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Scientific program, Tuesday, June 28
Cubicus building, room C-238

Session I: Invited speakers
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09:30 Invited speaker 1: Bezalel Peleg
On Bargaining Sets and Voting Games

10:30 Coffee break

11:00 Invited speaker 2: Gabor Kassay
On noncooperative games and minimax theory

12:00 Lunch break, Cubicus Cafetaria

Session II: 30 minutes talks by Russian partners

13:30 Anna Khmelnitskaya:
Owen coalitional value without additivity axiom

14:00 Elena Yanovskaya:
Values for TU games with linear cooperation structures
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Generalized kernels and bargaining sets for coalition systems

15:00 Vladimir Gurvich:
Perfect graphs, kernels, and cores of cooperative games

15:30 Coffee break

16:00 Valery Vasil’ev:
Information equilibrium: existence and core equivalence

16:30 Gleb Koshevoy:
Pareto choice functions and elimination of dominated strategies

17:00 Victor Domansky:
Repeated games with lack of information on one side and multistage auctions

Evening program

19:00 Piano concert, Faculty Club, UT

20.00 Workshop dinner, Faculty Club, UT
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Session II: Poster session by seven participants
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Tamas Solymosi:
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Session III: Invited speakers

15:00 Invited speaker 9: Carles Rafels
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16:00 Coffee break

16:30 Invited speaker 10: Vito Fragnelli
Game theoretic analysis of transportation problems
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19.00 Joint dinner, City of Enschede
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A SURVEY OF BICOOPERATIVE GAMES

J.M. Bilbao∗, , J.R. Fernández, N. Jiménez, J.J. López

Matemática Aplicada II, Escuela Superior de Ingenieros
Camino de los Descubrimientos s/n, 41092 Sevilla, Spain.

Abstract. The aim of the present paper is to study several solution
concepts for bicooperative games. For these games introduced by Bilbao [1],
we define a one-point solution called the Shapley value, since this value can be
interpreted in a similar way to the classical Shapley value for cooperative games.
The firs result of the paper is an axiomatic characterization of this value. Next,
we define the core and the Weber set and prove that the core of a bicooperative
game is always contained in its Weber set. Finally, we introduce an special class
of bicooperative games, the so-called bisupermodular games, and show that these
games are the only ones in which their core and the Weber set coincide.

Keywords Bicooperative games, Bisupermodular games, Shapley value, Core,
Weber set

1. Introduction

The theory of cooperative games studies situations where a group of people/agents
are associated to obtain a profit as a result of their cooperation. Thus, a cooperative
game is defined as a pair (N, v) , where N is a finite set of players and v : 2N → R
is a function verifying that v (∅) = 0. For each S ∈ 2N

, the worth v (S) can be
interpreted as the maximal gain or minimal cost that the players which form coalition
S can achieve themselves against the best offensive threat by the complementary
coalition N \S. Classical market games for economies with private goods are examples
of cooperative games. Hence, we can say that a cooperative game has orthogonal
coalitions (see Myerson [10]).

Games with non-orthogonal coalitions are games in which the worth of coalition
S are not independent of the actions of coalition N \ S. Clearly, social situations
involving externalities and public goods are such cases. For instance, we consider a
group of agents with a common good which is causing them expenses or costs. In a
external or internal way, a modification (sale, buying, etc.) of this good is proposed
to them. This action will suppose a greater profit to them in case they all agree
with the change proposed about the actual situation of the good. Moreover, even
though the patrimonial good can be divisible, we suppose that the greatest value of
the selling operation is reached if we consider all the common good.

A possibility of modeling these situations may be the following. We consider pairs
(S, T ), with S, T ⊆ N and S∩T = ∅. Thus, (S, T ) is a partition of N in three groups.
Players in S are defenders of modifying the statu quo and they want to accept a
proposal; players in T do not agree with modifying the situation and they will take
action against any change. Finally, the members of N \ (S ∪ T ) are not convinced of
the profits derived from the proposal and they vote abstention.

∗E-mail: mbilbao@us.es
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Thus, in our model we consider the set of all ordered pairs of disjoint coalitions
3N = {(S, T ) : S, T ⊆ N, S ∩ T = ∅} , and define a function b : 3N → R. For each
(S, T ) ∈ 3N

, the worth b (S, T ) can be interpreted as the maximal gain (whenever
b (S, T ) > 0) or minimal loss (whenever b (S, T ) < 0) that the players of the coalition
S can achieve when they decide to play together against the players of T and the
players of N \(S ∪ T ) not taking part. This leads us in a natural way into the concept
of bicooperative game introduced by Bilbao [1].

Definition 1. A bicooperative game is a pair (N, b) with N a finite set and b is a
function b : 3N → R with b (∅, ∅) = 0.

An especial kind of bicooperative games has been studied by Felsenthal and Ma-
chover [5] who consider ternary voting games. This concept is a generalization of
voting games which recognizes abstention as an option alongside yes and no votes.
These games are given by mappings u : 3N → {−1, 1} satisfying the following three
conditions: u (N, ∅) = 1, u (∅, N) = −1, and 1(S,T ) (i) ≤ 1(S�,T �) (i) for all i ∈ N,

implies u (S, T ) ≤ u (S�, T �) . A negative outcome, −1, is interpreted as defeat and a
positive outcome, 1, as passage of a bill.

In Chua and Huang [3] the Shapley-Shubik index for ternary voting games is
considered. More recently, several works by Freixas [6, 7] and Freixas and Zwicker
[8] have been devoted to the study of voting systems with several ordered levels of
approval in the input and in the output. In their model, the abstention is a level of
input approval intermediate between yes and no votes.

A one-point solution concept for cooperative games is a function which assigns
to every cooperative game a n-dimensional real vector which represents a payoff
distribution over the players. The study of solution concepts is central in cooperative
game theory. The most important solution concept is the Shapley value as proposed
by Shapley [12]. A solution concept for cooperative games is a function which assigns
to every cooperative game (N, v) with |N | = n, a subset of n-dimensional real vectors
which represent the payoff distribution over the players. The core is one of the most
studied solution concepts. Weber [14] proposed as a solution concept for a cooperative
game, a set that contains the core, is always nonempty and easier to compute. Its
definition is based in the marginal worth vectors. Each permutation of the elements
of N, π = (i1, i2, . . . , in), can be interpreted as a sequential process of formation of the
grand coalition N. Beginning from the emptyset, first the player i1 is incorporated,
next the player i2 and so sucessively until the incorporation of the player in give
rise to the coalition N . In each one of these processes, the corresponding marginal
worth vector, a

π (v) ∈ Rn
, evaluates the marginal contribution of every player to the

coalition formed by his predecessors, that is,

a
π
i (v) = v

�
π

i ∪ {i}
�
− v

�
π

i
�

for all i ∈ N,

where π
i is the set of the predecessors of player i in the order π. The Weber set of

game v is the convex hull of all marginal worth vectors, that is,

W (N, v) = conv {aπ (v) : π ∈ Πn} .
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Let us outline the contents of our work. In the next section, we study some
properties and characteristics of the lattice 3N . The aim of the third section is to
introduce the Shapley value for a bicooperative game. We obtain an axiomatization
of the Shapley value in this context as well as a nice formula to compute it. This
value is the only one that satisfies our five axioms. Four of them are extensions of the
classical axioms for the Shapley value: linearity, symmetry, dummy and efficiency.
The fifth axiom is refereed to the structure of the family of signed coalitions. In the
fourth section we define the above solutions concepts for bicooperative games and
prove that the core is always contained in the Weber set. In the relation between
the Weber set and the core, the bisupermodular games, which are defined in the fifth
section, play an important role. We see that the bisupermodular games are the only
ones for which their Weber set and the core coincide, establishing a characterization
of these games. Throughout this paper, we will write S∪ i and S \ i instead of S∪{i}
and S \ {i} respectively.

2. The lattice 3N

Let N = {1, . . . , n} be a finite set and let 3N = {(A,B) : A,B ⊆ N, A ∩B = ∅} .

Grabisch and Labreuche [9] proposed a relation in 3N given by

(A,B) � (C,D) ⇐⇒ A ⊆ C, B ⊇ D.

The set
�
3N

,�
�

is a partially ordered set (or poset) with the following properties:
1. (∅, N) is the first element: (∅, N) � (A,B) for all (A,B) ∈ 3N

.

2. (N, ∅) is the last element: (A,B) � (N, ∅) for all (A,B) ∈ 3N
.

3. Every pair of elements of 3N has a join

(A,B) ∨ (C,D) = (A ∪ C,B ∩D)

and a meet
(A,B) ∧ (C,D) = (A ∩ C,B ∪D) .

Moreover,
�
3N

,�
�

is a finite distributive lattice. Two pairs (A,B) and (C,D) are
comparable if (A,B) � (C,D) or (C,D) � (A,B) ; otherwise, (A,B) and (C,D) are
incomparable. A chain of 3N is an induced subposet of 3N in which any two elements
are comparable. In

�
3N

,�
�
, all maximal chains have the same number of elements

and this number is 2n + 1. Thus, we can consider the rank function

ρ : 3N → {0, 1, . . . , 2n}

such that ρ [(∅, N)] = 0 and ρ [(S, T )] = ρ [(A,B)]+1 if (S, T ) covers (A,B) , that is, if
(A,B) � (S, T ) and there no exists (H,J) ∈ 3N such that (A,B) � (H,J) � (S, T ) .

For the distributive lattice 3N , let P denote the set of all nonzero ∨-irreducible
elements. Then P is the disjoint union C1 + C2 + · · · + Cn of the chains

Ci = {(∅, N \ i), (i, N \ i)}, 1 ≤ i ≤ n = |N |.

An order ideal of P is a subset I of P such that if x ∈ I and y ≤ x, then y ∈ I.
The set of all order ideals of P , ordered by inclusion, is the distributive lattice J(P ),
where the lattice operations ∨ and ∧ are just ordinary union and intersection. The
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fundamental theorem for finite distributive lattices (see [13, Theorem 3.4.1]) states
that the map ϕ : 3N → J(P ) given by (A,B) �→ {(X, Y ) ∈ P : (X, Y ) � (A,B)} is
an isomorphism (see Figure 1).

Example. Let N = {1, 2}. Then P = {(∅, {1}), (∅, {2}), ({2}, {1}), ({1}, {2})} is the
disjoint union of the chains (∅, {1}) � ({2}, {1}) and (∅, {2}) � ({1}, {2}). We will
denote a = (∅, {1}), b = ({2}, {1}), c = (∅, {2}), d = ({1}, {2})}, and hence

J(P ) = {∅, {a}, {c}, {a, c}, {a, b}, {c, d}, {a, b, c}, {a, c, d}, {a, b, c, d}}

•

• •

• • •

• •

•

{a, b, c, d}

{a, b, c} {a, c, d}

{a, b}
{a, c}

{c, d}

{a} {c}

∅

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

❅
❅

❅
❅

❅❅

❅
❅

❅
❅

❅❅

❅
❅

❅
❅

❅❅
•

• •

• • •

• •

•

({1, 2}, ∅)

({2}, ∅) ({1}, ∅)

({2}, {1})
(∅, ∅)

({1}, {2})

(∅, {1}) (∅, {2})

(∅, {1, 2})

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

❅
❅

❅
❅

❅❅

❅
❅

❅
❅

❅❅

❅
❅

❅
❅

❅❅

Figure 1.

In the following, we will denote by c
�
3N

�
the number of maximal chains in 3N and

by c ([(A,B) , (C,D)]) the number of maximal chains in the sublattice [(A,B) , (C,D)] .

Proposition 1. The number of maximal chains of 3N is (2n)!/2n, where n = |N |.

Proposition 2. For all (A,B) ∈ 3N
, the number of maximal chains of the sublattice

[(∅, N) , (A,B)] is (n + a− b)!/2a, where a = |A| and b = |B| .

Proposition 3. Let (A,B) , (C,D) ∈ 3N with (A,B) � (C,D) . The number of
maximal chains of the sublattice [(A,B) , (C,D)] is equal to the number of maximal
chains of the sublattice [(D,C) , (B,A)] .

3. The Shapley value for bicooperative games

We denote by BGN the real vector space of all bicooperative games on N. A value
on BGN is a function Φ : BGN → Rn

, which associates to each bicooperative game
b a vector (Φ1 (b) , . . . ,Φn (b)) which represents the ‘a priori’ value that every player
has in the game b. In order to define a reasonable value for a bicooperative game and
following the same issue and interpretation of the Shapley value in the cooperative
case, we consider that a player i estimates his participation in game b, evaluating
his marginal contributions b(S ∪ i, T ) − b(S, T ) in those signed coalitions (S ∪ i, T )
that are formed from others (S, T ) when i is incorporated to S and his marginal
contributions b(S, T ) − b(S, T ∪ i) in those (S, T ) that are formed when i leaves the
coalition T ∪ i. Thus, a value for player i can be written as

Φi(b) =
�

(S,T )∈3N\i

�
p

i
(S,T ) (b(S ∪ i, T )− b(S, T )) + p

i
(S,T )

(b(S, T )− b (S, T ∪ i))
�
,
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where for every (S, T ), the coefficient p
i
(S,T ) can be interpreted as the subjective

probability that the player i has of joining the coalition S and p
i
(S,T )

as the subjective
probability that the player i has of leaving the coalition T ∪i. Thus, Φi (b) is the value
that the player i can expect in the game b.

If we assume that all sequential orders or chains have the same probability, we
can deduce formulas for these probabilities p

i
(S,T ) and p

i
(S,T )

in terms of the number
of chains which contain to these coalitions. Applying Propositions 2 and 3, we obtain

p
i
(S,T ) =

(n + s− t)! (n + t− s− 1)!
(2n)!

2n−s−t
,

p
i
(S,T )

=
(n + t− s)! (n + s− t− 1)!

(2n)!
2n−s−t

.

Taking into account that p
i
(S,T ) and p

i
(S,T )

are independent of player i, and only
depend of s = |S| and t = |T | , we can establish the following definition.

Definition 2. The Shapley value for the bicooperative game b ∈ BGN is given, for
each i ∈ N, by

Φi(b) =
�

(S,T )∈3N\i

�
ps,t (b(S ∪ i, T )− b(S, T )) + p

s,t
(b(S, T )− b (S, T ∪ i))

�

where, for all (S, T ) ∈ 3N\i
,

ps,t =
(n + s− t)! (n + t− s− 1)!

(2n)!
2n−s−t

and

p
s,t

=
(n + t− s)! (n + s− t− 1)!

(2n)!
2n−s−t

.

With the aim to characterize the Shapley value for bicooperative games, we con-
sider a set of reasonable axioms and we prove that the Shapley value is the unique
value on BGN which satisfies these axioms.

Linearity axiom. For all α, β ∈ R, and b, w ∈ BGN
,

Φi(αb + βw) = αΦi(b) + βΦi(w).

We now introduce the dummy axiom, understanding that a player is a dummy
player when his contributions to signed coalitions (S ∪ i, T ) formed with his incorpo-
ration to S and his contributions to signed coalitions (S, T ) formed with his desertion
of T ∪ i coincide exactly with his individual contributions, that is, a player i ∈ N is
a dummy in b ∈ BGN if, for every (S, T ) ∈ 3N\i

, it holds

b(S ∪ i, T )− b(S, T )) = b ({i} , ∅) , b(S, T )− b (S, T ∪ i) = −b (∅, {i}) .

Note that if i ∈ N is a dummy in b ∈ BGN then, for all (S, T ) ∈ 3N\i
,

b(S ∪ i, T )− b (S, T ∪ i) = b({i} , ∅)− b (∅, {i}) .

9



Since a dummy player i in a game b has no meaningful strategic role in the game,
the value that this player should expect in the game b must exactly be the sum up
of his contributions.

Dummy axiom. If player i ∈ N is dummy in b ∈ BGN , then

Φi(b) = b ({i} , ∅)− b (∅, {i}) .

In the similar way to the cooperative case, for the comparison of roles in a game to
be meaningful, the evaluation of a particular position should depend on the structure
of the game but not on the labels of the players.

Symmetry axiom. For all b ∈ BGN and for any permutation π over N, it holds that
Φπi(πb) = Φi(b) for all i ∈ N , where πb (πS, πT ) = b (S, T ) and πS = {πi : i ∈ S} .

In a cooperative game, it is assumed that all players decide to cooperate among
them and form the grand coalition N. This leads to the problem of distributing
the amount v (N) among them. Taking into account different situations that can
be modelled by a bicooperative game b, we suppose that the amount b(N, ∅) is the
maximal gain and b (∅, N) is the minimal loss obtained by the players when they
decide full cooperation. Then the maximal global gain is given by b(N, ∅)− b (∅, N) .

From this perspective, the value Φ must satisfy the following axiom.

Efficiency axiom. For every b ∈ BGN
, it holds

�

i∈N

Φi(b) = b(N, ∅)− b (∅, N) .

It is easy to check that our Shapley value for bicooperative games verifies the above
axioms. But this value is not the unique value which satisfies these four axioms. For
instance, the value Φ(b) defined, for b ∈ BGN and i ∈ N, by

Φi(b) =
�

S⊆N\i

s! (n− s− 1)!
n!

[b (S ∪ i,N \ (S ∪ i))− b (S, N \ S)] ,

also verifies these axioms. However, note that, for any bicooperative game b ∈ BGN ,
this value is the Shapley value corresponding to the cooperative game (N, v) , where
v : 2N → R is defined by v (A) = b (A,N \ A) if A �= ∅, and v (∅) = 0. This value
is not satisfactory for any bicooperative game in the sense that only consider the
contributions to signed coalitions in which all players take part. Moreover, there is
an infinity of different bicooperative games which give rise to the same cooperative
game. For these reasons, if we want to obtain an axiomatic characterization of our
Shapley value for bicooperative games, we need to introduce an additional axiom.
This new axiom will take into account the structure of the set of the signed coalitions.

Structural axiom. For every (S, T ) ∈ 3N\i, j ∈ S and k ∈ T, it holds

c ([(∅, N) , (S \ j, T )])
c ([(∅, N) , (S, T ∪ i)])

= −
Φj(δ(S,T ))

Φi
�
δ(S,T∪i)

� ,
c ([(S, T \ k) , (N, ∅)])
c ([(S ∪ i, T ) , (N, ∅)]) = −

Φk(δ(S,T ))
Φi

�
δ(S∪i,T )

� .

Theorem 4. Let Φ be a value on BGN
. The value Φ is the Shapley value if and

only if Φ satisfies the efficiency axiom and each component satisfies linearity, dummy,
symmetry and structural axioms.
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4. The core and the Weber set

Now, some solution concepts for bicooperative games are introduced, understanding
as a solution concept any subset of vectors in Rn that provide an equitable distribution
of the total saving among the players. A vector x ∈ Rn which satisfies

�
i∈N xi =

b (N, ∅)− b (∅, N) is called efficient vector and the set of all efficient vectors is called
preimputation set which is defined by

I
∗(N, b) =

�
x ∈ Rn :

�

i∈N

xi = b (N, ∅)− b (∅, N)

�
.

The imputations for game b are the preimputations that satisfy the individual
rationality principle for all players, that is, each player gets at least the difference
between the amount that he can attain for himself taking the rest of players against
and the value of the signed coalition (∅, N) ,

I(N, b) = {x ∈ I
∗(N, b) : xi ≥ b(i,N \ i)− b (∅, N) for all i ∈ N} .

A satisfactory distribution criterium could be that every signed coalition (S, T ) ∈
3N receives at least the amount it can contribute to the coalition (∅, N) , that is, the
amount b(S, T )− b (∅, N) . It leads us to define the notion of the core of the game b

as the set

C(N, b) =
�

x ∈ I
∗(N, b) : x = y + z with

y (S) + z (N \ T ) ≥ b(S, T )− b (∅, N) ∀ (S, T ) ∈ 3N

�
.

This definition can be interpreted in the following manner. For each (S, T ) ∈ 3N , the
players who are not in the coalition T have contributed to the formation of (S, T )
since they will not act against the player of the coalition S and for this, they must be
received a payoff given by the vector z. Moreover, those players of N \ T who are in
the coalition S must get a different payoff to the rest of players, given by the vector
y since these players have contributed to the formation of (S, T ) in a different way.

In order to extend the idea of the Weber set to a bicooperative game (N, b) , it
is assumed that all players estimate that (N, ∅) is formed as a sequential process
where in each step a different player is incorporated to the defender coalition or a
different player leaves the detractor coalition. These sequential processes are obtained
considering the different chains from (∅, N) to (N, ∅) . In each one of these processes,
a player can evaluate his contribution when is incorporated to the defenders or his
contribution when leaves the detractors. This can be reflected in the vectors of Rn

denominated superior marginal worth vectors and inferior marginal worth vectors.
With the aim to formalize this idea, we introduce the following notation.

Given N = {1, . . . , n} , let N = {−n, . . . ,−1, 1, . . . , n} . We can define an isophor-
fim Λ : 3N −→ 2N as follows: For each (S, T ) ∈ 3N

, Λ (S, T ) = S∪{−i : i ∈ N \ T} ∈
2N

. For instance, Λ (∅, N) = ∅ and Λ (N, ∅) = N. Since S ∩ T = ∅ ⇔ S ⊆ N \ T we
see that i ∈ Λ (S, T ) and i > 0 imply −i ∈ Λ (S, T ) .

In the lattice
�
3N

,�
�
, we consider the set of all maximal chains which going from

(∅, N) to (N, ∅) and denote this set by Θ
�
3N

�
. If θ ∈ Θ

�
3N

�
is the maximal chain

(∅, N) � (S1, T1) � · · · � (Sj , Tj) � · · · � (S2n−1, T2n−1) � (N, ∅) ,
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we can write the associated chain of sets in 2N

∅ ⊂ {i1} ⊂ · · · ⊂ {i1, . . . , ij} ⊂ · · · ⊂ {i1, . . . , i2n−1} ⊂ N.

where {i1, . . . , ij} = Λ (Sj , Tj) for j = 1, . . . , 2n. We define the vector θ (ij) =
(i1, . . . , ij) , where the last component ij ∈ N satisfies the following property: if
ij > 0 then the player ij ∈ Sj and ij /∈ Sj−1, that is, ij is the last player who
joins Sj and if ij < 0, then the player −ij /∈ Tj and −ij ∈ Tj−1, that is, −ij is
the last player who leaves Tj−1. Equivalently, the elements in θ (ij) = (i1, . . . , ij)
are written following the order of incorporation in the defenders coalitions or de-
sertion of the detractors coalition (depending on the sign of each ik) in the signed
coalitions in chain θ . Moreover, we write θ (ij) \ ij = (i1, i2, . . . , ij−1) = θ (ij−1)
and ik ∈ θ (ij) when ik is one component of the vector θ (ij) , that is 1 ≤ k ≤ j.

Note that an equivalence between maximal chains and vectors θ = (i1, . . . , i2n) is
obtained. Fix an order θ = (i1, . . . , i2n) , we also define α [θ (ij)] = (Sj , Tj) such
that Λ (Sj , Tj) = {i1, . . . , ij}. Moreover, α [θ (ij) \ ij ] = α [θ (ij−1)] = (Sj−1, Tj−1) .

In particular, α [θ (i2n)] = (N, ∅) and α [θ (i1) \ i1] = (∅, N) .

For example, let N = {1, 2, 3} and θ ∈ Θ
�
3N

�
given by

(∅, N) � (∅, {1, 3}) � ({2} , {1, 3}) � ({2} , {1}) � ({2} , ∅) � ({2, 3} , ∅) � (N, ∅) .

Its associated chain of sets in 2N is given by

∅ ⊂ {−2} ⊂ {−2, 2} ⊂ {−2, 2,−3} ⊂ {−2, 2,−3,−1} ⊂ {−2, 2,−3,−1, 3} ⊂ N.

and the maximal chain can be also represented by the order θ = (−2, 2,−3,−1, 3, 1) .

One signed coalition, for example ({2} , ∅) , can be also represented by α [θ (−1)] and
by Λ−1 ({−2, 2,−3,−1})

Definition 3. Let θ ∈ Θ
�
3N

�
and b ∈ BGN . We call inferior and superior marginal

worth vectors with respect to θ to the vectors m
θ (b) , M

θ (b) ∈ Rn respectively where

m
θ
i (b) = b (α [θ (−i)])− b (α [θ (−i) \−i]) ,

M
θ
i (b) = b (α [θ (i)])− b (α [θ (i) \ i]) ,

for all i ∈ N. We call marginal worth vector respect to θ, a
θ (b) ∈ Rn

, to the vector
obtained as the sum of inferior and superior marginal worth vectors, that is,

a
θ
i (b) = m

θ
i (b) + M

θ
i (b) , for i ∈ N.

The following result show that the marginal worth vectors are efficients.

Proposition 5. For any b ∈ BGN and θ ∈ Θ
�
3N

�
we have

�

i∈N

a
θ
i (b) = b (N, ∅)− b (∅, N) .
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Proposition 6. Let b ∈ BGN and θ ∈ Θ
�
3N

�
. Then,

�

j∈S

M
θ
j (b) +

�

j∈N\T

m
θ
j (b) = b (S, T )− b (∅, N) ,

for every (S, T ) in the chain θ.

Definition 4. Let b ∈ BGN be a bicooperative game. The Weber set of b is the
convex hull of the marginal worth vectors, that is

W (N, b) = conv
�

a
θ (b) : θ ∈ Θ

�
3N

��

As the preimputation set is a convex set, it is evident that W (N, b) ⊆ I
∗ (N, b) .

However, in general, the vectors of the Weber set are not imputations. For example,
let (N, b) with N = {1, 2} and b : 3N −→ R defined as

b (∅, N) = −5, b (∅, i) = −4, b (i, j) = −1, b (i, ∅) = 1, b (N, ∅) = 2,

for all i, j ∈ N. If we consider θ = (−2, 2,−1, 1) , then a
θ
1 (b) = m

θ
1 (b) + M

θ
1 (b) = 3.

As b (1, 2)− b (∅, N) = 4, then a
θ
1 (b) < b (1, N \ 1)− b (∅, N) and a

θ (b) /∈ I (N, b) .

It is easy to see, taking into account that I (N, b) is a convex set, that W (N, b) ⊆
I (N, b) if all marginal worth vectors are imputations. For this, a sufficient condition
is that the game b is zero-monotonic, a concept that is defined as follows.

Definition 5. A bicooperative game b ∈ BGN is monotonic when for all signed coali-
tions (S1, T1) , (S2, T2) with (S1, T1) � (S2, T2) it holds that b (S1, T1) ≤ b (S2, T2) .

Definition 6. The zero-normalization of a bicooperative game b ∈ BGN is the game
b0 ∈ BGN defined by

b0 (S, T ) = b (S, T )−
�

j∈S

[b (j, N \ j)− b (∅, N)] , for all (S, T ) ∈ 3N
.

Definition 7. A bicooperative game b ∈ BGN is called zero-monotonic if its zero-
normalization is monotonic.

Proposition 7. Let b ∈ BGN be a zero-monotonic bicooperative game. Then, for
every θ ∈ Θ

�
3N

�
, the marginal worth vector associated to θ is an imputation for the

game b.

Now we prove that the core of a bicooperative game is always included in its
Weber set. It should be noted that the proof of this result is closely related to the
proof in [4] of the inclusion of the core in the Weber set for cooperative games.

Theorem 8. If b ∈ BGN
, then C (N, b) ⊆ W (N, b)
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5. Bisupermodular games

Now we introduce a special class of bicooperative games.

Definition 8. A bicooperative game b ∈ BGN is called bisupermodular if, for all
(S1, T1) and (S2, T2) it holds

b((S1, T1) ∨ (S2, T2)) + b ((S1, T1) ∧ (S2, T2)) ≥ b (S1, T1) + b (S2, T2) ,

or equivalently

b(S1 ∪ S2, T1 ∩ T2) + b (S1 ∩ S2, T1 ∪ T2) ≥ b (S1, T1) + b (S2, T2) .

The next proposition characterizes the bisupermodular games as those bicooper-
ative games for which the marginal contributions of a player to one signed coalition
is never less that the marginal contribution of this player to any signed coalition
contained in it. This characterization will be used in the proves of the following
results.

Proposition 9. Let b ∈ BGN . The bicooperative game b is bisupermodular if and
only if for all i ∈ N and (S1, T1), (S2, T2) ∈ 3N\i such that (S1, T1) � (S2, T2) , it
holds

b (S2 ∪ i, T2)− b (S2, T2) ≥ b (S1 ∪ i, T1)− b (S1, T1)

and
b (S2, T2)− b (S2, T2 ∪ i) ≥ b (S1, T1)− b (S1, T1 ∪ i)

The following result permits the identification of the games for which the marginal
worth vectors are distributions of the core.

Theorem 10. A necessary and sufficient condition so that all marginal worth vectors
of a bicooperative game b ∈ BGN are vectors of the core is that the game b is
bisupermodular

As the core of a bicooperative game b ∈ BGN is a convex set, an immediate
consequence of this theorem is the following result.

Corollary 11. Let b ∈ BGN
. A necessary and sufficient condition so that W (N, b) =

C (N, b) is that the bicooperative game b is bisupermodular.

Note that the Shapley value of a bicooperative game b is given by

Φi (N, b) =
1

c(3N )

�

θ∈Θ(3N )

�
m

θ
i (b) + M

θ
i (b)

�
,

for all i ∈ N. Then the Shapley value of a bisupermodular game b is in C (N, b) and
hence, the core of a bisupermodular game is non-empty.
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values for bicooperative games. Working paper, University of Seville.

[3] V.C.H. Chua and H.C. Huang (2003). The Shapley-Shubik index, the donation
paradox and ternary games. Social Choice and Welfare 20, 387–403.

[4] J. Derks (1992). A Short Proof of the Inclusion of the Core in the Weber set.
International Journal of Game Theory 21, 149–150.

[5] D. Felsenthal, and M. Machover (1997). Ternary Voting Games. International
Journal of Game Theory 26, 335–351.

[6] J. Freixas (2005). The Shapley-Shubik power index for games with several levels
of approval in the input and output. Decision Support Systems 39, 185–195.

[7] J. Freixas (2005). Banzhaf measures for games with several levels of approval in
the input and output. Forthcoming in Annals of Operations Research.

[8] J. Freixas and W.S. Zwicker (2003). Weighted voting, abstention, and multiple
levels of approval. Social Choice and Welfare 21, 399–431.

[9] M. Grabisch, and Ch. Labreuche (2002). Bi-capacities. Working paper, Univer-
sity of Paris VI.

[10] R.B. Myerson (1991). Game Theory: analysis of conflict. Harvard University
Press, Cambridge.

[11] R.T. Rockafellar (1970). Convex Analysis. Princeton University Press, Princeton.

[12] L.S. Shapley (1953). A value for n-person games. In Contributions to the Theory
of Games II, Ann. of Math. Stud. 28. Princeton: Princeton University Press, pp.
307–317.

[13] R.P. Stanley (1986). Enumerative Combinatorics I. Monterey, Wadsworth.

[14] R.J. Weber (1988). Probabilistic values for games. In The Shapley Value: Essays
in Honor of Lloyd S. Shapley. Cambridge: Cambridge University Press, pp. 101–
119.

