negation of the negation of three, we could have written - (-3) instead.

11

Chapter 3

Names, declarations and scope

Tn section 2.4 the lexical structure of a (Name) is defined. Each occurrence of a name in a LCM
specification has a meaning, but in the presence of LCM’s facilities for overloading names and
scoping, the name alone often isn’t sufficient to determine to what it refers; in order to do this, we
need to take into account the position and the context in which it occurs in the LCM specification.
In this chapter, we introduce some terminology to enable a concise description of the facilities for
name overloading and hiding in the rest of this document. In addition, we formulate an important
constraint that every valid LCM specification should satisfy, which says that all names that occur
in the LCM specification should have a unique point in the specification where they are defined.
The notions introduced below deal with defining which of the occurrences of names in a LCM
specification have the same meaning. First, we need to distinguish names from occurrences of
names.

3.1 Names and occurrences of a name

With a name (note that this is different from a (Name)) we mean a particular string of characters
that satisfies the lexical syntax of (Name) as given in subsection 2.4. Names may appear in
LCM specifications, but this isn’t necessary; we may talk about names irrespective of a particular
specification, like about the name Foo. We say that two names are equal iff they consist of the
same sequence of characters.

Every lexeme in a particular LCM specification which is a name will be called an occurrence
of a name in that specification. All occurrences of a name in a specification are distinct. Each
occurrence of a name in a specification has a unique position in that specification. In the sequel,
we will assume that a particular LCM specification is understood, and talk simply of “occurrences
of a name” instead of “occurrences of a name at some position in some LCM specification”. An
occurrence of a name is called an occurrence of name m, iff it consists of the same sequence of
characters as the name m. A LCM specification may contain zero, one or many occurrences of a
name m

We will say that two occurrences of a name are occurrences of the same name iff there is
a name n such that both are occurrences of name n.

3.2 Properties of occurrences of names

We assume that the specification contains a set of name occurrences for which the concepts of
position of a name occurrence and region in the specification are defined. For example, in a
specification that is presented as a sequence of characters (e.g. a text file) a position of a name
occurrence might be the number of characters that precede the first characters of the name,
starting to count from the beginning of the sequence. A region might be defined as a subsequence

12

of the specification. In a hypertext-like system, the concepts of position and region will have other
definitions.
With each occurrence ¢ of a name we associate the following properties:

1. its position, notated as Position(q), which is the place in the LCM specification where this
occurrence is found.

2. its syntactical kind, notated as Kind(q), with Kind(q) € {sort, predicate, attribute, function, event,
transaction, process, relationship, variable, service, , component, object}.

Dependent on the kind of an occurrence g, it can have other properties:
o If Kind(q) € {predicate, attribute, function, process }, it has the following two properties

— an arity, notated as Arity(q), which is the number of arguments the occurrence takes.
Arity(q) may be zero.

— a sequence ParameterTypes(q) of length Arity(q) of parameter type expressions.
e If Kind(q) € {attribute, function, component }, it has an additional property Smallest ResultSort(q).
o If Kind(q) = sort, it has the following two additional properties

— The number of arguments the sort takes, written as SortArity(q). SortArity(q) may
be zero for simple sorts.

— A sequence of length SortArity(q) of occurrences of names that are the (formal or
actual) parameters of the sort, written as SortParameters(q).

The actual values of these properties are discussed in the text that accompanies the syntax rules
in which the name may appear. Figure 3.1 illustrates the relevant concepts in a diagram.

3.3 Defining occurrences of a name

In LCM, due to overloading and local definitions hiding more global ones, two occurrences of the
same name can mean different things. We need some means to express when two occurrences of
a name mean the same thing. This is done by marking some special occurrences of a name in the
LCM specification text as defining occurrences of a name. These can be thought of as being
part of a declaration of that name. Which of the occurrences of a name are defining occurrences
of that name is discussed with the syntax rules for the declaration that contains them.

In section 3.5 we will give rules that associate exactly one defining occurrence with each occur-
rence of a name at some position in a correct LCM specification, such that they are occurrences
of the same name.

In this way we have implicitly defined which occurrences of a name refer to the same thing,
viz. all occurrences that have the same defining occurrence.

3.4 Scope of a defining occurrence

In addition to the properties that are common to all occurrences of a name, a defining occurrence
g also has a scope, written as Scope(q). Intuitively, the scope of an occurrence of a name is a
region in the LCM specification surrounding ¢ such that the effects of the defining occurrence ¢
are restricted to Scope(q): if an occurrence of a name has g as a defining occurrence, then the
position of that occurrence lies within Scope(q).

The scope of a defining occurrence of a name will be discussed with the syntax rules containing
that defining occurrence.

13

DEFINING_OCCURRENCE

scope

NON_DEFINING_OCCURRENCE

NAME_OCCURRENCE

name_as_string

position
kind
kind <> sor, kind = sort
NON_SORT_NAME_OCCURRENCE SORT_NAME_OCCURRENCE
sort_arity

arity
parameter_types

sort_parameters

kind = predicate

kind = functio,

kind = process

PREDICATE_NAME FUNCTION_NAME

ATTRIBUTE_NAME PROCESS_NAME

smallest_result_sort

smallest_result_sort

Figure 3.1: An overview of the concepts relating to names and their occurrences.

14

3.5 Determining the defining occurrence for an occurrence
of a name

Now we are ready to state the rules that a defining occurrence o4 must satisfy in order to be called
a defining occurrence for an occurrence o.

Unique definition constraint: We require that for every occurrence of a name
in a specification there is exactly one defining occurrence for that name.

If this constraint is violated, we are dealing with an ambiguous or incomplete specification. Finding
more than one defining occurrence signals an ambiguity. If there is no defining occurrence, a name
is used without being declared. *

The rules are as follows:

e If o itself is a defining occurrence, it is also a defining occurrence for o

e Otherwise, let o be a non-defining occurrence of name n. A defining occurrence o4 of a name
is a defining occurrence for o iff all of the following conditions are met

1. Scope(oq4) contains Position(o),
2. 04 is an occurrence of name n,

3. there is no alternative defining occurrence o, that has a smaller scope than o4, that
satisfies rules 1 and 2 above (with o4 replaced by o,).

4. Kind(o) = Kind(og4),
5. if Kind(og) € {function, attribute, predicate, process}, then Arity(os) = Arity(o) and

ParameterTypes(o) < ParameterTypes(og). The < is the (non-strict) subsort rela-
tionship, extended to sequences of sorts (see section 5.5).

6. if Kind(o4) € {function, attribute, predicate, process}, there is no alternative o, to o4
with ParameterTypes(o,) < ParameterTypes(og), that satisfies rules 1,2,3,4 and 5
above. Note that < denotes the sirict subsort relationship extended to sequences of
sorts (see section 5.5).

7. if Kind(o4) = sort, then o4 should match o. This is described in more detail in sec-
tion 5.4.

For example, as discussed in section 6.3, the occurrence g of the (Name) Foo in the (Attributes)
section of an (ObjectClassBlock)

begin object class WIDGET
attributes
Foo : BAR;
end object class WIDGET;

is a defining occurrence of a name. To be more specific, it is a defining occurrence of the name
Foo, with Scope(q) equal to the whole specification, Arity(q) = 1, ParameterTypes(q) = WIDGET,
and SmallestResultSort(q) = BAR.

The Smallest ResultSort(q) property of occurrences of attribute and function names will only
be described for defining occurrences ¢; non-defining occurrence have the same value for this
property as their defining occurrence.

In the rest of this text we will only discuss LCM specifications that satisfy the unique definition
constraint, and will talk about the defining occurrence for an occurrence of a name, since it has
exactly one such defining occurrence.

IThis constraint, combined with the global scope of many of the defining occurrences of name may turn out to be
inconvenient when handling large LCM specifications. A solution might be introducing a syntactic modularization
construction combined with a rule similar to the origin rule in ASF[2]. Modularization above the level of objects
in CM specifications is subject of current research. For the moment, we will stick to this simple scheme.

15

Chapter 4

The global structure of LCM
specifications

A LCM specification consists of definitions of ADTs, object classes, relationship classes and a
descriptions of the atomic DBS transactions. Each of these kinds of definition has its own syn-
tactic structure: the (ValueBlock), (ObjectClassBlock), (RelationshipClassBlock) and (ServiceBlock)
respectively.

In order to increase readability of LCM specifications these blocks should be listed ordered
such that all ADT specification are listed first, then all object and relationship class blocks, and

all service blocks come last.
Syntax:

(LCM-Specification) — (ValueBlock)* { (ObjRelBlock) }* (ServiceBlock)*
{ObjRelBlock) — (ObjectClassBlock) | (RelationshipClassBlock)

Occurrences of the same kind of block may be ordered as desired, but practice suggests that
sorting in alphabetical order on the name of the entity is a useful convention.
In the next sections, we will look at each of these blocks in more detail.

16

Chapter 5

Values

In order to work conveniently with values, LCM has definitions of common value types (also
commonly called datatypes) and some operators on them built-in. In addition, the user may
supply his own definitions of Abstract Data Types (ADT’s) in the framework of order sorted
algebraic specifications, in a way similar to the specification languages OBJ[6] and ASF[2].

The syntactical construct for defining ADTs in LCM is the (ValueBlock), in which you bind a
name to a set of values, and define the appearance of functions and constants related to that set.
The meaning of the expressions using values from that set is expressed by giving equations.

As a simple example, a value block for specifying a sort representing the colors of a traffic
light, together with a function next_color might look like this:

begin value type TRAFFIC_LIGHT_COLOR
functions
-- Constants are viewed as functions without parameters.
red : TRAFFIC_LIGHT_COLOR;
orange : TRAFFIC_LIGHT_COLOR;
green : TRAFFIC_LIGHT_COLOR;

-- A function to return the next color to be displayed,
-- given the current color of a traffic light.
next_color (TRAFFIC_LIGHT_COLOR) : TRAFFIC_LIGHT_COLOR;
predicates
continue (TRAFFIC_LIGHT_COLOR) ;
axioms
next_color(red) = green;
next_color(orange) = red;
next_color(green) = orange;
-- Commonly encountered Amsterdam interpretation of traffic lights...
forall c¢ : TRAFFIC_LIGHT_COLOR ::
continue(c) <-> c=green or c=orange;
end value type TRAFFIC_LIGHT_COLOR;

5.1 Names of built-in and user-defined value types

Both built-in and user-defined value types are refered to by mentioning their reserved word or
name. The names of the built-in value types are predefined names of the language, and may not
be redefined.

The internal identifier sorts that are generated for object classes in the absence of an explicitly
defined identifier sort can also be refered to by means of a special sort expression discussed in
subsection 5.4.

17

(SortName) — (PredefinedSortName) | (UserDefinedSortName)

(PredefinedSortName) — ZEROQ | POSINT | NEGINT | INATURAL | NZINTEGER | NATURAL | INTEGER |
NZRATIONAL | RATIONAL | DATE | CHARACTER | EMPTY | STRING | SET |
BAG | SEQUENCE | DATE

(UserDefinedSortName) — (Name)

In the next sections we will first discuss user-defined value types. An overview of the built-in
value types is given in section 5.10.

5.2 Value block

A value block groups together a number of value type definitions. Its syntax is as follows:

(ValueBlock) — begin value type (UserDefinedSortName) [(ValueBlockParameterList)]
(ValueGeneralization)*
(ValueSpecialization)*
[(Functions) |
[(ValuePredicates) |
[(Axioms) |
end value type (UserDefinedSortName) ;

(ValueBlockParameterList) — [{ (ValueBlockParameter) , }+ 1]

(ValueBlockParameter) — value type (UserDefinedSortName) |
function (UserDefinedFunctionName) [(FormalParameterList) |
: (SortExpression) |
predicate (UserDefinedPredicateName) [(FormalParameterList)]

(UsedDefinedSortName) — (Name)
(UserDefinedFunctionName) — (Name)
(UserDefinedPredicateName) — (Name)

The (UserDefinedSortName)s in the begin value type and end value type clauses must be
the same. This is an instance of the

Block name rule: the names occurring in the opening and closing phrases of a
block must be identical.

We will encounter other instances of this rule in the discussion of the other block types of LCM.

An occurrence p of a name n as (UserDefinedSortName) immediately after the begin value
type is a defining occurrence of name n, with Kind(p) = sort and Scope(p) being the complete
LCM specification.

18

5.3 Parametrization of value blocks

SortArity(p) is the number of occurrences of (ValueBlockParameter)s that appear in the (Value-
BlockParameterList), or zero if there is no (ValueBlockParameterList). SortParameters(p) con-
sists of the occurrences of (UserDefinedSortName), (UserDefinedFunctionName) and (UserDefined-
PredicateName) in the order they occur as (ValueBlockParameter) in the (ValueBlockParameterList).
All these occurrences o are defining occurrences with T'ype(o) equal to sort, function and predicate,
respectively. Scope(o) is the whole (ValueBlock) in which the defining occurrence is found. If
Type(o) = sort, then SortArity(s) = 0.