15



16



On the computation of Semivalues for TU games

via Shapley value

Irinel Dragan, University of Texas, Mathematics, Arlington, Texas,
E-mail:dragan@uta.edu

In an earlier paper (I.Dragan,2004) we proved that every Least Square
Value is the Shapley value of a game obtained by rescaling from the given
game. In the paper where the Least Square Values were introduced (L.Ruiz,
F.Valenciano and J.M. Zarzuelo,1998), the authors have shown that the
efficient normalization of a Semivalue is a Least Square Value, (briefly LS-
value).

In the present paper, we developed the idea suggested by these two
results and we obtained a direct relationship between the efficient normal-
ization of a Semivalue and the Shapley value. The main tools for proofs
were the so-called the Average per capita formulas we proved earlier for the
Shapley value (I.Dragan,1992) and for the Semivalues (1999), as well as the
formula for the Power game of a given game relative to Semivalues (I.Dragan
and J.E.Martinez-Legaz,2001). The last one was needed to compute the effi-
ciency term and to derive an algorithm for computing any Semivalue via the
Shapley value. The present paper is containing results from various sources,
so that in order to make this paper self contained, we shall be proving below
our previous results together with the new results, which appear here for the
first time. All proofs are algebraic, in opposition to the RVZ proofs which
are axiomatic. The direct connection between a Semivalue and the Shapley
value does not need any reference to LS-values, which may well be unknown
to the reader of the present paper.

In the first section, we prove the Average per capita formula for Semival-
ues, (Theorem 1), from which we derive our formula for the Shapley value,
(Corollary 2), to be used later. In the second section, we give the formula for
the efficiency term in the efficient normalization of a Semivalue ,(Theorem
3), as well as the main results showing the connection between the efficient
normalization of a Semivalue and the Shapley value, (Theorems 4 and 5). In
the last section we discuss the algorithm for computing a Semivalue via the
Shapley value, after noticing that the Average per capita formula for Semi-
values proposed as a basic tool in computing a Semivalue, is doubling the
number of weighting operations. A small game is used for illustrating how
this algorithm works (Example 1). The motivation for the present work was
the fact that in Mathematica there is a program for computing the Shapley
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value and there is some experience in computing the Shapley value, while
we do not know of any computational work relative to the Semivalues. Fur-
ther, we consider the inverse problem for Semivalues which was solved in an
earlier paper, (I.Dragan,2002), by extending to Semivalues our procedure
used for the Shapley value (I.Dragan,1991). It is interesting to note that
here the solution set of the inverse problem depends on a unique basis, the
basis for the inverse problem of the Shapley value, (Theorem 6), in opposi-
tion to what has happened in the previous paper on the inverse problem for
Semivalues, where there was an infinite set of bases, each one being singled
out by the dependence of the weight vector of the Semivalue. An example
is also shown here, (Example 2).

Keywords: Shapley value, Semivalues, Average per capita formulas, Efficient
normalization, Banzhaf value, the inverse problem.

1 Average per capita formula for Semivalues

Let G
N denote the space of cooperative TU games with a fixed set of players

N . The Semivalues associated with a weight vector p
n ∈ R

n satisfying the
normalization condition

n�

s=1

�
n− 1
s− 1

�

p
n
s = 1, (1)

have been introduced axiomatically by P.Dubey, A.Neyman and R.J.Weber
(1981), as values on G

N , and even on more general structures. For G
N they

proved that a Semivalue associated with a weight vector p
n is given by

SEi(N, ν) =
�

S:i∈S⊆N

p
n
s [ν(S)− ν(S − i)], ∀i ∈ N. (2)

where s = |S|, and p
n
s is the common weight of all coalitions of size

s. We take this formula as the definition of Semivalues on G
N . To define

the Semivalues on the union of all spaces G
N , when N is arbitrary, we

need a sequence of weight vectors p
1
, p

2
, ..., p

n
, ..., all satisfying the above

normalization condition, that is p
1
1 = 1, p

2
1 + p

2
2 = 1, p

3
1 + p

3
2 + p

3
3 = 1, ...

and so on. The definition of Semivalues on G
T is given by the same formula

as above, where N is replaced by T , nbyt, and p
n by p

t. However, the
sequence of weight vectors are supposed to satisfy what we call the inverse
Pascal triangle relations

p
t−1
s = p

t
s + p

t
s+1, s = 1, 2, ..., t− 1. (3)

It is easy to see that if the normalization condition for G
N holds, then

from the inverse Pascal triangle relations we get the normalization condition
satisfied for G

T , and all coalitionsT ⊆ N
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Note the important fact that among the Semivalues we get the Shapley
value for p

n
s = /frac(s− 1)!(n− s)!n!, the Banzhaf value for p

n
s = 21−n

, s =
1, 2, ..., n, and many other well known values. Therefore, if we prove what
we call the Average per capita formula for Semivalues, (I.Dragan,1999, and
I.Dragan and J.E.Martinez-Legaz,2001), we get also the formula for the
Shapley value (I.Dragan,1992), by taking these particular weights (see also
I.Dragan,T.Driessen and Y.Funaki,1996). This will be used later.

We call an Average per capita formula any formula in which occur only
the average worth of various coalitions defined as follows:

νs =
�

n

s

�−1 �

|S|=s

ν(s), νi
s =

�
n− 1

s

�−1 �

|S|=s,i/∈S

ν(s), s = 1, 2, ...n−1,∀i ∈ N.

(4)
Clearly, νs is the average worth of coalitions of size s , while ν

i
s is the

average worth of coalitions of size s which do not contain player i. If we
denote νn = ν(N), then there are n averages νs, and n(n − 1) averages
ν

i
s, hence n

2 averages all together. Let us introduce also the new weights,
defined for all t by

q
i
s =

p
t
s

γt
s
, s = 1, 2, ..., t, (5)

where γ
t
s = (t!)−1(s−1)!(t−s)!, that is the weights for the Shapley value

on G
T .

Theorem 1 (I.Dragan,1999): Let SE be a Semivalue associated with a
non- negative weight vector p

n satisfying the normalization condition. Let
q
n be the nonnegative weight vector defined above. Then, SE is given by

the formula

SE(N, ν) = q
n
n
νn

n
+

�

s=1

n
q
n
s νs − q

n−1
s ν

i
s

s
, ∀i ∈ N. (6)

For q
n
s = 1, s = 1, 2, ..., n, that is p

n
s = γ

n
s , s = 1, 2, ..., n, we obtain:

Corollary 2 (I.Dragan,1992): The Shapley value of the game (N, ν) is
given by

SHi(N, ν) =
νn

n
+

�

s=1

n
νs − ν

i
s

s
, ∀i ∈ N. (7)

Proof of Theorem 1: For i ∈ N fixed, rewrite (2) as

SEi(N, ν) = p
n
nν(N) +

�

S:i∈S⊂N

p
n
s ν(S)−

�

S:i∈S⊆N

p
n
s ν(S − i); (8)
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now, write the two sums separately as

�

S:i∈S⊂N

p
n
s ν(S) =

n−1�

s=1

p
n
s




�

|S|=s,i∈S

ν(S)



 =
n−1�

s=1

p
n
s




�

|S|=s

ν(S)−
�

|S|=s,i/∈S

ν(S)



 ,

(9)
and

�

S:i∈S⊆N

p
n
s ν(S − i) =

n−1�

s=1

p
n
s+1




�

|S|=s

ν(S)



 . (10)

From (8), (9), and (10), with notations (4), we obtain

SEi(N, ν) = p
n
nνn +

�

s=1

n− 1[pn
s

�
n

s

�

νs − p
n−1
s

�
n− 1

s

�

], (11)

where we have also used (3) for t = n. If in (11) we introduce the new

weights by noticing that p
n
s

�
n

s

�

= s
−1

q
n
s , s− 1, 2, ..., n− 1 , we get (6).

Note that the weights q
n
s should satisfy the normalization condition

n�

s=1

q
n
s = n, (12)

derived from (1) and (5), and the Pascal triangle conditions (3) become

q
i−1
s = (1− st

−1)qt
s + st

−1
q
t
s+t, s = 1, 2, ..., t− 1. (13)

In the next section, we shall derive a new Average per capita formula
for the term which should be added to the Semivalue, to get the efficient
normalization. This formula will be needed later in the computation of
Semivalues via Shapley value.

2 Average per capita formula for the efficiency
term

In the paper where the Least Square Values (briefly LS-values) were in-
troduced by L.Ruiz, F.Valenciano and J.M.Zarzuelo, (1998), the authors
defined what they called the Efficient normalization of a Semivalue SE as-
sociated with a nonnegative weight vector p

n = (pn
s ). This is the value

ESE : G
N → R

n written componentwise as

ESEi(N, ν) = SEi(N, ν) + α, ∀i ∈ N, (14)

with α such that ESE is efficient, that is
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α =
1
n

[ν(N)−
�

j∈N

SEj(N, ν)]. (15)

We call α the efficiency term and we intend to derive an Average per
capita formula for α . This can be derived from our formula for a Power
Game relative to a Semivalue by introducing the averages (4) and our new
weights (5), (I.Dragan and J.E.Martinez- Legaz,2001). However, we cut
somehow the work by using (6). From the last formula, we obtain

�

j∈N

SEj(N, ν) = q
n
nνn+

n−1�

s=1

nq
n
s νs − q

n−1
s

�
j∈N ν

j
s

s
= q

n
nνn+n

n−1�

s=1

(qn
s − q

n−1
s )νs

s
,

(16)
where we have used the equality

�
j∈N ν

j
s = nνs, holding for all s = 1, 2, ..., n−

1. In this way, from (15) and (16), we proved:
Theorem 3: The efficiency term for the additive normalization of a Semi-

value is given by the Average per capita formula

α =
νn

n
− [

q
n
nνn

n
+

n−1�

s=1

(qn
s − q

n−1
s )

s
]. (17)

Putting together the Average per capita formulas (6) and (17) of the The-
orems 1 and 3, we prove algebraically for the efficient normalization of a
Semivalue the main result:

Theorem 4: The Efficient normalization of a Semivalue associated with
a non- negative weight vector p

n = (pn
s ) is given by

ESEi(N, ν) =
νn

n
+

n−1�

s=1

q
n−1
s

νs − ν
i
s

s
, ∀i ∈ N, (18)

where q
n−1
s are expressed in terms of p

n as

q
n−1
s =

p
n
s + p

n
s+1

γn
s + γ

n
s+1

, s = 1, 2, ...n− 1, (19)

with γ
n
s and γ

n
s+1 denoting the corresponding Shapley weights.

Note that (19) is derived from (5) for t = n− 1 and (3) for t = n, taking
into account that the weights for the Shapley value satisfy also (3). Note
also that for the Banzhaf value (19) becomes

q
n−1
s =

1
2n−2γ

n−1
s

, s = 1, 2, ...n− 1, (20)

Note that Theorem 4 could be derived from the relationship axiomati-
cally proved by Ruiz, Valenciano and Zarzuelo (1998) between the efficient
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normalization of a Semi- value and the LS-values, together with our rela-
tionship between the LS-values and the Shapley value (I.Dragan,2004). In
the present paper, as it was shown, there is no need of LS-values, and this
was the reason why we have chosen the above proof.

Consider a game (N, ν) and rescale it by introducing the new game
(N,w) :

w(N) = ν(N), w(S) = q
n−1
s ν(S), ∀S ⊂ N. (21)

By (4) we have

ws = q
n−1
s νs, w

i
s = q

n−1
s ν

i
s, ∀i ∈ N, s = 1, 2, ..., n− 1. (22)

Therefore, from (18) and (22), we get the right hand side in (7), for the
new game (N,w). We proved:

Theorem 5. The Efficient normalization of the Semivalue of a game
(N, ν), associated to the weight vector p

n ∈ R
n, is the Shapley value of a

new game (N,w) obtained by rescaling of (N, ν) with factors q
n−1
s , for the

worth of coalitions of size s, s = 1, 2, ..., n − 1, derived from the weight
vector p

n and the Shapley weights by means of (19).
This last result is helpful in computing the Semivalues of the TU games

via the Shapley value, as it will be discussed in the next section, where we
shall also discuss an application of Theorem 5 to the Inverse problem for
Semivalues.

3 Applications to the computation of Semivalues
and to the Inverse problem

In an earlier paper (I.Dragan,1999), we have shown that a Semivalue for a
TU game may be computed by means of the Average per capita formula
in the same way as the Shapley value was shown to be computable from
its Average per capita formula, (I.Dragan,1992). The difference is that the
averages should be weighted, as could be seen in (6). Based upon Theo-
rem 5, we may modify first the game, then use the algorithm for computing
the Shapley value. However, as shown in Theorem 4, we may better com-
pute the usual terms which appear in the Shapley value formula, then go
on and rescale the term by q

n−1
s , as seen in formula (18), to get the Effi-

cient normalization. Now, we have also two alternatives: if we rescale the
game, then we may still modify it by subtracting an additive game (N,α),
in which α(S) = sα for all S ⊂ N , and α(N) = Nα, where α is the ef-
ficiency term. Due to the linearity of the Shapley value, and to Theorem
5, we get the game for which the Shapley value is exactly the Semivalue
to be computed. However, this entails to subtract from each value of the
characteristic function the corresponding value of α(S) so that the number
of operations needed is increasing dramatically. Therefore, we prefer the
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second alternative, namely after we computed the Efficient normalization of
the Semivalue, we shall subtract from each of the components the number
α. This entire procedure will be shown in the next example of a four person
simple game. The first alternative is useful in discussing further the inverse
problem for Semivalues, as it will become clear below.

Example 1: Consider the four person simple game with winning coali-
tions {1}, {2}, {1,2}, {1,3}, {2,3}, {1,2,3}, {1,2,4}, and {1,2,3,4}, and the
weight vector p

4 ∈ R
4, given by p

4 = (1
8 ,

1
8 ,

1
18 ,

1
3) which obviously satisfies

the normalization condition (1). From (3) for t = 4, we get the weight
vector p

3 = (1
4 ,

13
72 ,

7
18) which satisfies also (1), and the Shapley weight vec-

tor γ
3 = (1

3 ,
1
6 ,

1
3) gives the weight vector q

3 = p3

γ3 containing the factors
needed in (18), to compute the ESE. Now, the usual computation of terms
νs−νi

s
s , s = 1, 2, ..., n− 1, in the Shapley value formula gives:

ν1 = 1
2 , ν

1
1 = ν

2
1 = 1

3 , ν
3
1 = ν

4
1 = 2

3 → (ν1 − ν
i
1) =

�
1
6 ,

1
6 ,−1

6 ,−1
6

�

ν2 = 1
2 , ν

1
2 = ν

2
2 = ν

3
2 = 1

3 , ν
4
2 = 1 → 1

2(ν2 − ν
i
2) =

�
1
12 ,

1
12 ,

1
12 ,−1

4

�

ν3 = 1
2 ν

1
3 = ν

2
3 = 0, ν

3
3 = ν

4
3 = 1 → 1

3(ν3 − ν
i
3) =

�
1
6 ,

1
6 ,−1

6 ,−1
6

�

(23)
and weighting these vectors with q

3 leads to

q
3
1(ν1 − ν

i
1) + q

3
2
ν2 − ν

i
2

2
+ q

3
3
ν3 − ν

i
3

3
=

� 59
144

,
59
144

,− 33
144

,− 85
144

�
(24)

By adding 1/4 to each component, we obtain

ESE(N, ν) =
� 59

144
,

59
144

,
1
48

,− 49
144

�
(25)

Now, we compute α by means of (17); we need q
4 = p4

γ4 =
�

1
2 ,

3
2 ,

2
3 ,

4
3

�
and

q
3 that was computed above, to use in (17) q

4
4 = 4

3 and

�
q
4
1 − q+13

, q
4
2 − q

3
2, q

4
3 − q

3
3,

�
=

�
−1

4
,

5
12

,−1
2

�
, (26)

together with the averages ν1, ν2, ν3 to obtain α = 1
48 . We got

SE(N, ν) = ESE(N, ν)− α =
�23

36
,
23
36

, 0,−13
36

�
. (27)

Of course, we may verify this answer by using the definition (2) of the
Semivalue.

Turn to what we called the inverse problem; recall that for a value
Ψ : G

N → R
n, the inverse problem can be stated as follows: an n-vector
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L being given, find out all games in G
N such that Ψ(N, ν) =L. This prob-

lem has been solved for the Shapley value and the weighted Shapley value
(I.Dragan,1991). Recently, the problem was also solved for Semivalues
(I.Dragan,2002), extending the procedure used for the Shapley value to
Semivalues. Here we have an alternative solution based upon the remark
made at the beginning of this section, precisely

SE(N, ν) = SH(N,w − α). (28)

Let us state the result which solves the inverse problem for the Shapley value.
Consider the following basis for G

N : B =
�
Bs ∈ G

N : S ⊆ N,S �= ∅
�
,

where for S ⊂ N we have Bs(T ) = |S|, if T = S, and Bs(T ) = −1, if
T = S∪{j}, j /∈ S, and Bs(T ) = 0, otherwise; BN (N) = n, and BN (T ) = 0,
otherwise.

Theorem 6 (I.Dragan,1991): For any �L ∈ R
n, the set of games in G

N

with the Shapley value SH(N, ν) = �L is given by the formula:

ν =
�

|S|≤n−2

βSBS + βN (BN +
�

j∈N

BN−{j})−
�

j∈N

LjBN−{j}, (29)

where βN and βS , |S| ≤ n− 2, are any real numbers.
Taking into account (28), the solution of the inverse problem for a Semi-

value can be obtained from (29), where in the left hand side we should take
ν = w − α, with the game (N,α) defined at the beginning of this section,
and (N,w) defined in (21), then the equation should be solved for w. The
2n − 1 dimensional games (N,w) and (N,α) should be expressed in terms
of the original game and L, by using (21); the last game is via (15) given by

α(S) =
s

n
[ν(N)−

�

j∈N

Lj ], ∀S ⊆ N. (30)

(see below).
Example 2: Consider the given vector L =

�
23
36 ,

23
36 , 0,−13

36

�
, and find

out all games for which the Semivalue associated with the weight vector
p
4 =

�
1
8 ,

1
8 ,

1
18 ,

1
3

�
equals L. For our four person game, from (29) we obtain:

w = α +
�

|S|=1,2

βSBS + βN (BN +
�

j∈N

BN−{j})−
�

j∈N

LjBN−{j}, (31)

This is a vector-equation, in which the left hand side is providing the coali-
tional form of all the games we are trying to find (each ν(S) is multiplied
by γ

3
s , s = 1, 2, 3) and in the right hand side appear linear combinations

of the 12 parameters defining the set of the solution games, precisely, the 10
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parameters βS with |S| = 1, 2, then βN and α. For

β1 = 35
48 ,β2 = 35

48 ,β3 = − 1
48 ,β4 = − 1

48 .

β12 = 5
4 ,β13 = 7

8 ,β14 = 1
3 ,β23 = 7

8 ,β24 = 1
3 ,β34 = − 1

24
β1234 = 71

72 ,α = 1
48 ,

(32)

we obtain our game considered in Example 1. It is interesting to notice that
the basis does not depend on the weight vector, which appear only in the
left hand side, as was explained above. Hence, in fact the entire set of games
solving the inverse problem is depending on 15 parameters, namely beside
the 12 parameters mentioned above, we have also γ

3
1 , γ

3
2 , γ

3
3 . In the paper

where we solved the inverse problem relative to the Semivalues, we had an
infinite set of bases depending on the chosen weight vector p

4 .
Returning to the general case, the similar procedure is providing the

characteristic function of all solution games as functions of 2n − n − 1
parameters βN and βS for |S| ≤ n − 2, and α. The other parameters
γ

n−1
s , s = 1, 2, ...n− 1, appear in the left hand sides.
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Università del Piemonte Orientale
vito.fragnelli@mfn.unipmn.it

Abstract
This paper presents some game theoretical approaches to railway problems.
The main topic is the definition of a fair access fee to the European railway
network, which matches the directives of the European Union.

1 Introduction

In the last fifteen years game theory found many applications to railway
sector in Europe, after the European Community directives 440/91, 18/95
and 19/95, later confirmed and/or modified as European Union directives
12/01, 13/01 and 14/01. These directives deal with the reorganization of the
European railway system; in particular they state the separation between
infrastructure management and transport operations and allow the access
to the infrastructure also to private railway undertakers.

Since the railway industry traditionally has been organized as vertically
integrated firms, the allocation of scarce resources (track capacity) may
results in inefficiencies arising from differential information, inappropriate
incentives and the existence of priority groups. The EC/EU directives in-
creased the importance of an efficient capacity allocation, jointly with the
necessity of a fair tariff system that guarantees a non discriminatory ac-
cess to the infrastructure, minimizing the government subsidizations to the
railway system.

The EU directive 14/01 explicitly refers to the cooperation between the
infrastructure managers and railway undertakers in order to enhance the ex-
ploitation of the track capacity, maximizing the number of requests satisfied
as best as possible.

More precisely, the directive 14/01/UE gives some useful suggestions and
guidelines. A tariff system should favor transparency and non-discriminatory
access, impose equivalent tariffs for equivalent services, averaging the costs,
encourage an optimal use of the network, reduce the scarcity of the capacity
of the network, coordinating the requests of railway undertakers, enhance
the available infrastructure capacity, incentivating the investments by the
infrastructure managers. Moreover it is possible to charge the transport
operators for infrastructure maintenance.
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The issue of track allocation has been treated, for instance, in Brewer
and Plott (1996), Bassanini and Nastasi (1997) and Nilsson (1999).

Brewer and Plott (1996) proposed a decentralized allocation process
based on a binary conflict ascending price (BICAP) mechanisms in which
each agent submits bids for trains in a continuous time auction. The highest
bid on a train prevails as the potential winner and cancels all lower bids for
the train. Since the potential allocation is of higher value than any alloca-
tion possible from the excluded trains, the final allocation must necessarily
be efficient if the excluded agents are fully revealing their willingness to pay.
Experiments indicate that the mechanism operates at near 100% efficiency.

Bassanini and Nastasi (1997) presented a three-stage model: in the first
stage the railway undertaker ask for their preferred tracks, specifying a mon-
etary evaluation; in the second stage the infrastructure manager assigns the
available capacity of the network, maximizing the total assigned value in a
non-discriminatory mechanism, based on a non cooperative market game;
the third stage deals with the service prices for the users.

Nilsson (1999) suggested a Vickrey-type mechanism to handle incentive
aspects of this technically complex optimization task. Here, the price for
operating a train will correspond to the bids foregone by other operators who
are pushed off their preferred routes. The main advantage of a second price
auction is that bidders can confine their attention to appraising the value of
an item in their own hands rather than deliberating over value or bidding
strategy by others. Consequently, more bidders are induced to participate in
the process, resulting in a better allocation of resources and a higher selling
price. Experimental solutions capture 90-100% of the potential benefits.

Here we are interested in the second issue, the design of a tariff system.
A fair infrastructure access fee, i.e. the amount paid by the railway

undertakers to the firm in charge of the infrastructure management for a
particular journey, should take into account several aspects such as the a
priori profitability and social utility of the journey, congestion issues, the
number of passengers and/or goods transported, the services required by
the operator, infrastructure costs, etc. The tariff is conceived in an additive
way, i.e. as the sum of various tariffs corresponding to the different aspects
to be considered.

The problem can be informally described as follows. A given railway
path is used by different types of trains belonging to several operators, and
the infrastructure costs have to be divided among these trains. Clearly it is
a problem of joint cost allocation (see Tijs and Driessen, 1986 and Young,
1994).

The infrastructure can be considered as consisting of some kinds of “fa-
cilities” (track, signaling system, stations, etc.). Different groups of trains
need these facilities at different levels: for example, fast trains need a more
sophisticated track and signaling system, compared to local trains, for which
instead station services are more important (particularly in small stations).
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So the infrastructure can be viewed as the “sum” of different facilities,
each of them required by the trains at a different level of cost.

Furthermore, for each facility, infrastructure costs can be seen as the sum
of “building” costs and “maintenance” costs. The first can be seen as a fixed
part, because they depend on the level of the facility, but are independent
from the number of trains; the latter represent a variable part, because they
are proportional to the number of trains (and depend on the level of the
facility).

In a game theoretical setting Fragnelli et al. (2000) proposed as a so-
lution for this problem the Shapley value (see Shapley, 1953) that results
especially appropriate because of the following two reasons:

1. It is well-known that the Shapley value is an additive solution. This
feature fits well with the “additive nature” of the access tariff, as
commented above.

2. The infrastructure access tariff based on the Shapley value can be
computed very easily (using, once more, the additivity of the Shapley
value). As a very big amount of fees will have to be computed by
the infrastructure manager every new season, computational issues
become highly relevant.

Similar considerations extend to other problems: for example the costs
for a bridge, to be used by small and big cars. There are building costs, which
are different in the case of a bridge for small or big cars, and maintenance
costs, which can be assumed to be proportional to the number of vehicles
using the bridge and to the kind of bridge needed.

Another situation (see Remark 1) refers to the allocation of the oper-
ating costs for a consortium for urban solid wastes collection and disposal
(Fragnelli and Iandolino, 2004). This application fully exploits the struc-
ture of fixed and variable costs; in fact operating costs apparently refer only
to “maintenance interventions”, but those costs that depend only on the
type of users, e.g. environmental monitoring, can be classified as “building”
costs, while the costs that take into account also the number of users, e.g.
Raw materials, can be classified as “maintenance” costs.

Maintenance and building cost games were used also in Garcia and
Garcia-Jurado (2000) in queue management and in González and Herrero
(2004) for sharing the costs related to the operating-theatre in a hospital.

In Section 2 we introduce the infrastructure cost games for one facility
and provide a simple expression of the Shapley value for this class of games.
In Section 3 we briefly study the balancedness of the infrastructure cost
games and give a simple expression for the nucleolus. Section 4 deals with
infrastructure cost games for more than one facility. In Section 5 we present
a simple case-study. Section 6 concludes.
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2 One Facility Infrastructure Cost Games

For simplicity, we concentrate first on infrastructure cost games when we are
dealing with the building and maintenance costs of one facility. To begin
with, we recall the definition of an “airport game” (see Littlechild and Owen,
1973).

Definition 1 Suppose we are given k groups of players g1, ..., gk with n1,...,nk

players respectively and k non-negative numbers b1, ..., bk. The airport game
corresponding to g1, ..., gk and b1, ..., bk is the cooperative (cost) game (N, c)
with N = ∪i=1,...,kgi and cost function c defined by

c(S) = b1 + · · · + bj(S)

for every S ⊆ N , where j(S) = max{j : S ∩ gj �= ∅}.

Airport games match the characteristics of building cost games for one
facility, where the groups of players represent the trains requiring a certain
level of the facility and bi represents the extra cost in order that a facility
that can be used by players in groups g1, ...gi−1 can also be used by the more
sophisticated players in group gi; consequently, the cost of a facility of level
i is given by b1 + · · · + bi.

The Shapley value of a building cost game (N, c
b) for a player in the

group gi, i = 1, ..., k is given by:

φi(cb) =
�

j=1,...,i

bj

Gjk

where Gjk = |∪h=j,...,k gh|.
Now we consider the maintenance cost games (see Fragnelli et al., 2000)

for one facility, starting from the basic assumptions that maintenance costs
are proportional to the number of users and increasing with the level of the
facility.

Definition 2 Suppose we are given k groups of players g1,...,gk with n1,...,nk

players respectively and k(k+1)/2 non-negative numbers {αij}i,j∈{1,...,k},j≥i.
The maintenance cost game corresponding to g1,...,gk and {αij}i,j∈{1,...,k},j≥i

is the cooperative (cost) game (N, c
m) with N = ∪i=1,...,k gi and cost function

c
m defined by:

c
m(S) =

j(S)�

i=1

|S ∩ gi|Aij(S)

for every S ⊆ N , where Aij = αii + ...+αij for all i, j ∈ {1, ..., k} with j ≥ i.

The interpretation of the numbers αij and Aij is the following. Suppose that
one player in gi has used the facility. In order to restore the facility up to
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level i the maintenance costs are Aii = αii. If, however, the facility is going
to be restored up to level i + 1, then extra maintenance costs αi,i+1 will be
made. So, in order to restore the facility up to level j ≥ i the maintenance
costs are Aij = αii + .... + αij .

Note that, for every i ≤ j, the more sophisticated the facility is, i.e. the
larger j is, the higher the maintenance costs produced by a player in gi are.

A maintenance cost game (N, c
m) can be decomposed as:

c
m(S) =

�

i=1,...,k

�

j=i,...,k

αijc
ij(S), S ⊆ N

where

c
ij(S) =

�
|S ∩ gi| if j ≤ j(S)

0 if j > j(S)

for all i, j ∈ {1, ..., k} with j ≥ i.
The previous decomposition allows us stating the following theorem (see

Theorem 3.1 in Fragnelli et al., 2000) that provides a simple expression of
the Shapley value for a maintenance cost game.

Theorem 1 Let (N, c
m) be the maintenance cost game corresponding to

the groups g1,...,gk, with n1,...,nk players respectively and to non-negative
numbers {αlm}l,m∈{1,...,k},m≥l. Then the Shapley value for a player in the
group gi, i = 1, ..., k is:

φi(cm) = αii +
�

l=i+1,...,k

αil

Glk

Glk + 1
+

�

l=2,...,i

�

j=1,...,l−1

αjl

|gj |
(Glk)(Glk + 1)

The following graphical example may make clearer the previous formulas
for the Shapley value.

Example 1 Let N = g1 ∪ g2 ∪ g3 where g1 = {1}; g2 = {2, 3}; g3 = {4} and
let the building cost game represented as in the figure on the left; the Shapley
value divides the cost as in the figure on the right:

b1 b2 b3

1
2
3
4

2
3
4

4

φ1(cb) = 1
4b1

φ2(cb) = φ3(cb) = 1
4b1 + 1

3b2

φ4(cb) = 1
4b1 + 1

3b2 + b3

Analogously, let the maintenance cost game represented as in the figure on
the left; the Shapley value divides the cost as in the figure on the right:
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α1,1 α1,2 α1,3

α2,2 α2,3

α2,2 α2,3

α3,3

1 1 1 4

2 2 4

3 3 4

4

2
3
4

φ1(cm) = α1,1 + 3
4α1,2 + 1

2α1,3

φ2(cm) = φ3(cm) = α2,2 + 1
2α2,3 + 1

3 · 1
4α1,2

φ4(cm) = α3,3 + 1
3 · 1

4α1,2 + 1
2α1,3 + 2 · 1

2α2,3

Remark 1 Applying the infrastructure cost games to a different kind of fa-
cility, namely a consortium for collection and disposal of urban solid wastes
(see Fragnelli and Iandolino, 2004), an undesired behavior of the Shapley
value showed up (see also the discussion on the monotonicity of the Shapley
value in Young, 1994). When the number of players in each group increases
proportionally (for example the population in each group doubles) the Shap-
ley value of the maintenance cost game smooths the differences among the
amount charged to the different groups (in the case analyzed in Fragnelli
and Iandolino (2004) they converge to a unique value for all the players).
This characteristic may be avoided using the Owen value (Owen, 1977), for
which a simple expression exists, as stated in the following theorem (see
Proposition 1 in Fragnelli and Iandolino, 2004).