Example

The definition of a parametrized value type for arrays parametrized by value types for the indices
and the elements, together with a predicates that determines whether two indices are equal may
be defined as

begin value type ARRAY [value type INDEX,
value type ELEMENT,
predicate IndexEqual (INDEX,INDEX)]
functions

predicates
axioms

end value type ARRAY;

The scope of the defining occurrences of the names INDEX, ELEMENT and IndexEqual, found be-
tween the square brackets is the whole (ValueBlock) for ARRAY. The defining occurrence of name
ARRAY has the complete LCM source text as its scope. We might use this name somewhere else in
the specification to refer to the data type, e.g.

attributes
owners : ARRAY[INTEGER, OWNER, same_owner (OWNER,OWNER)];

appearing in an (ObjectClassBlock).

As a consequence of the unique definition constraint, there must appear exactly one (ValueBlock)
for a given (UserDefinedSortName) in a LCMspecification. Thus, we may not have a LCM specifi-
cation like

begin value type Foo
end value type Foo;
begin value type Foo

end value type Foo;

There is nothing wrong with a name of a (ValueBlock) reappearing as the name of an (ObjectClassBlock),
as in

begin value type Foo

end value type Foo;

19

begin object class Foo

end object class Foo;

This has the special meaning that values of value type Foo are used as internal object identifiers
for the objects of class Foo (see also section 6.1).

This special case only applies to object classes and not to relationship classes; thus, there must
not be a (RelationshipClassBlock) with the same name as a (ValueBlock).

The intended semantics of parametrized value blocks is based on a normalization process on
the LCM source text that replaces the parametrized value type block by many instances, one for
each sort expression of that parametrized sort with a particular set of parameters, with the formal
parameters of the instances replaced by the actual parameters in the sort expression. This will
not be described in more detail here; see the description of a similar mechanism in ASF[2].

5.4 Sort expressions

In order to refer to a sort (SortExpression)s are used. There are two forms of (SortExpression)s.
The first form consists of mentioning a sort name, possibly with parameters used to instantiate a
parametrized (ValueBlock). The second form consists of a sequence of class names concatenated
with an asterisk, as in A*B*C. The intended meaning of this sort expression is the sort that is
the intersection of the sorts A,B and C. This form may only be used to refer to implicitly defined
internal identifier sorts that are an intersection of object subclasses.

This facility is needed because creation and deletion events can only be defined for species. A
species is a class such that it is the smallest class of its instances. In the presence of multiple
partitionings of an object class there may not be an explicit name for the intersection of subclasses
from different partitionings. For example, in the following specification

begin object class A
partitioned by B, C;
partitioned by D, E;

end object class A;

the species of all A’s that are B’s but are also D’s (but not C’s and not E’s) doesn’t have a name,
and similarly so for the three other combinations. This class structure and the intersections are
shown in figure 5.1. To create objects of A, we need to define creation events for these species,
but we can only reference these species by describing them as the intersection of subclasses from
different partitionings of A, e.g. as B*D for the A’s that are both B’s and D’s:

events
create(BxD; F00, BAR);
axioms
forall elt : Bx*D, f : FOO, b : BAR ::
[create(elt;f,b)]
Syntax:

(SimpleSortExpression) — (SortName) [(ActualValueBlockParameterList) |

(SortExpression) — { (SimpleSortExpression) * }+

(ActualValueBlockParameterList) — [{ (ActualValueBlockParameter) , } + 1]

20

©? /&Q
B C D E two different
p?rtitionings
of A
[\ ST~ P S
[AT \
N _— N \><
/ N ~ Tt \
/ _— AN — ‘ R \
. . . \\ T~
unnamed
species

Figure 5.1: Class A is partitioned into B and C according to one partition and into D and F
according to another. To create an object of class A that is both a B and a D, we need to refer
to its species, which is the unnamed intersection of classes B and D.

21

(ActualValueBlockParameter) — (SortExpression) |
function (PrefixForm) : (SortExpression) |
predicate (PrefixForm)

An occurrence g of a name as (SortName) in a (SimpleSortExpression) has Kind(q) = sort,
SortArity(q) = the number of (ActualValueBlockParameter)s in its (ActualValueBlockParameter-
List), or zero if the (SortExpression) contains no (ActualValueBlockParameterList). If SortArity # 0,
SortParameters(q) consists of the occurrences of the names as (SortName) of a (SortExpression)
or (UserDefinedPrefixName) of an (ActualValueBlockParameter) in the order in which they appear
in the source text.

We will say that an occurrence of a name as (SortName) in a sort expression ¢ matches a
defining occurrence d of a name that is a sort name if

1. SortArity(q) = SortArity(d), and

2. for each formal parameter occurrence fy in SortParameters(d) and its corresponding actual
value block parameter f,:

e If Kind(fs) = sort then the sort expression f, given as actual parameter should be a
(non-strict) subsort of the sort given as actual parameter.

o If Kind(f,) = function or Kind(f;) = predicate then ParameterTypes(f,) < ParameterTypes(fq).

the sorts and parameter types of the actual value block parameters and substituting the
respective SortParameters(q) for Sort Parameters(d) will not cause a sort conflict.

This is part of the requirement for a sort name to be a defining occurrence for another name, as
described in section 3.5.

5.5 Generalization and specialization of value types

A value specialization section expresses that the value type of the (ValueBlock) in which it
appears has the types mentioned in the (ValueSpecialization) as (not necessarily proper) subtypes.
Its syntax is:

(ValueSpecialization) — specialized by { (SubSortExpression) , }+ ;
(SubSortExpression) — (SortExpression)

The subtype structure induced by all (ValueSpecialization)s of the specification taken together
should satisfy the

Non-circularity constraint: There doesn’t exist a (possibly empty) sequence
of (SubSortExpression)s Si,...,S, such that specialized by Ss,... appears in the
(ValueBlock) for S, and specialized by Ss,... appears in the (Valueblock) for Ss,
and so on to specialized by S, ,...appearing in the (ValueBlock) of S,,—;. Note that
this also excludes the immediate case of a (ValueBlock) for S containing specialized by S;.

The value specialization sections together define a relation on sort expressions. The transitive
reflexive closure of this relation is called the subsort or subtype ordering on sort expressions,
written as <. Sometimes we use < to denote the transitive closure of the relation on sort expres-
sions defined by the value specialization sections. Both relations are extended to sequences of sort
expression such that they hold if it holds for all elements of the sequences, which should be of the
same length.

A value generalization section expresses that the sort specified in this ValueBlock is a (not
necessarily proper) subsort of other sorts. Its syntax is:

22

(ValueGeneralization) — specialization of { (SuperSortName) , }+ ;

(SuperSortName) — (UserDefinedSortName)

Note that you cannot declare a user-defined value type to be a subsort of a built-in datatype’.

A (ValueGeneralization), if added (it is optional), should be consistent with the (ValueSpecialization)s
in the sense that if a (ValueGeneralization) is present in a value block, it is required that a cor-
responding (ValueSpecialization) appears in the (ValueBlock) of the supertype of that block. In a
sense, a (ValueGeneralization) is a kind of comment which is checked for consistency with the rest
of the specification. Given the availability of the (ValueSpecialization), the (ValueGeneralization)
is superfluous. This redundancy was introduced on purpose to aid the human reader in under-
standing the individual {ValueBlock)s by providing more context about its location in the type
hierarchy. A (ValueGeneralization) reminds the human reader that this value type is a subtype of
some set of other types.

The syntax of (ValueSpecialization) is a special case of the syntax found for specialization in
the case of objects and relationships, where additional information can be provided to express
properties of disjointness of the subtypes and exhaustiveness of the enumeration of subtypes (sec-
tion 6.2).

Example

begin value type DAY
specialized by WORKING_DAY, WEEKEND_DAY;
end value type DAY;

begin value type WORKING_DAY
specializing DAY;

functions
Monday : WORKING_DAY;
Tuesday : WORKING_DAY;

Wednesday : WORKING_DAY;
Thursday : WORKING_DAY;
Friday : WORKING_DAY;
end value type WORKING_DAY;

begin value type WEEKEND_DAY
-— mentioning the supertype, as is done in WORKING_DAY,
-- is optional, and omitted here.

functions
Saturday : WEEKEND_DAY;
Sunday : WEEKEND_DAY;

end value type WEEKEND_DAY;

5.6 Functions section

The signature of the order-sorted algebra used to model the ADT is given in the functions
section.

It allows the definition of prefix functions, with arguments in parentheses.

For convenience, infix and mixfix operators with the expected associativity and priority are
available for use with the commonly used built-in value types. Their names and syntax are a part

ILater versions of LCM are likely to be more permissive in this respect, but to do this well we’ll probably need
sort constraints as well (currently not included in LCM) to avoid problems due to non-conservative extension of
the built-in datatypes by user-defined subsorts of it.

23

of the language definition (see section 5.10). Currently, these features provide more freedom of
syntax than is available for user defined value types.

Constants are considered to be functions without arguments, and thus should be declared in
the functions section too.

The syntax is:

(Functions) — functions (FunctionDeclaration)*
(FunctionDeclaration) — (PrefixForm) : (SortExpression) ;
(PrefixForm) — (Name) [(FormalParameterList) |
(FormalParameterList) — ({ (FormalParameter) , }+)
(FormalParameter) — (SortExpression)

The signature obtained by combining all (FunctionDeclation)s, (ValueSpecialization)s, taking
into account the (implicit) definition of internal identifier sorts and their subsort structure (which
follows the specialization of objects and relationships) and (AttributeSpecification)s of a LCM
specification should be regular, which is defined as follows (based on a definition by Smolka et
al. [10]):

A signature ¥ is called regular if

1. the subsort order of ¥ is a partial order

2. every (Expression) s has a least sort os, that is, there is a unique function o from the set of
all well-formed (Expression)s into the set of (SortName)s such that

e if s is an (Expression), then s is a (Expression) of sort os

e if s is an (Expression) of sort ¢, then os < €.

We call a specification regular if its signature is regular.

Example

A (Functions) section might look like

functions
first_working_day : WORKING_DAY;
next_working_day (WEEK_DAY) : WORKING_DAY;
remaining_working_days(WEEK_DAY) : SET[WORKING_DAY];

The following is not a valid (Functions) section, because it violates the regularity requirement
(assuming that the sorts MyList and MyTree are unrelated in the sort hierarchy):

begin value type MyList
functions
null : MyList; —-— null returns the empty list
end value type MyList;
begin value type MyTree
functions

null : MyTree; -- null returns the empty tree

end value type MyTree;

24

Here, the (Expression) null has MyList and MyTree as sorts. Since we assumed that neither of
these is smaller than the other, the expression null has no unique least sort, thus violating the
regularity requirement.

5.7 Predicates section

It is possible to define predicates on user-defined value types, using the following syntax:

(ValuePredicates)— predicates (ValuePredicateDeclaration)*

(ValuePredicateDeclaration) — (PrefixForm) ;

Although one could in principle define constant predicates with this syntax, the built-in pred-
icate expressions True and False are more convenient (see section 5.10).

Note that predicates on value types ((ValuePredicate)s) allow an arbitrary number of param-
eters, whereas predicates on object and relationship classes (see 6.9) are always unary predicates
(one argument is assumed, which is an internal identifier for an element of the object or relationship
class in which they are defined).

Example
predicates

adjacent_working_days (WORKING_DAY, WORKING_DAY);

5.8 Axioms section

Syntax:

(Axioms) — axioms (Axiom)*

(Axiom) — [(Quantification) : :] (AxiomBody) ;
(Quantification) — forall { (VariableTyping) , }+
(VariableTyping) — { (VariableName) , }+ : (SortExpression)
(AxiomBody) — [(Condition) -> | (Condition)

(AxiomBody) — [(Condition) <-> | (Condition)

(Condition) — (SimpleCondition)

(SimpleCondition) — { (PredicateTerm) , }+

(PredicateTerm) — { (PredicateFactor) or }+

25

(PredicateFactor) — { (PredicateLiteral) and }+
(PredicateLiteral) — [not | (PredicateApplication)
(PredicateApplication) — (PrefixPredicateApplication) | (InfixPredicateApplication)

(PrefixPredicateApplication) — (PrefixPredicateName) [(ActualParameterList) |

(PrefixApplication) is applicable to user-defined predicates as well as the predefined prefix pred-
icates such as Exists and True. (InfixPredicateApplication)s are only possible for the predefined
predicates, see subsection 5.10

The comma between (PredicateTerm)s means a logical “and”.

This syntax is very permissive in (AxiomBody): it allows a mixture of equations, unequalities
combined with a logic programming notation for predicates and conditions. It is likely that an
implementation will restrict this further. The exact nature of these restrictions is left undefined
here. The reason for this permissiveness is that we reuse this grammar rule for the axioms section
in the definition of classes. We don’t want to be unnecessarily restrictive in those specifications.

Example

Part of an axioms section defining a value type BOOLEAN, with values true and false and the
functions conjunction and negation etc. might look like 2

axioms
forall x : BOOLEAN ::
conjunction(true, x) = true;
forall x : BOOLEAN ::
conjunction(false, x) = false;
negation(true) = false;
negation(false) = true;
forall x, y : BOOLEAN ::
disjunction(x,y) = negation(conjunction(negation(x),negation(y)));

5.9 Expressions

An expression is constructed from function applications of user defined and built-in functions. We
call an expression well-formed if the arguments supplied to each application fit with exactly one
definition of that function. This is guaranteed by the unique definition rule and the syntax rules
given below. The predefined functions are considered to have an implicit defining occurence in the
specification, with the arguments as indicated below. Of course, the unique definition rule applies
to uses of the built-in functions as well as to user-defined functions.

(Expression) — (SimpleExpression) { (BinarylnfixOperator) (SimpleExpression) }*

(SimpleExpression) — (PrefixFunctionApplication)

2Note that BOOLEAN is not a built-in value type; it is often more convenient to use predicates instead. Since True
(note the capital ‘T’!) , False and operators and etc. are reserved words LCM dealing with predicates, the names
used in the example are somewhat unnatural.

26

RATI ONAL

N

| NTEGER NZRATI ONAL

N

I NATURAL NZI NTEGER NATURAL

NEG NT POSI NT
ZE

RO

Figure 5.2: The built-in value types, and the subsort relationships between them.
(SimpleExpression) — ((Expression))

(SimpleExpression) — (Constant)

(SimpleExpression) — (VariableName)

(SimpleExpression) — - (SimpleExpression)

(PrefixFunctionApplication) — (PrefixFunctionName) [(ActualParameterList) |
(ActualParameterList) — ({ (Expression) , }+)

(VariableName) — (Name)

For a survey of the (BinarylnfixOperator)s and the (PrefixFunctionName)s for the predefined
functions, see section 5.10.

5.10 Built-in value types, predicates and functions

To aid the author in writing LCM specifications, a small set of built-in value types is provided, with
operators and predicates defined on them. The built-in value types and the subsort relationships
between them are shown in figure 5.2.

5.10.1 Built-in predicates for testing equality

An important class of predicates is that of equality. Two variants are provided: the first states
that two expressions are equal, the other that they are unequal.

27

Predicate | Description
True Constant true
False Constant false

Figure 5.3: The built-in nullary predicates.

Predicate Description

Exists(instance_id) | Instance existence. See section 8.9
Used(instance_id) Instance identifier used. See section 8.9
IsEmpty(SET[t]) Is an empty set of elements of type t
IsEmpty(BAG[t]) Is an empty bag of elements of type t

Figure 5.4: The built-in unary predicates that use standard predicate application syntax.
(InfixPredicateApplication) — (Expression) = (Expression)
(InfixPredicateApplication) — (Expression) != (Expression)

The types of the expressions appearing on both sides of the = or != must have a unique least
common supertype.

The desired semantics of specifications containing both equality and disequality predicates
needs further study, in particular the exact constraints that should be imposed in order to make
executability feasible. In this report we deal only with syntactic matters and we leave this matter
open.

5.10.2 Other built-in predicates

In figure 5.3, the two predefined predicates without arguments, True and False are shown.
Both nullary and unary predefined predicate names use the standard syntax for a (Prefix-
PredicateApplication).
Figure 5.5 shows the binary built-in predicates with infix notation.

(InfixPredicateApplication) — (Expression) (InfixPredicate) (Expression)

Here, the (InfixPredicate), can be any of the reserved words mentioned in the first column of
figure 5.5.

5.10.3 Built-in sorts, constants and functions

The built-in expression forms consist of constants, the unary negation operator and a number of
infix binary operators.

(Constant) — (ZeroConstant) | (PoslIntConstant) | (RationalConstant) | (CharacterConstant) | (StringConstant)

All occurrences ¢ of (ZeroConstant), (PosIntConstant), (RationalConstant), (CharacterConstant)
and (StringConstant) are occurrences of built-in functions with Arity(c) = 0, and Smallest ResultSort(c)
equal to ZERO, POSINT, RATIONAL, CHARACTER, and STRING, respectively.

Expressions may be combined into larger expressions with the (BuiltInInfixOperator)s shown
in figure 5.6. All these binary functions are left-associative. Their priorities are summarized in
figure 5.7.

Expressions may be combined into larger expressions using the built-in functions shown in
figure 5.8; the are described by giving the (FunctionDeclaration)s that would be needed to declare
them.

They are written just like ordinary user-defined function applications. The author of a LCM
specification may assume them to be defined somewhere.

28

Predicate | LHS type | RHS type || Description

< NATURAL NATURAL strictly smaller than
< INT INT strictly smaller than
< RATIONAL | RATIONAL || strictly smaller than
< SET[t] SET [t] strict set inclusion

< STRING STRING strictly precedes

< DATE DATE strictly precedes

<= NATURAL NATURAL smaller than or equal
<= INT INT smaller than or equal
<= RATIONAL | RATIONAL || smaller than or equal
<= SET [t] SET [t] non-strict set inclusion
<= STRING STRING non-strictly precedes
<= DATE DATE non-strictly precedes
>= NATURAL NATURAL greater than or equal
>= INT INT greater than or equal
>= RATIONAL | RATIONAL || greater than or equal
>= SET [t] SET [t] is non-strict superset of
>= STRING STRING non-strictly succeeds
>= DATE DATE non-strictly succeeds
> NATURAL NATURAL strictly greater than
> INT INT strictly greater than
> RATIONAL | RATIONAL || strictly greater than
> SET [t] SET [t] is strict superset of
> STRING STRING strictly succeeds

> DATE DATE strictly succeeds

In t SET[t] Membership of a set

Figure 5.5: Built-in binary predicates that use infix syntax.

Operator || LHS type RHS type Result type Description

+ ZERO ZERO ZERO Addition

+ NATURAL NATURAL NATURAL Addition

+ INTEGER INTEGER INTEGER Addition

+ RATIONAL RATIONAL RATIONAL Addition

+ SET[t] SET[t] SET[t] Set union

+ BAG[t] BAG[t] BAG[t] Bag union

- ZERO ZERO ZERO Subtraction

- NATURAL NATURAL NATURAL Subtraction

- INTEGER INTEGER INTEGER Subtraction

- RATIONAL RATIONAL RATIONAL Subtraction

- SET[t] SET[t] SET[t] Set difference

- BAG[t] BAG[t] BAG[t] Bag difference

- DATE DATE INTEGER Difference (in number of days)
div NAT POSINT NAT Integer division

mod NAT POSINT NAT Integer remainder

- NAT NAT NAT Exponentiation

* ZERD ZERD ZERD Multiplication

* NATURAL NATURAL NATURAL Multiplication

* INTEGER INTEGER INTEGER Multiplication

* RATIONAL RATIONAL RATIONAL Multiplication

* SET[t] SET[t] SET[t] Set intersection

* BAG[t] BAG[t] BAG[t] Bag intersection

* SEQUENCE[t] | SEQUENCE[t] | SEQUENCE[t] Sequence concatenation
* STRING STRING STRING String concatenation
/ RATIONAL NZRATIONAL NZRATIONAL Division

Figure 5.6: Built-in LCM binary functions that use infix syntax. All binary functions mentioned

above are left associative.

29

- (unary operator)

x, /, div

+, - (binary operator)

Figure 5.7: Priority of built-in unary and binary functions. Reading from top to bottom, groups

of operators with equal priority are listed in order of decreasing priority.

Declaration

Description

inc (NATURAL) : POSINT;

inc (NEGINT) : INAT;

inc (INTEGER) : INTEGER ;
dec(POSINT) : NATURAL;
dec(INAT) : NEGINT;

dec (INTEGER) : INTEGER;
gcd(NZINTEGER,NZINTEGER):NZINTEGER;
integer_part (RATIONAL) : INTEGER;
decimal_part(RATIONAL) : NATURAL;
floor (RATIONAL) : INTEGER;
empty:EMPTY;

insert(SET[t],t) :SET[t];

insert (BAG[t],t) :BAG[t];
delete(SET[t],t):SET[t];
delete(BAG[t],t) :BAG[t];
size(SET[t]) : NATURAL
size(BAG[t]) : NATURAL

size (SEQUENCE[t]) : NATURAL

size (STRING) : NATURAL

bag_to_set(BAG[t]) : SET[t];
set_to_bag(SET[t]) : BAG[t];
string_to_date(STRING) : DATE;
year(DATE) : NATURAL;
month(DATE) : NATURAL;
day(DATE) : NATURAL;
date_to_string(DATE) : STRING;

increment, successor

decrement, predecessor

greatest common divisor

integer part of a decimally represented rational
decimal part of a decimally represented rational
largest integer < the rational

empty container (set, bag, list etc.) constant
include element in a set

add one occurrence of element to a bag
exclude element from a set

remove one occurrence of element from a bag
cardinality of a set

number of occurrences in a bag

length of a sequence

number of characters in a STRING

set of all elements occurring in the bag

bag, with all elements of set occurring once
convert string yyyymmdd to a DATE value
extract year from a DATE value

extract month from a DATE value

extract day from a DATE value

convert a DATE to a string yyyymmdd

Figure 5.8: Built-in functions in LCM that use the standard function-call syntax.

30

Chapter 6

Objects

In chapter 5 we introduced value blocks, which fix particular sets of values and functions at
specification time. We can do so because they will remain the same over all possible states of
the UoD. On the other hand, we need to model change as well. In the next subsections we
will explain the constructions for describing modeled entities that do not necessarily remain the
same over all states of the world traversed during the life of the DBS: objects, attributes and
relationships. Although we cannot fix the sets of all object instances or the relations between
them at specification time, we can express restrictions on them and express similarities between
them in different states of the UoD.

6.1 Object class definition

An object class block specifies a class by specifying the common structure of all possible class
instances (the objects).

(ObjectClassBlock) — begin object class (UserDefinedObjectClassName)
(ObjectGeneralization)*
(ObjectSpecialization)*
[(Attributes) |
[(Predicates)]
[(Events) |
[(LifeCycle) |
[(Axioms) |
end object class (UserDefinedObjectClassName) ;

(UserDefinedObjectClassName) — (Name)

The (UserDefinedObjectClassName)s in the begin object classand end object class clauses
must be identical. This is a second instance of the block name rule mentioned earlier in section 5.2.

There may be at most one (ObjectClassBlock) for a (ObjectClassName). There cannot be any
(RelationshipClassBlock) in the specification with the same name as an (ObjectClassBlock).

There may however be a (ValueClassBlock) with a (UserDefinedSortName) identical to the
(UserDefinedObjectClassName) of some (ObjectClassBlock). In this case, the specifier explicitly
supplies the set of internal identifiers for the objects in the class. If this is done for a class, it is
required that this is done for all its descendant classes as well. In the case no such value types are
defined explicitly for an object class, internal identifier sorts for them are defined implicitly. This
is described in detail in section 6.11.

Note that object class specifications cannot be parametrized. One reason for not allowing this
is that we have not yet come across applications from which we could abstract an object class
specification parametrized by attributes, events, or life cycles.

31

class name

attributes
predicates

events

Figure 6.1: The general form of a class diagram, the diagrammatic summary of an object class
block.

In the next section we discuss the state signature of an object class specification, i.e. the
generalization, specialization, attributes and predicates sections. Events are discussed in chapter 8,
and life cycles in chapter 9.

The diagrammatic representation of a classes shown in figure 6.1. This is called a class
diagram.

6.2 Generalization and specialization of object classes

An object specialization section expresses that the object class of the (ObjectClassBlock) in
which it appears has the object classes mentioned in the (ObjectSpecialization) as (not necessarily
proper) subclasses. The subclasses are required to be disjoint, and, when taken together, should
cover all elements of their superclass.

Its syntax is:

(ObjectSpecialization) — partitioned by { (ObjectSubClassName) , }+ ;
(ObjectSubClassName) — (UserDefinedObjectClassName)
(ObjectGeneralization) — specialization of { (SuperClassName) , }+ ;

(SuperClassName) — (UserDefinedClassName)

An extended subclass relationship is derived from all (ObjectSpecialization)s of the specification
taken together by taking the closure over transitivity of the subclass. This extended subclass rela-
tionship should be irreflexive. This is to be understood to also exclude statements of ¢ having itself
as subclass, even though this would seem reasonable under the non-proper subset of objects inter-
pretation of subclassing. Together with this restriction, the syntax implies that there may be zero
or more (ObjectSpecialization) sections in an {ObjectClassBlock), and each (ObjectSpecialization)
section declares a partition of two or more disjoint subclasses. This means that we can have mul-
tiple inheritance. On the other hand, we cannot have a single subclass ¢; of ¢y, but must always
at least add another subclass ¢y of ¢y so that ¢; and ¢y form a partitioning of ¢.