Theorem 2 Let (N, c
m) be the maintenance cost game corresponding to the

groups g1,...,gk, with n1,...,nk players respectively and to the non-negative
numbers {αlm}l,m∈{1,...,k},m≥l. If the groups g1,...,gk correspond to the a
priori unions, then the Owen value for a player in the group gi, i = 1, ..., k

is:

Ωi(cm) =
�

H⊂Gi−1

h!(k − h− 1)!
k!

� 1
|gi|

β(H) + αii

�
+

�

H �⊂Gi−1

h!(k − h− 1)!
k!

Ai,j(H)

where h = |H|, Gi−1 = {g1, ..., gi−1}, β(H) is the cost for ”upgrading” the
players in H, i.e. β(H) = Aj(H),i

�
j|gj∈H

|gj | and j(H) = max{j|gj ∈ H}.

Analogously, for a building cost game (N, c
b) corresponding to the groups

g1,...,gk, with n1,...,nk players respectively and to the non-negative numbers
b1,...,bk, with a priori unions g1,...,gk, then the Owen value for a player in
the group gi, i = 1, ..., k is:

Ωi(cb) =
�

H⊂Gi−1

h!(k − h− 1)!
k!

�
bi − bj(H)

|gi|

�
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3 Balancedness of One Facility Infrastructure Cost

Games

In this section we provide a characterization of the balancedness for one
facility infrastructure cost games and a formula for computing the nucleolus.

The balancedness conditions may be stated by the following proposition
(see Proposition 3.1 in Norde et al., 2002)

Proposition 1 Let (N, c) be a one facility infrastructure cost game with
groups g1,...,gk, with n1,...,nk players respectively and non-negative numbers
b1,...,bk and {αij}i,j∈{1,...,k},j≥i. Then (N, c) is balanced iff:

�

i=1,...,j

ni (Aik −Aij) ≤
�

i=1,...,j

bi

for every j = 1, ..., k − 1.

The balancedness conditions are obtained by considering minimal balanced
collections which correspond to “splits” of N into two groups of the following
kind: g1 ∪ · · ·∪ gj and gj+1 ∪ · · ·∪ gk. The interpretation of these conditions
is the following: the maintenance costs that the players in g1 ∪ · · ·∪ gj have
to pay for the level of the “needs” of the other players should be less than
or equal to the building costs for the facility at the level needed by these
groups themselves.

Remark 2 The computation of the Shapley values and the check of the bal-
ancedness conditions may be done using the package ShRInC (Sharing Rail-
ways Infrastructure Costs), created with the collaboration of Luisa Carpente
and Claudia Viale.

The nucleolus of a one facility infrastructure game (see Schmeidler, 1969)
can be computed according to the following definition and proposition (see
Definition 3.4 and Proposition 3.5 in Norde et al., 2002).

Definition 3 Let (N, c) be a balanced one facility infrastructure cost game
with groups g1,...,gk, with n1,...,nk players respectively and non-negative
numbers b1,...,bk and {αij}i,j∈{1,...,k},j≥i. Let the numbers b̂1,...,b̂k be defined
by the linear system:





b̂1 = b1 − n1 (A1k −A11)
b̂1 + b̂2 =

�

i=1,2

bi −
�

i=1,2

ni (Aik −Ai2)

... ...

b̂1 + b̂2 + ... + b̂k−1 =
�

i=1,...,k−1

bi −
�

i=1,...,k−1

ni (Aik −Ai,k−1)

b̂1 + b̂2 + ... + b̂k−1 + b̂k =
�

i=1,...,k

bi
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Let the vector (z1, ..., zk) be defined recursively by:

z1 = min
1≤j≤k

��
l=1,...,j

b̂l

Wj

�

zi = min
i≤j≤k

��
l=1,...,j

b̂l − (n1z1 + ... + ni−1zi−1)
Wj −

�
l=1,...,i−1 nl

�

, i = 2, ..., k

where Wj =
�

l=1,...,j

nl + 1 for j = 1, ..., k − 1 and Wk =
�

l=1,...,k

nl.

Define the allocation Φ(c) = (Φ1(c), ...,Φk(c)) by:

Φi(c) = Aik + zi, i = 1, ..., k

Proposition 2 Let (N, c) be a balanced one facility infrastructure cost game
with groups g1,...,gk, with n1,...,nk players respectively and non-negative
numbers b1,...,bk and {αij}i,j∈{1,...,k},j≥i. Then Φ(c) is the nucleolus of
(N, c).

4 Infrastructure cost games

In this section we consider infrastructure cost games with an arbitrary num-
ber m of facilities, where no special requirements upon the ordering of the
wishes of the coalitions for the several facilities will be made, but the groups
are the same for each facility.

Suppose we are given an infrastructure cost game (N, c) with groups of
players g1,...,gk, with n1,...,nk players respectively. Let c = c

1 + ... + c
m be

such that, for every l ∈ M := {1, ...,m}, (N, c
l) is a one facility infrastructure

cost game with groups of players gπl(1),...,gπl(k), where π
l is a permutation

of the set K = {1, ..., k}. Let (bl

i
)i∈K and {αl

ij
}i,j∈K,j≥i be the non-negative

numbers which define the one facility infrastructure game (N, c
l) and let

n
l

i
:= nπl(i) be the number of players in the group ranked at the i-th place

for facility l.
If an infrastructure cost game is the sum of balanced one facility in-

frastructure cost games then clearly this game is balanced. The following
example (see Example 4.2 in Norde et al., 2002) shows that the converse
statement is not true.

Example 2 Consider the infrastructure cost game (N, c), dealing with the
building and maintenance costs of two facilities, where the ordering of the
wishes of the three groups involved for the facilities are given by:

facility 1 g1 g2 g3

facility 2 g2 g1 g3
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Suppose that every group has precisely one player, say g1 = {1}, g2 = {2},
and g3 = {3}. The one facility infrastructure cost games < N, c

1
> and

< N, c
2

> are defined by the numbers

b
1
1 = b

2
1 = 1 b

1
2 = b

2
2 = 9 b

1
3 = b

2
3 = 1

α
1
1,1 = α

2
1,1 = 1 α

1
1,2 = α

2
1,2 = 1 α

1
1,3 = α

2
1,3 = 1

α
1
2,2 = α

2
2,2 = 2 α

1
2,3 = α

2
2,3 = 1

α
1
3,3 = α

2
3,3 = 3

One easily verifies that c
1(1) = 2, c

1(2) = 12, c
1(3) = c

1(12) = 14, c
1(13) =

c
1(23) = 17, and c

1(123) = 20. Since c
1(123) > c

1(1) + c
1(23) we conclude

that (N, c
1) is not balanced. Moreover, we have c

2(1) = 12, c
2(2) = 2,

c
2(3) = c

2(12) = 14, c
2(13) = c

2(23) = 17, and c
2(123) = 20. From

c
2(123) > c

2(2) + c
2(13) we infer that (N, c

2) is not balanced. The game
(N, c) is specified by the data c(1) = 14, c(2) = 14, c(3) = c(12) = 28,
c(13) = c(23) = 34, and c(123) = 40. One easily verifies that (6, 6, 28) is a
core element of (N, c), so it is balanced.

Remark 3 The different ordering of the groups of players for the various
facilities makes the monotonicity condition for the costs associated to the
different groups no longer valid. This leads to the definition of generalized
airport games (Norde et al. 2002). Generalized airport games have been
applied to deterministic auction situations for computing the Shapley value
in an easy way (see Branzei et al. 2005).

5 An Example

In this section we compute the Shapley value for a case study elaborated
on data taken from Baumgartner (1997). The example (see Fragnelli et
al. 2000) concentrates on a single element (the track), even if Baumgartner
provides data also for other elements (line, catenary, signaling and security
system, etc.), that can be analyzed in a similar fashion. Consider one kilo-
meter of track, we get two kinds of costs1, that depend on the type of train
(slow or fast) and on the number of trains running. More precisely, we have
both renewal costs and repairing costs and accordingly we divide the track
into two facilities: “track renewal” and “track repairing”.

Renewal costs can be approximated by the following formula:

RWC = 0.001125X + 11, 250

where RWC are the renewal costs per kilometer and per year (expressed in
Swiss Francs) and X measures the “number” of trains, expressed in yearly
TGCK (Tons Gross and Complete per Kilometer).

1We assumed the weight of 50Kg for a meter of rail and made a linear approximation
of the costs given in table 2 of Baumgartner (1997).
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Assuming for simplicity that all of the trains running are of the same
weight, the facility “track renewal” has a fixed component (building costs)
and a part proportional to the number of trains running (maintenance costs).
If the assumption of equal weight cannot be sustained, it suffices to divide
the trains into groups of similar weight. In such a case each group will have
different unitary maintenance costs.

Similarly, for the facility “track repairing”, costs can be given by analo-
gous formulas:

RPCs = 0.001X + 10, 000

RPCf = 0.00125X + 12, 500.

RPCs denotes the repairing costs (in Swiss Francs) per kilometer and per
year of a track prepared only for slow trains, whereas RPCf denotes the re-
pairing costs (in Swiss Francs) per kilometer and per year of a track prepared
for all trains. X denotes the same as before.

So, consider one kilometer of line, which will be used this year by a total
weight of 107 TGCK (corresponding to 20,000 trains, assuming a weight per
train of approximately 500 tons). Assume that 5,000 trains are fast and
15,000 are slow. The infrastructure cost game that can be used to allocate
the costs is (N, c) given by:

• N = g1∪g2, g1 being the set of slow trains (n1 = 15, 000) and g2 being
the set of fast trains (n2 = 5, 000).

• c = c
1 + c

2, c
1 and c

2 being one facility infrastructure cost games both
having the same groups of players and ordered in the same way: g1,
g2.

Now, c
1 and c

2 are characterized by the following parameters.

• c
1 : b

1
1 = 11, 250; b

1
2 = 0; α

1
1,1 = 0.5625; α

1
1,2 = 0; α

1
2,2 = 0.5625.

• c
2 : b

2
1 = 10, 000; b

2
2 = 2, 500; α

2
1,1 = 0.5; α

2
1,2 = 0.125; α

2
2,2 = 0.625.

Denoting the Shapley value of a slow and a fast train by φs(c) and φf (c)
respectively, then:

• φs(c) = b
1
1

n1+n2
+ α

1
1,1 + b

2
1

n1+n2
+ α

2
1,1 + α

2
1,2

n2
n2+1 = 2.25

• φf (c) = b
1
1

n1+n2
+ α

1
2,2 + b

2
1

n1+n2
+ b

2
2

n2
+ α

2
2,2 + α

2
1,2

n1
n2(n2+1) = 2.75.

These are the fees, in Swiss Francs, that every slow and fast train (respec-
tively) should pay per kilometer of track used, according to our solution.
Clearly, in front of a specific allocation problem regarding a specific line,
with specific transport operators and trains, appropriate data should be
collected.
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6 Concluding Remarks

The interactions among railways cost allocation and game theory continue
with the analysis of the problem of a tariff system for the freight trains.
Again, the directive 14/01/UE suggests that a tariff system that favors sus-
tainable mobility, a better balance of transport between modes, efficient use
of international freight corridors, discounts for efficient use of the under-
utilized lines, direct charge of direct costs; moreover appropriate charges
for paths allocated but not used are suggested and, similarly, incentives for
reducing scarcity and limiting environmental impact, mainly acoustic pol-
lution. The aim of the present researches is to develop a unified formula for
all European infrastructure managers, in order to simplify the procedures
for the railway undertakers.

Other possibilities are offered by the railway scheduling where the coop-
eration among the different agents may improve the gains and the timetable.
In this last case the concept of homotachicity may improve the exploitation
of the capacity of a line, with higher regularity of trains.
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Abstract
In this paper, we examine the questions of which coalition structure is

formed and how payoff is distributed among players in cooperative games
with externalities. We introduce a stability concept called a sequentially sta-
ble coalition structure in a game with coalition structures by extending the
concept of the equilibrium binding agreements by Ray and Vohra (1997). In
their definition, only breaking up is allowed for coalitions. However, in our
stability concept, coalitions can both break up and merge into. A sequen-
tially stable payoff configuration is defined as a payoff configuration which
sequentially dominates all other payoff configurations. Diamantaudi and Xue
(2002) also extend the concept of the Ray and Vohra, but the domination is
very different. As an application of our stability notion, we study a common
pool resource game. We show that if the number of players is between 4
and 48, then for some concave production function, the payoff configuration
related to the grand coalition structure is sequentially stable in the common
pool resource game.

1 Introduction
In this paper, we examine the questions of which coalition structure is formed and
how payoff is distributed among players in cooperative games with externalities.
We introduce a stability concept called a sequentially stable coalition structure in
a game with coalition structures by extending the concept of the equilibrium bind-
ing agreements(EBA) by Ray and Vohra (1997). Ray and Vohra capture explicitly

∗Preliminaries
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the credibility of blocking coalitions, and then induce a recursive definition of the
stable coalition structures in a game with externalities. However, in their defini-
tion, only breaking up is allowed for coalitions. This means that for example the
coalition structure containing only singletons is always EBA.

Diamantoudi and Xue (2002) extend this notion and it is called EEBA. In their
stability concept, both breaking up and merging into are allowed for coalitions.
However in their definition, both breaking and merging occur at the same time,
and this implies a lot of possibilities of changes in coalition structures at one step
and makes its analysis complicated.

We extend the notion of EBA by a different way. In our definition, a domina-
tion between two coalition structures is defined by a sequence in which only two
coalitions can merge into one coalition or one coalition can break into two coali-
tions. This gives a restriction to changes in coalition structures. Our definition of
the domination is given as follows. The coalition structure z is said to sequentially
dominate the coalition structure z� if there is a sequence of coalition structures
starting from z to z� such that
(1) in each step, two coalitions may merge or one coalition may break into two
coalitions, and
(2) in each step, the members in the merging coalitions or the breaking coalition
prefer the payoffs of the final configuration z� to the present payoff.

A sequentially stable coalition structure is defined as a coalition structure which
sequentially dominates all other coalition structures.

We compare these three notions and we show that these are characterized by
vNM stable sets with respect to different domination relations.

Next we apply our stability concept to a common pool resource game, where
each coalition structure corresponds to one coalition structure. We show that if the
number of players is between 4 and 48, then for some concave production function,
the coalition structure containing only the grand coalition is sequentially stable in
the common pool resource game.

On the other hand, it is difficult to eliminate the stability of coalition structures
containing singleton and n − 1 person coalition because the singleton player gets
the maximal payoff among the payoffs for all coalition structures. However we
could show that the coalition structures containing singleton and n − 1 person
coalition are not sequentially stable under some concave production function for
games with any number of players.

2 Dominations and Some Basic Concepts
Let N = {1, 2, ..., n} be a set of players. A subset S of N is called a coalition.
First we define a set of feasible payoff vectors under a coalition structure. We
use the concept of a coalition structure how players form coalitions. Here a coali-
tion structure P is a partition {S1, S2, ..., Sk} of N , where S1, S2, ..., Sk in P are
disjoint and ∪k

j=1Sj = N. The set of partitions of N is denoted by Π(N).
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We assume that given any coalition structure P ∈Π(N), the feasible payoff
vector under P , u(P) = (u1(P), u2(P), ..., un(P))∈IRn, is uniquely determined.

We give an example of a feasible payoff vector.

Example 1. A game in partition function form (N, v) is defined by a pair of a set
of players N and a partition function v which assigns to each pair of a partition
P ∈ Π(N) and a coalition S ∈ P , a real value v(S|P). Given a game in partition
function form, the feasible payoff vector under P is given by ui(P) = v(S|P)

|S| ∀i ∈
S,∀S ∈ P .

We introduce two special types of coalition structures. PN = {N} is called a
grand coalition structure, and PI = {{1}, {2}, ..., {n}} is called a singleton coali-
tion structure or individual coalition structure. We also say that P � is a finer coali-
tion structure of P (P is a coarser coalition structure of P �), if the coalition struc-
ture P � is given by re-dividing the coalition structure P , that is, ∀S� ∈ P �,∃S ∈ P
such that S� ⊆ S and |P �| > |P|.

We introduce several stability concepts for a set of coalition structures. This is
an alternative way to define a core of a game with externalities. For this purpose,
we define two simple concepts of dominations between two coalition structures.

Definition 1. Let P,P � ∈ Π(N). We say that P is dominated by P � if
(1) P � is a finer coalition structure of P , and
(2) there exists T ∈ P � such that T ∈/ P and ui(P �) > ui(P) ∀i ∈ T .

Definition 2. Let P,P � ∈ Π(N). We say that P is directly dominated by P � under
P � if

(1) P � is a finer coalition structure of P , and |P �| = |P| + 1,
(2) there exists T ∈ P � such that T ∈/ P and ui(P �) > ui(P) ∀i ∈ T .

We can define stable coalition structures by these definitions of dominations.
The following definition is a natural extension of the credible core by Ray(1989)

to games with externalities.

Definition 3. A credible coalition structure is given as follows:
(1) PI = {{1}, {2}, ..., {n}} is credible.
(2) For k (k = n − 1, n − 2, ..., 1), P with |P| = k is credible if P is not

directly dominated by any coalition structure P � where P � is credible and |P �| =
k + 1.

We call this P a credible coalition structure. Moreover, the set of all credible
coalition structures is called a credible core, and is denoted by CC.

This is a recursive definition. First, according to (1), PI is credible. Second,
we can check whether or not each of a coalition structure of (n − 1) coalitions is
credible by using the fact PI is credible. Third, we can check whether or not each
of a coalition structure of (n − 2) coalitions is credible by using the fact obtained
in the second step, and so on.
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Ray and Vohra (1997) extends the credible core concept by a different way.
Their concept is called “equilibrium binding agreement (EBA)”. The following
definition of an EBA coalition structure is the same as their concept properly, but
it is expressed by a simpler way using a recursive definition.

Definition 4. An EBA coalition structure is given as follows:
(1) PI = {{1}, {2}, ..., {n}} is an EBA.
(2’) For k (k = n − 1, n − 2, ..., 1), P with |P| = k is an EBA if P is not

dominated by any coalition structure P � where P � is an EBA and |P �| > k.
The set of all EBA coalition structures is called an EBA core.

The difference between the two definitions is as follows: In a credible coali-
tion structure, only the direct domination is considered, but in an EBA coalition
structure, every any domination is considered.

We consider the stability concepts of coalition structures with respect to only
deviation of coalitions but not for merge of coalitions in both Definitions 3 and 4.

3 Credible Cores in Common Pool Resource Games

Here we apply the above two cores to an economy with externalities. Consider
the following game of an economy with a common pool resource. For any player
i ∈ N , let xi ≥ 0 represent the amount of labor input of i. Clearly, the over-
all amount of labor is given by

�
j∈N xj . The technology that determines the

amount of product is considered to be a joint production function of the overall
amount of labor f : IR+ → IR+ satisfying f(0) = 0, limx→∞ f �(x) = 0, f �(x) >
0 and f ��(x) < 0 for x > 0. The distribution of the product is supposed to be pro-
portional to the amount of labor expended by players. In other words, the amount
of the product assigned to player i is given by xi�

j∈N xj
· f(

�
j∈N xj). The price of

the product is normalized to be one unit of money and let q be a cost of labor per
unit, and we suppose 0 < q < f �(0).

Then individual i’s income is denoted by

mi(x1, x2, ..., xn) =
xi

xN
f(xN )− qxi.

The total income of coalition S is denoted by

mS ≡
�

i∈S

mi =
xS

xN
f(xN )− qxS ,

where xS ≡
�

i∈S xi. We consider a game where each coalition is a player. It
chooses its total labor input and its payoff is given by the sum of the income over
its members. Naturally we can define a Nash equilibrium of that game.

Definition 5. (x∗S1
, x∗S2

, ..., x∗Sk
) is an equilibrium under P ⇐⇒

mSj (x
∗
Sj

, x∗S−j
) ≥ mSj (xSj , x

∗
S−j

), ∀j, ∀xSj ∈ IR+.
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Proposition 1 (Funaki and Yamato(1999)). For any P = {S1, S2, ..., Sk}, there
exists a unique equilibrium (x∗S1

, x∗S2
, ..., x∗Sn

) under P which satisfies

f �(x∗N ) +
(k − 1)f(x∗N )

x∗N
= kq, x∗Sj

=
x∗N
k

∀j, x∗Sj
> 0 ∀j,

where x∗N =
�k

j=1 x∗Sj
.

Given a coalition structure P = {S1, ..., Sk}, let (x∗S1
(P), ..., x∗Sk

(P)) be a
unique equilibrium underP and let x∗N (P) =

�k
i=1 x∗Si

(P). Moreover, letm∗
Si

(P) =
mSi(x∗S1

(P), ..., x∗Sk
(P)) be the equilibrium income of coalition Si for i = 1, .., k

and therefore
m∗

N (P) =
�k

i=1 mSi(x∗S1
(P), ..., x∗Sk

(P)). The following result is given by Fu-
naki and Yamato (1999).

Proposition 2 (Funaki and Yamato(1999)). For two coalition structures
Pk = {S1, S2, ..., Sk} and P �k� = {S�1, S�2, ..., S�k�} with k < k�,

x∗N (Pk) < x∗N (P �k�),
m∗

N (Pk)
n

>
m∗

N (P �k�)
n

,

S ∈ Pk and S ∈ P �k� =⇒ m∗
S(Pk) > m∗

S(P �k�).

We assume that for a common pool resource game, the feasible payoff vector is

given by ui(P) =
m∗

Sj
(P)

|Sj | ∀i ∈ Sj ,∀Sj ∈ P . It is natural to consider this because
of the symmetry of players.

The following is an important lemma to obtain Theorems 1 and 2.

Lemma 1. In a common pool resource game, let a coalition structure P �=
PI be given. Without loss of generality, denote the coalition structure by P =
{S1, S2, ..., Sk}, where S1 = {1, 2, ..., r}, 2 ≤ r ≤ n, and 1 ≤ k ≤ n−r+1. Sup-
pose that the coalition S1 is divided into two subcoalitions, S�1≡{1, .., �} and S��1 ≡
{� + 1, .., r}, where 1 ≤ � ≤ r/2. All other players do not change their behavior
in coalition formation. Denote this coalition structure P � = {S�1, S��1 , S2, ..., Sk}.
Let m∗

1(P) ≡ m∗
S1

(P)/r and m∗
1(P �) ≡ m∗

S�1
(P �)/�. Then m∗

1(P �) > m∗
1(P) if

k2/(k + 1)2 ≥ �/r, in particular, if (i) r = n and n/� ≥ 4, (ii) 3 ≤ r ≤ n− 1 and
�/r ≤ 4/9, or (iii) r = 2 and k ≥ 3.

Proof. By Proposition 1,

m∗
1(P) = m∗

S1
(P)/r =

f(x∗N (P))− qx∗N (P)
rk

=
f(x∗N (P))− f �(x∗N (P))x∗N (P)

rk2
,

m∗
1(P �) = m∗

S�1
(P �)/� =

f(x∗N (P �))− qx∗N (P �)
�(k + 1)

=
f(x∗N (P))− f �(x∗N (P))x∗N (P)

�(k + 1)2
.
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Therefore,

m∗
1(P �)−m∗

1(P) =

rk2{f(x∗N (P �))− f �(x∗N (P �))x∗N (P �)}− �(k + 1)2{f(x∗N (P))− f �(x∗N (P))x∗N (P)}
r�k2(k + 1)2

.

Here, 0 < f(x∗N (P))−x∗N (P)f �(x∗N (P)) < f(x∗N (P �))−x∗N (P �)f �(x∗N (P �))
holds because f(x) − xf �(x) is increasing for x > 0, and x∗N (P) < x∗N (P �) by
Proposition 2. Therefore, m∗

1(P �) > m∗
1(P) if A ≡ rk2 − �(k + 1)2 ≥ 0, that is,

k2/(k + 1)2 ≥ �/r. This condition is satisfied in the following cases.
Case 1. r = n and n/� ≥ 4 Note that r = n if and only if k = 1. Hence,

A = n− 4� ≥ 0 if n/� ≥ 4.
Case 2. 3 ≤ r ≤ n−1 and 4/9 ≥ �/r: Since r �= n, k ≥ 2. Also, k2/(k+1)2

is increasing for k > 0. Therefore, k2/(k+1)2 ≥ 4/9. Accordingly, if 4/9 ≥ �/r,
then A ≥ 0.

Case 3. r = 2 and k ≥ 3: Since r = 2, � = 1. ThusA = (k−1)2−2 ≥ 2 > 0.
Q.E.D.

We apply the stability concepts to this common pool resource game.

Example 2. In a common pool resource game, suppose a production function f(x)
is given by f(x) =

√
x.

(1)When n = 4, the singleton coalition structurePI and all coalition structures
consisting of two coalitions are both credible and EBA coalition structures.

(2) When n = 5, all coalition structures consisting of odd number of coalitions
are credible. All coalition structures consisting of odd number of coalitions except
for {{i}, {j}, T} (|T | = 3) are EBA coalition structures.

(3) When n = 6, all coalition structures containing even number of coalitions
are credible. Only the grand coalition structure PN , the singleton coalition struc-
ture PI , {Q,R} (|Q| = |R| = 3) and {{i}, {j}, T, U} (|T | = |U | = 2) are
EBA coalition structures.

The following theorem shows that if the number of players is odd, then coali-
tion structures consisting of odd numbers of coalitions are credible, in particular,
the grand coalition structure is credible and a credible core allocation exists. If the
number of players is even, then coalition structures consisting of even numbers of
coalitions are credible. In this case, although the grand coalition structure is not
credible, coalition structures consisting of (n-1) -person coalition and one-person
coalition are credible. This result is rather simple, but for the EBA coalition struc-
tures, it is not easy to get a general result.
Theorem 1. In a common pool resource game, let n ≥ 4 . If n is odd, P con-
sisting of odd number of coalitions is credible, and CC(PN ) �= ∅. If n is even,
P consisting of even number of coalitions is credible, and CC(PN\i) �= ∅. Here
PN\i = {N \ {i}, {i}}
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Proof. Consider the case n ≥ 5 first. According to the proof of Theorem 1, for
the payoff vector z in F(P) with P �= PI , P is directly blocked by some T under
some P’. Consider any coalition structure P such that |P| − 1 = |PI | and PI is
finer than P . Since PI is credible by definition, the above result implies that P is
directly blocked by finer credible coalition structure PI . This means that P is not
credible.. The set of such P is denoted by P2. That is,

P2 = {P||P|− 1 = |PI | and PI is finer than P}.

By a simple consideration, we have P2 = {P||P| = n − 1}. The above result
directly implies that any P � ∈ P3 is credible because any P ∈ P2 is not credible,
where

P3 = {P �||P �|− 1 = |P| for some P ∈ P2 and P is finer than P �}

= {P �||P �| = n− 2}.

This consideration implies that any P ∈ Pm is credible if m = n − 2k(k =
0, 1, 2, ...), and not credible ifm = n−2k−1(k = 0, 1, 2, ..., ). Sincem = n−2k
is odd if n is odd, P consisting of odd number of coalitions is credible, and PN ∈
Pn is credible, that is, CC(PN ) �= ∅. Since m = n − 2k is even if n is even, P
consisting of even number of coalitions is credible, and PN\i ∈ P(n−1) is credible,
that is, CC(PN\i) �= ∅.

For the case n = 4, put r = 2 and k = 3 in Lemma 1. This implies P ∈ P2 is
not credible because PI is credible. Then P ∈ P3 is credible. Put r = 3 and � = 1
in Lemma 1. This implies P ∈ P4 is not credible because P ∈ P3 is credible.

Q.E.D.

Unfortunately we cannot find a general property of an EBA core of a common
pool resource game as the following example illustrates.

Example 3. In a common pool resource game, let f(x) = xα, and let n = 8.
When α = 0.2, 0.5, 0.8, the grand coalition structure PN is both credible and is an
EBA. When α = 0.001, 0.9, 0.995, the grand coalition structure PN is not an EBA
but credible.

In both definitions of credible cores and EBA cores, only breaking up is al-
lowed for coalitions. In the next section, we propose another new stability concept
of coalition structures such that coalitions can both break up and merge into.

4 Sequentially Stable Coalition Structures

In this section, we give our main stability concept called a “Sequentially Stable
coalition structure”. First we give a definition of sequential domination, and after
that we give a definition of a sequentially stable coalition structure.
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Definition 6. Let P,P � ∈ Π(N). We say that P sequentially dominates P � if there
is a sequence of coalition structures {Pt}T

t=0 such that
(1) PT = P and P0 = P �,
(2) for all t (0 ≤ t ≤ T − 1), either Pt+1 is a finer coalition structure of

Pt with |Pt+1| = |Pt| + 1, or Pt+1 is a coarser coalition structure of Pt with
|Pt+1| = |Pt|− 1, and

(3) for all t (0 ≤ t ≤ T − 1), for some S ∈ Pt+1 with S ∈/ Pt,

ui(Pt) < ui(PT ) ∀i ∈ S.

We use the following notation for this sequence of coalition structures:

P0 → P1 → P2 → ... → PT .

The condition (3) shows that if Pt+1 is a finer coalition structure of Pt, for any
member i in one of the divided two coalitions S and T such that S, T ∈ Pt+1 and
S ∪ T ∈ Pt, his payoff ui(Pt) is smaller than his terminal payoff ui(PT ); and
if Pt+1 is a coarser coalition structure of Pt, for any member i in two combining
coalitions S and T such that S, T ∈ Pt and S ∪ T ∈ Pt+1, his payoff ui(Pt) is
smaller than his terminal payoff ui(PT ).

Definition 7. We say that P∗ ∈ Π(N) is a sequentially stable coalition structure
if for all other coalition structures P �= P∗, P∗ sequentially dominates P .

We will compare our domination notion with those of Ray and Vohra(1997) and
Diamantoudi and Xue (2002). We have the domination due to Ray and Vohra called
RV-domination by changing the condition (2) in Definition 6 into the following
condition (2’).

Definition 8. Let P,P � ∈ Π(N). We say that P RV-dominates P � if there is a
sequence of coalition structures {Pt}T

t=0 such that
(1) PT = P and P0 = P �,
(2’) for all t (0 ≤ t ≤ T − 1), Pt+1 is a finer coalition structure of Pt with

|Pt+1| = |Pt| + 1.
(3) for all t (0 ≤ t ≤ T − 1), for some S ∈ Pt+1 with S ∈/ Pt,

ui(Pt) < ui(PT ) ∀i ∈ S.

Note in condition (2’), only refinement of coalition structures is allowed. The
set of EBA coalition structures is defined by the following set E of coalition struc-
tures such that

(a) PI ∈ E and
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(b) for any coalition structure P � ∈/ E, there exists P ∈ E such that P RV-
dominates P �, and

(c) for any coalition structure P � ∈ E, there is no P ∈ E such that P RV-
dominates P �.

Indeed the set E is the vNM-stable set via RV- domination (Diamantoudi and
Xue (2002)) because condition (b) corresponds to the external stability of the vNM-
stable set, and condition (c) corresponds to the internal stability of the vNM-stable
set. For our notion of sequential domination, the singleton set consisting of any se-
quentially stable coalition structure is also the vNM-stable set via that domination.