Example

Consider the situation shown in in figure 6.2. In LCM, this could be described as sketched below:

begin object class PERSON
partitioned by
MALE, FEMALE;

32

MALE

isa

PERSON

FEMALE

isa

JUNIOR

SENIOR

Figure 6.2: An example of an object specialization diagram.

partitioned by
JUNIOR, SENIOR;

end object class PERSON;
begin object class MALE
ené.ébject class MALE;
begin object class FEMALE
éﬁé object class FEMALE;
begin object class JUNIOR
égé object class JUNIOR;

begin object class SENIOR

end object class SENIOR;

6.3 Attribute specification

In each state of the world, an attribute name q is interpreted as a function a : D — C, where
D is its domain and C is its codomain.. Therefore, within a state of the world, it behaves just
like a function, but in different world states, one attribute name may be interpreted as different
functions. The interpretation of an attribute may change when an event occurs. This is described

in chapter 8.

Attributes are always declared inside a {ObjectClassBlock) or (RelationshipClassBlock) ant the
domain of an attribnute is always the class in whose specifrication it is declared. In the following
syntax, only the codomain name needs to be specified.

(Attributes) — attributes { (AttributeSpecification) }* { (UniquenessConstraint) }*

(AttributeSpecification) — (AttributeName) :

33

(SortExpression) (AttributeFlags) ;

(AttributeFlags) — { (AttributeFlag) , }*

(AttributeFlag) — (Initialization)

(AttributeFlag) — fixed

(AttributeFlag) — inverse

(AttributeFlag) — injection | surjection | bijection
(UniquenessConstraint) — keys (KeyConstraint)*
(KeyConstraint) — { (AttributeName) , }+ ;
(UniquenessConstraint) — identifiers (ldentifierConstraint)*
(IdentifierConstraint) — (AttributeName) ;

See section 8.9.3 for a discussion of (Initialization).

Single attribute initialization rule: Only one initialization as attribute flag is
allowed in an (AttributeSpecification), even if the values match.

A redefinition of the initial value is allowed in another (ValueBlock) for a subclass.
Flags, keys and identifiers are discussed in the following sections. We use the following example
in what follows:

begin object class COPY
attributes
bar_code : INTEGER;
price : MONEY fixed;
times_borrowed : NATURAL initially O;
identifiers
bar_code;
end object class COPY;

6.4 Fixed attributes

The flag fixed for an attribute a is syntactic sugar for the inclusion of axioms of the form
forall x : S :: Exists(x), a(x) = v -> [e(x;...)]a(x) = v
for all events e applicable to objects of class S.

The meaning of this is that if x exists and a(x)=v before the execution of e, then after execution
of event e(x;...), we have a(x)=v. These axioms say that, once an object exists, none of its
fixed attributes changes under any event e. These axioms follow from the frame assumption,
which says that everything that is not specified to change in an event remains unchanged.

6.5 Injective, surjective and bijective attributes
In a particular state of the world, an attribute can be viewed as a function. By stating a property

like surjectivity of an attribute this function is constrained, thus giving an easy way to specify
some common cardinality constraints, without having to add special axioms.

34

DOCUMENT) TITLE
title

0,1

Figure 6.3: Each title is the title of at most one document.

DOCUMENT) TITLE
title

>=1

Figure 6.4: There is at least one document for each title.

Injectivity

For example, consider the constraint that in each state of the world, there is at most one document
for each title, as shown in figure 6.3. This can be expressed by:

begin object class DOCUMENT
attributes
title : TITLE injection;

end object class DOCUMENT;
begin object class TITLE

ena.;bject class TITLE;
This is equivalent to the inclusion of an explicit axiom stating
forall di1, d2 : DOCUMENT ::
title(dl) = title(d2) -> d1 = d2;
Surjectivity
There is at least one document for each title, as shown in figure 6.4:

begin object class DOCUMENT
attributes
title : TITLE surjection;

end object class DOCUMENT;
begin object class TITLE

end object class TITLE;

This is equivalent to the definition of an additional right inverse function rinv_title of TITLE,
which is total, and therefore forces title to be surjective.

begin object class DOCUMENT
attributes
title : TITLE;

35

DOCUMENT) TITLE
title

Figure 6.5: There is exactly one document for each title, and there is exactly one title for each
document.

end object class DOCUMENT;

begin object class TITLE
attributes
inv_title : DOCUMENT;

axioms
forall t : TITLE :: title(rinv_title(t)) = t;
end object class TITLE;

Only the existence of such an inverse function is required. The way in which this is proved is left
open, e.g. by searching or storing it.

Bijectivity
Bijectivity is the the combination of the surjectivity and injectivity properties, as in the example

illustrated in figure 6.5:

begin object class DOCUMENT
attributes
title : TITLE bijection;
end object class DOCUMENT;

begin object class TITLE

end object class TITLE;
would be equivalent to

begin object class DOCUMENT
attributes
title : TITLE;

axioms
forall d1, d2 : DOCUMENT ::
title(dl) = title(d2) -> d1 = 42;

end object class DOCUMENT;
begin object class TITLE
attributes
inv_title : DOCUMENT;
axioms

forall t : TITLE :: title(inv_title(t)) = t;
end object class TITLE;

36

6.6 Inverse attributes

An (AttributeSpecification) declared in the specification of class Cy, and whose codomain is a class
Cs, is really a many-one relationship from Cy to Cy. Such an attribute can be given a flag inverse.
This means that the attribute is a surjection, and implicitly defines an additional attribute which
expresses the inverse relationship.

begin object class obj
attributes
attr : result_id_sort inverse;

has the same effect as defining

begin object class result_id_sort
attributes
inv_attr : SET[obj];
axioms
forall x : obj , r : resultid_sort ::
attr (x)=r <-> x In inv_atir(r);

6.7 TUnique sets of attributes

The general form of the keys declaration is

keys
al, ..., an;
bl, ..., bm;

where all the a’s and b’s are attributes of the class in which the keys section appears.
Its meaning is

axioms
forall t1, t2 : S ::
Exists(t1), Exists(t2), al(t1)=al(t2), ... , an(tl)=an(t2)
-> t1 = t2;
forall t1, t2 : S ::
Exists(t1), Exists(t2), b1(t1)=b1(t2), ... , bn(t1l)=bn(t2)
-> t1 = t2;

Informally, this expresses that in each state of the world, the values of attributes al to an
uniquely determine an instance of the class in which the keys section appears. The attributes b1l
to bm have this same property; they are an alternative way of determining an instance of the class.

Across states of the world, these attribute combinations need not be unique. They are thus
not internal nor external identifiers.

Attribute specialization rule: Attribute declarations may be repeated for sub-
classes, but only with a codomain that is a (strict) subsort of the original codomain.

37

COPY

I bar_code

Figure 6.6: Attributes constituting an identifier are marked with a *’ in class diagrams.

6.8 Identifier section

Declaring a single attribute as identifier intends to express that it constitutes an external
identifier, i.e. one that is visible to DBS users. What it means to be an external identifier
cannot be fully specified in the formal DBS specification [15], but it can be approximated in the
specification by stating that it is a key (see 6.7) and that it is fixed (see 6.4).

Stating that an attribute in LCM as identifier, e.g. the attribute book_code in

begin object class COPY
attributes
bar_code : INTEGER;

identifiers
bar_code;
end object class COPY;

expresses that bar_code is intended as an external identifier. Its formal meaning is equivalent to

begin object class COPY
attributes
-— Bar_code is intended as an external identifier.
bar_code : INTEGER fixed;

keys
bar_code;
end object class COPY;

Identifiers are marked by an exclamation mark in class diagrams (figure 6.6).

6.9 Predicates specification

Within an object class specification unary predicates on the objects may be defined. These are
always unary predicates with an instance of the class on which they are defined as argument. In
the (ObjectPredicate) you cannot even specify this argument, although it is required if the object

predicate is used in a (PredicateTerm). The syntax for defining predicates in (ObjectClassBlock)s
and (RelationshipClassBlock)s is:

(Predicates) — predicates (PredicateDefinition)*

(PredicateDefinition) — (PredicateName) [(PredicateFlags) | ;

38

(PredicateFlags) — { (PredicateFlag) , }+
(PredicateFlag) — fixed | (Predicatelnitialization)

(Predicatelnitialization) — initially (PredicateTerm)

Example
The following predicates section, appearing in an (ObjectClassBlock) of object PERSON

predicates
Married;

defines a predicate on persons. Applications of it should be written like Married(p) if used
elsewhere in the specification where p is a variable that ranges over PERSON. The (PredicateFlags)
applied to predicates have the analogous meaning as (AttributeFlags) with attributes.

6.10 Object existence predicate

With each (ObjectClassBlock) or (RelationshipBlock) the unary predicates Exists is defined implic-
itly on their elements. Exists (o) expresses whether the object or relationship o is viewed to exist
in the current state of the world. (See Gamut [5] for a discussion of the usefulness of existence
predicates in modal logic.) In addition, for (ObjectClassBlock)s only, an additional unary predicate
Used (o) is defined to express whether there has been a creation event for the object. In the initial
world, i.e. before any event has occurred, these predicates are defined to be equivalent to False
for all objects of the class. Creation and destruction event on the object affect the valuation of
these predicate. This is described in detail in section 8.9.

6.11 Generation of default internal identifier value types

The author of a LCM specification can explicitly specify the set of values to be used as internal
identifiers for the instances of a species by defining a value type with the same name as the species.
If the author didn’t specify the set of values to be used as internal identifiers for a species, a value
type with an infinite supply of identifiers is assumed, and is given the same name as the species.
In the case of unnamed species that result from defining multiple ways of partitioning a class, an
internal identifier sort is defined for each of the species, e.g. four sorts for each of the intersection
classes of figure 5.1 in section 5.4. You can refer to this species and its internal identifier sort by
using a (SortExpression) containing a * to refer to denote the intersection, as explained in 5.4.

6.12 Static integrity axioms

Static integrity constraints can be expressed by including them as axioms in an axioms section.
For example, we can express the integrity constraint that no person is older than 150 years by
including an axiom that says so. All events that lead from an admissible state of the world to one
that would violate this constraints are then blocked.

begin object class PERSON
attributes
age : NATURAL;

axioms

39

forall p : PERSON ::
age(p) <= 150;
end object class PERSON;

Dependencies, even existence dependencies between objects, can be included similarly. Note that
this does not result in automatic propagation of changes like cascading deletions or recomputation
of derived attributes. It just states that in each state of the world the constraint should be satisfied,
and simply forbids any event with an effect that would violate it.

40

Chapter 7

Relationships

Objects, as discussed in chapter 6 deal with attributes, predicates,events and life cycles of single
objects. In order to handle n-ary predicates and n-ary attributes, that concern more than one
object, we introduce relationship classes. Using them, we can express that some relationship
between a fixed number of objects holds. This relationship can be assigned attributes, predicates,
events and a life cycle that concerns the objects in the relationship. In addition, relationships can
have their own life cycle definitions, just like objects.

The key feature that distinguishes relationship classes from other object classes is the way
their instances are identified. Relationships are identified by a composite identifier (consisting
of one identifier for each of its components), whereas ordinary objects have an atomic identifier.
Thus relationships have no independent identity, but must always be identified via the identity
of their components. As a corollary, we have that we cannot identify an existing relationship
if one of its components is non-existent. This is discussed in more detail in section 7.2. If
these assumptions about the identity and existence of a relationship are undesirable in a certain
modeling context, you are probably not handling a relationship but an ordinary object instead.
By turning an relationship class into an object class you give each instance its own independent
identity. If desired, you could add existence constraints for objects too. For example, you can
specify that an object cannot exist if an object-valued attribute does not exists. Such axioms must
be supplied explicitly for objects, but they are implicit for relationships.

7.1 Relationship block

Syntax:

(RelationshipBlock) — begin relationship class (UserDefinedRelationshipName)
(RelationshipGeneralization)*

(RelationshipSpecialization)*

(Components)

[(Attributes) |

[{Predicates) |

[(Events) |

[{(Process) |

[(Axioms) |

end relationship class (UserDefinedRelationshipName) ;
(UserDefinedRelationshipName) — (Name)

The (UserDefinedRelationshipName)s appearing in the begin relationship class and end
relationship class clauses of a (RelationshipBlock) should be the same. This is the third instance

41

STUDENT | st udent| COURSE_ATTENDANCE course | COURSE

Figure 7.1: Relationship classes are shown in class diagrams as a class with fat arrows pointing
to its component classes, labeled with the component names.

of the block name rule.

The occurrence o of a (UserDefinedRelationshipName) appearing immediately after the begin
relationship class is a defining occurrence of that name, with Scope(o) equal to the whole
source text, and Kind(o) = relationship, and at the same time a defining occurrence of that name
with Scope(o) equal to the whole source text, and Kind(o) = sort. The latter is the implicitly
declared sort of internal identifiers for the relationship instances. Conceptually, this sort consists
of tuples of values for all components of the relationship, generated by a function called R_id
with scope equal to the whole source text, where R is the relationship name. This function takes
internal identifiers for all components of R as parameters (see section 7.4).

Example

The attendence of courses (possibly more than one) by students (possibly more than one per
course) can be conveniently described using a relationship COURSE_ATTENDANCE below:

begin object class STUDENT
end object class STUDENT;
begin object class COURSE

end object class COURSE;

begin relationship class COURSE_ATTENDANCE
components
student : STUDENT;
course : COURSE;
attributes

end relationship class COURSE_ATTENDANCE;

In class diagrams, a relationship is shown by fat arrows labeled with the component names
pointing from the relationship class to the component classes. Figure 7.1 shows this convention
applied to the above example.

7.2 Existence dependency of relationships on their com-
ponents
Relationships are existence dependent on their components. This means that a relationship r can

only exist (i.e. the built-in predicate Exists(r) holds) in a world state if in the same world state
all components ci of that relationship also have Exists(ci) true. Note that this does not hold

42

in the other direction: it is perfectly valid to have a world state in which all components of a
relationship are existent, but the relationship isn’t.

This is expressed as the implicit inclusion of the following axioms expressing this existence
dependency:

axioms
forall cl1 : component_name_1, ..., cn : component_name_n ::
Exists(R_id(cl,...,cn)) —> Exists(cl);
forall c1 : component_name_1, ..., cn : component_name_n ::

Exists(R_id(c1,...,cn)) -> Exists(cn);

7.3 Specialization

Just like object classes, relationship classes can be specialized too. The syntax of a (Relationship-
Specialization) occuring in a (RelationshipClassBlock) is similar to that given for object specializa-
tion in subsection 6.2, adapted by replacing objects with relationships. Its syntax is:

(RelationSpecialization) — partitioned by { (SubRelationName) , }+ ;
(SubRelationName) — (UserDefinedRelationshipClassName)

(RelationshipGeneralization) — specialization of (SuperRelationshipName) ;

(SuperRelationshipName) — (UserDefinedRelationshipName)

As a consequence, a relationship class can only contain relationship classes as specialization but
not object classes.

Component specialization rule: Each specialization of a relationship class
inherits all components of its parent, and should not mention them again in its
(RelationshipClassBlock), except for the case that it constrains the set of possible values
for such an inherited component to a subsort.

This is similar to the attribute specialization rule.

It is perfectly reasonable for a subrelationship to have extra attributes and predicates that its
parent relationship doesn’t have.

This is illustrated in the following example.

Example

Consider the case of a library where borrowing of rare books is restricted to staff members only. If
we would like to partition the relationship that registers borrowings, for example because different
rules and attributes are applicable to them, we could express this by partitioning the relationship
BORROWING as follows (see also figure 7.2:

begin object class MEMBER
partitioned by
STUDENT, STAFF_MEMBER;
end object class MEMBER;

begin object class STUDENT

43

STUDENT STAFF_MEMBER

[}
bor r ower
l is a
MENMBER
bor r ower
NON_RARE_ L OAN — , RARE_LOAN
\f\rﬁ
LOAN
BOOK
is a
book book
v Y
NON_RARE_BOOK RARE BOOK

Figure 7.2: Relationship LOAN is partitioned into RARE_LOAN and NON_RARE_LOAN.

44

end object class STUDENT;
begin object class STAFF_MEMBER
end object class STAFF_MEMBER;

begin object class BOOK
partitioned by
RARE_BOOK, NON_RARE_BOOK;
end object class BOOK;

begin relationship class LOAN
partitioned by
RARE_LOAN, NON_RARE_LOAN;

components
borrower : MEMBER;
book : BOOK;
attributes

borrow_date : DATE;
end relationship class LOAN;

begin relationship class RARE_LOAN

components
borrower : STAFF_MEMBER;
book : RARE_BOOK;

end relationship class RARE_LOAN;

begin relationship class NON_RARE_LOAN
components
borrower : MEMBER;
book : NON_RARE_BOOK;

end relationship class NON_RARE_LOAN;

7.4 Components of a relationship

Syntax:

(Components) — components { (ComponentSpecification) }+
(ComponentSpecification) — (ComponentName) : (ObjectClassName) (AttributeFlags) ;

A components section mentions the object classes that partitipate in the relationship. At
least one (ComponentName)s should be specified in the (Components) section of a (Relationship-
Block). The (ComponentName)s should be names that occur as an (ObjectClassName) in an
(ObjectClassBlock) or a (RelationshipName) in a (RelationshipBlock) elsewhere in the specification.
Note that this includes relationship-valued components.

A LCM relationship definition of the form
begin relationship class R

components
component_name; : object_class_name; ;

45

component_name,, : object_class_name,, ;

end relationship class R ;

is similar to an object class definition with all other sections appearing in the (Relationship-
ClassDefinition), but which is identified by all its components instead of having its own identity.
The internal identifiers for relationship R above are defined implicitly as tuples of internal
identifiers for its components. In contrast with object classes, in which case the user may supply
his own specification of the data type to be used as internal identifiers for these objects, the
internal identifier sorts for relationships are always defined implicitly, and are named identically
to the relationship as follows:
begin value type R
functions
R_id(obj class 1, ..., obj _class,) : R;
compi (R) : obj_classy;

comp,, (R) : obj_class,;
axioms
forall r:R, cl: obj classy, ..., cn: obj classn ::
compy (R_id(cl,..., cn)) = cl;
-- similar axioms for the other components...
end value type R;

The constructor function is always the relationship class name with suffix _id; it may be used
in the specification. The order in which the components appear as arguments is in increasing
alphabetical order of the corresponding component names. Note that the parameters included the
components that are all inherited in the case of a relationship class specialization.

46

Chapter 8

Local events

Local events are used to describe events that occur in the life of objects, and to associate changes
in attribute and predicates values in the model with them.

The preconditions and effects of events are defined in dynamic logic. The event and life cy-
cle definitions for objects and relationships, as well as the combination of several communicating
events into transactions (see chapters 9 and 10) are modeled after process algebra[l]. We provide
expressions for processes and allow recursive specifications for life cycles of objects and relation-
ships. We will discuss this in chapter 9.

In this chapter, we focus on the declaration of local events, and on the specification of their
preconditions and effects.

Sections 8.1 to 8.4 discuss event declaration, event terms and two special events fail and
skip. Sections 8.5 to 8.8 discuss precondition axioms, which express a precondition for either
the success or the failure of an event in terms of attribute and predicate values and effect axioms,
which express the change on the local state caused by an event ocurrence. Both use dynamic logic
for this purpose.

Creation and deletion events are discussed in section 8.9.

8.1 Local event definition

Local events of some object class or relationship class can be defined by including an (Events)
section its (ObjectClassBlock) or (RelationshipClassBlock). These events are called local events
because every occurrence of them is local to the life of an instance (an object or a relationship).
This instance is called the subject of the event occurrences.
Different occurrences of an event can of course occur in the life of different subjects, as long as
these subjects are instances of the class in whose specification the event is declared.
Syntactically, an events section looks like this:

(Events) — events (EventSpecification)*

(EventSpecification) — (EventName) (EventFormalParameters) [(EventFlag) | ;
(EventFormalParameters) — ({ (FormalEventSubject) , }+ [; { (SortExpression) , }+])
(EventFlag) — creation | deletion

(FormalEventSubject) — (SortExpression)

47

PERSON ADDRESS
address

age : NATURAL

* birth

birthday

move_to new_address
+death

Figure 8.1: Creation and deletion events are marked in a class diagram with a ‘*’ and ’+’
respectively.

The optional flags creation and deletion declare the local event to be of a special kind, viz.
a creation of deletion event respectively. They are discussed in 8.9.

Local events are parametrized, using a syntax similar to the syntax for function and predicate
parameters. The only difference is that it makes clear which parameter is the subject of a local event
(i.e. the object or relationship in the life of which it takes place). After the opening parenthesis, we
first mention the subject of the local event. If there are any other (i.e. non-subject) parameters,
they will follow after a semicolon that separates the subject from the non-subject parameters.

In class diagrams, creation events are marked by an asterisk and deletion events by a plus, like
in figure 8.1.

Examples

The next fragment of the specification of object class PERSON shows how four kinds of local events
for PERSON are declared: birthday, change_address creation event birth, and deletion event
death. (See also figure 8.1.)

begin object class PERSON

attributes
age : NATURAL;
address : ADDRESS;
events
birth(PERSON; ADDRESS) creation;
birthday (PERSON) ;
move_to_new_address (PERSON; ADDRESS) ;
death (PERSON) deletion;
axioms

forall p : PERSON, ad : ADDRESS ::
[birth(p; ad)] age(p) = 0 and address(p) = ad;

forall p : PERSON, a : NATURAL ::
age(p) = a -> [birthday(p)] age(p) = a + 1;

forall p : PERSON, ad : ADDRESS ::
[move_to_new_address(p; ad)]
address(mover) = ad;
end object class PERSON;

In chapter 10 we will define transactions, which are like events, but can have more than one
subject.

48

8.2 Refering to events

One can refer to a user-defined event, or the implicitly defined events create and delete by
mentioning it, supplying actual values for its subject(s) and other parameters.

(EventExpression) — (UserDefinedEventName) (ActualEventParameters)
(UserDefinedEventName) — (Name)

(ActualEventParameters) — ((ActualSubjects) [; (ActualParameterList) |)
(ActualSubjects) — { (SubjectExpression) , }+

(SubjectExpression) — (Expression)

Examples of event expressions are birth(john;ad) and remove(john).

8.3 Failure event

There is a special built-in event named fail which denotes eternal stagnation:
(EventExpression) — fail

The meaning of fail can be described by the instances for all subjects S of the axiom
forall s : S :: [fail] False;

Literally, this means that the predicate False holds in all states of the world reachable by per-
forming fail from the current world state. Since there are no world states in which False holds,
this is equivalent to stating that there are no world states reachable by performing fail.

8.4 Skip event

The special event named skip denotes doing nothing. It leaves all attributes and predicates un-
altered.

(EventExpression) — skip

There are no axioms for skip. By the frame assumption, this means that it does not change.

8.5 Specifying the effects and preconditions of an event
occurrence

The effects and admissibility of events in a particular state of the world are expressed using dy-
namic logic[7][8]. Two special kinds of {(Condition)s (see 5.8) are available for this purpose:

(Condition) — [(EventExpression) 1 (SimpleCondition)

49

{Condition) — < (EventExpression) > (SimpleCondition)

Note that the priority of the box and diamond is lower than that of predicates, thus we can
often avoid writing parentheses around composite (SimpleCondition)s following them.

An implementation will generally offer only a restricted subset from the axioms admitted
by this syntax definition. The exact nature of subsets that are restricted enough to make the
specification executable in practice, but are still offer a convenient way to specify what we want
in practical case, is subject of current research.

In practice, separating axioms that specify the effects of events (if they occur) from axioms
that constrain the admissibility of events turns out to increase readability of specifications.

Axioms of the first kind are called effect axioms, whereas the admissibility-constraining
variants are called precondition axioms.

8.6 Effect axioms

Effect axioms describe the effects of a local event that are reflected in the values of the attributes
and predicates of the object or relationship.
This is usually done with axioms of the form

forall (variables) ::
(binding of variables to values of atiributes and predicates
before the event occurrence)
-> [event(...)]
(equations relating attribute values after the event occurrence
to the variables)

You need only specify the changes; by the frame assumption everything of which we cannot
prove that it has changed stays the same.

When specifying events on relationships, the specifier should identify the relationship using
the constructor function with all components of the relationship as parameters to get the internal
identifier of the relationship. This internal identifier is then passed as the subject of the event.

Example

begin relationship class LOAN

components

copy : COPY;

member : MEMBER;
attributes

date_of_borrow : DATE;
events

borrow(LOAN; DATE) creation;
axioms

-- specify effect of creation event borrow:
forall ¢ : COPY, m : MEMBER, d : DATE, b : LOAN ::
b = LOAN_id(c, m) ->
[borrow(b;d)] date_of_borrow(b) = d;
end relationship class LOAN;

Examples

See the examples of subsection 8.7 for some effect axioms. Note that effect axioms can only affect
the local state of the object or relationship in whose life the event occurs. If some real-world
event has effects on the state of more than one object or relationship, then it should be modeled

50

Alternative form Formal equivalent | Informal meaning
after e possibly ¢ <e> ¢ It is possible to execute event e

and arrive in a world state where ¢ holds.
after e necessarily ¢ | [el ¢ If all worlds in which we arrive

after executing event e

¢ holds.

Figure 8.2: Syntactically sugared forms of effect axioms.

Alternative form Formal equivalent | Informal meaning

e succeeds only if ¢ | <e>True -> ¢ ¢ is a necessary precondition
for the success of event e
(but in general not sufficient)

e succeeds if ¢ ¢ -> <e>True ¢ is a sufficient precondition
for the success of event e

e fails if ¢ ¢ -> [elFalse ¢ is a sufficient precondition
for the failure of event e

e fails only if ¢ [e]lFalse -> ¢ ¢ is a necessary precondition

for the failure of event e

Figure 8.3: Syntactically sugared forms of precondition axioms.

as a transaction, which consists of the synchronous execution of a number of local events (see

section 10).
As an alternative syntax for common forms of effect axioms, LCM provides the following
syntactic sugar:

(Condition) — after (EventExpression) (Modality) (SimpleCondition)
(Modality) — necessarily | possibly

Their meaning is summarized in figure 8.2.