If we change the conditions (2) and (3) in Definition 6 into the following con-
ditions (2”) and (3’), then we have a domination concept of Diamantoudi and Xue
(2002) called DX-domination.

Definition 9. Let P,P � ∈ Π(N). We say that P DX-dominates P � if there is a
sequence of coalition structures {Pt}T

t=0 such that

(1) PT = P , P0 = P �, and

(2”) for all t (0 ≤ t ≤ T − 1), Pt+1 and Pt ≡ {S1, S2, ..., Sk} satisfy the
following condition; there exists a coalition Q(t) ⊆ N such that

(i) Q(t) = Q1 ∪Q2 ∪ ... ∪Ql, Qj ∈ Pt+1 ∀j = 1, 2, .., l and Qjs are disjoint,

(ii) ∀j = 1, 2, ..., k, Sj ∩Q(t) �= ∅ ⇒ Sj \ Q(t) ∈ Pt+1,

(iii) ∀j = 1, 2, ..., k, Sj ∩Q(t) = ∅ ⇒ Sj ∈ Pt+1.

(3’) for all t (0 ≤ t ≤ T − 1),

ui(Pt) < ui(PT ) ∀i ∈ Q(t).

In condition (2”), many possibility of refining and merging are allowed. Their
definition and our definition of domination are both farsighted and coalition struc-
tures other than breaking or merging coalitions do not change. However the break-
ing or merging is step by step in our definition, but a jump is allowed in their
definition. The vNM-stable set of the coalition structures using DX-domination
is called the set of Extended EBA (EEBA) coalition structures. For two coalition
structures P and P �, P DX-dominates P � if P sequentially dominates P � because
(2) in Definition 6 implies (2”) in Definition 9. Hence the sequentially stable coali-
tion structure is an EEBA structure.

The properties of EEBA coalition structures are examined in Diamantoudi and
Xue (2002). In their paper, they give the following proposition:
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Definition 10. The coalition structure P ∈ Π(N) is Pareto efficient if there does
not exist P � ∈ Π(N) such that ui(P �) > ui(P) for any i ∈ N.

Proposition 3 (Diamantoudi and Xue (2002)). Let P∗ ∈ Π(N) be Pareto effi-
cient. P∗ is an EEBA if

(a) ui(P∗) > ui(PI) ∀i ∈ N , and

(b) for all P ∈ Π(N) such that P �= P∗ and P �= PI , there is a coalition
S ∈ P such that |S| > 1 and ui(P∗) > ui(P) for some i ∈ S.

The similar proposition holds for our notion of a sequential domination.

Proposition 4. Let P∗ ∈ Π(N) be Pareto efficient. P∗ is sequentially stable if

(a) P∗ sequentially dominates PI , and

(b) for all P ∈ Π such that P �= P∗ and P �= PI , there is a coalition S ∈ P
such that |S| > 1 and for some member i ∈ S, ui(P∗) > ui(P).

Proof. Take any P such that P �= P∗. We have to find a sequence of coalition
structures from any P to P∗ satisfying (1)(2)(3) in Definition 6. First we construct
a sequence {Pk}R

k=0 of coalition structures from P to PI , where P0 = P to PR =
PI (R ≤ n). In the sequence {Pk}R

k=0, for any Pk such that Pk �= PI , one person
deviates from one of the largest coalition in Pk. In this step, the deviated person
prefers P∗ to P because of (b). Second, (a) implies that the existence of a sequence
of coalition structures from PI to P∗. Combining these sequences, we obtain the
desired sequence of coalition structures. This implies P∗ sequentially dominates
P .

Q.E.D.

5 Sequentially Stable Coalition Structures in Common Pool
Resource Game

We apply our stability concept, sequentially stable coalition structure, to a common
pool resource game.

The following lemma gives a necessary and sufficient condition that the payoff
configuration in the grand coalition structure is preferable to the coalition structure
in another coalition structure for all players.

Lemma 2. In a common pool resource game, let a coalition structure P be given.
Without loss of generality, denote the coalition structure byP = {S1, S2, S3, ..., Sk},
where |S1| = r1 ≤ |S2| = r2 ≤ |S3| = r3 ≤ ... ≤ |Sk| = rk. Let

B(k) ≡ {f(x∗N (P))− f �(x∗N (P))x∗N (P)}/[k2{f(x∗N (PN ))−
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−f �(x∗N (PN ))x∗N (PN )}], (1)

where PN = {1, 2, .., n} is the grand coalition structure. Then for each i ∈ N ,
m∗

i (P) � m∗
i (PN ) if and only if B(k) � r1/n.

Proof. By Proposition 1,

m∗
i (P) = m∗

Sj
(P)/rj = [f(x∗N (P))− qx∗N (P)] /(rjk) =

=
�
f(x∗N (P))− f �(x∗N (P))x∗N (P)

�
/(rjk

2),

for i ∈ Sj and j = 1, ..., k. Notice that for the grand coalition structure PN , k = 1
and r1 = n, so that m∗

i (PN ) =
�
f(x∗N (PN ))− f �(x∗N (PN ))x∗N (PN )

�
/n for

i ∈ N.We also remark that a player belonging to the smallest coalition, S1, obtains
the highest payoff among all players, that is, the payoff of each player i,m∗

i (P), is
less than or equal tom∗

S1
(P)/r1. Therefore, each i ∈ N ,m∗

i (P) � m∗
i (PN ) if and

only if B(k) = {f(x∗N (P)) − f �(x∗N (P))x∗N (P)}/[k2{f(x∗N (PN ))−
f �(x∗N (PN ))x∗N (PN )}] � r1/n.

Q.E.D.

We check the sequential stability of the grand coalition structure. First consider
a case n = 2m (m ≥ 2). We say P is a k-th stage coalition structure if |P| = k.

Theorem 2. If B(k) < 1/2k−1 for all k(k = 2, ...,m, m + 1), the grand coalition
structure is sequentially stable.

Proof. We have to show that every coalition structure other than the grand coali-
tion structure PN is sequentially dominated by PN . In the following, we denote
a coalition structure P = {S1, S2, S3, ..., Sk}, where |S1| = r1 ≤ |S2| = r2 ≤
|S3| = r3 ≤ ... ≤ |Sk| = rk, by {r1; r2; r3; ...; rk}, because the payoff is deter-
mined by the sizes of all cotillions in a coalition structure.

Consider a coalition structureP∗ consisting of the following (m+1) coalitions:
two 1-person coalitions, one 2-person coalition, one 4-person coalition, one 8-
person coalition, ..., and one 2m−1-person coalition. This coalition structure is
denoted by {1; 1; 2; 4; 8; ....; 2m−1}.

The proof consists of four steps.
(Step 1) P∗ is sequentially dominated by PN :

Consider a sequence of coalition structures {Pt}m
t=0 such that P0 = P∗,Pm =

PN , and the two coalitions of the smallest size in Pt merge in Pt+1 for t =
0, 1, 2, ...,m− 1. This sequence is expressed by

P0 = P∗ = {1; 1; 2; 4; 8; ...; 2m−2; 2m−1}→ P1 = {2; 2; 4; 8; ...; 2m−2; 2m−1}

→ P2 = {4; 4; 8; ...; 2m−2; 2m−1}→

.... → .... → Pm−2 = {2m−2; 2m−2; 2m−1}→
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Pm−1 = {2m−1; 2m−1}→ Pm = PN = {2m}

First, it follows from Lemma 2 that the 2nd stage coalition structure Pm−1 =
{2m−1; 2m−1} is dominated by PN , since r1/n = 2m−1/2m = 1/2 > B(2) by
the hypothesis.

Next, it follows from Lemma 1 that the 3rd stage coalition structure Pm−2 =
{2m−2; 2m−2; 2m−1} is dominated by PN , since r1/n = 2m−2/2m = 1/4 >
B(3) by the hypothesis.

In general, for k = 2, ...,m, m+1, it follows from Lemma 2 that the k-th stage
coalition structure Pm−k+1 = {2m−k+1; 2m−k+1; 2m−k+2; 2m−k+3; ...; 2m−1} is
sequentially dominated by PN , since r1/n = 2m−k+1/2m = 1/2k−1 > B(k) by
the hypothesis.

Therefore, the (m + 1)-th stage coalition structure P0 = P∗ = {1; 1; 2; 4; ...;
2m−1} is sequentially dominated by PN .
(Step 2) Every (m + 1)-th stage coalition structure is sequentially dominated by
PN :

Take any (m + 1)-stage coalition structure P .
First we consider a sequence {Pt}T

t=0 such that
1) P0 = P = {r1; r2; r3; ...; rm−1; rm; rm+1}
2) PT = {1; 1; 1; ...; 1; 2m −m}, where |PT | = m + 1.
3) If t is zero or even, then the largest and the second largest coalitions in Pt

merge in Pt+1.
4) If t is odd, then one person belonging to the largest coalition in Pt deviates

and forms one person coalition in Pt+1.
Then the sequence {Pt}T

t=0 of coalition structures is given by:

P0 = {r1; r2; r3; ..., rm−1; rm; rm+1} ((m + 1)-th stage)

→ P1 = {r1; r2; r3; ...; rm−1; rm + rm+1} (m-th stage)

→ P2 = {1; r1; r2; r3; ...; rm−1; rm + rm+1− 1} ((m + 1)-th stage)

→ ... → ...

→ PT−2 = {1; 1; 1; ...; 1; r1;
m+1�

k=2

rk −m + 1} ((m + 1)-th stage)

→ PT−1 = {1; 1; 1; ...; 1;
m+1�

k=1

rk −m + 1} (mth-stage)

→ PT = {1; 1; 1; 1; ...; 1;
m+1�

k=1

rk−m} = {1; 1; 1; ...; 1; 2m−m} ((m+1)th-stage)

Next consider {Pt}T+T �

t=T such that
1) PT = {1; 1; 1; ...; 1; 2m −m},
2) PT+T � = P∗ = {1; 1; 2; 4; 8; ...; 2m−2; 2m−1},
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3) If t = T + λ and λ is zero or even (λ ≤ T � − 2), then the smallest coalition
of more than one members and a 1-person coalition in PT+λ merge in PT+λ+1.

4) If t = T + λ and λ is odd (λ ≤ T � − 2), then 2m−λ+1
2 persons in the

coalition of 2m−λ+1
2 +1− (m− λ+1

2 ) persons in PT+λ deviate and form a coalition
in PT+λ+1. Note that 2m−λ+1

2 +1 − (m− λ+1
2 ) ≥ 1.

5) If t = T + T � − 1, then two one-person coalitions in PT+T �−1 merge in
PT+T � .

This sequence {Pt}T+T �

t=T of coalition structures is given by:

PT = {1; 1; 1; 1; ...; 1; 1; 1; 1; 2m −m} ((m + 1)-th stage)

→ PT+1 = {1; 1; 1; 1; ...; 1; 1; 1; 2m −m + 1} (m-th stage)

→ PT+2 = {1; 1; 1; 1; ...; 1; 1; 1; 2m −m + 1− 2m−1; 2m−1}

= {1; 1; 1; 1; ...; 1; 1; 1; 2m−1 −m + 1; 2m−1} ((m + 1)-th stage)

→ PT+3 = {1; 1; 1; 1; ...; 1; 1; 2m−1 −m + 2; 2m−1} (m-th stage)

→ PT+4 = {1; 1; 1; 1; ...; 1; 1; 2m−1 −m + 2− 2m−2; 2m−2; 2m−1}

= {1; 1; 1; 1; ...; 1; 1; 2m−2−m+2; 2m−2; 2m−1} ((m+1)-th stage)

→ PT+5 = {1; 1; 1; 1; ...; 1; 2m−2 −m + 3; 2m−2; 2m−1} (m-th stage)

→ ... → ...

→ PT+T �−1 = {1; 1; 1; 1; 4; 8; ...; 2m−3; 2m−2; 2m−1} ((m + 1)-th stage)

→ PT+T � = {1; 1; 2; 4; 8; ...; 2m−3; 2m−2; 2m−1} (m-th stage)

This sequence ends at the coalition structure PT � = P∗.
Hence if we combine two sequences {Pt}T

t=0 and {Pt}T+T �

t=T , we can get a se-
quence {Pt}T+T �

t=0 from any (m+1)-th stage coalition structure P to P∗. Note that
only (m + 1)-th stage andm-th stage coalition structures appear in this sequence.

Each member of any coalition in (m+1)-th stage coalition structure prefers the
payoff under the grand coalition structure PN to the payoff under the (m + 1)-th
stage coalition structure because of B(m + 1) < 1/2m. Moreover any deviating
coalition in the process from m-th stage coalition structure to (m + 1)-th stage
coalition structure consists of at least two players. Each member of such a deviating
coalition prefers the payoff in the grand coalition structure PN to the payoff in the
m-th stage coalition structure, because of B(m) < 2/2m = 1/2m−1 by Lemma 1.

Therefore if we combine this sequence {Pt}T �
t=0 and a sequence from PT+T � =

P∗ to PN , every coalition structure in the sequence {Pt}T+T �

t=0 is sequentially dom-
inated by PN . And so is the (m+1)-th stage coalition structure P . This completes
the proof of Step 2.
(Step 3) Every coalition structure P of less than m + 1 coalitions other than the
grand coalition structure PN is sequentially dominated by PN .
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First, we show that each member of a coalition of the maximal size in any
coalition structure P prefers her payoff under PN to her payoff under P . Denote
P by P = {S1, S2, S3, ..., Sk}, where |S1| = r1 ≤ |S2| = r2 ≤ |S3| = r3 ≤ ... ≤
|Sk| = rk. Because rk ≥ ri for all ri, krk ≥

�k
i=1 ri = n, that is, rk/n ≥ 1/k.

Since B(k) < 1/2k−1, it follows that rk/n ≥ 1/k ≥ 1/2k−1 > B(k). By Lemma
1, we have the desired result.

Take any coalition structure P of less than m + 1 coalitions other than PN .
Consider the following sequence {Pt} starting from P to some (m + 1)-stage
coalition structure P �: one person in a coalition of the maximal size in Pt deviates
and forms a 1-person coalition in Pt+1. Notice that such a person in Pt prefers her
payoff under PN to her payoff under Pt, as shown above. Moreover, it is easy to
construct a sequence of coalition structures from P to PN by combining the above
sequence from P to P � and the sequence from P � to PN in Step 2. These imply
that P is sequentially dominated by PN .
(Step 4) Every coalition structure P of more thanm + 1 coalitions is sequentially
dominated by PN .

Take any k-th stage coalition structure P of more thanm + 1 coalitions. Since
B(k) is a decreasing function by Lemma 2, B(k) < B(m + 1) < 1/2m = 1/n ≤
ri/n holds for any ri ≥ 1. This together with Lemma 1 imply that each member
of any coalition in P prefers her payoff under the grand coalition structure PN to
her payoff under P .

Consider a sequence {Pt} starting from P to some (m + 1)-stage coalition
structure P � such that two coalitions in Pt merge and form one coalition in Pt+1.
Notice that each member in these two coalitions in Pt prefers her payoff under PN

to her payoff underPt, as shown above. Moreover, it is easy to construct a sequence
of coalition structures from P to PN by combining the above sequence from P to
P � and the sequence from P � to PN in Step 2. These imply that P is sequentially
dominated by PN . Q.E.D.

Next consider a case that n = 2m + l (m ≥ 2, 1 ≤ l ≤ 2m − 1).

Theorem 3. IfB(k) < 2m−k+1

n (k = 2, ...,m, m+1),the grand coalition structure
is sequentially stable.

Proof. The basic idea of the proof is the same as that of the proof of Theorem 3.
Consider a coalition structure P∗ = {1; 1; 2; 4; 8; ....; 2m−2; 2m−1 + l} consisting
of (m + 1) coalitions.
(Step 1) P∗ is sequentially dominated by PN .

Consider a sequence of coalition structures {Pt}m
t=0 such that P0 = P∗,Pm =

PN , and the two coalitions of the smallest size in Pt merge in Pt+1 for t =
0, 1, 2, ...,m− 1. This sequence is expressed by

P∗ = {1; 1; 2; 4; 8; ...; 2m−2; 2m−1 + l}→ {2; 2; 4; 8; ...; 2m−2; 2m−1 + l}
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→ {4; 4; 8; ...; 2m−2; 2m−1 + l}→ ....

→ {2m−2; 2m−2; 2m−1+l}→ {2m−1; 2m−1+l}→ {2m+l} = PN

First, it follows from Lemma 1 that the 2nd stage coalition structure Pm−1 =
{2m−1; 2m−1 + l} is dominated by PN , since r1/n = 2m−1/n > B(2) by the
hypothesis.

Next, it follows from Lemma 1 that the 3rd stage coalition structure Pm−2 =
{2m−2; 2m−2; 2m−1 + l} is dominated by PN , since r1/n = 2m−2/n > B(3) by
the hypothesis.

In general, for k = 2, ...,m, m+1, it follows from Lemma 1 that the k-th stage
coalition structure Pm−k+1 = {2m−k+1; 2m−k+1; 2m−k+2; 2m−k+3; ...; 2m−1 + l}
is sequentially dominated byPN , since r1/n = 2m−k+1/n > B(k) by the hypoth-
esis. Therefore the (m + 1)-th stage coalition structure P0 = P∗ = {1; 1; 2; 4; ...;
2m−1 + l} is sequentially dominated by PN .

We omit the rest of the proof that is similar to that of Proposition 3. Q.E.D.

Theorem 4. IfB(k) < 2m−k+1

n (k = 2, ...,m),B(m+1) ≥ 1
n andB(m+2) < 1

n
the grand coalition structure is sequentially stable.

Proof. The important difference from Theorem 4 is that one person coalition in
(m + 1)-th stage coalition structure does not like to move to PN , but members
in coalitions with two or more players like to move to the destination coalition
structure PN . We follow the procedures of the proof of Theorems 3 and 4.

Consider a coalition structure P∗∗ = {1; 1; 2; 2; 2; 8; ....; 2m−2; 2m−1 + l} con-
sisting of (m + 2) coalitions instead of P∗ = {1; 1; 2; 4; 8; ...; 2m−1 + l} in Theo-
rems 3 and 4.
(Step 1) P∗∗ is sequentially dominated by PN . Consider a sequence of coalition
structures {Pt}m+1

t=0 such that P0 = P∗∗,Pm+1 = PN ,

P∗∗ = {1; 1; 2; 2; 2; 8; ...; 2m−2; 2m−1 + l}

→ P1 = {2; 2; 2; 2; 8; ...; 2m−2; 2m−1 + l} ((m + 1)-th stage)

→ P2 = {2; 2; 4; 8; ...; 2m−2; 2m−1 + l} (m-th stage)

→ P3 = {4; 4; 8; ...; 2m−2; 2m−1 + l} ((m− 1)-th stage)

→ .... → ....

→ Pm−1 = {2m−2; 2m−2; 2m−1 + l}

→ Pm = {2m−1; 2m−1 + l}→ Pm+1 = {2m + l} = PN

We can prove that Pm = {2m−1; 2m−1+ l}, Pm−1 = {2m−2; 2m−2; 2m−1+ l}
,..., and P2 = {2; 2; 4; 8; ...; 2m−2; 2m−1 + l} are sequentially dominated by PN

by the same argument as Step 1 in the proof of Theorem 4.
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Also, it follows from Lemma 1 that P1 = {2; 2; 2; 2; 8; ...; 2m−2; 2m−1 + l}
is dominated by PN , since r1/n = 2/n > B(m + 1) which is obtained from
2/n > B(m) by the hypothesis and B(m) > B(m + 1).
Moreover, it follows from Lemma 1 that P0 = P∗∗ = {1; 1; 2; 2; 2; 8; ...; 2m−2;
2m−1 + l} is dominated by PN , since r1/n = 1/n > B(m+2) by the hypothesis.
Therefore P∗∗ = {1; 1; 2; 2; 2; 8; ...; 2m−1 + l} is sequentially dominated by PN .
(Step 2) Every (m + 1)-th stage coalition structure is sequentially dominated by
PN :

Take any (m + 1)-stage coalition structure P .
First we consider a sequence {Pt}T

t=0 such that
1) P0 = P = {r1; r2; r3; ...; rm−1; rm; rm+1}
2) PT = {1; 1; 1; ...; 1; 2m + l −m}, where |PT | = m + 1.
3) If t is zero or even, then one person belonging to the largest coalition in Pt

deviates and forms one person coalition in Pt+1.
4) If t is odd, then the largest and the second largest coalitions in Pt merge in

Pt+1.
Then the sequence {Pt}T

t=0 of coalition structures is given by:

P0 = {r1; r2; r3; ..., rm−1; rm; rm+1} ((m + 1)-th stage)

→ P1 = {1; r1; r2; r3; ...; rm−1; rm; rm+1 − 1} ((m + 2)-th stage)

→ P2 = {1; r1; r2; r3; ...; rm−1; rm + rm+1− 1} ((m + 1)-th stage)

→ P3 = {1; 1; r1; r2; r3; ...; rm−1; rm+rm+1−2} ((m+2)-th stage)

→ ... → ...

→ PT−2 = {1; 1; 1; ...; 1; r1;
m+1�

k=2

rk −m + 1} ((m + 1)-th stage)

→ PT−1 = {1; 1; 1; 1; ...; 1; r1;
m+1�

k=2

rk −m} ((m + 2)th-stage)

→ PT = {1; 1; 1; 1; ...; 1;
m+1�

k=1

rk −m} = {1; 1; 1; 1; ...; 1; 2m + l −m}

((m+1)th-stage)

Next consider {Pt}T+T �

t=T such that
1) PT = {1; 1; 1; ...; 1; 2m + l −m},
2) PT+T � = P∗∗ = {1; 1; 2; 2; 2; 8; ...; 2m−2; 2m−1 + l}.
3) If t = 0, 2m−1 −m persons in the coalition of 2m + l −m persons in P0

deviate and form a coalition in P1.
4) If t = T + λ and λ is odd (λ ≤ T � − 3), then the smallest coalition of more

than one members and a 1-person coalition in PT+λ merge in PT+λ+1.
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5) If t = T + λ and λ is even (λ ≤ T � − 3), then 2m−λ
2−1 persons in the

coalition of 2m−λ
2 − (m − λ

2 ) persons in PT+λ deviate and form a coalition in
PT+λ+1. Note that 2m−λ

2 − (m− λ
2 ) ≥ 1.

6) If t = T +T �−2, two one person coalitions in PT+T �−2 merge in PT+T �−1.
7) If t = T + T � − 1, one 4 person coalition in PT+T �−1 is divided into two 2

person coalitions in PT+T � .
This sequence {Pt}T+T �

t=T of coalition structures is given by:

PT = {1; 1; 1; 1; ...; 1; 1; 1; 2m + l −m} ((m + 1)-th stage)

→ PT+1 = {1; 1; 1; 1; ...; 1; 1; 1; 2m−1 −m; 2m−1 + l} ((m + 2)-th stage)

→ PT+2 = {1; 1; 1; 1; ...; 1; 1; 2m−1 −m + 1; 2m−1 + l} ((m + 1)-th stage)

→ PT+3 = {1; 1; 1; 1; ...; 1; 1; 2m−2−m+1; 2m−2; 2m−1+l} ((m+2)-th stage)

→ PT+4 = {1; 1; 1; 1; ...; 1; 2m−2−m+2; 2m−2; 2m−1 + l} ((m+1)-th stage)

→ PT+5 = {1; 1; 1; 1; ...; 1; 2m−3−m+2; 2m−3; 2m−2; 2m−1+l} ((m+2)-th stage)

→ ... → ...

→ PT+T �−3 = {1; 1; 1; 1; 12; ...; 2m−3; 2m−2; 2m−1 + l} ((m + 1)-th stage)

→ PT+T �−2 = {1; 1; 1; 1; 4; 8; ...; 2m−3; 2m−2; 2m−1} (m + 2)-th stage)

→ PT+T �−1 = {1; 1; 2; 4; 8; ...; 2m−3; 2m−2; 2m−1} ((m + 1)-th stage)

→ PT+T � = {1; 1; 2; 2; 2; 8; ...; 2m−3; 2m−2; 2m−1 + l} (m + 2)-th stage) = P∗∗

Hence if we combine two sequences {Pt}T
t=0 and {Pt}T+T �

t=T , we can get a
sequence {Pt}T+T �

t=0 from any (m + 1)-th stage coalition structure P to P∗∗. Note
that only deviation of a coalition with 2 or more members appears for all (m+1)-th
coalition structures in this sequence.

The rest part of the proof is the same as the proof of Theorem 4. Q.E.D.

We now apply the above theorems when the production function is give by
f(x) = xα (0 < α < 1). First of all, by Proposition 1, it is easy to check that for
any P,

x∗N (P) = (α + k − 1)(x∗N (P))α−1/(kq) =
�

α− 1 + k

kq

�1/(1−α)

,

m∗
1(P) = m∗

S1
(P)/r1 = [f(x∗N (P))− qx∗N (P)] /(r1k)

=
�
f(x∗N (P))− f �(x∗N (P))x∗N (P)

�
/(r1k

2) = (1− α)(x∗N (P))α/(r1k
2).
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Notice that if P = PN , then k = 1 and r1 = n, so that

x∗N (PN ) = α(x∗N (PN ))α−1/q =
�

α

q

�1/(1−α)

.

f(x∗N (PN ))− f �(x∗N (PN ))x∗N (PN ) = (1− α)(x∗N (PN ))α.

This implies

B(k) = {f(x∗N (P))−f �(x∗N (P))x∗N (P)}/[k2{f(x∗N (PN ))−f �(x∗N (PN ))x∗N (PN )}]

=
1
k2

�
α− 1 + k

αk

�α/(1−α)

. (∗)

Corollary 1. If f(x) = xα and 4 ≤ n ≤ 48, then for some α, the grand coalition
structure PN is sequentially stable in the common pool game.

Proof. Note that B(k) is an increasing function of α, and limα→0 B(k) = 1/k2

for any k. Hence for sufficiently small α > 0, B(k) is very close to 1/k2.
First, consider the case of n = 2m. In this case, it follows from Theorem

2 that for m ≤ 5, that is, for n = 4, 8, 16, 32, PN is sequentially stable for a
sufficiently small α, since limα→0 B(k) = 1/k2 < 1/2k−1 for k = 2, 3, 4, 5, 6:
limα→0 B(2) = 1/4 < 1/2, limα→0 B(3) = 1/9 < 1/22 = 1/4, limα→0 B(4) =
1/16 < 1/23 = 1/8, limα→0 B(5) = 1/25 < 1/24 = 1/16, and limα→0 B(6) =
1/36 < 1/25 = 1/32.

Next consider the case of n = 2m + l (1 ≤ l ≤ 2m − 1). There are four
subcases to examine:

1)m = 2. In this case, n ∈ {5, 6, 7}. Since limα→0 B(2) = 1/4 < 2m−k+1

n =
2/n and limα→0 B(3) = 1/9 < 2m−k+1

n = 1/n, it follows from Theorem 3 that
PN is sequentially stable for a sufficiently small α.

2) m = 3. In this case, n ∈ {9, 10, ..., 14, 15}. Since limα→0 B(2) = 1/4 <
2m−k+1

n = 4/n, limα→0 B(3) = 1/9 < 2m−k+1

n = 2/n, and limα→0 B(4) =
1/16 < 2m−k+1

n = 1/n, it follows from Theorem 3 that PN is sequentially stable
for a sufficiently small α.

3) m = 4. In this case, n ∈ {17, 18, ..., 30, 31}. Suppose that n ≤ 24. Since
limα→0 B(2) = 1/4 < 2m−k+1

n = 8/n, limα→0 B(3) = 1/9 < 2m−k+1

n = 4/n,
limα→0 B(4) = 1/16 < 2m−k+1

n = 2/n, and limα→0 B(5) = 1/25 < 2m−k+1

n =
1/n, it follows from Theorem 3 that PN is sequentially stable for a sufficiently
small α if 17 ≤ n ≤ 24.

On the other hand, when limα→0 B(5) > 1/n, that is, n ∈ {25, 26, ..., 31},
limα→0 B(6) = 1/36 < 1/n. It follows from Theorem 4 that PN is sequentially
stable for a sufficiently small α if 25 ≤ n ≤ 31.

4) m = 5. In this case, n ∈ {32, 33, ..., 62, 63}. Suppose that n ≤ 35. Since
limα→0 B(2) = 1/4 < 2m−k+1

n = 16/n, limα→0 B(3) = 1/9 < 2m−k+1

n = 8/n,
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limα→0 B(4) = 1/16 < 2m−k+1

n = 4/n, limα→0 B(5) = 1/25 < 2m−k+1

n = 2/n,
and limα→0 B(6) = 1/36 < 2m−k+1

n = 1/n, it follows from Theorem 3 that PN

is sequentially stable for a sufficiently small α if 32 ≤ n ≤ 35.
On the other hand, when limα→0 B(6) > 1/n, if limα→0 B(7) = 1/49 < 1/n,

that is, n ∈ {36, 37, ..., 48}, it follows from Theorem 4 that PN is sequentially sta-
ble for a sufficiently smallα if 32 ≤ n ≤ 48. Q.E.D.

This corollary says that if we apply our stability concept to a common pool
resource game, the grand coalition structure is sequentially stable in the common
pool resource game with between 4 and 48 players, for some concave production
function. For more than 48 players, it might be possible to prove the similar the-
orem, but the proof needs much more steps and it will be very complicated. The
important thing is if we succeed to prove the similar theorem for more players by
following this proof, we also face an upper limit. Thus we need a very different
proof to extend the corollary essentially.

Let PN\{i} = {{i}, N \{i}}, ({i} ∈ N) and for P such that#P = k, C(k) ≡
{f(x∗N (P))−f �(x∗N (P))x∗N (P)}/{f(x∗N (PN\{i}))−f �(x∗N (PN\{i}))x∗N (PN\{i})}.

Theorem 5. Let n ≥ 5. If C(3) ≥ 9
8 , then the coalition structures P

N\{i} =
{{i}, N \{i}}, ({i} ∈ N) are not sequentially stable in the common pool resource
game.

Proof.
It suffices to show that there is a coalition structure which is not sequentially

dominated by the coalition structure PN\{i}.
We will show that any coalition structure containing three coalitions is not

sequentially dominated by PN\{i} if C(3) ≥ 9
8 .

Consider a coalition structure containing 3 coalitions P = {S1, S2, S3} where
|S1| ≤ |S2| ≤ |S3|. We will show that every coalition structure with 3 coalitions
is not sequentially dominated by PN\{i}. Since in this sequential domination, we
have to consider a merging of two coalitions, it is enough to show that the payoff
of the player in one of two coalitions of the coalition structure with 3 coalitions
is smaller than the payoff in the coalition N \ {i} of coalition structure PN\{i}.
Hence if the largest payoff of a player in S2 out of several coalition structures with
3 coalitions is smaller than the payoff of a player in N \ {i}, we can attain our
purpose.

Then we have to compare the payoffm∗
j (P) of player j in a coalition S2 of the

smallest size with the payoffm∗
j (PN\{i}).