8.7 Precondition axioms

LCM offers easier-to-read alternative syntax for some common forms of precondition axioms. They
are summarized in figure 8.3.
The syntax is:

(AxiomBody) — (EventExpression) (FailOrSucceed) (Cond) (SimpleCondition)

(FailOrSucceed) — fails | succeeds

(Cond) — if | only if

Note that expressions like e succeeds if ¢ are misleading in the sense that in fact the sufficient
precondition for success is not ¢, but in general the conjunction of ¢ and all global integrity
constraints!

51

Examples

begin object class LIBRARY_MEMBER
attributes
no_of_books_borrowed : NATURAL initially O;

events
-- A library member borrows a book.
borrow (LIBRARY_MEMBER) ;
-- A library member returns a book.
return (LIBRARY_MEMBER) ;
axioms
-- Effect axiom: increase amount of books borrowed
-— each time a book is borrowed.
forall m : LIBRARY_MEMBER, book_count : NATURAL
no_of_books_borrowed(m) = book_count —>
[borrow(m)] no_of_books_borrowed(m) = book_count + 1;

-- Precondition axiom: a member may have borrowed at most three
-- books at any time.
borrow(m) succeeds only if no_of_books_borrowed(m) < 3;

end object class LIBRARY_MEMBER;

Instead of the precondition axiom above, we could also have used
borrow(m) fails if no_of_books_borrowed(m) >= 3;

If we want, we can still use the dynamic logic form:
<borrow(m)>True -> no_of_books_borrowed(m) < 3;

Note that in this example we could have handled this constraint better by turning it into a local
static constraint, which should apply to all states of a LIBRARY_MEMBER, and thus not only in
states immediately after a borrow event:

no_of_borrowed_books(m) <= 3;

Ideally, a tool could prove such invariants from the precondition and effect axioms and the speci-
fication of the initial state, or generate expanded precondition axioms which together ensure that
such an invariant cannot be violated. Precondition axioms for an event may refer to the state of
other objects, but the event can only have effect on the local state of the object in the life of which
the event takes place.

8.8 Implicit existence precondition

All local events except creation events (user-defined as well as default) have as implicit precon-
dition for success that their subject s exists. This can be viewed as the automatic inclusion of a
precondition axiom of the form

forall s : ...subject,...
<nce(s;...)>True -> Exists(s);

for each non-creation event nce.
See subsection 8.9 for implicit preconditions for creation events.

52

8.9 Creation and deletion events

Creation events and deletion events are events that have an effect on the existence of an object or
relationship. Creation and deletion events are only allowed for species, i.e. smallest classes in the
taxonomy. Due to their special nature, and their intimate connection with relationships and the
built-in predicates Exists and Used (see section 5.10), they get a special treatment. This avoids
clerical work and thus reduces the possibility of getting hard-to-find bugs introduced by effect and
precondition axioms that don’t take the special nature of these events into account correctly.

8.9.1 The meaning of creation events

Each creation event has the requirement that its subject doesn’t already exist as a precondition
for success, so for all creation events cr, we have implicit axioms saying

forall s : ...subject,...
Exists(s) —> [cr(s;...)]False;

In addition, to avoid confusion due to reuse of internal identifiers, we have

forall s : ...subject...,...::
Used(s) —> [cr(s;...)]False;

The effect of a creation event, if it succeeds, is always that the object comes into existence

forall s : ...subject...,...::
[cr(s;...)] Exists(s);

and the use of the internal identifier is registered:

forall s : ...subject...,...::
[cr(s;...)] Used(s);

An attempt to create a relationship while one of its components is nonexistent will fail due
to the global existence dependency of relationships in combination with these axioms. This is
discussed in detail in section 7.2.

Since the smallest subclass of an object or relationship must be known at creation/deletion
time, you can only define creation and deletion events for species. See section 5.4 for ways to refer
to species that don’t have a explicit user-defined name.

User-defined creation and deletion events are mentioned in an (EventSpecification) and given a
meaning by user-supplied effect axioms for them. If the user does not supply creation or deletion
events for a species, LCM automatically supplies standard creation and deletion events. Such
default creation and deletion events have create and delete as their names, respectively,
and are discussed in subsections 8.9.2 and 8.9.4. The user may declare an event called create,
but then it must be a creation event (and marked as such by the creation flag). Analogously,
the user may declare an event called delete, but then it must be a deletion event (and marked
as such by the deletion flag).

8.9.2 Default creation event

If the user has marked no events for a species as creation, a default creation event create is
defined implicitly. This default creation event initializes all attributes to a value which comes
from an initial value specification, or, if this is not present, from a parameter of create. These
parameters should appear in increasing lexicographic ordering of the names of the uninitialized
attributes, taking the ordering in ASCII as basis.

The next example will show the idea:

53

Example

Consider the following object class specification (where ATTR1 to ATTRn are value types defined
elsewhere, and i2 is an initial value expression of type ATTR2; we assume that MyClass is a species)

begin object class MyClass

attributes
al : ATTR1;
a2 : ATTR2 initially i2;
an : ATTRn;

end object class MyClass;

As this species has no user-supplied creation event, a default creation event named create is
supplied, which has the effect as if the user would instead have written:

begin object class MyClass

attributes
al : ATTR1;
a2 : ATTR2 initially i2;
a3 : ATTR3;
an : ATTRn;
events

—- Default creation event:
-- Note the absence of a parameter for a2:
-- the value i2 is used as initialization of a2.

-- Arguments to create after the semicolon are ordered
-- based on the ASCII ordering on the names of the attributes
-- for which they supply a value.
create(MyClass; ATTR1, ATTR3, ..., ATTRn) creation;
axioms
-- Allow creation of instances of MyClass.
forall s : MyClass, bl : ATTR1, ..., bn : ATTRn ::
—— Precondition of nonexistence of s, and
-- Postcondition of existence of s are implicit!
[create(s; b1, b3, ..., bn)]
al(s)=bl, a2(s)=i2, ..., an(s)=bn;
end object class MyClass;

8.9.3 Specifying initial values of attributes and predicates in the default
creation event

An (Initialization) flag of an attribute declaration specifies that on creation of an instance of this

class the attribute or predicate for which it is given gets the given value. Note that this applies to

all creation events, user-supplied (possibly more than one!) as well to as default creation events.
Syntax of initial value specification for attributes and predicates:

(Initialization) — initially (InitialValueExpression)

(InitialValueExpression) — (Expression)

54

The (InitialValueExpression) must be a constant expression, i.e. it involves only functions, constant
predicates and constants, but not attributes or predicates that depend on the world state.

The type of the (InitialValueExpression) must be a (non-strict) subsort of the attribute type in
case of an initialization for an attribute, or must be one of the built-in predicates True or False.

8.9.4 Default deletion events

Analogously to creation events, a default deletion event named delete is supplied if there is no
user-supplied deletion event. This event has only the internal identifier of the object or relationship
to be deleted as argument. The effect of a deletion event on the built-in predicate Exists is
described by implicit axioms for a deletion event del. It doesn’t change the built-in predicate
Used.

forall s: ...subject...,...::
<del(s;...)> -> Exists(s);
forall s: ...subject...,...::

[del(s;...)] not Exists(s);

55

Chapter 9

Life cycles

Life cycle definitions describe regularities in the various events that occur during the life of an
object or relationship. They might, for example, constrain the order in which they can occur.
Note that life cycle specifications express constraints on the possibility of the occurrence of an
event, just as preconditions do. Life cycles can be specified using process operators to combine
simple events into processes. The sublanguage for specifying the processes that form the life cycles
of objects and relationships is based on process algebra. The intended semantics of a recursive
process definition is a process graph model [1].

The life cycle of an object or relationship is specified by including a (LifeCycle) section in its
block. If no life cycle is specified, a simple default life cycle definition is assumed; see section 9.3.

Example

As an example of a life cycle definition, consider this one from the domain of coffee machines,
which has unsurpassed popularity in the process algebra texts.

begin object class VENDING_MACHINE
events
insert_coin(VENDING_MACHINE) ;
give_coffee (VENDING_MACHINE) ;
life cycle
forall v : VENDING_MACHINE ::
VENDING_MACHINE(v) = create(v) . IN_OPERATION(v);
forall v : VENDING_MACHINE ::
IN_OPERATION(v) = insert_coin(v) . give_coffee(v) . IN_OPERATION(v);
end object class VENDING_MACHINE;

This definition enforces a certain protocol on the instances of VENDING_MACHINE: it specifies a
required ordering in time of the occurences the events of the vending machine. For example, an
insert_coin event can only occur in the future of the life of a particular VENDING_MACHINE if a
create event has occured in its past. Also, the machine will only perform a give_coffee event,
if immediately its most recent event was insert_coin.

The process described by these two (ProcessDefinition)s can be visualized as a process graph,
as shown in figure 9.1.

9.1 Life cycle definition

Syntax:

(LifeCycle) — 1life cycle (ProcessDefinition)*

56

i nsert_coi n(v)

create(v)
VENDI NG MACH NE V)O—O

gi ve_coffee(v)

Figure 9.1: A process graph of the life cycle specification of a vending machine.

(BinaryInfixProcessOperator) | Meaning

Sequential composition: a.b means first a occurs, then b
|l Parallel composition

+ Choice: a+b means a or b occurs, but it is not said which
& Synchronous communication

Figure 9.2: Binary infix process operators, showed in order of decreasing priority. All associate
from the left to right.

(ProcessDefinition) — (Quantification) :: (ProcessName) [(FormalProcessParameters) |
= (ProcessExpression) ;

(ProcessExpression) — (FactorProcessExpression)

(ProcessExpression) — (FactorProcessExpression) (BinarylInfixProcessOperator) (FactorProcessExpression)

(FactorProcessExpression) — (EventExpression)

(FactorProcessExpression) — (ProcessName) [(ActualProcessParameters) |

(FactorProcessExpression) — ((ProcessExpression))

(ActualProcessParameter) — (ConstantExpression) | (BoundVariable)

(BinarylnfixProcessOperator) — . | + | ||

You always have to write an explicit forall in a process definition, which binds the subjects
and/or parameters used in the (ProcessParameters) and (ProcessExpression).

The (BinaryInfixProcessOperator)s are shown in figure 9.2.

The scope of a defining occurrence of a variable name in the (Quantification) of a (Process-
Definition) is that whole (ProcessDefinition); note that this differs from the approach of implicit
scoping chosen in e.g. CCS [9].

The occurrence o of a name as (ProcessName) of a (ProcessDefinition) is a defining occurrence
of that name, with the whole LCM source text as its scope, and Kind(o) = process.

The connection between the process definitions and the lifecycle of an object or relationship is
made by including a (ProcessDefinition) with the name of the object class or relationship class as
the (ProcessName). This is understood to mean the life cycle processes of their instances.

This process has the subject (i.e. the internal identifier of the object or relationship) as first
argument, separated by a semicolon from the other arguments. The subject specification may be

57

omitted; in this case a subject of the object or relationship class in which the (ProcessDefinition)
occurs is assumed, just as with event parameters.

If the event has other parameters apart from its subject, they should be specified in each
(EventExpression). The optionality of the parameters in the EBNF definition is only intended to
cover the implicit subjects, and the event without further parameters.

If a (ProcessDefinition) defining the life cycle for an object or relationship is included, it should
explicitly include its creation and deletion events, even if they the default creation and deletion
events are assumed.

9.2 Guardedness of lifecycle specifications

In order to be sure that the (FactorProcessExpression)s together uniquely determine a process,
all (FactorProcessExpression)s are required to be completely guarded. An occurrence of a
(BoundVariable) in a (ProcessExpression) is called guarded if this (ProcessExpression) has a subex-
pression of the form a . ¢ where a is an (EventExpression) that is not fail or skip and ¢ is a
term containing this occurrence of the (BoundVariable). We say that a (FactorProcessExpression)
is completely guarded if each occurrence of a (BoundVariable) in it is guarded.