Remark that such a coalition structure is given by |S1| = 1, |S2| = |S3| = n−1
2

if n is odd, and |S1| = 1, |S2| = n−2
2 , |S3| = n+2

2 . if n is even.
By Proposition 1,

m∗
j (P) =

�
f(x∗N (P))− f �(x∗N (P))x∗N (P)

�
/(9r2),
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for j ∈ S2, and

m∗
j (PN\{i}) =

�
f(x∗N (PN\{i}))− f �(x∗N (PN\{i}))x∗N (PN\{i})

�
/(4(n− 1)),

for j ∈ N\{i}.
Note that for j ∈ S2, m∗

j (P) ≥ m∗
j (PN\{i}) iff [4(n − 1)/(9r2)] {f(x∗N (P)) −

f �(x∗N (P))x∗N (P)}/{f(x∗N (PN\{i}))− f �(x∗N (PN\{i}))x∗N (PN\{i})}] = [4(n−
1)/(9r2)]C(3) ≥ 1. There are two cases to examine. First, if n is even, consider a
coalition structure P with r2 = (n− 2)/2. In this case, 4(n− 1)/(9r2) = 8(n−1)

9(n−2) ,
so that if C(3) ≥ 9

8 , then m∗
j (P) > m∗

j (PN\{i}). Second, if n is odd, consider a
coalition structure P with r2 = (n−1)/2. In this case, 4(n−1)/(9r2) = 8

9 , so that
ifC(3) ≥ 9

8 , thenm∗
j (P) ≥ m∗

j (PN\{i}). Q.E.D.

By applying this theorem to the case in which the production function is give
by f(x) = xα (0 < α < 1), we have the following:

Corollary 2. Let n ≥ 5. If f(x) = xα and α ≥ 0.583804, then the coalition
structures PN\{i} = {{i}, N \ {i}}, ({i} ∈ N) are not sequentially stable in the
common pool resource game.

Proof. It is easy to see that

C(3) =
�

3(α + 1)
2(α + 2)

�−α/(1−α)

.

Therefore, C(3) > 9
8 iff 1/C(3) =

�
3(α+1)
2(α+2)

�α/(1−α)
< 8

9 . Figure 1 illustrates
the function 1/C(3) − 8

9 . It is not hard to check that if 1/C(3) < 8
9 if α ≥

0.5083804. Q.E.D.

It is difficult to eliminate the stability of coalition structures containing single-
ton and n−1 person coalition because the singleton player gets the maximal payoff
among the payoffs for all coalition structures. (See Diamantoudi and Xue (2002).)
However we could show that the coalition structures containing singleton and n−1
person coalition are not sequentially stable under some concave production func-
tion for games with any number of players.

It is not true that all the coalition structures other than the grand coalition
structure are not sequentially stable for the common pool resource game with
f(x) = xα for some α and 3 ≤ n ≤ 48. In a 6-person game, we have an example
that shows some coalition structure including two coalitions is also sequentially
stable. It can be proved that, in these games, coalition structures with two or more
coalitions are sequentially stable.
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On noncooperative games and minimax theory

J.B.G.Frenk∗
G.Kassay†

Abstract

In this note we review some known minimax theorems with applications
in game theory and show that these results form an equivalent chain which
includes the strong separation result in finite dimensional spaces between
two disjoint closed convex sets of which one is compact. By simplifying
the proofs we intend to make the results more accessible to researchers not
familiar with minimax or noncooperative game theory.

1 Introduction.
In a two person noncooperative zero sum game one faces the following problem.
LetX be the set of actions of player 1 and Y the set of actions of player 2. If player
1 chooses action x ∈ X and player 2 chooses action y ∈ Y , then player 2 has to
pay to player 1 an amount f(x, y) with f : X × Y → R a given function. This
function is called the payoff function of player 1. Since player 1 likes to gain as
much profit as possible, but at the moment he does not know how to achieve this,
he first decides to compute a lower bound on his profit. To do this, player 1 argues
as follows : if he chooses action x ∈ X, then he wins at least infy∈Y f(x, y)
irrespective of the action of player 2. Therefore a lower bound on the profit for
player 1 is given by

r∗ := supx∈X infy∈Y f(x, y). (1)

Similarly player 2 likes to minimize his losses. Therefore, he also decides to com-
pute first an upper bound on his losses. If he decides to choose action y ∈ Y it
follows that he loses at most supx∈X f(x, y) and this is independent of the action
of player 1. Therefore an upper bound on his losses is given by

r
∗ := infy∈Y supx∈X f(x, y). (2)

Since the profit of player 1 is at least r∗ and the losses of player 2 is at most r
∗

and the losses of player 2 are the profits of player 1, it follows that r∗ ≤ r
∗. If

∗Econometric Institute, Erasmus University, PO Box 1738, 3000DR Rotterdam, The Netherlands.
E-mail: frenk@few.eur.nl

†G.Kassay, Faculty of Mathematics and Computer Science, Babes-Bolyai University, 400084
Cluj, Romania. E-mail kassay@math.ubbcluj.ro
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r∗ = r
∗
, then this equality is called a minimax result. If additionally inf and

sup are attained, an optimal action for both players can then be easily derived.
However, in general r∗ < r

∗
, as the following example shows.

Example 1 Let f : [0, 1] × [0, 1] → R given by f(x, y) = (x − y)2. For this
function it holds 0 = r∗ < r

∗ = 1
4 . For this example it is not obvious which

actions should be selected by the two players.

By extending the sets of actions of each player, it is possible to show under
certain conditions that the extended game satisfies a minimax result. In the next
definition we introduce the set of mixed strategies.

Definition 2 For a nonempty set D of actions and d ∈ D let �d denote the one-
point probability measure concentrated on the set {d} and denote by F(D) the set
of all probability measures on D with a finite support.

Introducing the unit simplex ∆k := {α :
�

k

i=1 αi = 1,αi ≥ 0, 1 ≤ i ≤ k},
it follows by Definition 2 that λ belongs to the set F(D) if and only if there exist
some k ∈ N and a set {d1, ..., dk} ⊆ D such that

λ =
�k

i=1
λi�di , (λ1, ...,λk) ∈ ∆k and λi ≥ 0.

A game theoretic interpretation of a mixed strategy λ ∈ F(D) is now given
by the following. If a player with action set D selects the mixed strategy λ =�

k

i=1 λi�di ∈ F(D), then with probability λi, 1 ≤ i ≤ k this player will use ac-
tion di ∈ D. By the above definition it is clear that the action set D of any player
can be identified with the set of one-point probability measures; therefore the set
D is often called the set of pure strategies for that player. Assume that player 1
uses the set F(X) of mixed strategies and the same holds for player 2 using the
set F(Y ). This means that the payoff function f should be extended to a function
fe : F(X)× F(Y ) → R given by

fe(λ, µ) :=
�m

i=1

�n

j=1
λiµjf(xi, yj) (3)

with λ =
�

m

i=1 λi�xi ∈ F(X) and µ =
�

n

j=1 µj�yj ∈ F(Y ). This extension
represents the expected profit for player 1 or expected loss of player 2. In [3]
the authors showed that several well known minimax theorems form an equiva-
lent chain and this chain includes the strong separation result in finite dimensional
spaces between two disjoint convex sets of which one is closed and the other com-
pact. By reducing the number of results in this equivalent chain and by giving more
transparent and simpler proofs, we intend to make the results more accessible to
researchers not familiar with minimax or noncooperative game theory. The first
minimax result was proved in a famous paper by von Neumann (cf.[6]) in 1928 for
X and Y unit simplices in finite dimensional vector spaces and f affine in both

62



variables. Later on, the conditions on the function f were weakened and more
general sets X and Y were considered. These results turned out to be useful also
in optimization theory (see for instance [2]) and were derived by means of short or
long proofs using a version of the Hahn Banach theorem in either finite or infinite
dimensional vector spaces. With von Neumann’s result as a starting point, we will
show that several of these so-called generalizations published in the literature can
be derived from each other using only elementary observations. Before introduc-
ing this chain of equivalent minimax results we need the following notations. The
set F2(X) ⊆ F(X) denotes the set of two-point probability measures on X. This
means that λ belongs to F2(X) if and only if

λ = λ1�x1 + (1− λ1)�x2 (4)

with xi, 1 ≤ i ≤ 2 different elements of X and 0 < λ1 < 1 arbitrarily chosen.
Also, for each 0 < α < 1 the set F2,α(X) represents the set of two point probabil-
ity measures with λ1 = α in relation (4). On the set Y similar spaces of probability
measures with finite support are introduced.

2 Equivalent minimax results
To start in a chronological order we first mention the famous von Neumann’s min-
imax result (cf.[6]).

Theorem 3 (von Neumann, 1928). If X and Y are finite sets, then it follows that

maxλ∈F(X) minµ∈F(Y ) fe(λ, µ) = minµ∈F(Y ) maxλ∈F(X) fe(λ, µ).

A generalization of Theorem 3 due to Wald [7]) and published in 1945 is given
by the next result. This result plays a fundamental role in the theory of statistical
decision functions. While in case of Theorem 3 the action sets of players 1 and
2 are finite, this condition is relaxed in Wald’s theorem claiming that only one set
should be finite.

Theorem 4 (Wald, 1945). If X is an arbitrary nonempty set and Y is a finite set,
then it follows that

supλ∈F(X) minµ∈F(Y ) fe(λ, µ) = minµ∈F(Y ) supλ∈F(X) fe(λ, µ).

In order to prove Wald’s theorem by von Neumann’s theorem, we first need the
following elementary lemma. For its proof, see for instance [3]. Recall a function
is upper semicontinuous if all its upper level sets are closed. For every set D let
< D > be the set of all finite subsets of D.

Lemma 5 If the set X is compact and the function h : X × Y → R is upper
semicontinuous onX for every y ∈ Y , thenmaxx∈X infy∈Y h(x, y) is well defined
and

maxx∈X infy∈Y h(x, y) = infY0∈<Y > maxx∈X miny∈Y0 h(x, y).
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Since for every µ ∈ F(Y ) and J ⊆ X it is easy to see that

supλ∈F(J) fe(λ, µ) = supx∈J fe(�x, µ), (5)

we are now ready to derive Wald’s minimax result from von Neumann’s minimax
result. Observe Wald (cf.[7]) uses in his paper von Neumann’s minimax result and
the Lebesgue dominated convergence theorem.

Theorem 6 von Neumann’s minimax result⇒Wald’s minimax result.

Proof. If α := supλ∈F(X) minµ∈F(Y ) fe(λ, µ) then clearly

α = supJ∈<X> maxλ∈F(J) minµ∈F(Y ) fe(λ, µ). (6)

Since the set Y is finite we may apply von Neumann’s minimax result in relation
(6) and this implies in combination with relation (5) that

α = supJ∈<X> minµ∈F(Y ) maxλ∈F(J) fe(λ, µ) (7)
= supJ∈<X> minµ∈F(Y ) maxx∈J fe(�x, µ)

= − infJ∈<X> maxµ∈F(Y ) minx∈J(−fe(�x, µ)).

The finiteness of the set Y also implies that the set F(Y ) is compact and the func-
tion µ → fe(�x, µ) is continuous on F(Y ) for every x ∈ X. This shows in relation
(7) that we may apply Lemma 5 with the set X replaced by F(Y ), Y by X and
h(x, y) by −fe(�x, µ) and so it follows that

α = minµ∈F(Y ) supx∈X fe(�x, µ). (8)

Finally by relation (5) with J replaced byX the desired result follows from relation
(8). �

In 1996 Kassay and Kolumbán (cf.[4]) introduced the following class of func-
tions.

Definition 7 The function f : X × Y → R is called weakly concavelike on X if
for every I belonging to < Y > it follows that

supλ∈F(X) miny∈I fe(λ, �y) ≤ supx∈X miny∈I f(x, y).

Since �x belongs to F(X) it is easy to see that f is weakly concavelike on X

if and only if for every I ∈ < Y > it follows that

supλ∈F(X) miny∈I fe(λ, �y) = supx∈X miny∈I f(x, y)

and this equality also has an obvious interpretation within game theory. The main
result of Kassay and Kolumbán is given by the following theorem (cf.[4]).

64



Theorem 8 (Kassay-Kolumbán, 1996). If X is a compact subset of a topologi-
cal space and the function f : X × Y → R is weakly concavelike and upper
semicontinuous on X for every y ∈ Y , then it follows that

infµ∈F(Y ) maxx∈X fe(�x, µ) = maxx∈X infy∈Y fe(x, y).

At first sight this result might not be recognized as a minimax result. However,
it is easy to verify for every x ∈ X that

infy∈Y f(x, y) = infµ∈F(Y ) fe(�x, µ). (9)

By relation (9) an equivalent formulation of Theorem 8 is now given by

infµ∈F(Y ) maxx∈X fe(�x, µ) = maxx∈X infµ∈F(Y ) fe(�x, µ),

and so the result of Kassay and Kolumban is actually a minimax result. We now
give an elementary proof of Theorem 8 using Wald’s minimax theorem.

Proof. Let α = infµ∈F(Y ) maxx∈X fe(�x, µ), β = maxx∈X infµ∈F(Y ) fe(�x, µ)
and suppose by contradiction that α > β. (The inequality β ≤ α always holds.)
Let γ so that α > γ > β. Then by relation (9) and Lemma 5 we have

γ > β = maxx∈X infy∈Y f(x, y) = infY0∈<Y > maxx∈X miny∈Y0 f(x, y).

Therefore, there exists a finite subset Y0 ∈< Y > such that

maxx∈X miny∈Y0 f(x, y) < γ

and this implies using f is weakly concavelike on X that

supλ∈F(X) miny∈Y0 fe(λ, �y) < γ. (10)

Similarly to relation (9), it is easy to see that for every λ ∈ F(X) and every
µ ∈ F(Y ) the relations

infµ∈F(Y0) fe(λ, µ) = miny∈Y0 fe(λ, �y)

and
supλ∈F(X) fe(λ, µ) = maxx∈X fe(�x, µ)

hold, and these together with (10) and Wald’s theorem imply

α > γ > supλ∈F(X) infµ∈F(Y0) fe(λ, µ) = infµ∈F(Y0) supλ∈F(X) fe(λ, µ)

≥ infµ∈F(Y ) supλ∈F(X) fe(λ, µ) = infµ∈F(Y ) maxx∈X fe(�x, µ) = α.

This is clearly a contradiction and we have completed the proof. �

In 1952 Kneser (cf.[5]) proved a general minimax result useful in game theory.
Its proof is ingenious and very elementary and uses only some simple computa-
tions and the well-known result that any upper semicontinuous function attains its
maximum on a compact set.
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Theorem 9 (Kneser, 1952). If X is a nonempty convex compact subset of a topo-
logical vector space and Y is a nonempty convex subset of a vector space and the
function f : X × Y → R is affine in both variables and upper semicontinuous on
X for every y ∈ Y , then it follows that

maxx∈X infy∈Y f(x, y) = infy∈Y maxx∈X f(x, y). (11)

One year later, generalizing the proof and result of Kneser, Ky Fan (cf.[1])
published his celebrated minimax result. To show his result Ky Fan introduced
the following class of functions which we call Ky Fan convex (Ky Fan concave)
functions.

Definition 10 The function f : X × Y → R is called Ky Fan concave on X if for
every λ ∈ F2(X) there exists some x0 ∈ X satisfying

fe(λ, �y) ≤ f(x0, y)

for every y ∈ Y. The function f : X × Y → R is called Ky Fan convex on Y if for
every µ ∈ F2(Y ) there exists some y0 ∈ Y satisfying

fe(�x, µ) ≥ f(x, y0)

for every x ∈ X. Finally, the function f : X × Y → R is called Ky Fan concave-
convex on X × Y if f is Ky Fan concave on X and Ky Fan convex on Y.

By induction it is easy to show that one can replace in the above definition
F2(X) and F2(Y ) by F(X) and F(Y ). Although rather technical, the above con-
cept has a clear interpretation in game theory. It means that the payoff function
f has the property that any arbitrary mixed strategy is dominated by a pure strat-
egy. Eliminating the linear structure in Kneser’s proof Ky Fan (cf.[1]) showed the
following result.

Theorem 11 (Ky Fan, 1953). If X is a compact subset of a topological space and
the function f : X × Y → R is Ky Fan concave-convex on X × Y and upper
semicontinuous on X for every y ∈ Y , then it follows that

maxx∈X infy∈Y f(x, y) = infy∈Y maxx∈X f(x, y).

Proof. In what follows we show that Ky Fan’s minimax theorem can easily be
proved by Kassay-Kolumbán’s result. Indeed, it is easy to see that every Ky Fan
concave function onX is also weakly concavelike onX . By Theorem 8 it follows
that

maxx∈X infy∈Y f(x, y) = infµ∈F(Y ) maxx∈X fe(�x, µ). (12)

Also, since f is Ky Fan convex on Y , there exists for every µ ∈ F(Y ) some y0 ∈ Y

such that fe(�x, µ) ≥ f(x, y0) for every x ∈ X . Thus,

maxx∈X fe(�x, µ) ≥ maxx∈X f(x, y0) ≥ infy∈Y maxx∈X f(x, y)
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implying that

infµ∈F(Y ) maxx∈X fe(�x, µ) ≥ infy∈Y maxx∈X f(x, y)

and this, together with (12) leads to

maxx∈X infy∈Y f(x, y) ≥ infy∈Y maxx∈X f(x, y).

Since the reverse inequality always holds, we have equality in the last relation and
the proof is complete. �

We show now that the following well-known strong separation result in convex
analysis can easily be proved by Kneser’s minimax theorem.

Theorem 12 If X ⊆ Rn is a closed convex set and Y ⊆ Rn a compact convex set
and the intersection ofX and Y is empty, then there exists some s0 ∈ Rn satisfying

sup{s�0 x : x ∈ X} < inf{s�0 y : y ∈ Y }.

Proof. Since X ⊆ Rn is a closed convex set and Y ⊆ Rn is a compact convex
set we obtain that H := X − Y is a closed convex set. It is now easy to see
that the strong separation result as given in Theorem 12 holds if and only if there
exists some s0 ∈ Rn satisfying σH(s0) := sup{s�0 x : x ∈ H} < 0. To verify
this, we assume by contradiction that σH(s) ≥ 0 for every s ∈ Rn

. This clearly
implies σH(s) ≥ 0 for every s belonging to the compact Euclidean unit ball E and
applying Kneser’s minimax result we obtain

suph∈H infs∈E s
�
h = infs∈E suph∈H s

�
h ≥ 0. (13)

Since by assumption the intersection ofX and Y is nonempty, we obtain that 0 does
not belong toH := X−Y and this implies usingH is closed that infh∈H �h� > 0.

By this observation we obtain for every h ∈ H that −h�h�−1 belongs to E and so
for every h ∈ H it follows that infs∈E s

�
h ≤ −�h�. This implies that

suph∈H infs∈E s
�
h ≤ suph∈H −�h� = − infh∈H �h� < 0

and we obtain a contradiction with relation (13). Hence there must exist some
s0 ∈ Rn satisfying σH(s0) < 0 and we are done. �

Observe that without loss of generality one may suppose that the vector s0 in
Theorem 12 belongs to ∆n (the unit simplex in Rn). An easy consequence of
Theorem 12 is the following result.

Lemma 13 If C ⊆ Rn is a convex compact set, then it follows that

infu∈C maxα∈∆n α
�
u = maxα∈∆n infu∈C α

�
u.
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Proof. It is obvious that

infu∈C maxα∈∆n α
�
u ≥ maxα∈∆n infu∈C α

�
u. (14)

To show the reverse inequality, we assume by contradiction that

infu∈C maxα∈∆n α
�
u > maxα∈∆n infu∈C α

�
u := γ. (15)

Let e be the vector (1, ...., 1) in Rn and introduce the mappingH : C → Rn given
by H(u) := u− βe with β satisfying

infu∈C maxα∈∆n α
�
u > β > γ (16)

If we assume thatH(C)∩Rn
− is nonempty, then there exists some u0 ∈ C satisfy-

ing u0 − βe ≤ 0. This impliesmaxα∈∆n α
�
u0 ≤ β and we obtain a contradiction

with relation (16). Therefore H(C) ∩ Rn
− is empty. Since H(C) is convex and

compact and Rn
− is closed and convex, we may apply Theorem 12. Hence one can

find some α0 ∈ ∆n satisfying α
�
0 u − β ≥ 0 for every u ∈ C and using also the

definition of γ listed in relation (15) this implies that

γ ≥ infu∈C α
�
0 u ≥ β.

Hence we obtain a contradiction with relation (16) and the desired result is proved.
�

Finally we show that von Neumann’s minimax theorem (Theorem 3) is an easy
consequence of Lemma 13. In this way we close the equivalent chain of results
considered in this note.

Proof. Indeed, let m := card(X) and introduce the mapping L : F(Y ) → Rm

given by
L(µ) := (fe(�x, µ))x∈X .

It is easy to see that the range L(F(Y )) ⊆ Rm is a convex compact set. Applying
now Lemma 13 yields

infµ∈F(Y ) maxλ∈F(X) fe(λ, µ) = infu∈L(F(Y )) maxα∈∆m α
�
u

= maxα∈∆m infu∈L(F(Y )) α
�
u

= maxλ∈F(X) infµ∈F(Y ) fe(λ, µ),

which completes the proof. �

As we have seen, the equivalent minimax results presented here corresponds to
different zero-sum games with different action sets. From our technique it follows
that finite pure action sets and compact pure action sets are not really ”far apart”.
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1 Introduction

Patent licensing problems in oligopolistic markets have been studied

only with noncooperative licensing policies; fixed fees or royalty in Kamien

and Tauman (1984, 1986), and auction in Katz and Shapiro (1985, 1986).

Kamien, Oren and Tauman (1992) compared those three policies for general

demand functions: in the Cournot competition, it is never optimal for an

external patent holder to license a cost-reducing innovation by means of the

royalty. Muto (1993) studied the optimal licensing in the Bertrand duopoly

with differentiated commodities: there is a case where it is optimal for an

external patent holder to license by means of the royalty.

On the other hand, licensing through negotiations are also observed in

reality. If there are many potential licensees, it may be best for the licensor to

adopt simpler noncooperative policies in order to reduce large “transaction

costs” due to persistent negotiations. However, such costs will not be so

large if the licensor negotiate with a limited number of potential licensees.

Hence, we study bargaining outcomes in the patent licensing problems,

applying cooperative solutions with coalition structures considered by Thrall

and Lucas (1963), Aumann and Maschler (1964), and Aumann and Drèze

(1974). Our questions are: (1) how many potential licensees should an

external licensor of a patented innovation negotiate with? (2) how much

profit sharing can the licensor gain through the negotiation?

A key problem with us is how to define the worth of each coalition of

players. Driessen, Muto and Nakayama (1992) applied a classical definition

to an information trading: the information is shared in a most efficient way

among the seller and the potential buyers. However, not all the potential

buyers are provided with the information, although they can share their

total profits. We define the worth of each coalition in a more natural way.

Watanabe and Tauman (2003) proposed an alternative definition that

reflects a sophisticated nature of events under a subtle mixture of conflict

and cooperation: licensees can form a cartel S to enhance their oligopolistic

power, whereas non-licensees may react also by forming some cartels. Then,

the licensees in S might not merge into a single entity, but gather as smaller

subcartels in S forming the headquarter-subsidiaries relationship.
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In this paper, we assume that any forms of cooperations among firms

are prohibited (by law) for the sake of a fair comparison of our results

with noncooperative ones in the literature. A group of the licensor and

the potential licensees forms only for the negotiation on the license issue.

However, such a group formation appears also in Watanabe and Tauman’s

setting under some conditions as described in section 3; even if firms are

allowed to cooperate in the market, firms in any groups will decide not to

do so by themselves.

Another key point in this paper is to study the bargaining outcomes

in a generalized framework of patent licensing models that have ever been

studied. In the classical literature, functional forms, market structures, and

characteristics of the innovation are specified, e.g., linear demand and cost

functions, Cournot oligopoly, a non-drastic cost-reducing innovation under

the “perfect” patent protection, and so there is no possibility of relicensing

and spillover of the innovation to non-licensees. However, the stable profit

sharing of the licensor can be characterized in a much less specified model.

Our main results are: (1) the core with coalition structure is empty, if

the grand coalition does not form under some condition. it is always empty

in the classical linear model followed by the Cournot competition. (2) the

upper and lower bounds of the bargaining set with coalition structure is

characterized. it is a singleton, if the number of licensees optimal for the

licensor is larger than that of non-licensees. (3) the bargaining set coincides

with the core, if the core is nonempty. even in a linear model, it can be

nonempty, if commodities are differentiated.

We hereafter refer to the “stable profit sharing” as the set of the licensor’s

payoffs that belong to the bargaining set with coalition structure, since the

core is empty under almost every coalition structure as stated above.

The outline of this paper is as follows. For better understanding our

generalization, Section 2 gives a classical linear model of patent licensing.

Section 3 formalizes our general cooperative licensing game. The core and

the bargaining set with coalition structure are the solution concepts we

study. Section 4 and 5 provide the results. Some discussions and remarks

on related literature are stated in the last section.
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2 A Linear Model

There are n firms operating in the market, where 2 ≤ n <∞. Each firm

i produces qi(≥ 0) units of an identical commodity with the same unit cost

c(> 0) of production. The market price p of the commodity is determined by

p = max(a−
�

i∈N
qi, 0), where a ∈ (c,∞) is a constant. An external licensor

has a patent of an innovation which reduces the unit cost of production from

c to c− �, where c− � > 0.

The profit of firm i is ui(q) = pqi − C(qi). C(qi) = (c − �)qi if i is a

licensee of the patented innovation, and C(qi) = cqi otherwise. Without any

production facilities, the licensor takes no action in the market but shares

some of the profits of licensees in return for licensing his innovation.

Below is the game where the licensor sells the license to firms by means

of fixed fees only. (1) The licensor first shows the prices of the patented

innovation to firms. (2) Each firm next decides whether or not to purchase

it at each price shown by the licensor simultaneously and independently

of the other firms. (3) Finally they compete à la Cournot in the market,

knowing that which firms are licensed or not. (The game with licensing

by means of royalties only or auctions is played in a similar manner. See

Kamien and Tauman (1984, 1986) and Katz and Shapiro (1985, 1986).)

The game is analyzed backwardly in the spirit of the subgame perfection.

Given that s firms are licensed, let W (s) and L(s) denote the equilibrium

profit of each licensee and that of each non-licensee, respectively. Let ŝ :=

(a− c)/�. If a− c− � ≥ 0 (non-drastic innovation), then

W (s) =

�
((a− c + (n− s + 1)�)/(n + 1))2 if s ≤ ŝ

((a− c + �)/(ŝ + 1))2 if s > ŝ

L(s) =

�
((a− c− s�)/(n + 1))2 if s ≤ ŝ

0 if s > ŝ

Regardless of the innovation being non-drastic or drastic (a − c < �), the

equilibrium profits of licensees and non-licensees are summarized as

W (1) > · · · > W (s) > · · · > W (n) > L(0) > · · · > L(s) > · · · > L(ŝ− 1)

≥ L(ŝ) = · · · = L(n− 1) = 0.
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3 A Licensing Game with Coalition Structures

We generalize the linear model described in section 2. There are n firms

with the same cost functions and an external licensor of a patented innova-

tion. N = {1, . . . , n} is the set of all the firms and the external licensor is

denoted as player 0. The market can be either the Cournot or the Bertrand

oligopoly for homogeneous or differentiated commodities. The innovation

can be a quality-improving technology as well as a drastic or non-drastic

cost-reducing one. Let {0} ∪ S (S ⊆ N) denote the set of the licensor and

all the potential licensees. No firm outside {0} ∪ S is licensed.

The game has two stages. It starts with negotiations among the licensor

and the firms in S. The patented innovation is licensed to the firms in S,

while how much each firm pays to the licensor is determined in negotiations.

Next, firms compete in the market, knowing that which firms are licensed

or not. No cooperation among firms is allowed in the market for a fair

comparison of our results with noncooperative ones.

The equilibrium profit of each firm i ∈ N in the market is determined

for general (symmetric) demand and cost functions. Given that s firms hold

the license, W (s) and L(s) denote the equilibrium profit of each licensee and

that of each non-licensee, respectively. We require only the following:

W (s) > L(0) > L(s) ∀s.

W (1) < W (2) can happen in the Bertrand duopoly with substitutive

commodities at a sufficiently small rate. Muto and Watanabe (2004) showed

that the prices raised by two licensees may cover the decreased demand for

the commodity of the formerly single licensee. Our model contains this case.

The “spillover” of the patented innovation to non-licensees is also included in

this model, since the magnitudes of equilibrium profits are not concerned.

Suppose that non-licensees can also utilize the patented innovation with

some probability due to the spillover. Then, W (s) and L(s) are interpreted

as the expected equilibrium profits when s firms are officially licensed.

We hereafter formalize this situation as a cooperative game with sidepay-

ments. Denote by s∗ the number of licensees such that s∗(W (s∗)− L(0)) ≥
s(W (s)− L(0)) for any s.
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Let s = |S|. The worth of each set of players is then characterized by

v({0}) = v(∅) = 0 v({0} ∪ S) = sW (s)

v(S) = sL(n− s).

The licensor 0 can gain nothing without selling the innovation, since he or

she has no production facilities. v({0}∪S) = sW (s) is the total equilibrium

profits of licensees in S. v(S) is the total equilibrium profits that the firms

in S can guarantee for themselves even in the worst anticipation that all

the other n − s firms are licensed when firms in S jointly break off the

negotiations. In the linear model described in section 2, our v-function is

the same as in Watanabe and Tauman (2003), if s ≤ (n + 1)/2 and s ≤ ŝ.

That implies that even if firms are allowed to cooperate in the market,

firms in any coalitions will decide not to do so by themselves. Any firms

can equally be a member of S, since every firm is identical before licensed.

Hence, we can apply v(S) to a group S of non-licensees.

Given a set S ⊆ N of firms, negotiations are done only within {0} ∪ S,

and so the permissible coalition structure is PS = ({0} ∪ S, {{i}}i∈N\S).

Since no cooperation is allowed in the market, coalition {0} ∪ S forms only

for negotiations.

The set of imputations under a coalition structure PS is then defined as

XS = {x = (x0, x1, · · · , xn) ∈ Rn+1|x0 +
�

i∈S
xi = sW (s),

x0 ≥ 0, xi ≥ L(n− 1) ∀i ∈ S, xi = L(s) ∀i ∈ N \ S}.

The core with coalition structure PS is defined as

CS = {x ∈ XS |
�

i∈T

xi ≥ v(T ) ∀T ⊆ {0} ∪N, T ∩ ({0} ∪ S) �= ∅}.

It can be shown that CS = {x ∈ XS |
�

i∈T
xi ≥ v(T ) ∀T ⊆ {0} ∪N}.

Let i, j ∈ {0} ∪ S and x ∈ XS . We say that i has an objection (y, T )

against j in x if i ∈ T , j /∈ T , T ⊆ {0} ∪ N , yk > xk
∀k ∈ T , and

�
k∈T

yk ≤ v(T ), and that j has a counter objection (z, R) to i’s objection

(y, T ) if j ∈ R, i /∈ R, R ⊆ {0} ∪N , zk ≥ xk
∀k ∈ R, zk ≥ yk

∀k ∈ R ∩ T ,

and
�

k∈R
zk ≤ v(R). We say that i has a valid objection (y, T ) against j

in x if (y, T ) is not countered.
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The bargaining set with coalition structure PS is defined as

MS = {x ∈ XS |no player in {0} ∪ S has a valid objection in x}.