Note that we demand a life cycle specification to be completely guarded instead of just guarded;
this stronger requirement is imposed in order to make this test easily decidable by looking at the
specification, whereas requiring only guardedness could need complicated rewriting using ACP
axioms in order to decide whether it happens to be equivalent to some completely guarded speci-
fication, for example by rewriting X =Y. X and Y =a.Y to X =a.Y.X and Y =a.Y

life cycle
forall v :: VENDING_MACHINE ::
VENDING_MACHINE(v) = COINS(v) . give_coffee(v) . VENDING_MACHINE(wv) ;
forall v :: VENDING_MACHINE ::
COINS(v) = insert_coin(v) . COINS(v);

to the completely guarded equivalent

life cycle
forall v :: VENDING_MACHINE ::
VENDING_MACHINE(v) = insert_coin(v) . MORE_COINS(v) . VENDING_MACHINE(v);
forall v :: VENDING_MACHINE ::
MORE_COINS(v) = insert_coin(v) . MORE_COINS(v) + skip;

Example

Both (ProcessExpression)s in the VENDING_MACHINE example above are completely guarded. They
could be be derived from

life cycle
VENDING_MACHINE = VENDING_MACHINE . insert_coin . give_coffee;

which is guarded but not completely guarded,

9.3 Default life cycle

If no (ProcessDefinition) with the (ProcessName) equal to the name of a species appears anywhere
in the specification, a default life cycle definition is assumed, which has the form

forall x : 0OBJ::
0BJ(x) = _OBJ_CREATION(x) . _OBJ_LIFE(x);
forall x : 0OBJ::

58

_OBJ_CREATION(x) = c1(x) + c2(x) + ... + cn(x);
forall x : 0OBJ::
_OBJ_LIFE(x) = (el(x) + e2(x) + ... + en(x)) . _OBJ_LIFE(x) +
di(x) + d2(x) + ... + dn(x);

where c1 to cn are all creation events for the species (default or user-supplied), d1 to dn are all
deletion events for the species (again, default or user-supplied) and el to en are all other events
declared for the species.

59

Chapter 10

DBS transactions

The specification of DBS transactions in a (ServiceBlock) serves two purposes. First, it allows the
definitions of events with an effect that is not limited to a single object or relationship (this is in
contrast with the local events (chapter 8) which we discussed until now).

Second, it defines the boundary between the DBS and its environment, by enumerating exhaus-
tively the transactions that the DBS can perform. This means that all communications between
objects are also communications between the DBS and its environment. A transaction in this
context is an atomic state transition of the DBS: it does take place as a whole or doesn’t take
place at all.

These two ideas are interlinked by defining a DBS transaction to be a special kind of event
(also known as global event) which consist of the synchronous occurrence of one or more local
events. Each of these local events takes place in different object or relationships.

Local event hiding rule: All events except transactions are hidden.

Every DBS transaction consists of one or more local events (except skip or fail).

Every communication between objects is a DBS transaction.

All communications are global: if ¢ is a communication of n events, then these are local to n
different objects.

To express interactions of objects by communications in order to provide services in the domain
of interest, a (ServiceBlock) is used.

10.1 Service block

Syntax:

(ServiceBlock) — begin service (ServiceName)
[(Transactions) |
[(Decompositions) |
end service (ServiceName);

(Transactions) — transactions (Transaction)*
(Transaction) — (TransactionName) [(EventFormalParameters) | ;

(Decompositions) — decompositions (Decomposition)*

60

H transfer | open_a new_account
ACCOUNT || withdraw | open
deposit
PERSON open_an_account

Figure 10.1: A simple transaction decomposition table showing the transactions and object
classes of the example.

(Decomposition) — (Quantification) ::
(TransactionName) [(ActualEventParameters) | =
(Communication);

(Communication) — { (CommunicationEvent) & }+

(CommunicationEvent) — [(SubjectClassName) . | (EventName) [(ActualEventParameters) |

The example below illustrates that the (SubjectClassName) in a (CommunicationEvent) is only
intended to aid the reader. It can always be omitted, because the event should be unambigu-
ous without it too (overloading of event names can be resolved by examining the sorts of the
parameters).

The decomposition of the transactions defined here can be shown informally in a transaction
decomposition table (figure 10.1).

The (ServiceName) appearing after the begin services should be the same as the(Service-
Name) after the end services. This is an instance of the block name rule. The (ServiceName)
should not be declared elsewhere with global scope.

In a (ServiceBlock) begin service S ... end service S; the occurrence of a name immedi-
ately after begin service is a defining occurrence of that name, which the whole LCM source
text as scope and of kind service.

Each (TransactionName) occurring in a (Decomposition) in a {ServiceBlock) should be declared
as a (Transaction) in a (Transactions) of that block and vice versa.

The scope of a (TransactionName) declared by mentioning it in a (Transaction) in a (ServiceBlock)
is global. There must not be another declaration of the same (TransactionName) with global scope.

Example

The next example show the connection between the various parts of the specification.

begin object class PERSON
events
open_an_account (PERSON) ;
end object class PERSON;

begin object class ACCOUNT

attributes

owner : PERSON;

balance : INTEGER; initially O;
events

open (ACCOUNT; PERSON) creation;

withdraw(ACCOUNT; NATURAL);
deposit (ACCOUNT; NATURAL) ;
axioms
-- precondition and effect axioms for open, withdraw and deposit...

61

end object class ACCOUNT;

begin services MoneyTraffic

transactions
transfer (ACCOUNT, -- source account
ACCOUNT; -- destination account
NATURAL) ; -- amount
decompositions

forall src, dst : ACCOUNT; amt : NATURAL ::
transfer(src, dst; amt) = withdraw(src; amt) & deposit(dst; amt);
end services MoneyTrafic;

begin services AccountHandling
transactions
open_a_new_account (PERSON, ACCOUNT) ;
decompositions
forall p : PERSON, a : ACCOUNT:
open_a_new_account(p,a) = ACCOUNT.open(a;p) & PERSON.open_an_account(p) ;
end services AccountHandling;

62

Chapter 11

Conclusions

LCM is still under development. Version 3.0 contains a number of features which must be consid-
ered as part of an experiment.

Modularity . One experiment is to see whether we can get away with having only two mod-
ularization constructs: the class specification and the service specification. Both constructs are
orthogonal and only one (the class) is formally defined. Service specifications have only informal
meaning, and corresponds with the grouping of DBS transactions in the function decomposition
tree. For the user, this is (or ought to be) a significant and meaningful grouping.

The modularization construct that we dispensed with is the module construct, that contaisn
one or more class specifications. Modules are usually related by import relationships. One reason
for dispensing with this construct is that with the advent of hypertext systems, partitioning of a
linear text into chunks called modules may become obsolete; this is a hypothesis to be tested by
actually using LCM 3.0 in group projects.

Quantification. Currently, all axioms and all life cycle definitions are prefixed with explicit
quantifications. This produxces a lot of visual clutter, not to say noise. Dropping all these
quantification could cause ambiguity in connection with overloading of function names, attribute
names or event names; moving the to one place can only be done if all quantifications are universal
and then still causes a problem wih the distance between the declaration and the use of a variable.
We are not satisfied with the current syntax, but defer a more satisfactory solution until after we
have gained more experience with working with cmsl 3.0.

Tools. There is a LCM 3.0 mode of emacs and parser for LCM 3.0, generated by LLgen [4]. The
parser can be called from the editor to syntax-check the specification. A visual editor for class
diagrams is under development [3]. Eventually, a collection of diagram editors should be able to
cooperate with an intelligent text editor to help writing LCM specifications easily.

A special tool to be developed is a theorem-prover for LCM. One of the tasks of a theorem
prover would be to search for paths from one database state to another. Other tasks would include
reasoning about invariants, reasoning about updates (cascaded updates) etc.

Additions to LCM. Additions planned for LCM include the ability to define derived attributes,
dynamic subclasses and roles [16], more general cardinality constraints, and facilities for real time
system specification and well as for deontic constraints. These additions will however only be
added after their formal semantics and logic is known. Current research includes the design of
intended semantics for LCM specifications that allow an operational semantics as well as resolution
of queries by a theorem prover.

63

Appendix A

Collected syntax of LCM

Lexical item identification rule The next lexical item starting at some posi-
tion (if any) is the longest possible substring of the specification text starting at that
position that constitutes a valid (LexicalElement).

Unique definition constraint: We require that for every occurrence of a name
in a specification there is exactly one defining occurrence for that name.

Block name rule: the names occurring in the opening and closing phrases of a
block must be identical.

Non-circularity constraint: There doesn’t exist a (possibly empty) sequence
of (SubSortExpression)s Sy, ..., S, such that specialized by Ss,... appears in the
(ValueBlock) for S, and specialized by Ss,... appears in the (Valueblock) for Ss,
and so on to specialized by S, ,...appearing in the (ValueBlock) of S,,—;. Note that
this also excludes the immediate case of a (ValueBlock) for S containing specialized by S;.

Attribute specialization rule: Attribute declarations may be repeated for sub-
classes, but only with a codomain that is a (strict) subsort of the original codomain.

Component specialization rule: Each specialization of a relationship class
inherits all components of its parent, and should not mention them again in its
(RelationshipClassBlock), except for the case that it constrains the set of possible values
for such an inherited component to a subsort.

Single attribute initialization rule: Only one initialization as attribute flag is
allowed in an (AttributeSpecification), even if the values match.

Local event hiding rule: All events except transactions are hidden.

(ActualEventParameters) — ((ActualSubjects) [; (ActualParameterList) |)
(ActualParameterList) — ({ (Expression) , }+)

(ActualProcessParameter) — (ConstantExpression) | (BoundVariable)
(ActualSubjects) — { (SubjectExpression) , }+

(ActualValueBlockParameterlList) — [{ (ActualValueBlockParameter) , } + 1

64

(ActualValueBlockParameter) — (SortExpression) |
function (PrefixForm) : (SortExpression) |
predicate (PrefixForm)

(AttributeFlags) — { (AttributeFlag) , }*

(AttributeFlag) — (Initialization)

(AttributeFlag) — fixed

(AttributeFlag) — injection | surjection | bijection

(AttributeFlag) — inverse

(AttributeSpecification) — (AttributeName) : (SortExpression) (AttributeFlags) ;

(Attributes) — attributes { (AttributeSpecification) }* { (UniquenessConstraint) }*

(AxiomBody) — (EventExpression) (FailOrSucceed) (Cond) (SimpleCondition)

(AxiomBody) — [(Condition) -> | (Condition)

(AxiomBody) — [(Condition) <->] (Condition)

(Axioms) — axioms (Axiom)*

(Axiom) — [(Quantification) ::] (AxiomBody) ;

(BinarylnfixProcessOperator) — . | +| ||

(CharacterConstant) — ’ (CharacterSpecification) ’

(CharacterSpecification) — any single printable character | (SpecialCharacterConstant)

(Comment) — -- (NonNewLineCharacter)*

(CommunicationEvent) — [(SubjectClassName) . | (EventName) [(ActualEventParameters) |

(Communication) — { (CommunicationEvent) & }+

(ComponentSpecification) — (ComponentName): (ObjectClassName) (AttributeFlags) ;

65

(Components) — components { (ComponentSpecification) }+

(Condition) — (SimpleCondition)

(Condition) — < (EventExpression) > (SimpleCondition)

(Condition) — [(EventExpression)] (SimpleCondition)

(Condition) — after (EventExpression)(Modality) (SimpleCondition)

(Cond) — if | only if

(Constant) — (ZeroConstant) |(PosIntConstant) | (RationalConstant) |(CharacterConstant) | (StringConstant)

(DecimalDigit) — 0 | (NonZeroDecimalDigit)

(Decompositions) — decompositions (Decomposition)*

(Decomposition) — (Quantification) ::
(TransactionName) [(ActualEventParameters) | =
(Communication);

(EventExpression) — (UserDefinedEventName) (ActualEventParameters)

(EventExpression) — fail

(EventExpression) — skip

(EventFlag) — creation | deletion

(EventFormalParameters) — ({(FormalEventSubject) , }+ [; {(SortExpression) , }+ |)

(EventSpecification) — (EventName) (EventFormalParameters) [(EventFlag) | ;

(Events) — events (EventSpecification)*

(Expression) — (SimpleExpression) { (BinarylnfixOperator) (SimpleExpression) }*

(FactorProcessExpression) — (EventExpression)

(FactorProcessExpression) — (ProcessName) [(ActualProcessParameters) |

66

(FactorProcessExpression) — ((ProcessExpression))

(FailOrSucceed) — fails | succeeds

(FormalEventSubject) — (SortExpression)

(FormalParameterList) — ({ (FormalParameter) , }+)

(FormalParameter) — (SortExpression)

(FunctionDeclaration) — (PrefixForm) : (SortExpression) ;

(Functions) — functions (FunctionDeclaration)*

(IdentifierConstraint) — (AttributeName) ;

(InfixPredicateApplication) — (Expression) (InfixPredicate) (Expression)

(InfixPredicateApplication) — (Expression) != (Expression)

(InfixPredicateApplication) — (Expression) = (Expression)

(InitialValueExpression) — (Expression)

(Initialization) — initially (InitialValueExpression)

(KeyConstraint) — { (AttributeName) , }+ ;

(LCM-SpecificationText) — (LexicalElement)*

(LCM-Specification) — (ValueBlock)* { (ObjRelBlock) }* (ServiceBlock)*

(Letter) — a|b|c|---|z|A|B|C]|---]|2Z

(LexicalElement) — (ReservedWord) | (Name) | (Constant) | (WhiteSpace)

(LifeCycle) — 1life cycle (ProcessDefinition)*

(Modality) — necessarily | possibly

(NameContinuationCharacter) — (Letter) | (DecimalDigit) | _

67

(NameStartCharacter) — (Letter) | _

(Name) — (NameStartCharacter) (NameContinuationCharacter)*

(NonZeroDecimalDigit) — 1 |2 |3 |4 |5|6 |7 |89

(NumberConstant) — (ZeroConstant) | (PosIntConstant) | (RationalConstant)