The bargaining set contains other several cooperative solutions. It is clear

that CS ⊂MS under any coalition structure PS by the definitions.

Let i, j ∈ N . We say that i and j are substitutes in game v if

v(S ∪ {i}) = v(S ∪ {j}) ∀S ⊂ (N \ {i, j}).

Since all the firms in S are substitutes in game v, the following symmetric

sets facilitate our analysis:

X̃S = {x ∈ XS |xi = xj
∀i, j ∈ S}

C̃S = CS ∩ X̃S , M̃S = MS ∩ X̃S

4 The Core with P S

Lemma 1 If CS �= ∅, then there exists an x ∈ CS such that xi = x̄ ∀i ∈ S.

Proof : Let y = (y0, y1, . . . , yn) ∈ CS . Define x = (x0, x1, . . . , xn) ∈ XS by

xj = yj if j /∈ S and xi = x̄ = (1/s)
�

i∈S
yi = (1/s)y(S) if i ∈ S. Fix

a coalition T ⊆ {0} ∪ N such that T ∩ S �= ∅. Let l = |T ∩ S|. Then

minU⊂S, |U |=l y(U) ≤ (l/s)y(S) = x(T ∩ S). Hence,

x(T ) = x(T \ S) + x(T ∩ S) ≥ y(T \ S) + minU⊂S, |U |=l y(U)

≥ minU⊂S, |U |=l y((T \ S) ∪ U) ≥ v((T \ S) ∪ U) = v(T ),

since y((T \S)∪U) ≥ v((T \S)∪U) and v((T \S)∪U) = v(T ) by the fact

that all the firms in S are substitutes. Q.E.D.

Proposition 1 CS = ∅ if S �= N

Proof : We first show that C̃S = ∅ if S �= N . Suppose C̃S �= ∅ and take

x ∈ C̃S . Let xi = x̄ ∀i ∈ S. Then, we have x̄ > L(0). Otherwise, we would

have sx̄ + (n − s)L(s) < nL(0) since L(s) < L(0), which would imply that

coalition N could block x.
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Take a coalition {0}∪T with |T | = |S| where T ⊆ N \S if |S| ≤ n/2 and

T ⊇ N \S if |S| > n/2. Let t = |T |. Then, we have x0+
�

i∈T
xi < sW (s) =

tW (t), since x0+sx̄ = sW (s) and x̄ > L(0) > L(s)(= xi
∀i ∈ N \S). Hence,

C̃S = ∅ if S �= N .

Now we know C̃S = ∅, which implies that CS = ∅ because of Lemma 1.

Q.E.D.

Proposition 2 C̃N �= ∅ if and only if s∗ = n.

Proof : (⇒) Suppose s∗ < n. If x ∈ C̃N �= ∅, then we have

x̄ ≥ L(0) (1)

x0 + sx̄ ≥ sW (s), s = 0, 1, · · · , n− 1, (2)

where xi = x̄ ∀i ∈ S and x0 = nW (n)−nx̄. Letting s = s∗ in (2), we obtain

nW (n)−nx̄ + s∗x̄ ≥ s∗W (s∗) or (n− s∗)x̄ ≤ nW (n)− s∗W (s∗). By (1), we

get (n− s∗)L(0) ≤ nW (n)− s∗W (s∗) or

s∗(W (s∗)− L(0)) ≤ n(W (n)− L(0)),

contradicting the uniqueness of s∗.

(⇐) Take x such that

xi =

�
n(W (n)− L(0)) if i = 0

L(0) if i ∈ N.

Since s∗ = n, it is easily shown that x ∈ C̃N . Q.E.D.

Remark 1: It is easily confirmed that s∗ < n in the linear model described

in section 2. Watanabe and Tauman (2003) showed that the core of the

linear model is empty as the number of licensees tends to infinity. We could

show the same result even in the case of a finite number of players, although

our v-function is slightly different from theirs.

We could know that CS = ∅ unless s = s∗ = n by Proposition 1 and 2.

Let us next consider the bargainig set with PS .
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5 The Symmetric Bargaining Set with P S

It suffices to examine objections and counter objections of the licensor 0

and a licensee i ∈ S, because of the licensees’ symmetric payoffs x̄.

Lemma 2 Suppose n/2 ≤ s < n. If x ∈ M̃S, then x̄ ≤ L(0).

Proof : Suppose x̄ > L(0) and take the licensor 0’s objection (y, {0} ∪ T )

against firm i ∈ S such that |T | = s, T ⊇ N \ S and

yk =






x0 + � if k = 0

x̄ + � if k ∈ T ∩ S

L(0) + � if k ∈ T ∩ (N \ S),

where � = (n− s)(x̄− L(0))/(s + 1) > 0.

Note that

y0 +
�

k∈T
yk = x0 + (2s− n)x̄ + (n− s)L(0) + (s + 1)�

= x0 + (2s− n)x̄ + (n− s)L(0) + (n− s)(x̄− L(0))

= x0 + sx̄ = sW (s).

Since yk > L(0) ∀k ∈ T and xk = x̄ > L(0) ∀k ∈ N \ T , any firm i ∈ S has

no counter objection against (y, {0} ∪ T ). Contradiction. Q.E.D.

Lemma 3 Suppose 1 ≤ s ≤ n/2. If x ∈ M̃S and if s(W (s) − L(0)) ≤
(n− s)(W (n− s)− L(0)), then x̄ ≤ L(0).

Proof : Suppose x̄ > L(0). Then x0 < s(W (s)−L(0)). Take the licensor 0’s

objection (y, {0} ∪ (N \ S)) against firm i ∈ S with

yk =

�
(n− s)(W (n− s)− L(0)) if k = 0

L(0) if k ∈ N \ S,

Since yk > L(0) ∀k ∈ N \ S and xk = x̄ > L(0) ∀k ∈ S, any firm i ∈ S has

no counter objection against (y, {0} ∪ (N \ S)). Contradiction. Q.E.D.

Lemma 4 Suppose 1 ≤ s ≤ n/2. If x ∈ M̃S and if 0 < s(W (s)−W (t)) ≤
(n− s)(W (n− s)− L(0)), then x̄ ≤W (t).

Proof : Suppose x̄ > W (t). Then x0 < s(W (s)−W (t)). Since W (t) > L(0),

the same argument as in the proof of Lemma 2 applies. Q.E.D.
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Lemma 5 If x ∈ M̃S, then x0 ≤ s∗(W (s∗)− L(0)).

Proof : Suppose x0 > s∗(W (s∗) − L(0)). Then, x̄ = (sW (s) − x0)/s <

(sW (s) − s∗(W (s∗) − L(0)))/s ≤ L(0) by s∗. Take an objection (y, N) of

i ∈ S against 0 such that yk = L(0) ∀k ∈ N . If 0 had a counter objection

(z, {0} ∪ T ), then we would have z0 ≥ x0 > s∗(W (s∗) − L(0)) and zk ≥
yk = L(0) ∀k ∈ T , and thus we would reach a contradiction z0 +

�
k∈T

zk >

s∗(W (s∗)− L(0)) + tL(0) ≥ tW (t). Q.E.D.

Proposition 3 Let x ∈MS. Then, we have the following.

(a) If 1 ≤ s ≤ n/2 and s(W (s)−W (t)) ≤ (n− s)(W (n− s)− L(0)), then

s(W (s)−W (t)) ≤ x0 ≤ s∗(W (s∗)− L(0)),

where W (t) is the lowest one satisfying the above condition.

(b) If n/2 ≤ s < n or s(W (s)− L(0)) ≤ (n− s)(W (n− s)− L(0)), then

s(W (s)− L(0)) ≤ x0 ≤ s∗(W (s∗)− L(0)).

(c) If s∗ < s = n, then n(W (n)− L(0)) ≤ x0 ≤ s∗(W (s∗)− L(0)).

Proof : Lemma 2 to Lemma 5 jointly implies (a) and (b). Consider the

case (c). Let x̄ = L(0) + z where z > 0. If x0 = n(W (n) − x̄), then 0

can make an objection (y, {0} ∪ S∗) where yi > xi for any i ∈ {0} ∪ S∗,

since n(W (n) − x̄) = n(W (n) − L(0)) − nz < s∗(W (s∗) − L(0)) − s∗z =

s∗(W (s∗)− x̄). Any counter objection cannot be made by i ∈ N \ S∗, since

x̄ > L(0). Lemma 5 completes (c). Q.E.D.

Let S∗ be a set S ⊆ N with |S| = s∗. Proposition 3 (b) directly implies

the next corollary.

Corollary 1 If n/2 ≤ s∗ < n, then M̃S
∗ = {x∗} where

xi =






s∗(W (s∗)− L(0)) if i = 0

L(0) if i ∈ S∗

L(s∗) if i ∈ N \ S∗.
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In the linear model described in section 2, it is easily shown that there

exists a threshold �̂ of the cost reduction such that n/2 ≤ s∗ if � ≤ �̂.

Note: The bargaining set merely suggests the set of payoffs reachable by

a series of objections and counter objections in a real negotiation. In that

sense, it has no criterion for the value judgement on a payoff distribution.

On the other hand, it generally comtains the “nucleolus” that is uniquely

determined in any game v by repeatedly applying the principle of minimizing

the maximum complaint on a payoff distribution. Corollary 1 implies that

the bargaining set coincides with the nucleolus under a coalition structure

PS
∗ with n/2 ≤ |S∗| < n and then reflects a “fairness” notion that the

nucleolus has.

Proposition 4 Let x∗ be such that

x∗i =






s∗(W (s∗)− L(0)) if i = 0

L(0) if i ∈ S∗

L(s∗) if i ∈ N \ S∗,

where 1 ≤ s∗ ≤ n. Then x∗ ∈ M̃S
∗.

Proof : Take any objection (y, {0} ∪ T ) of 0 against i ∈ S∗ in x∗. Then, we

have
�

k∈T
yk < tL(0). Otherwise, we would obtain tW (t) ≥ y0+

�
y∈T

yk >

s∗(W (s∗)− L(0)) + tL(0), contradicting the definition of s∗. Hence, i has a

counter objection (z,N) against (y, {0} ∪ T ) with

zi =






L(0) if k ∈ S∗ \ T

yk + � if k ∈ T

L(0) if k ∈ (N \ S∗) \ T .

where � = (tL(0)−
�

k∈T
yk)/t > 0. In fact,

�
k∈N

zk = nL(0), zk ≥ xk
∀k ∈

N and zk > yk
∀k ∈ T .

Next take any objection (u, R) of i ∈ S∗ against 0 in x∗. Let

u�
k

=

�
uk if k ∈ R

xk if k ∈ N \ R.
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Order all the n firms according to their payoffs in the non-decreasing

order, and take the first s∗ firms. Then, we have
�

k∈Q
u�

k
< s∗L(0) where

Q is the set of the first s∗ firms. Hence 0 has a counter objection against

(u, R). Q.E.D.

Lemma 6 If x ∈ M̃S
∗, then x̄ ≥ L(0).

Proof : Suppose x̄ < L(0). Then, a licensee i ∈ S∗ has an objection (y, N)

against the licensor 0 in x, where yk = L(0) ∀k ∈ N . Suppose that 0 had a

counter objection (z, {0} ∪R) to i’s objection (y, N). Then we would have

rW (r) ≥ z0 +
�

k∈R
zk

z0 ≥ x0, and zk ≥ yk = L(0) ∀k ∈ R

Since x̄ < L(0), it must be that x0 = s∗W (s∗) − s∗x̄ > s∗W (s∗) − s∗L(0).

We would then obtain

rW (r) ≥ z0 +
�

k∈R

zk > s∗W (s∗)− s∗L(0) + rL(0),

contradicting the definition of s∗. Thus, i’s objection (y, N) could not be

countered by 0. Contradiction. Q.E.D.

Proposition 5 If s∗ = n, then M̃N = C̃N . x ∈ C̃N is characterized as

x0 = n(W (n)− x̄) and L(0) ≤ x̄ ≤ mins �=n(nW (n)− sW (s))/(n− s).

Proof: (⊇) It is clear by the definitions of CN and MN .

(⊆) Suppose that there exists x ∈ M̃N with x /∈ C̃N . Since x ∈ M̃N , we

must have x̄ ≥ L(0) by Lemma 6. Since x /∈ C̃N , there must exist {0} ∪ T

such that

x0 +
�

i∈T

xi < tW (t), where t < n.

Let (y, {0} ∪ T ) be 0’s objection against any i ∈ N \ T in x, where

yk = xk + � ∀k ∈ {0} ∪ T and (t + 1)� = tW (t)− (x0 +
�

i∈T
xi) > 0. Since

x̄ ≥ L(0), i has no counter objection, contradicting that x ∈ M̃S .

The system of inequalities to characterize C̃N yields L(n − s) ≤ x̄ ≤
(nW (n)− sW (s))/(n− s) for any s. By Lemma 6, x̄ ≥ L(0). Q.E.D.

Even with the linear demand and cost functions, it can be that C̃N �= ∅
if the commodities are differentiated. See Muto and Watanabe (2004).
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Remark 2: Proposition 3, 4 and 5 jointly imply that s∗(W (s∗)−L(0)) is the

“stable profit sharing” always, but that he or she cannnot gain more than

that amount and may not obtain it unless s = s∗ and n/2 ≤ s∗ < n. Hence,

the licensor should invite s∗(< n) firms to the negotiation if n/2 ≤ s∗ < n,

which is the most favorable coalition size for him. When s∗ = n, there are

some cases where it is better for him not to invite all the n firms to the

negotiation, if (collective) bargaining power of the firms is quite large. For

example, it is better for the licensor to invite n− 1 firms to the negotiations

if (n− 1)(W (n− 1)− L(0)) ≥ n(W (n)− x̄) where x̄ ≥ L(0).

6 Concluding Remarks

Negotiations versus Fees

Recall the linear model in section 2. Kamien and Tauman (1986) showed

that it is better for the licensor to license the innovation by means of fixed

fees only than by means of royalties only. In the same model, we can find

some cases where negotiations are superior to fixed fees.

Let � denote the magnitude of the cost reduction, and let π∗
PH

denote the

profit of the patent holder who licenses using the fixed fees only. In the case

of moderate cost reduction such that 2(a− c)/(3n− 2) ≤ � ≤ 1 + (a− c)/n,

the stable profit sharing s∗(W (s∗)− L(0)) is lower than π∗
PH

, regardless of

any s∗. On the other hand, if � ≤ 2(a− c)/(3n− 2) or if 1 + (a− c)/n ≤ �,

it can then be that s∗(W (s∗)− L(0)) > π∗
PH

.

When � ≤ 2(a − c)/(3n − 2) (or 1 + (a − c)/n ≤ �), n (or ŝ) firms are

licensed by means of fixed fees to obtain π∗
PH

. In the former case, we know

that s∗ < n by Remark 1, and obviously s∗ ≤ ŝ by the definition of ŝ in the

latter case. Negotiations could be superior to fixed fees in such cases that

the innovation is trivial or very nice.

Muto and Watanabe (2004) showed that it can be optimal for the licensor

to sell the innovation by means of negotiations in the Bertrand duopoly with

differentiated commodities. The interpretation of such cases is not so easy,

since it depends also on the rate of substitution (complementarity) between

the commodities.

83



Let Sh0(v) denote the Shapley value of the licensor1 and let x ∈ MS .

Lemma 5 shows that x0 ≤ s∗(W (s∗)− L(0)) if x0 is a stable profit sharing.

Watanabe and Tauman (2003) also showed in the linear model that Sh0(v) >

s∗(W (s∗)−L(0)) as the number of licensees tends to infinity. It happens in

our model if

(1/n + 1)
�

n−ŝ

s=1 sL(0)) + (1/n + 1)
�

n−1
s=n−ŝ+1 s(L(0)− L(n− s))

> s∗(W (s∗)− L(0))− (1/n + 1)
�

n

s=1 s(W (s)− L(0)).

It is well known that the Shapley value is not necessarily in the core,

but its relationship to the bargaining set has not been studied comprehen-

sively. In this paper, ŝ did not play any important role. With more specified

assumptions on it, we could have proceed further on that topic.

Limitation of Sidepayments

We could have studied an alternative model where no sidepayments are

allowed except payments of fees to the licensor: in {0} ∪ S, each i ∈ S pays

pi to the licensor 0, ∀S ⊆ N , and there is no money transfer in S. Assume

the uniform pricing scheme: pi = p ∀i ∈ S. We can regain almost the same

results even in this setup. Hence, the assumption on the sidepayments does

not play any important role for our propositions. Below is the addendum to

extend our model.

The permissible coalition structure is

PS = ({0} ∪ S, {{i}}i∈N\S), ∀S ⊆ N,

and so the characteristic function is given by

V ({0} ∪ S) = {(xi)i∈{0}∪S |x0 ≤ sp, xi ≤W (s)− p, 0 ≤ p ≤W (s)}
V ({0}) = 0, V (S) = {(xi)i∈S |xi ≤ L(n− s)}.

The imputations under a coalition structure PS is defined by

XS = {x = (x0, x1, · · · , xn) ∈ Rn+1|x0 = sp, xi = W (s)− p, ∀i ∈ S

0 ≤ p ≤W (s)− L(n− 1), xi ≥ L(n− s), ∀i ∈ N \ S}.

The core CS is defined by

CS = {x ∈ XS | for any T ⊆ {0} ∪N with T ∩ ({0} ∪ S) �= ∅,
there exists no y ∈ V (T ) such that yk > xk, ∀k ∈ T}.
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Let i, j ∈ {0} ∪ S and x ∈ XS . i has an objection (y, T ) against j in

x if i ∈ T , j /∈ T , T ⊆ {0} ∪ N , yk > xk
∀k ∈ T , and y ∈ V (T ). j has a

counter objection (z,R) to i’s objection (y, T ) if j ∈ R, i /∈ R, R ⊆ {0}∪N ,

zk ≥ xk
∀k ∈ R, zk ≥ yk

∀k ∈ R ∩ T , and z ∈ V (R). i has a valid objection

(y, T ) against j in x if (y, T ) is not countered. The bargaining set MS is

defined by

MS = {x ∈ XS |no player in {0} ∪ S has a valid objection in x}.

Final Remarks

Similar results are obtained with other solution concepts such as the

strong equilibrium and the coalition-proof Nash equilibrium. We will show

them precisely in another paper. For reference, see Muto (1987, 1990) and

Nakayama and Quintas (1991).

Since our primary purpose was to show the general bargaining outcomes,

it was difficult to analyze the welfare issues, especially in the consumer’s

surplus. The welfare analysis with more specified models are left for our

future research.

In this paper, we assumed that no cooperation is allowed in the market.

However, cooperative actions are observed in reality. Watanabe and Tauman

(2003) defined the worth of each coalition under a subtle mixture of conflict

and cooperation. Their main result is an asymptotic equivalence: with

many small firms in the Cournot oligopolistic market, the Shapley value of

the licensor of a patented cost-reducing innovation approximates the payoff

he or she obtains in the linear non-cooperative licensing games (described

in section 2) traditionally studied in the literature. Extending their idea,

Watanabe (2004) argues how to represent strategic-form games in coalitional

form without sidepayments.
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Footnotes

(1) Let R(s + 1) be an ordering of n + 1 players where the licensor 0 is

at the (s+1)-st place. jR(s+1)0 means that firm j precedes the licensor 0

in the ordering R(s + 1). Denote by PR(s+1)
0 = {j ∈ N |jR(s + 1)0} the set

of firms that precedes the licensor in R(s + 1). Since every firm is identical

before licensed, there are n! such orderings that have the same marginal

contribution v(PR(s+1)
0 ∪ {0})− v(PR(s+1)

0 ) of the licensor to coalition S0 =

PR(s+1)
0 ∪ {0}. The Shapley value of the licensor in our licensing game is

Sh0(v) = (1/(n + 1)!)
�

s=1,···,n+1 n!{v(PR(s+1)
0 ∪ {0})− v(PR(s+1)

0 )}
= (1/n + 1)

�
n

s=1 s(W (s)− L(n− s)).
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On Bargaining Sets and Voting Games
∗
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Abstract

Using α-effectiveness we define the NTU games corresponding to
simple majority voting, plurality voting, and approval voting. The
Aumann-Davis-Maschler bargaining set of a simple majority voting
game is nonempty if there are at most three alternatives and it may be
empty for four or more alternatives, whereas the Mas-Colell bargaining
set may be empty only for more than five alternatives. However, if the
number of players tends to infinity, then the bargaining sets of simple
majority voting games are likely to be nonempty. The emptiness of an
upper hemicontinuous extension of the Mas-Colell bargaining set for
a simple majority voting game with four persons is used to conclude
that the Mas-Colell bargaining set of a non-levelled superadditive NTU
game may be empty.
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restricted so that the method of decision by majority yields no cycles (see

Gaertner (2001) for a recent comprehensive survey). In this paper we follow

a different path. It is well-known that the Voting Paradox is equivalent to

the emptiness of the core of the corresponding cooperative majority voting

game. We have chosen to investigate two bargaining sets which include

the core: The Aumann-Davis-Maschler bargaining set and the Mas-Colell

bargaining set. While it is well-known that the Aumann-Davis-Maschler

bargaining set may be empty for superadditive NTU games, the problem

of the non-emptiness of the Mas-Colell bargaining set (for the same class

of games) was open when we started our investigation. Indeed, Example

4.5 provides for the first time a superadditive NTU game with an empty

Mas-Colell bargaining set. Although the foregoing two bargaining sets may

be empty, they perform much better than the core; for example, both are

nonempty for the Voting Paradox and satisfy interesting asymptotic results.

We shall now review our results. At the end of the review we shall present

our main conclusions.

In Section 2 we derive the exact form of the cooperative NTU games which

correspond to simple majority voting, plurality voting, and approval voting

(see Brams and Fishburn (1983)). We also recall the definitions of the

Aumann-Davis-Maschler and Mas-Colell bargaining sets of cooperative NTU

games. Throughout our study we focus, almost exclusively, on the foregoing

two bargaining sets of simple majority voting games.

Section 3 deals with the Aumann-Davis-Maschler bargaining set. We report

that it is nonempty for three alternatives. We show by means of an example

that it may be empty (for a simple majority voting game), when there are

four or more alternatives. Nevertheless, in a simple probabilistic model, if

the number of alternatives is fixed, then the probability that the Aumann-

Davis-Maschler bargaining set is nonempty tends to one as the number of

voters tends to infinity.

Our main existence theorem is presented in Section 4: The Mas-Colell bar-

gaining set of a simple majority voting game is nonempty for five (or less)
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alternatives. For six alternatives Example 4.5 shows that the Mas-Colell

bargaining set (of a simple majority voting game) may be empty. Finally,

we report in Section 4 the following result: If RN is a profile of preferences

of the n members of the set N of voters and if k ≥ n+2, then the Mas-Colell

bargaining set of any simple majority voting game that is derived from the

k-th replication of RN is nonempty.

In Section 5 we introduce an extension of the Mas-Colell bargaining set

which is upper hemicontinuous. The emptiness of this extension for a four-

person simple majority voting game with ten alternatives can be used to

show the existence of a four-person non-levelled superadditive NTU game

with an empty Mas-Colell bargaining set. This result solves an open problem

of Vohra (1991).

Now we present our conclusions. Let (N,V ) be a simple majority voting

game and let x be an individually rational payoff vector. Then x is in a

bargaining set if: (i) x is (weakly) Pareto optimal; and (ii) for every objection

(in the sense of the bargaining set) there is a counter objection. Our study

proves that the tension between (i) and (ii) is so strong that for six or more

alternatives all bargaining sets may be empty. This is our first conclusion.

Our second conclusion is more vague: If the number of players tends to

infinity and the number of alternatives is held fixed, then the bargaining

sets of (simple majority) voting games are likely to be non-empty.

Proofs of the results are contained in Peleg and Sudhölter (2004, 2005).

2 Preliminaries

Let N = {1, . . . , n}, n ≥ 3, be a set of voters, also called players, and

let A = {a1, . . . , am}, m ≥ 3, be a set of m alternatives. For S ⊆ N we

denote by RS the set of all real functions on S. So RS is the |S|-dimensional

Euclidean space. (Here and in the sequel, if D is a finite set, then |D|
denotes the cardinality of D.) If x, y ∈ RS , then we write x ≥ y if xi ≥ yi

for all i ∈ S. Moreover, we write x > y if x ≥ y and x �= y and we write

91



x � y if xi > yi for all i ∈ S. Denote RS
+ = {x ∈ RS | x ≥ 0}. A set

C ⊆ RS is comprehensive if x ∈ C, y ∈ RS , and y ≤ x imply that y ∈ C.

An NTU game with the player set N is a pair (N,V ) where V is a function

which associates with every coalition S (that is, S ⊆ N and S �= ∅) a set

V (S) ⊆ RS , V (S) �= ∅, such that V (S) is closed and comprehensive and

V (S) ∩ (x + RS
+) is bounded for every x ∈ RS .

We shall focus on choice by simple majority voting, by plurality voting, and

by approval voting. The corresponding three strategic game forms leading to

three kinds of NTU voting games may be described as follows. The first game

form consists of the voters selecting an element of A. If a strict majority of

voters agrees on α ∈ A, then the outcome is α; otherwise no alternative is

selected. The second game form is a multi-valued game form which differs

from the first game form only inasmuch as the set of all alternatives that

are announced by a maximal number of voters is selected. In the third

game form each voter has to announce a nonempty subset – a ballot – of

alternatives. The outcome is the set of alternatives that are members of a

maximal number of ballots.

We shall now assume that each i ∈ N has a linear preference Ri on A.

Thus, for every i ∈ N , Ri is a complete, transitive, and antisymmetric

binary relation on A. Moreover, let ui, i ∈ N , be a utility function that

represents Ri. With the exception of Section 5 we shall always assume that

min
α∈A

ui(α) = 0 for all i ∈ N. (2.1)

As we are going to break ties by even-chance lotteries, we shall further

assume that the utilities are weakly cardinal, that is, they satisfy the ex-

pected utility hypothesis for even-chance lotteries (see Fishburn (1972)).

For each of the three strategic game forms any utility profile uN = (ui)i∈N

that satisfies the foregoing assumptions determines its corresponding strate-

gic game. These considerations motivate us to define the cooperative NTU

voting games that are associated (via α-effectiveness) with our strategic

games. Indeed, let uN be a utility profile that satisfies (2.1). The NTU

game (N,VuN ) associated with choice by simple majority voting and called
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simple majority voting game (see Aumann (1967)) is defined by

VuN (S) = {x ∈ RS | x ≤ 0} if S ⊆ N, 1 ≤ |S| ≤ n

2
; (2.2)

VuN (S) = {x ∈ RS | ∃α ∈ A such that x ≤ uS(α)} if S ⊆ N, |S| > n

2
.

(2.3)

The coalition function of the plurality voting game, that is, the NTU game

associated with choice by plurality voting, is denoted by V pl
uN and it may

differ from VuN only for coalitions S ⊆ N such that |S| = n/2 and for the

grand coalition N . Indeed, we define

V pl
uN (S) =

�
x ∈ RS

����∃ α ∈ A such that x ≤ 1
2
uS(α)

�
for all S ⊆ N, |S| = n

2
,

(2.4)

and

V pl
uN (N) =




x ∈ RN

������

∃ B ⊆ A such that 1 ≤ |B| ≤ n,
��

n
|B|

�
− 1

�
|A|+ |B| ≥ n, and x ≤

�
β∈B uN (β)

|B|




 ,

(2.5)

where [r] denotes the largest integer less than or equal to r. Indeed, if

|S| = n/2 and all members of S select the same alternative α, then a player

i ∈ S cannot be prevented from the utility ui(α)/2 even if all members

of N \ S select i’s worst alternative (see (2.1)). Moreover, if B is the set

of alternatives that are announced by a maximal number t of voters, then

0 ≤ n− t|B| ≤ (t− 1)(|A|− |B|) and, hence, t ≤ [n/|B|] and

n− |B| ≤ ([n/|B|]− 1)|A|. (2.6)

If B ⊆ A satisfies (2.6), then there exists a profile of strategies that results

in the outcome B.

Now, if approval voting is employed, if S ⊆ N satisfies |S| = n/2, and if

each member j of S selects a ballot Bj , then the strategies of the players in

N \S may induce the following sets of outcomes: (1) Any subset of
�

j∈S Bj

and (2) any superset of
�

j∈S Bj . Hence, if i ∈ S, then N \ S may prevent i

from receiving more than the utility

min




 min
β∈

�
j∈S Bj

ui(β), min
C⊇

�
j∈S Bj

�

γ∈C

ui(γ)
|C|




 ≤
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≤ min




min
β∈Bj

ui(β), min
C⊇Bj

�

γ∈C

ui(γ)
|C|




 ∀j ∈ S.

Also, if all members of the grand coalition select B⊆A, then the resulting

utility profile is
�

β∈BuN (β)/|B|. Hence, the NTU game associated with

choice by approval voting, (N,V ap
uN ), called approval voting game, differs

from (N,VuN ) only inasmuch as for any S ⊆ N, |S| = n
2 ,

V ap
uN (S) =

�
x ∈ RS

�����∃ ∅ �= B � A such that

xi ≤ min

�
min
β∈B

ui(β), min
∅�=C⊆A\B

�
β∈B∪C ui(β)
|B|+ |C|

�
∀ i ∈ S

�
, (2.7)

and

V ap
uN (N) =

�
x ∈ RN

�����∃ ∅ �= B ⊆ A such that x ≤
�

β∈B uN (β)
|B|

�
. (2.8)

Hence, for each coalition S, VuN (S) (or V pl
uN (S), V ap

uN (S), respectively) con-

sists of all vectors x ∈ RS that S can get, regardless of the strategies chosen

by the members of N\S, with respect to choice by simple majority voting (or

plurality voting, approval voting, respectively). Note that the selection of

no alternative in the context of choice by simple majority voting is assumed

to result in the utility 0 for each voter.

Notation 2.1 In the sequel let L = L(A) denote the set of linear prefer-

ences on A. If RN ∈ LN , then denote

URN
= {(ui)i∈N | ui is a representation of Ri satisfying (2.1) ∀i ∈ N}.

Remark 2.2 Let RN ∈ LN . Then the associated simple majority voting

games are derived from each other by ordinal transformations. The associ-

ated plurality voting games and the associated approval voting games may

not be derived from each other by an ordinal transformation, because weakly

cardinal utilities may not be covariant under monotone transformations.
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Let (N,V ) be an NTU game. The pair (N,V ) is zero-normalized if V ({i}) =

−R{i}
+ (= {x ∈ Ri | x ≤ 0}) for all i ∈ N . Also, (N,V ) is superadditive if for

every pair of disjoint coalitions S, T , V (S) × V (T ) ⊆ V (S ∪ T ). It should

be remarked that the three foregoing NTU games are zero-normalized and

superadditive.