{ObjRelBlock) — (ObjectClassBlock) | (RelationshipClassBlock)

(ObjectClassBlock) — begin object class (UserDefinedObjectClassName)
(ObjectGeneralization)*
(ObjectSpecialization)*
[(Attributes) |
[(Predicates) |
[(Events) |
[(LifeCycle)]
[(Axioms) |
end object class (UserDefinedObjectClassName) ;

(ObjectGeneralization) — specialization of{ (SuperClassName) , }+ ;

(ObjectSpecialization) — partitioned by { (ObjectSubClassName) , }+ ;

(ObjectSubClassName) — (UserDefinedObjectClassName)

(OctalDigits) — (OctalDigit) | (OctalDigit) (OctalDigit) | (OctalDigit) (OctalDigit) (OctalDigit)

(OctalDigit) — 0 [1|2|3|4|5]|6]|7

(PoslIntConstant) — (Zero)+ (NonZeroDecimalDigit) (DecimalDigit)*

(PredefinedSortName) —» ZERO | POSINT | NEGINT |INATURAL | NZINTEGER | NATURAL | INTEGER |
NZRATIONAL | RATIONAL | DATE |CHARACTER | EMPTY | STRING | SET |
BAG |SEQUENCE | DATE

(PredicateApplication) — (PrefixPredicateApplication) | (InfixPredicateApplication)

(PredicateDefinition) — (PredicateName) [(PredicateFlags)]| ;

(PredicateFactor) — { (Predicateliteral) and }+

(PredicateFlags) — { (PredicateFlag) , }+

68

(PredicateFlag) — fixed | (Predicatelnitialization)

(Predicatelnitialization) — initially (PredicateTerm)

(PredicateLiteral) — [not | (PredicateApplication)

(PredicateTerm) — { (PredicateFactor) or }+

(Predicates) — predicates (PredicateDefinition)*

(PrefixForm) — (Name) [(FormalParameterList) |

(PrefixFunctionApplication) — (PrefixFunctionName) [(ActualParameterList) |
(PrefixPredicateApplication) — (PrefixPredicateName) [(ActualParameterList) |

(ProcessDefinition) — (Quantification) : : (ProcessName) [(FormalProcessParameters) |
= (ProcessExpression) ;

(ProcessExpression) — (FactorProcessExpression) (BinarylnfixProcessOperator) (FactorProcessExpression)
(ProcessExpression) — (FactorProcessExpression)

(Quantification) — forall { (VariableTyping) , }+

(RationalConstant) — (DecimalDigit)+ . (DecimalDigit)+

(RelationSpecialization) — partitioned by { (SubRelationName) , }+ ;

(RelationshipBlock) — begin relationship class (UserDefinedRelationshipName)
(RelationshipGeneralization)*
(RelationshipSpecialization)*
(Components)
[(Attributes) |
[{Predicates) |
[{(Events) |
[(Process) |
[(Axioms) |
end relationship class (UserDefinedRelationshipName) ;

(RelationshipGeneralization) —specialization of (SuperRelationshipName) ;

69

(ReservedWord) — after | and | attributes | axioms | begin | bijection | by | class | components |
creation | cycle | decompositions | deletion | div | empty | end | events | fail |
fails | fixed | forall | function | functions | identifiers | if | In | initially |
injection | inverse | keys | life | necessarily | not | object | of | only | or |
partitioned | possibly | predicate | predicates | relationship | services |
skip | specialization | specialized | succeeds | surjection | transactions |
type | Value | 5 |, [:: [CID [DT [=>]<>]+|-[*[/]&|1I].]=]
<|<=|>=|>]|"]!=

(ServiceBlock) — begin service (ServiceName)
[(Transactions)]
[(Decompositions) |
end service (ServiceName);

(SimpleCondition) — { (PredicateTerm) , }+

(SimpleExpression) — (Constant)

(SimpleExpression) — (PrefixFunctionApplication)

(SimpleExpression) — (VariableName)

(SimpleExpression) — - (SimpleExpression)

(SimpleExpression) — ((Expression))

(SimpleSortExpression) — (SortName) [(ActualValueBlockParameterList) |

(SortExpression) — { (SimpleSortExpression) * }+

(SortName) — (PredefinedSortName) | (UserDefinedSortName)

(SpecialCharacterConstant) — \n | \r | \f | \t | \b | \" | \(OctalDigits)

(StringConstant) — " (CharacterSpecification)* "

(SubRelationName) — (UserDefinedRelationshipClassName)

(SubSortExpression) — (SortExpression)

(SubjectExpression) — (Expression)

(SuperClassName) — (UserDefinedClassName)

(SuperRelationshipName) —(UserDefinedRelationshipName)

70

(SuperSortName) — (UserDefinedSortName)

(Transactions) — transactions (Transaction)*

(Transaction) — (TransactionName) [(EventFormalParameters) | ;

(UniquenessConstraint) — identifiers (ldentifierConstraint)*

(UniquenessConstraint) — keys (KeyConstraint)*

(UsedDefinedSortName) — (Name)

(UserDefinedEventName) — (Name)

(UserDefinedFunctionName) — (Name)

(UserDefinedObjectClassName) — (Name)

(UserDefinedPredicateName) — (Name)

(UserDefinedRelationshipName) — (Name)

(UserDefinedSortName) — (Name)

(ValueBlockParameterList) — [{ (ValueBlockParameter) , }+ 1]

(ValueBlockParameter) — value type (UserDefinedSortName) |
function (UserDefinedFunctionName) [(FormalParameterList) |
: (SortExpression) |
predicate (UserDefinedPredicateName) [(FormalParameterList) |

(ValueBlock) — begin value type (UserDefinedSortName) [(ValueBlockParameterList) |
(ValueGeneralization)*
(ValueSpecialization)*
[(Functions) |
[(ValuePredicates) |
[(Axioms) |
end value type (UserDefinedSortName) ;

(ValueGeneralization) — specialization of { (SuperSortName) , }+ ;

(ValuePredicateDeclaration) — (PrefixForm) ;

(ValuePredicates)— predicates (ValuePredicateDeclaration)*

(ValueSpecialization) — specialized by { (SubSortExpression) , }+ ;

71

(VariableName) — (Name)

(VariableTyping) — { (VariableName) , }+ : (SortExpression)

(WhiteSpace) — (WhiteSpaceElement)+

(ZeroConstant) — (Zero)+

(Zero) — 0

72

Bibliography

[1]

J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical Com-
puter Science 18. Cambridge University Press, 1990.

J.A. Bergstra, J. Heering, and P. Klint. Algebraic Specification. ACM Press/Addison Wesley,
1989.

A. Blom. CMW -Entity Relationship Editor: User Manual. Technical report, Faculty of
Mathematics and Computer Science, Vrije Universiteit, 1993.

R.B. Feenstra. Experimental GNU Emacs support for creating CMSL specifications. Technical
report, Faculty of Mathematics and Computer Science, Vrije Universiteit, 1993.

L.T.F. Gamut. Logic, Language and Meaning 2: Intensional Logic and Logical Grammar.
University of Chicago Press, 1991. L.T.F. Gamut is a pseudonym for J.F.A.K. van Benthem,
J. Groenendijk, D. de Jongh, M. Stokhof, and H. Verkuyl.

J.A. Goguen and T. Winkler. Introducing OBJ3. Technical Report SRI-CSL-88-9, SRI
International, Computer Science Laboratory, 333 Ravenswood Ave., Menlo Park, CA 94025,
U.S.A., 1988.

D. Harel. Dynamic logic. In D.M. Gabbay and F. Guenthner, editors, Handbook of Philo-
sophical Logic II, pages 497-604. Reidel, 1984.

D. Kozen and J. Tiuryn. Logics of programs. In Jan van Leeuwen, editor, Handbook of
Theoretical Computer Science, pages 789-840. Elsevier Science Publishers, 1990.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

G. Smolka, W. Nutt, J. Goguen, and J. Meseguer. Order-sorted equational computation. In
M. Nivat and H. Ait-Kaci, editors, Resolution of Equations in Algebraic Structures, Volume
2: Rewriting Techniques, pages 297-367. Academic Press, 1989.

R.J. Wieringa. Algebraic Foundations for Dynamic Conceptual Models. PhD thesis, Depart-
ment of Mathematics and Computer Science, Vrije Universiteit, Amsterdam, May 1990.

R.J. Wieringa. A conceptual model specification language (CMSL Version 2). Technical
Report TR-248, Department of Mathematics and Computer Science, Vrije Universiteit, Ams-
terdam, May 1991.

R.J. Wieringa. A method for building and evaluating formal specifications of object-oriented
conceptual models of database systems (MCM). Technical Report IR-340, Faculty of Mathe-
matics and Computer Science, Vrije Universiteit, December 1993.

R.J. Wieringa and R.B. Feenstra. The university library document circulation system specified
in LCM 3.0. Technical Report IR-343, Faculty of Mathematics and Computer Science, Vrije
Universiteit, December 1993.

73

[15] R.J. Wieringa and P.A. Spruit Jonge, W. de. Roles and dynamic subclasses: a modal logic
approach. Technical Report IR-341, Faculty of Mathematics and Computer Science, Vrije
Universiteit, December 1993.

[16] R.J. Wieringa and P.A. Spruit Jonge, W. de. Roles and dynamic subclasses: a logic and
methodology. Technical report, Faculty of Mathematics and Computer Science, Vrije Univer-
siteit, In preparation.

74

Index

ASCII, 7 Existence predicate, 39
Associativity, 28 Existence set, 5
Attribute Expression, 26
fixed, 38 External identifier, 4, 38
initialization, 34, 64
inverse, 37 Failure event, 49
Attribute flag Fixed attribute, 38
bijectivity, 36 Fixed attribute flag, 34
fixed, 34 Frame assumption, 34, 50
injectivity, 35 Functions section, 23

surjectivity, 35

Attribute specialization rule, 37, 64 Generalization of objects, 3

Generalization section, 22

Bijectivity attribute flag, 36 Guarded, 58
Block name rule, 18, 31, 42, 61, 64

Built-in value types, 17 Hiding of local events, 60, 64

Identifier, 4, 38
external, 38
composite, 41
external, 4
internal, 4, 39
Identity of relationship, 41
Initialization, 34, 64
Injectivity attribute flag, 35
Instance, 5
Internal identifier, 4, 39
Internal identifier sort, 24
Inverse attribute, 37

Case sensitivity, 7
Character constants, 10
Class, 5

Class diagram, 32, 42
Class instance, 31

CM, 3

CMSL, 3

Comments, 11

Completely guarded, 58
Component specialization rule, 43, 64
Composite identifier, 41
Conceptual Model (CM), 3

Database system, 4 Key, 5

DBS, 3, see Database system LCM, 3

Default deletion event, 55 LCM specification, global structure of, 16
Default internal identifier sorts, 39 Lexical element, 7

Defaqlt life cycle, 58 Lexical item identification rule, 7, 64
Defining occurrence, 13 Lexical syntax of LCM, 7

Deletion event, 55 Life cycle, 56

Designation relation, 4 default, 58

Local event, 47

EBNF, 6 Local event hiding rule, 60, 64
Event Local events, 47
failure, 49 ’
skip, 49 Matching of occurrences of sort names, 22
Existence, 52 MCM, 3
Existence constraint, 41
Existence precondition, 52 Name, 9, 12

75

of user defined object class, 31

of user defined relationship class, 31
Namespace, 4
Non-circularity constraint, 22, 64
Nonterminals, 6
Number constants, 9

Object, 3

Object class block, 31

Object specialization section, 32

Objects vs. relationships, 41

Objectspace, 4

Occurrence of a name, 12
defining, 13

Position, 12
Precondition axiom, 47, 52
Predicate, 38
object existence, 39
on objects, 38
on values, 25
Priority, 28

Registration event, 4
Regularity of signature, 24
Relationships vs. objects, 41
Reserved word, 8

Reserved words, 7

Service block, 60

Single attribute initialization rule, 34, 64
Singularity requirements, 4

Skip event, 49

Specialization of attributes, 37, 64
specialization of component, 43, 64
Specialization of objects, 32
Specialization of relationship classes, 43
Specialization section, 22, 32

Species, 20, 39, 53

State signature, 32

Subject, 3

Subject of an event occurrence, 47
Subsort ordering, 22

Subtype ordering, 22

Surjection, 37

Surjectivity attribute flag, 35
Surrogate, 5

Terminals, 6

Transaction, 60

Type, 6
built-in, 17

Unique definition constraint, 15, 26, 64
Universe of discourse, 4

76

UoD, see Universe of discourse

Value, 5
Value block, 18
Value generalization section, 22
Value sort, 6
Value specialization section, 22
Value types

user-defined, 18

White space, 8
White space element, 8
White space in EBNF rules, 6