Now we shall recall the definitions of two bargaining sets introduced by

Davis and Maschler (1967) and by Mas-Colell (1989). Let (N,V ) be a zero-

normalized NTU game and x ∈ RN . We say that x is

• individually rational if x ≥ 0;

• Pareto optimal (in V (N)) if x ∈ V (N) and if y ∈ V (N) and y ≥ x

imply x = y;

• weakly Pareto optimal (in V (N)) if x ∈ V (N) and if for every y ∈
V (N) there exists i ∈ N such that xi ≥ yi;

• a preimputation if x is weakly Pareto optimal in V (N);

• an imputation if x is an individually rational preimputation.

A pair (P, y) is an objection at x if ∅ �= P ⊆ N , y is Pareto optimal in

V (P ), and y > xP . An objection (P, y) is strong if y � xP . The pair (Q, z)

is a weak counter objection to the objection (P, y) if Q ⊆ N , Q �= ∅, P , if

z ∈ V (Q), and if z ≥ (yP∩Q, xQ\P ). A weak counter objection (Q, z) is

a counter objection to the objection (P, y) if z > (yP∩Q, xQ\P ). A strong

objection (P, y) is justified in the sense of the bargaining set if there exist

players k ∈ P and � ∈ N \P such that there does not exist any weak counter

objection (Q, z) to (P, y) satisfying � ∈ Q and k /∈ Q. The bargaining

set of (N,V ), M(N,V ), is the set of all imputations x that do not have

strong justified objections at x in the sense of the bargaining set (see Davis

and Maschler (1967)). An objection (P, y) is justified in the sense of the

Mas-Colell bargaining set if there does not exist any counter objection to

(P, y). The Mas-Colell bargaining set of (N,V ), MB(N,V ), is the set of all

imputations x that do not have a justified objection at x in the sense of the

Mas-Colell bargaining set (see Mas-Colell (1989)).
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Notation 2.3 If RN ∈ LN and α, β ∈ A, α �= β, then α dominates β

(abbreviated α �RN β) if |{i ∈ N | α Ri β}| > n
2 . For R ∈ L and for

k ∈ {1, . . . ,m}, let tk(R) denote the k-th alternative in the order R. Also,

for B ⊆ A let R|B denote the restriction of R to B.

Remark 2.4 Let uN ∈ URN , let B � A, let i ∈ N , and let

(t1(Ri
|A\B), . . . , tm−|B|(Ri

|A\B)) = (α1, . . . ,αm−|B|)

be the vector of alternatives in A \B ordered by Ri. For j = 1, . . . ,m− |B|,
define

zj =
1

m− j + 1




�

β∈B

ui(β) +
m−|B|�

k=j

ui(αk)



 .

It can be deduced that the sequence (zj)
m−|B|
j=1 is unimodal, i.e., there exists

t ∈ {1, . . . ,m− |B|} such that zk > zk+1 for k ≤ t− 1, zk < zk+1 for k > t,

and zt ≤ zt+1 if t < m− |B|. We conclude that

min
∅�=C⊆A\B

�

β∈B∪C

ui(β)
|B|+ |C| = min

j=1,...,m−|B|
zj = zt.

This remark enables us to easily compute (2.7), taking (2.1) into account,

that is,

tm(Ri) ∈ B ⇒ min
β∈B

ui(β) = 0 ≤ zt, (2.9)

tm(Ri) /∈ B ⇒ ui(αm−|B|) = ui(tm(Ri)) = 0. (2.10)

We shall say that an alternative α ∈ A is a weak Condorcet winner (with

respect to RN ) if β ��RN α for all β ∈ A.

3 The Aumann-Davis-Maschler Bargaining Set

Throughout this section and Section 4 let RN ∈ L(A)N , uN ∈ URN (see

Notation 2.1), V = VuN (see (2.2) and (2.3)) and let � = �RN (see

Notation 2.3).
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Theorem 3.1 If |A| = 3, then M(N,VuN ) �= ∅.

In order to partially characterize the bargaining set, for α, β ∈ A, α �= β, let

Dαβ(RN ) = Dαβ = {i ∈ N | α Ri β}.

Theorem 3.2 Let A = {a, b, c}. Assume that a � b, b � c, c � a, and that

|Dαβ | >
n

2
+ 1 for all (α, β) ∈ {(a, b), (b, c), (c, a)}.

If x ∈ RN satisfies

0 ≤ x ≤ uN (α) for some α ∈ A (3.1)

and

xi ≤ ui(t2(Ri)) for all i ∈ N, (3.2)

then x ∈M(N,V ).

Remark 3.3 In fact |Dca| > n
2 + 1 is not used when x ≤ uN (a). Thus, the

following stronger result may be deduced.

Corollary 3.4 Let A = {a, b, c}. Assume that x ∈ RN satisfies 0 ≤ x ≤
(ui(t2(Ri)))i∈N and assume that a � b, b � c, and c � a. Then x ∈
M(N,V ) in each of the following three cases:

�
x ≤ uN (a) and |Dab|, |Dbc| > n

2 + 1
�
, or

�
x ≤ uN (b) and |Dbc|, |Dca| > n

2 + 1
�
, or

�
x ≤ uN (c) and |Dca|, |Dab| > n

2 + 1
�
.

By means of an example we shall show that M (N,VuN ) may be empty for

any uN ∈ URN , provided |A| ≥ 4.

Example 3.5 Let A = {a, b, c, d}, let n = 3, let RN be given by Table

3.1, let uN ∈ URN , and let V = VuN . Then M(N,V ) = ∅. Example 3.5

shows that the tension between (weak) Pareto optimality and stability (à la

Aumann and Maschler (1964)) may result in an empty bargaining set.
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Table 3.1: Preference Profile of a 4-Alternative Voting Problem

R1 R2 R3

a c b

b a c

d d d

c b a

Example 3.5 may be generalized to any number m ≥ 4 of alternatives.

Indeed, let A = {a, b, c, d1, . . . , dk}, where k = m− 3, and define RN by

R1 = (a, b, d1, . . . , dk, c),

R2 = (c, a, d1, . . . , dk, b),

R3 = (b, c, d1, . . . , dk, a),

and note that M (N,VuN ) = ∅ for any uN ∈ URN . More interestingly,

Example 3.5 can be generalized to yield an empty bargaining set for simple

majority voting games on four alternatives with infinitely many numbers of

voters.

Example 3.6 (Example 3.5 generalized) Let

R1 = (a, b, d, c), R2 = (a, c, d, b), R3 = (b, a, d, c),

R4 = (b, c, d, a), R5 = (c, a, d, b), R6 = (c, b, d, a),

and let k ∈ N. Let N = {1, . . . , 6k − 3} and let RN ∈ LN satisfy

|{j ∈ N | Rj = Ri}| =





k , if i = 1, 4, 5,

k − 1 , if i = 2, 3, 6.

Then M (N,VuN ) = ∅ for any uN ∈ URN
. Indeed, k = 1 coincides with

Example 3.5.

Notwithstanding Example 3.5, there is a simple probabilistic model in which

most preference profiles lead to a nonempty bargaining set M as the num-

ber of players becomes large. Let |A| = m ≥ 4 and let L(A) = L. Assume
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that each R ∈ L appears with positive probability pR > 0 in the pop-

ulation of potential voters, where
�

R∈L pR = 1. Now let (Ri)i∈N be a

sequence of independent and identically distributed random variables such

that Pr({Ri = R}) = pR for all i ∈ N, R ∈ L. Call RN ∈ LN good if for

all α ∈ A there exists i ∈ N such that α = tm(Ri). If RN is good, then
�
ui(tm(Ri))

�
i∈N

∈M(N,VuN ) for any uN ∈ URN . By the law of large num-

bers, limn→∞ Pr
��
RN is good

��
= 1, where RN =

�
R1, . . . ,Rn

�
. Hence,

limn→∞ Pr
��
M

�
N,V

�
RN

��
�= ∅

��
= 1, where

�
N,V

�
RN

��
is a random

NTU game which is a simple majority voting game VuN , uN ∈ URN , for any

realization RN of RN .

4 The Mas-Colell Bargaining Set

Remark 4.1 If there exists a weak Condorcet winner with respect to RN ,

then MB(N,VuN ) contains the set of the utility profiles of all weak Con-

dorcet winners.

In the case of three alternatives we may deduce the following results.

Theorem 4.2 If |A| = 3 and if there is no weak Condorcet winner with

respect to RN and if x ∈ RN satisfies

0 ≤ xi ≤ ui(t2(Ri)) for all i ∈ N ; (4.1)

there exists α ∈ A such that x ≤ uN (α), (4.2)

then x ∈MB(N,V ).

Corollary 4.3 If |A| = 3 and there is no weak Condorcet winner with re-

spect to RN , then M(N,V ) ⊆MB(N,V ).

Examples show that the inclusion in the foregoing corollary may be strict.

Theorem 4.4 If m ≤ 5, then MB (N,VuN ) �= ∅ for all uN ∈ URN .
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Table 4.1: Preference Profile leading to an empty MB

R1 R2 R3 R4

a1 a4 a3 a2

a2 a1 a4 a3

c c c b

b b b a4

a3 a2 a1 c

a4 a3 a2 a1

We shall now present an example of a simple majority voting game on six

alternatives whose Mas-Colell bargaining set is empty.

Example 4.5 Let n = 4, A = {a1, . . . , a4, b, c}, let RN ∈ LN be given by

Table 4.1 and let uN ∈ URN . It may be verified that MB(N,VuN ) = ∅.

Example 4.5 may be generalized to any number m ≥ 6 of alternatives. Also,

if Ri = Ri for i = 1, . . . , 4, if

R5 = (a2, a1, c, b, a3, a4), R6 = (a4, a3, c, b, a1, a2),

if n = 4 + 2k for some k ∈ N, if �RN ∈ LN such that

|{j ∈ N | �Rj = Ri}| =





k , if i = 5, 6,

1 , if i = 1, 2, 3, 4,

then MB(N,VuN ) = ∅ for all uN ∈ U �RN .

In what follows we shall show that a suitable choice of utilities in Example

4.5 shows that the Mas-Colell bargaining set of a plurality or of a approval

voting game on six alternatives may be empty.

Example 4.6 (Example 4.5 continued) We now specify a utility repre-

sentation uN ∈ URN by

ui(tj(Ri)) = 65 − 6j−1 for all i ∈ N and j = 1, . . . , 6.
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Let (N,V ) the corresponding plurality or approval voting game, that is,

V ∈ {V pl
uN , V ap

uN }.

Then MB(N,V ) = ∅.

Remark 4.7 It is possible to modify the utility profile uN of the foregoing

example in such a way that the Mas-Colell bargaining sets of the approval

or the plurality voting game are nonempty. Indeed, if we just replace ui,

i = 1, 2, by �ui which differs from ui only inasmuch as �ui(tj(Ri)) = 12 − 2j

for j = 4, 5, then

x =
�

�u1(a3) + �u1(a4)
2

,
u2(a1)

2
, u{3,4}(a4)

�
= (1, 3885, 7770, 7560) ∈MB(N,V ).

In order to replicate the simple majority voting game (N,VuN ), let k ∈ N
and denote

kN = {(j, i) | i ∈ N, j = 1, . . . , k}.

Furthermore, let R(j,i) = Ri and u(j,i) = ui for all i ∈ N and j = 1, . . . , k.

Then (kN, VukN ) is the k-fold replication of (N,VuN ).

Remark 4.8 If α is a weak Condorcet winner with respect to RN , then

ukN (α)∈MB(kN, VukN ).

Theorem 4.9 If k ≥





n + 2 , if n is odd,
n
2 + 2 , if n is even,




 then MB(kN, VukN ) �= ∅.

It should be remarked that the foregoing theorem remains valid for any

ukN ∈ URkN .

5 A Non-Levelled Superadditive Game with an
Empty MB

In this section we show that there exists a non-levelled1 superadditive NTU

game whose Mas-Colell bargaining set is empty. Note that simple majority
1A zero-normalized NTU game (N, V ) is non-levelled if for every coalition S every

weakly Pareto optimal element of V (S) ∩ RS
+ is Pareto optimal.
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voting games are levelled. We shall now extend MB and modify the game

of Example 4.5 suitably. Let (N,V ) be a zero-normalized superadditive

NTU game and let x be an imputation. A strong objection at x is strongly

justified if it has no weak counter objection. The extended bargaining set

MB∗(N,V ) is the set of all imputations that do not have strongly justified

strong objections. Clearly, MB(N,V ) ⊆MB∗(N,V ).

If (N,V ) is the game of Example 4.5, then (u{1,2,3}(b), u4(a4)) ∈MB∗(N,V ).

However, the following example presents a game whose extended bargaining

set is empty.

Example 5.1 Let n = 4, A = {a1, . . . , a4, a∗1, . . . , a
∗
4, b, c}, let RN ∈ LN be

given by Table 5.1, let uN represent RN such that minα∈A ui(α) > 0 for all

Figure 5.1: A Preference Profile

R1 R2 R3 R4

a1 a4 a3 a2

a2 a1 a4 a3

a∗2 a∗1 a∗4 a∗3

a∗1 c a∗3 a∗2

c a∗4 c b

b b b a∗4

a∗3 a∗2 a∗1 a4

a3 a2 a1 c

a∗4 a∗3 a∗2 a∗1

a4 a3 a2 a1

i ∈ N , and let V = VuN . It may be verified that MB∗(N,V ) = ∅.

Let N be a finite nonempty set and let Γ denote the set of all superadditive

zero-normalized NTU games (N,V ).
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The following lemma may be shown directly.

Lemma 5.2 MB∗ is an upper hemicontinuous correspondence2 on Γ.

With the help of Theorem 4 of Wooders (1983) it is possible to deduce the

following desired result.

Theorem 5.3 There exists a superadditive and non-levelled four-person game

U such that MB(U) = ∅.
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Abstract

This survey reviews some contributions to the literature that show
that most cooperative solutions to the assignment market are deter-
mined by the core of the game. Different assignment markets with
the same core have the same τ -value, the same kernel and the same
nucleolus.
Key words: Assignment games, core, τ -value, kernel, nucleolus.

1 Introduction

In an assignment market, two disjoint sets of agents exist, let us say buyers
and sellers, and one good is present in indivisible units. Each seller owns a
unit of the indivisible good and each buyers needs exactly one unit. Differ-
entiation in the units is allowed and therefore a buyer might place different
valuations on the units of different sellers. When the difference between
what an object on sale is worth to the buyer and the minimum that would
be accepted by the seller is nonnegative, the trading between this pair of
agents is possible and this difference is the joint profit that this mixed-pair
will obtain if they trade. If the reservation price of a seller exceeds the worth
that a buyer places in the object, no profit can be made by this mixed-pair
of agents. In this way, a nonnegative assignment matrix is obtained with
the profits of all pairings.

The assignment problem is then an operations research problem which
looks for a matching from buyers to sellers that maximizes the total profit.

Under the assumption that side payments among agents are allowed,
and identifying utility with money, Shapley and Shubik (1972) introduce a

∗Institutional support from Ministerio de Ciencia y Tecnoloǵıa and FEDER under
grant BEC 2002-00642 and from Generalitat de Catalunya under grant SGR2001-0029 is
acknowledged
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cooperative model for this two–sided market. A coalitional game is then de-
fined where the characteristic function assigns to each coalition of agents the
profit of an optimal matching in the corresponding submarket. They prove
that the core of the assignment game is nonempty and, since it consists of
the set of solutions to the dual assignment problem, it can be described just
in terms of the assignment matrix. As a consequence of the lattice structure
of the core of the assignment game, for each side of the market there is an
extreme core allocation where all agents on this side simultaneously maxi-
mize their core payoff. Demange (1982) and Leonard (1983) show that, for
an assignment market, the maximum core payoff of an agent is his or her
marginal contribution to the grand coalition.

Several papers analyze the core of the assignment market. Balinsky and
Gale (1987) give upper and lower bounds for the number of extreme core
allocations, Hamers et al. (2002) show that every extreme core allocation is
a marginal worth vector, although these are nonconvex games, and Núñez
and Rafels (2003) characterize the set of extreme core allocations by means
of the reduced marginal worth vectors.

Other works relate the core of the assignment game with other coopera-
tive solutions such as the stable sets, the bargaining set, the kernel and the
nucleolus. Solymosi and Raghavan (2001) determine when the core of an
assignment game is a stable set, that is to say, a von Neumann and Morgen-
stern (1944) solution. To be more precise, the core is proved to be stable if
and only if the minimum core payoff for each agent in the market is zero.
Moreover, in Solymosi (1999) the core of the assignment game is proved to
coincide with the bargaining set defined by Aumann and Maschler (1964).
This implies the coincidence of the bargaining sets of any two assignment
markets with the same core.

In Rochford (1984) some core allocations are selected by means of classi-
cal cooperative bargaining theory: if the optimal matching is assumed to be
given exogenously, matched pairs engage in a pairwise bargaining process à

la Nash which is solved symmetrically, after defining threats based on the
outside opportunities given the current payoff to other pairs. In this way, a
set of equilibria is defined (the symmetrically pairwise-bargained allocations
or SPB allocations) which are stable under rebargaining. This set is proved
to coincide with the intersection of the kernel (a well-known set solution for
transferable utility cooperative games defined by Davis and Maschler, 1965)
and the core of the assignment game. After Driessen (1998), we know that
the kernel of an assignment game is a subset of the core and thus the set of
SPB allocations coincides with the kernel of the assignment game. Moreover,
Granot and Granot (1992) characterize those assignment markets where the
kernel coincides with the whole core.

A well known single-valued core selection is the nucleolus (Schmeidler,
1969), and Solymosi and Raghavan (1994) provide an algorithm to compute
the nucleolus of an assignment game. Another single-valued solution is the
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τ -value (Tijs, 1981). For arbitrary cooperative games this solution may lie
outside the core but in the case of the assignment game it turns out to be
also a core selection (Núñez and Rafels, 2002a).

In this survey paper we review some of our contributions to this litera-
ture to emphasize the fact that most of the aforementioned solutions to the
assignment game are determined by its core. This means that, as it hap-
pens with the bargaining set, different assignment markets with the same
core also have the same τ -value, the same kernel and the same nucleolus.

The starting point is the characterization of the core of the assignment
game given in Quint (1991): any “45o lattice” can be associated with the
core of an appropriately defined assignment game. However this assignment
game might not be unique, and Quint asks for an assignment matrix with
the entries “as high as possible”. After presenting the assignment model
in Section 2, in Section 3 we will define a representative matrix with the
entries as high as possible among those defining games with the same core. In
Section 4 and Section 5 we show that the τ -value, the kernel or the nucleolus
of an assignment market ar those of the aformentioned representative.

2 The assignment model

Let M = {1, 2, . . . ,m} be a set of buyers, M � = {1, 2, . . . ,m�} a set of sellers
and let A = (aij)(i,j)∈M×M be a nonnegative matrix where aij represents
the profit obtained by the mixed–pair (i, j) if they trade. Let n = m + m�

denote the cardinality of M ∪ M � . The assignment problem (M,M �, A)
consists in looking for an optimal matching between the two sides of the
market. A matching for A is a subset µ of M ×M � such that each k ∈
M ∪ M � belongs at most to one pair in µ . We will denote the set of
matchings of A by M(A) or M(M,M �) . We say a matching µ is optimal
if for all µ� ∈ M(M,M �) ,

�
(i,j�)∈µ aij� ≥

�
(i,j�)∈µ� aij� , and will denote

the set of optimal matchings by M∗(A) .
Assignment games were introduced by Shapley and Shubik (1972) as a

cooperative model for a two–sided market with transferable utility. Given an
assignment problem (M,M �, A) , the player set is M ∪M � , and the matrix
A determines the characteristic function wA . Given S ⊆ M and T ⊆ M � ,
wA(S ∪ T ) = max{

�
(i,j)∈µ aij | µ ∈M(S, T )} , M(S, T ) being the set of

matchings between S and T . It will be assumed as usual that a coalition
formed only by sellers or only by buyers has worth zero. For all i ∈ M
optimally matched by µ , we will denote by µ(i) the agent j ∈ M � such
that (i, j) ∈ µ . Similarly, i could be denoted by µ−1(j) . Moreover, we
say a buyer i ∈ M is not assigned by µ if (i, j) �∈ µ for all j ∈ M � (and
similarly for sellers).

Shapley and Shubik proved that the core of the assignment game (M ∪
M �, wA) is nonempty and can be represented in terms of any optimal match-
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ing µ of M ∪M � by

C(wA) =






ui ≥ 0, for all i ∈ M ; vj ≥ 0, for all j ∈ M �

ui + vj = aij if (i, j) ∈ µ
(u, v) ∈ RM × RM �

ui + vj ≥ aij if (i, j) �∈ µ
ui = 0 if i not assigned by µ
vj = 0 if j not assigned by µ .






(1)
Moreover, the core has a lattice structure with two special extreme points:
the buyers–optimal core allocation, (u, v) , where each buyer attains his
maximum core payoff, and the sellers–optimal core allocation, (u, v) , where
each seller does.

¿From Demange (1982) and Leonard (1983) we know that the maximum
core payoff of any player coincides with his marginal contribution:

ui = wA(M∪M �)−wA((M∪M �)\{i}) and vj = wA(M∪M �)−wA((M∪M �)\{j}) .
(2)

From (2) and the description of the core (1) the minimum core payoff of
buyer i is

ui = aiµ(i)−wA(M ∪M �)+wA((M ∪M �)\{µ(i)}) for all µ ∈M∗(A) , (3)

while the minimum core payoff of seller j is

vj = aµ−1(j)j−wA(M ∪M �)+wA((M ∪M �)\{µ−1(j)}) for all µ ∈M∗(A) .
(4)

Example 1 (Shapley and Shubik, 1972) Let M = {1, 2, 3} be the set

of buyers, M � = {1�, 2�, 3�} be the set of sellers and let the assignment matrix

A be

1’ 2’ 3’

1 5 �8 2

2 7 9 �6
3 �2 3 0

Notice there exists only one optimal matching µ = {(1, 2�), (2, 3�), (3, 1�)} .
Following Shapley and Shubik, to describe the core of the assignment game
you do not need to compute the complete characteristic function since only
the mixed-pair coalitions are relevant. Thus, the core of this game is:

C(wA) =




(u, v) ∈ R6
+

������

u1 + v1� ≥ 5, u1 + v2� = 8, u1 + v3� ≥ 2,
u2 + v1� ≥ 7, u2 + v2� ≥ 9, u2 + v3� = 6,
u3 + v1� = 2, u3 + v2� ≥ 3, u3 + v3� ≥ 0 .






This set is the convex hull of its extreme points: (3,5,0;2,5,1), (3,6,0;2,5,0),
(4,6,1;1,4,0), (5,6,1;1,3,0), (5,6,0;2,3,0) and (4,5,0;2,4,1). Although this core
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is a subset of R6 , taking into account the equality constraints u1 + v2� = 8,
u2+v3� = 6, u3+v1� = 2 , the core is completely determined by its projection
to the space of payoffs to the buyers and this projection is depicted in figure
1.

✁
✁
✁
✁
✁
✁

(5, 6, 0; 2, 3, 0)

(5, 6, 1; 1, 3, 0)

(4, 5, 0; 2, 4, 1)

(4, 6, 1; 1, 4, 0)

(3, 6, 0; 2, 5, 0)

(3, 5, 0; 2, 5, 1)

�
�

�
�

�
�

�
��

✁
✁

✁
✁

✁
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✜

✜
✜

✜
✜

✜
✜

✜
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✜
✜

✜
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✜
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✜
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✟✟✟✟✟✟✟✟✟✟✟✟

Figure 1: The core of the assignment game in Example 1

Among these extreme points we point out the buyers-optimal core al-
location, (u, v) = (5, 6, 1; 1, 3, 0) , and the sellers-optimal core allocation,
(u, v) = (3, 5, 0; 2, 5, 1) , which are the two more distant extreme points.

3 Buyer-seller exactness

Notice that in the above example u1 + v3� ≥ 3 > 2 = a13� for all (u, v) ∈
C(wA) . As a consequence, if we raise a13� in one unit, the resulting assign-
ment game will have the same core. In fact, all matrices

A(α) =




5 8 α
7 9 6
2 3 0





with 0 ≤ α ≤ 3 define assignment games with the same core as (M ∪
M �, wA) .

In Núñez and Rafels (2002b) an assignment game is defined to be buyer-
seller exact if no matrix entry can be raised without modifying the core of
the game.

Definition 2 An assignment game (M ∪M �, wA) is buyer-seller exact
if and only if for all i ∈ M and all j ∈ M � there exists (u, v) ∈ C(wA)
such that ui + vj = aij .
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It is then proved that for all assignment game (M ∪M �, wA) there exists
a unique buyer-seller assignment game with its same core. This is denoted by
(M∪M �, wAr) and is the buyer-seller exact representative of the initial
game. Notice that Ar is maximal among all matrices defining assignment
games with the same core as (M ∪M �, wA) . Moreover, both matrices have
at least one optimal matching in common.

Of course, given the core of the game, the buyer-seller exact representa-
tive is easily computed, as we have done in our example. But, how to obtain
Ar directly from the assignment problem?

To answer this question we analyze how the payoff to a mixed-pair coali-
tion is bounded in the core. From now on, without loss of generality we
will assume that A is square by adding null rows or columns, and we
will denote the j-th seller by j� to distinguish it from the j-th buyer.
Then, an optimal matching can be assumed to be placed in the diagonal:
µ = {(i, i�) | i ∈ M} ∈M∗(A).

We define, for all (i, j�) ∈ M × M �, Kij� to be the upper core bound
for the mixed-pair coalition {i, j�} , Kij� = max(u,v)∈C(wA) ui + vj� , and kij�

the lower core bound for the same coalition, kij� = min(u,v)∈C(wA) ui + vj� .
These bounds can be expressed in terms of the characteristic function.

Proposition 3 Let (M ∪M �, wA) be an assignment game. Then, Kij� =
wA(M ∪M �) − wA(M ∪M � \ {i, j�}) and kij� = aii� + ajj� + wA(M ∪M � \
{j, i�})− wA(M ∪M �).

This shows that, as it happens with the marginal contributions of one-
player coalitions, all marginal contributions of mixed pair coalitions are at-
tained in the core of the assignment game.

Then (M ∪M �, wA) is buyer–seller exact if and only if kij� = aij� for all
(i, j�) ∈ M ×M �.

All the same, we would like to be able to determine, just in terms of
the matrix entries, whether an assignment game (M ∪ M �, wA) is buyer-
seller exact and, if it is not, to compute the buyer-seller exact representative
(M ∪M �, wAr) .

To this end, we recall a definition due to Solymosi and Raghavan (2001).
An assignment game is doubly dominant diagonal if and only if aij� +
akk� ≥ aik�+akj� for all i, j, k ∈ M and different. This property characterizes
those matrices with the property of buyer-seller exactness.

Theorem 4 (Núñez and Rafels, 2002b) An assignment game (M∪M �, wA)
is buyer–seller exact if and only if A is doubly dominant diagonal.

Moreover, the representative matrix Ar can be computed from matrix
A in the following way: ar

ij� = max{aij� , ãij�} , where, for all (i, j�) ∈ M ×
M � ,

ãij� = max
k1,k2,...,kr∈M\{i,j}

different

{aik�1
+ ak1k�2

+ · · ·+ akrj� − (ak1k�1
+ · · ·+ akrk�r)} . (5)
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To conclude this section, notice that, from the definition of the buyer-
seller representative matrix Ar , two assignment games with the same core
have the same buyer–seller exact representative. In some sense, the coinci-
dence of the cores provides a classification of assignment games. This fact
makes us question how the main cooperative solutions behave with respect
to this classification.

4 The kernel and the τ-value

In the case of the assignment game, it is quite straightforward to realize
that these two cooperative solutions are completely determined by the core
of the game.

The τ -value is a single-valued solution for coalitional games that was
introduced by Tijs (1981) as a compromise value between a utopia vector
and a minimal rights vector. In some games the τ -value does not lie in the
core. This is not the case for the assignment game, since in Núñez and Rafels
(2002a) its τ -value is proved to coincide with the midpoint of the segment
determined by the buyers-optimal and the sellers-optimal core allocations:

τ(wA) =
1
2
(u, v) +

1
2
(u, v) ∈ C(wA) .

Thus, two assignment games with the same core have the same τ -value. In
Example 1, τ(wA(α)) = (4, 5.5, 0.5; 1.5, 4, 0.5) for all 0 ≤ α ≤ 3 .

The case of the kernel is similar. Let us denote by I(v) the set of
imputations (efficient allocations that are individually rational) of a game
(N, v) . For zero–monotonic games ( v(S) ≥ v(T ) +

�
i∈S\T v(i) , for all

T ⊆ S ), as it is the case of assignment games, the kernel is given by

K(v) = {z ∈ I(v) | sv
ij(z) = sv

ji(z), ∀i, j ∈ N, i �= j, }

where the maximum surplus sv
ij(z) of player i over another player j with

respect to the allocation z ∈ RN is defined by

sv
ij(z) = max{v(S)− z(S) | S ⊆ N , i ∈ S , j �∈ S} .

It is known from Maschler, Peleg and Shapley (1979) that given two
coalitional games with the same core, the intersections of the kernel and the
core also coincide. As a consequence, if (M∪M �, wA) and (M∪M �, wB) are
two assignment games with the same core, then K(wA)∩C(wA) = K(wB)∩
C(wB) . Since the kernel of an assignment game is always included in the
core (Driessen, 1998), the above equality is equivalent to K(wA) = K(wB) .

As it is shown in Núñez (2004), the kernel of Example 1 reduces to only
one point, thus being the nucleolus.
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5 All assignment games with the same core have
the same nucleolus

The nucleolus is a single-valued solution for coalitional games that was
introduced by Schmeidler (1969) as the imputation that lexicographically
minimizes the vector formed by the excesses of all nontrivial coalitions in
non-increasing order. This minimum always exists and reduces to only one
point. Moreover, if the core is nonempty, the nucleolus lies in the core.

It is known from Huberman (1980) that only essential coalitions are to be
considered in the computation of the nucleolus of a coalitional game. From
his definition, it is easy to check that, for assignment games, only one-player
coalitions and mixed-pair coalitions are essential.

Given an assignment game (M ∪ M �, wA) , for all x ∈ I(wA) and all
S ⊆ M ∪M � , the excess of coalition S at x is

e(S, x) = v(S)−
�

i∈S

xi = v(S)− x(S).

Then, for all x ∈ I(wA) define the vector θ(x) ∈ Rm×m�+m+m�
of excesses

of all non-trivial essential coalitions at x in non-increasing order: θ(x)k =
e(Sk, x) , where e(Sk, x) ≥ e(Sk+1, x) and Sk is either a one-player coalition
or a mixed-pair coalition.

The nucleolus of (M∪M �, wA) is the imputation ν(wA) that minimizes
θ(x) , with respect to the lexicographic order, over the set of imputations:

θ(ν(v)) ≤Lex θ(x) , for all x ∈ I(wA) .

Solymosi and Raghavan (1994) adapt the definition of lexicographic cen-
ter due to Maschler, Peleg and Shapley (1979) to the case of the assignment
game. With some small changes, their definition of lexicographic center of
an assignment game is used in Núñez (2004).

Given (M ∪M �, wA) , we take an optimal matching µ ∈ M∗(A) , and
consider the set of coalitions

P = {{k} | k ∈ M ∪M �} ∪ {{i, j�} | i ∈ M , j� ∈ M �} .

We iteratively construct
• Σ0 ⊇ Σ1 ⊇ · · · ⊇ Σs+1 and ∆0 ⊆ ∆1 ⊆ · · · ⊆ ∆s+1 sets of coalitions in
P such that for all 0 ≤ r ≤ s + 1 , (∆r,Σr) is a partition of P , and
• X0 ⊇ X1 ⊇ · · · ⊇ Xs+1 a sequence of payoff sets, such that:

Initially ∆0 = {{i, j�} | (i, j�) ∈ µ}∪{{k} | k ∈ M∪M � not matched by µ} ,
Σ0 = P \∆0 , and X0 = C(wA) .

For r ∈ {0, 1, . . . , s} define recursively

1. αr+1 = min(u,v)∈Xr maxS∈Σr e(S, (u, v))
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2. Xr+1 = {(u, v) ∈ Xr | maxS∈Σr e(S, (u, v)) = αr+1}

3. Σr+1 = {S ∈ Σr | e(S, (u, v)) is constant on Xr+1}

4. Σr+1 = Σr \ Σr+1, ∆r+1 = ∆r ∪ Σr+1

where s is the last index for which Σr �= ∅ . The set Xs+1 is the lexico-
graphic center of (M ∪M �, wA) .

It is then proved that the lexicographic center is well defined and it
reduces to only one point which coincides with the nucleolus.

In our Example 1, the process begins with a linear program with 6 vari-
ables and 15 constraints, and you obtain:

ν(wA) = (4, 5.667, 0.333; 1.667, 4, 0.333) .

In Maschler, Peleg and Shapley (1979) an example is given of two co-
operative games with the same core but different nucleoli. Next theorem
shows that this cannot happen with two assignment games.

Theorem 5 (Núñez, 2004) Let (M ∪ M �, wA) be an assignment game

with the same number of agents on each side of the market and (M ∪
M �, wAr) its buyer-seller exact representative. Then,

ν(wA) = ν(wAr) .

To prove that, take (∆0,Σ0), . . . , (∆s+1,Σs+1) and X0, . . . , Xs+1 the
partitions and payoff sets in the definition of lexicographic center of (M ∪
M �, wA) , and consider also (∆̃0, Σ̃0), . . . , (∆̃s�+1, Σ̃s�+1) and X̃0, . . . , X̃s�+1

the partitions and payoff sets in the definition of lexicographic center of
(M ∪ M �, wAr) . Then it can be proved (by induction on r) that for all
0 ≤ r ≤ s + 1 , ∆r = ∆̃r , Σr = Σ̃r and Xr = X̃r , and consequently
ν(wA) = ν(wAr) .

As a consequence of the above theorem, if (M ∪ M �, wA) and (M ∪
M �, wB) are two assignment games with the same core and the same number
of agents on each side of the market, then ν(wA) = ν(wAr) = ν(wBr) =
ν(wB) . The result is easily extended to assignment games where one side
of the market has more agents than the opposite side.

Thus, all the markets (M ∪M �, wAα) , with α ∈ [0, 3] , in our previous
example have the same nucleolus:

ν(wA(α)) = (4, 5.667, 0.333; 1.667, 4, 0.333) .
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Abstract

We discuss the construction of a superadditive bargaining solu-
tion in the spirit of Maschler–Perles. The family of poly-
hedra admitting such a solution is provided by the “cephoids”,
i.e., finite sums of “prisms”. The geometrical shape of these poly-
hedra, the partially ordered set of their maximal faces, and the
combinatorial structure describing this poset provide the foun-
dation for the construction of a bargaining solution.

1 Superadditivity of Solutions

The Shapley value ([15]) is a mapping defined on TU games (on real
valued set functions) with values in Euclidean space (distributions of wealth)
respecting anonymity, Pareto efficiency, and a dummy property. The solution
concept is uniquely defined by the additional requirement that it should be
additive. More precisely, if I is a finite set and P = P(I) the power set (the
set of coalitions), then a function v : P → satisfaying v(∅) = 0 is a
game . A mapping Φ : {v v is a game } → {I} is additive if, for any two
games v,w it satisfies

Φ(v) + Φ(w) = Φ(v + w) .
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The Shapley value for a game v is given by

Φi(v) :=
∑

S∈P

(s − 1)!(n − s)!

n!
(v(S) − v(S \ {i})).

It can be computed in various other ways and enjoys a host of nice properties;
the amount of work dealing with this concept is huge.

Additivity of a solution concept is traditionally justified by risk neutrality.
Players facing a lottery of two games do not distinguish between the value
of the expected game and the expected value of the games. Yet, one can as
well think that players act independently in two remote games and evaluate
the expectations either in both games independently or else by establishing
a package deal.

If side payments are not permitted, than additivity of a solution concept
cannot be obtained. Yet, the sum of two games (or in particular of two
bargaining problems) is well defined. This is the algebraic sum which is
obtained by summing all pairs of utility vectors available to a coalition in
the two games.

One can at best hope for superadditivity. This means that by striking a
package deal both players improve their situation with regard to the solution
concept. Or else, when facing a lottery of two games, it is an advantage for
both players to contract ex ante and evaluate the expected game according
to the solution concept.

We shall first of all necessarily restrict the discussion on bargaining problems.
The Nash bargaining solution [8] is not superadditive as is seen by simple
examples for two persons. The Maschler–Perles solution [7] on the other
hand is uniquely defined by superadditivity – given that one takes the usual
requirements regarding symmetry etc. for granted. The serious problem is
that the Maschler–Perles solution exists for two person games only. In
fact, Perles [12] proved in 1982 that a superadditive solution generally does
not exist for three and more persons.

Yet, when generalizing the Shapley value to the NTU context the gen-
eral approach assumes coincidence with the Nash solution for the n person
bargaining problem (see Shapley [16] Aumann [1], Harshanyi [4], [5],
Kern [6]). This idea is justified on the overwhelming acceptance of the
Nash–solution. It may also recognize the fact that there is no superadditive
solution in higher dimensions and a fortiori there will be no superadditive
Shapley value. Yet, one might argue that this is not a particulaly consis-
tent approach.
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We establish a solution concept that is superadditive on a certain sub–class
of games. As it turns out to establish this class requires quite an effort. The
nature of sums of convex polyhedra is discussed within the framework of
convex geometry,this task may, depending on the context, in itself be quite
involved. The particular class we will exhibit is the family of “cephoids”
which are sums of hyperplane games (bargaining situations) with variing
normal vector.

Let us recall some basic facts. The Maschler–Perles bargaining solution
(Maschler–Perles [7], see also [13] for a textbook presentation) is a map-
ping defined on 2–dimensional bargaining problems respecting anonymity,
Pareto efficiency, and affine transformations of utility. Moreover, this map-
ping is superadditive by which property it is uniquely characterized. We
want to be more precise.

A bargaining problem is a pair (0, U) with a compact, convex, and com-
prehensive subset ∅ $= U ⊆ 2

+. 0 ∈ U is the status quo point and U the
feasible set . Players may reach agreement on some feasible utility vector.
Or else end up at the status quo point, which we assume to be 0. It suffices
to mention U .

A solution is a mapping ϕ that, based on some axiomatic justification,
assignes to each bargaining problem U a Pareto efficient vector ϕ(U).

Suppose two players are engaged in two “remote” problems U and U ′ simul-
taneously. In the beginning, they considered these to be different affairs,
thus wanted to settle for ϕ(U) and ϕ(U ′) separately. Later on they real-
ized that one should consider giving in with respect to one contract in favor
of receiving concessions with respect to the other one. That is, they de-
cided to consider this to be one problem. The utilities available are now
{x + x′|x ∈ U, x′ ∈ U ′} =: U + U ′. If a solution is superadditive, i.e.,
satisfies ϕ(U + U ′) ≥ ϕ(U) + ϕ(U ′), it turnes out that both players profit
from a quid quo pro.

Od course the interpretation that players face a lottery involving two bar-
gaining problems applies as well. Superaddivity is then seen to consistently
favor contracting ex ante, thereby increasing expected utility (see [7] or [13],
p.562, for a detailed discussion).

We focus on polyhedral bargaining problems. A bargaining problem (in 2)
is polyhedral if the Pareto surface consists of line segments only. The
Maschler–Perles solution µ is based on the observation that every poly-
hedral bargaining solution in 2 is an sum of “elementary” bargaining prob-
lems that are generated by a line segment (thus reflect constant transfer of
utility). More precisely, let a = (a1, a2) > 0 ∈ n. We introduce the unit
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vectors ei, the vectors ai := aie
i (i ∈ I), and associate with a the triangle

(1.1) Πa := convH
({

0,a1,a2,
})

.

The Pareto curve of this triangle is the line segment ∆a which is given by

(1.2) ∆a := convH
({

a1,a2
})

.

Now, a bargaining problem is seen to be polyhedral if and only if the feasible
set is given by

(1.3) Π =
∑

k∈K

Πa(k)

with a suitable family of (positive) vectors
(
a(k)

)

k∈K
, K := {1, . . . ,K}

To any triangle Πa we associate the volume V (a) := 1
2a1a2 = area (Πa).

Consider the case that all triangles involved in a representation (1.3) have
equal volume. The bargaining problems having this property form a dense
subset of the set of all bargaining problems (employing the Hausdorff metric).
Similarly, whenever we deal with the sum of two bargaining problems, we
may assume that the summands as well as the sum are dyadic with the same
basis.

Each triangle equal area

r2
2T

s2
2T

s1
2T

r1
2T

Π

Figure 1.1: A standard dyadic bargaining problem

Definition 1.1. A bargaining problem standard dyadic if the feasible set is
a polyhedron represented as in (1.3) with dyadic vectors all generating equal
volume.
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We assume the enumeration of the triangles to be such that the tangents

(i.e., the quotients
a
(k)
2

a
(k)
1

) are decreasing with the index k. The Maschler–

Perles solution for a standard dyadic bargaining problem is then defined
inductively as follows: For K = 1 it is the midpoint of the line segment
(the Pareto curve). For K = 2 (and assuming that the two triangles are not
homothetic) it is the unique vertex of Π = Π(1) + Π(2). For K ≥ 3 it is
defined by the recursive formula

(1.4)

µ(Π) = µ

(
∑

k∈K

Πa(k)

)

:= µ
(
Π(1) + Π(K)

)
+ µ




∑

k∈K−{1,K}

Πa(k)



 .

This formula in fact implies uniquenes of the solution on standard dyadic
bargaining problems. For, every superadditive solution µ is necessarily ad-
ditive whenever the solutions of the two summands admit of a joint normal.

µ(Υ)

µ(Ψ)

Υ

Ψ

Figure 1.2: Additivity of the solution

To see this more clearly, consider Figure 1.2. Note that the sum of two Pareto
efficient vectors is Pareto efficient if and only if both admit of a joint normal
(equivalently: a joint tangency). In Figure 1.2, the vertex of Υ admits of a
joint normal with each Pareto efficient point of Ψ (some normal cones are
indicated). If the volumes of the two triangles involved in Υ are equal, then
the solution yields this cornerpoint, denoted by µ(Υ), hence µ(Υ)+µ(Ψ) is
Pareto efficient. As the solution is superadditive, we must necessarily have
µ(Υ + Ψ) = µ(Υ) + µ(Ψ).

Given our enumeration, the first polyhedron Π(1) +Π(K) plays the role of Υ,
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hence its solution admits of a joint normal with every Pareto efficient point
of the second polyhedron.

We present two stories concerning the supperadditive solution. The first one
is due to Maschler–Perles: two travelers (it may help to think of donkey
carts) move along the Pareto curve in a way that the product of the speed
components in axis directions is equal at any moment.When they start out
at the extremal points of the Pareto surface, then they meet eventually at
the solution point.

The second story is a reframed version of the above one: instead of traveling
along the Pareto surface with a certain speed, we may define a surface mea-
sure on it such the density (w.r. to the local Lebesgue mesure) correponds
to the travelling speed as mentioned above.

To every line segment ∆(k) (and every translate of such line segment) we
assign a length measure ι∆ (i.e. a dilated version of Lebesgue measure) by
setting

(1.5) ι∆(∆(k)) =

√
a(k)

1 a(k)
2 := αk.

Then, for every k ∈ K we take a corresponding multiple of the unit simplex,
i.e., we put

(1.6) Π̂(k) :=
√

αkΠ
e

such that the surface has length λ(∆̂(k)) = αk. Summing these we obtain
a multiple of the unit simplex Π̂ =

∑
k∈K

Π̂(k) the surface ∆̂ of which has
length

(1.7) λ(∆̂) =
∑

k∈K

αk ,

which is the same as the total length of the Pareto curve of Π in terms of
the surface measure.

Therefore, we now construct a bijective and “locally” affine linear mapping,
say κ : ∆ → ∆̂ by mapping the translates of the various ∆(k) on copies of

the ∆̂(k) in the order dictated by the slopes |a
(k)
2

a
(k)
1

|. That is, if ∆(1) has the

smallest slope |a
(1)
2

a
(2)
1

|, then a copy of ∆(1) is the line segment in the uppermost

left corner of ∆ and this is mapped on a line segment of length α1 in the
uppermost left corner of ∆̂ etc. Figure 1.3 indicates the procedure. Now, if
x̄ is the midpoint of ∆̂, then the Maschler–Perles solution is given by

(1.8) µ(Π) = κ−1(x̄).
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replacemen

∆(1)

∆(2)

∆(3)

∆(4)

∆(5)

∆̂(1)

∆̂(2)

∆̂(3)

∆̂(4)

∆̂(5)

κ

κ−1

x̄
µ(Π)

Π Π̂

Figure 1.3: Mapping ∆ on ∆̂

2 Sums of Prisms

In order to generalize the two dimensional results, we consider the class
of polytopes in n

+ that are sums of prisms. It is our aim to exhibit the
structure of the surface of these polyhedra and, based on this structure, to
define a surface measure that resembles the one presented earlier. Given a
sum of prisms, there appears a the shape of a cephalopod on the surface.
Therefore, we call the polytopes of our family “cephoids”. A cephoid is
formally describes as follows.

We denote by I := {1, . . . , n} the set of coordinates of n and by ei the ith

unit vector of n (i ∈ I). Also write e = (1, . . . , 1). Let a = (a1, . . . , an) >
0 ∈ n

+. Put ai := aie
i (i ∈ I) and associate with a the prism Πa which

is given by

(2.1) Πa := conv
{
0,a1, . . . ,an

}
.

The (outward) face of this prism is the simplex ∆a which is given by

(2.2) ∆a := conv
{
a1, . . . ,an

}
.

For any J ⊆ I we write n
J

= {x ∈ n xi = 0 (i /∈ J)}. Accordingly, we
obtain the subprism of Πa given by

(2.3) Πa
J := {x ∈ Πa xi = 0 (i /∈ J)} = Πa ∩ n

J ,

a similar notation is used for the simplex, ∆a we write for the subface gen-
erated by the coordinates i ∈ J

(2.4) ∆a
J := {x ∈ ∆a xi = 0 (i /∈ J)} = ∆a ∩ n

J .

Now we consider the Minkowski sum of prisms.
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Definition 2.1. Let a• := (a(k))Kk=1 denote a family of positive vectors and
let

(2.5) Π =
K∑

k=1

Πa(k)

be the (algebraic) sum. Then Π is called a cephoid.

Note that the representation of a cephoid by a family of prisms is in general
not unique. Some few examples may serve to motivate a condition that
ensures uniqueness.

Example 2.2. A prism may be represented as a cephoid in various ways.
E.g., let Π = Πe be the unit prism and let Π be represented as the sum
Π = Παe + Πβe with α,β ≥ 0, α + β = 1. The outer surface, i.e., the
unit simplex ∆ = ∆e = ∆αe + ∆βe is the union of the two translates
αe1 + ∆βe, βe2 + ∆αe and a “diamond” ∆αe

13 + ∆βe

23 . (cf. Figure 2.1)

∆

αe1 + ∆βe

βe2 + ∆αe

∆αe
13 + ∆βe

23

Figure 2.1: The unit simplex as a cephoid

However, the representation is not unique. As all prisms involved are homo-
thetic, the vector used to translate a prism is rather arbitrary. Now consider
two nonhomothetic prisms. The sum is indicated in Figure 2.2. Again there
are the translates of the two prisms involved, i.e. ∆a + b1 and ∆b + a1. The
“diamond” is the sum ∆a

23 + ∆b
13.
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Figure 2.2: Adding two non–homothetic prisms

Figure 2.3: A sum of four prisms
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The sum of four prisms is depicted in Figure 2.3.

Figure 2.4: ∆4e as the sum of four prisms

Compare this with Figure 2.4, which is the sum of four copies of the unit
simplex. The common structure is obvious, but of course the representation
is not unique. The planar case is in some way “degenerate”. However it
serves to represent the surface structure of the cephoid in Figure 2.3.

The exact definition of a nondegenerate family is omitted, see [9]. However,
it is worthwhile to note:

Theorem 2.3. A nondegenerate cephoid is uniquely represented as a sum
of nonhomothetic prisms.

The proof follows from general theorems of convex geometry. (see [14])
Henceforth we shall, therefore, attach the term “nondegenerate” to a cephoid
(i.e., the sum) as well as the generating family.

As it turns out, the general structure of a cephoidal surface is at best rep-
resented on (a positive multiple of) the unit simplex: there is a “canonical”
mapping between the two surfaces preserving the partially ordered set of
faces. (E.g. Figure 2.4 is the “canonical representation” of Figure 2.3) This
geometric structure is accompanied by a combinatorial structure correpond-
ing to the poset (partially ordered set) of maximal faces.

3 The Canonical Representation

Recall the similar structure exhibited in Figures 2.3 and 2.4. There is a map-
ping of the surface structure of a cephoid on a suitable positive multiple of
the unit simplex such that both structures are “combinatorically equivalent”,
i.e., the posets (partially ordered sets) of subfaces are isomorphic (see [3]).
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In order to simplify the notation, we use K := {1, . . . ,K} for the index set
of a family of prisms. We consider a family (a(k))k∈K of vectors in general
position; the prism Π :=

∑
k∈K

Π(k) and its surface ∆ :=
∑

k∈K
∆(k)

are defined as previously.

We take K copies of e which we denote by a0(1), . . . ,a0(K). As in Section

2 we write a0(k)i := a0(k)
i ei, where a0(k)

i denotes the i′th coordinate of a0(k).

For every k ∈ K let Π0(k) := Πe and ∆0(k) := ∆e be a copy of the unit prism
and simplex respectively. The (homothetic) sums generated are denoted by

Π0 :=
∑

k∈K

Π0(k) = ΠKe = KΠe

and
∆0 :=

∑

k∈K

∆0(k) = ∆Ke = K∆e

respectively. As all prisms involved are homothetic, the simplex ∆0 has the
(trivial) face poset of the unit simplex.

a

b

c
1

2

3

4

Figure 3.1: A sum of 3 prisms in 4 dimensions.

The canonical representation of ∆ is the suitable projection of the outer
surface ∆ of a cephoid Π on ∆0 in a way which preserves the poset of
faces. For example, the canonical representation of the cephoid represented
in Figure 2.3 is indicated by Figure 2.4. Here, both ∆ and ∆0 are two
dimensional while the prisms Π(k) = Π(a(k)) as well as the resulting cephoid
Π are three dimensional.
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Figure 3.2: A sum of 3 prisms – not all prisms at a vertex

Analogously, for n = 4 dimensions and K = 3 prisms, we represent the sum
of the prisms canononically on a suitable multiple of the unit simplex of 4,
which is a three dimensional tetrahedron. It turns out, that there are three
translates of simplices on ∆. Each of these generates ’tentacles’ consisting
of 2 cylinders. Thus, we find immediately nine maximal faces that involve
a vertex. However, in addition to these nine faces, there is exactly 1 block,
i.e., a maximal face that is the sum of three edges, each one taken from. one
of the prisms involved.

The canonical representation of a sum of three prisms in 4 has a surface ∆
which is presented in Figure 3.1.

The translates of the simplices are located at the vertices of ∆. Each simplex
generates two cylinders which together form a “tentacle” issued from that
simplex. Finally, there is the “block”, which is the representation of a part
of ∆ which can be written

(3.1) ∆(a)
12 + ∆(b)

23 + ∆(c)
34 .

In Figure 3.2 we perceive a variant – not all translates of the three prisma
involved are licated at some ertex.

Given nondegeneracy, the number of maximal faces of a cephoid is actually
depending on the dimension n and the number of prisms involved K only.

E.g., four prisms in 4 yield a cephoid with 20 maximal faces; a canonical
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Figure 3.3: Summing 4 prisms in 4.

representation is depicted in Figure 3.3.

4 The Surface Measure

In order to illustrate the procedure for the surface measure, we start out
with a three dimensional cephoid. Recall, that the surface measure in the
two dimensional case involves the area of the prisms involved. It is, therefore,
appropriate to use the volume in order to generate the surface measure.

Let a = (a1, a2, a3) > 0 be a positive vector and let Πa be the prism associ-
ated, the surface is the simplex ∆a. The volume of Πa is V (Πa) = a1a2a3

6 .
We use the volume in order to define a measure on the surface, as follows.
First of all, assign an area to ∆a which is given by

(4.1) ι∆(∆a) =
3

√
[6V (Πa)]2 =

3

√
[a1a2a3]

2

The same area is associated to any translate of ∆a. Then we obtain in
particular for d ∈ 3

+ and ε > 0

(4.2) ι∆(d + ∆εa) = ε2ι∆(∆a).

Now we observe that this definition generates a σ–additive set function on
∆a. For, let us decompose ∆a canonically into 4 similar simplices as indi-
cated by Figure 4.1. We define
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Figure 4.1: Canonical Decomposition of a Simplex

(4.3) ∆a∗ := convH

({
a1 + a2

2
,
a1 + a2

3
,
a2 + a3

3
,

})

in order to obtain

(4.4) ∆a =
3⋃

i=1

(
1

2
ei +

1

2
∆a

)
∪

((
1

2
,
1

2
,
1

2

)
+

1

2
∆a∗

)
.

Each of the 4 triangles involved has measure ι∆(1
2d + 1

2∆a) and because of
(4.2) we have

(4.5) 4ι∆(
1

2
d +

1

2
∆a) = ι∆(∆a).

The decomposition of a simplex into 4 equal subsimplices may be contin-
ued and we obtain an additive set function on the field generated by these
simplices on ∆a. By the usual extension theorems, we obtain the surface
measure ι∆ on the surface d + ∆a of every translate d + Πa of some prism
Πa (the σ–algebra is generated by the relative topology).

Now we turn to the sum of two prisms. Let a, b > 0 and consider the
polyhedron Πab := Πa + Πb. Figure 4.2 shows the situation in which we
assume

(4.6)
a2 > a2 > a1 ; b3 < b1 < b2;

a2 > b2, b3 > a3, b1 > a1.

130



The two vectors are nondegenerate.

Figure 4.2: The sum of two prisms

The surface consists of the translates b1 + Πa and a2 + Πb and the diamond

(4.7) Λab = Λab
23 13 = ∆a

23 + ∆b
13

which is the sum of the subsimplices of ∆a and ∆b indicated.

Now we define a measure on the surface Λab consistently to the one on the
surface of the simplices. There is a marked difference to the two dimensional
case,as the diamond is the first new type of a maximal face that appears
in three dimensions. (The next new type is the block in four dimensions).
Λab

23 13 now receives a measure that depends on the volumes of the two prisms
invoved (consider Figure 4.2). We define

(4.8) ι∆(Λab) := 2 3

√
6V (Πa)6V (Πb) .

The generalization to several dimensions is now at hand. Again, we use the
volume in order to define a measure on the surface of a cephoid. We start
out with a prism. Let a = (a1, . . . , an) > 0 be a positive vector and let Πa

be the prism associated, the surface is the simplex ∆a.

The volume of Πa is

V (Πa) =

∏
i∈I

ai

n!
.
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We associate a surface measure of

(4.9) n
√

(n!)n−1(V (Πa))n−1 =: n
√

vn(V (Πa))n−1

to any translate of the surface ∆a. In particular, the simplex ∆e (the surface
of the unit prism Πe) receives surface measure 1. Next we we turn to more
general types of maximal faces of a cephoid (diamonds, blocks,...).

Such a maximal face is given by a system of index sets J = (J (1), . . . ,J (K))
which is called the reference system . A maximal face is the sum of certain
subfaces of the prisms involved. That is, such a face may be written

(4.10) F = ∆(1)

J(1) + . . . + ∆(K)

J(K)

The numbers jl := |J (l)| satisfy

(4.11) (j1 − 1) + . . . + (jK − 1) = n − 1 , j1 + . . . + jK = n + K − 1 .

This is a consequence of the nondegeneracy assumption (see [9]). Consider
the Minkowski sum

(4.12) ∆e

J(1) + . . . + ∆e

J(K) .

The (Lebesgue) surface measure of this convex compact polyhedron is a
multiple of the surface of the unit simplex, this multiple is denoted by cJ .
Of course the number depends on j1, . . . , jK only and not on the ordering of
these indices. Thus we write

(4.13) cJ = cj1,...,jK
:=

λ(∆e

J(1) + . . . + ∆e

J(K))

λ(∆e)
,

where λ denotes the Lebesgue measure. E.g., for n = 3 two triangles will
fit into a diamond, hence c13 = 1, c22 = 2. For n = 4 three tetrahedra just
fill a cylinder and two cylinders fill a cube, hence c114 = c141 = c411 = 1,
c123 = ... = 3, and c222 = 6, etc.

Having obtained the above defined “normalizing coefficients” we can now
proceed by defining a surface measure on any face of a cephoid.

Definition 4.1. Let a• be a positive family of vectors and let F be a maxi-
male face represented via a family of index sets J by

(4.14) F = ∆(1)

J(1) + . . . + ∆(K)

J(K) .

Then the surface measure associated with F is given by

(4.15) ι∆(F ) = cJ
n

√
(vn)

[
V (Π(1))

]j1−1 · . . . ·
[
V (Π(K))

]jK−1
.
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Within the following lemma we list some obvious properties of the surface
measure. This shows that the surface measure exhibits the “appropriate
behaviour”.

Lemma 4.2.

1. For t = (t1, . . . , tK) > 0 and ta(•) = (tka(k))k∈K let tF denote the
face corresponding to a face F . Then

(4.16) ι∆(tF ) = tj1−1
1 · . . . · tjK−1

K ι∆(F ).

2. In particular, for t = (ε, . . . , ε), we obtain from (4.11)

(4.17) ι∆(εF ) = εn−1ι∆(F ).

Equations (4.16) and (4.17) show that ι∆(•) behaves like the Lebesgue
measure of the surface.

3. If, for some family a•, we have a(1) = . . . = a(K), then it follows that
a face F represented by (4.10) satisfies

(4.18) ι∆(F ) = cJι∆(∆a(1)
) .

4. More generally, if for some family a• the volumes satisfy

V (Πa(1)
) = . . . = V (Πa(K)

) ,

then it follows that a face F represented by (4.10) satisfies

(4.19) ι∆(F ) = cJι∆(∆a(1)
).

Corollary 4.3. Let a• be a family of vectors and let Π,∆ be the cephoid
generated and its surface. Let F be a maximal face of ∆ represented by J as
in (4.10). Then there is a measure ι∆ defined on F which satisfies (4.15),
has the properties stated in Lemma 4.2, and is continuous as a function on
families a•.

Definition 4.4. As was the case for 3 dimensions, we call the measure ι∆

the surface measure.

Remark 4.5. 1. Let e := (1, . . . , 1) The measure ι∆ on ∆e is the
Lebesgue measure λ normalized to ι∆(∆e) = 1.

2. A sum of homothetic prism is a multiple of one of those prisms. While
the surface structure is not unique, the surface measure is seen to be a
multiple of Lebesgue measure – independently on a homothetic decom-
position and the surface structure. The measure ι∆ behaves consistently
with any surface structure.
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Now we create a second mapping (apart from the canonical one) which carries
the surface of a cephoid onto the one of a suitable multiple of the unit
simplex such that the surface measure is carried into Lebesgue measure. The
procedure is quite similar. We arrange the surface structure of ∆̂ in a way
such that the surface structure (the poset of maximal faces) of ∆ is preserved.
This is achieved by mapping the extremals of the faces of ∆ bijectively
onto certain corresponding vectors of ∆̂ such that the surface measure is
transported into the Lebesgue measure.

In a well defined sense, the mapping κ defined this way constitutes a piece-
wise linear isomorphism between ∆ and ∆̂.

Geometrically, the difference between the canonical representation and the
measure preserving representation consists just in a different size/volume/surface
of the images of the various faces.

E.g. Figure 4.3 is a relative of Figure 3.1 inasmuch as it represents the sum
of three cephoids in 4. The location of the cylinders is however slightly
different (observe the cylinders generated by prism b in 3.1). And the sur-
face measure of the various maximal faces (or rather their representations)
(which is the volume of the polyhedra in Figure 4.3 as our surface is three
dimensional), is not normalized but varies depending on the surface measure.

Figure 4.3: The measure preserving representation of a cephoid
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5 The Superadditive Solution

Finally we describe an n–dimensional version of the Maschler–Perles

superadditive solution ([7]). It is well known that we cannot expect such
a solution to behave superadditively for all bargaining problems (see Per-

les([12]). Yet, there is a class of bargaining solutions on which a superad-
ditive solutions exist.

The appropriate definition generalizing the two–dimensional version makes
use of the measure preserving representation.

Definition 5.1. Let Π be a cephoid. Let ∆̂ = ∆α̂e be the appropriate multi-
ple of the unit simplex of n to carry the measure preserving representation
of Π . That is, there is the bijective and locally affine linear mapping

κ : Π → ∆̂

that preserves the poset of maximal faces and carries the surface measure
into the Lebesgue measure. Let

µ(∆α̂e) :=
α̂

n
e

denote the barycenter of ∆α̂e. Then

(5.1) µ(Π) := κ−1(α̂e)

is the solution of Π.

µ(Π)
µ(Π̂)

κ−1

Figure 5.1: The mapping κ−1 for a two person problem

In two dimension a polyhedral bargaining problem is bijectively mapped on
a suitable multiple of the two dimensional unit simplex and Maschler–Perles
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solution is the inverse of the barycenter under the mesure preserving mapping
κ. Obviously we imitate this procedure for the general case of n dimensions.
Figure 5.1 indicates the geometrical setup and figures 5.2 and 5.3 show the
analogous geometrical setup for a 3 dimensional bargaining problem.

The inverse image of the barycenter of the measure preserving representation
defines the generalizes Maschler–Perles solution.

Π

µ(Π)

∆a

∆b

∆c

Figure 5.2: A 3–dimensional bargaining problem

1

4

9

µ(Π̂)

Figure 5.3: The measure preserving representation of 5.2
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Now there should be a short discussion concerning the family of bargaining
problems admitting the solution to be superadditive. In two dimensions, a
polyhedral bargaining problem is bounded by a Pareto curve which consists
of line segments. The slopes of these line segments can be ordered. The
essential requirement for the general case is that some kind of ordering can
be imposed on the normals of the prisms involved in a general cephoid.

Example 5.2. For n = 3, Concider a cyclic case in which the coordinates
of the vectors are ordered as follows:

(5.2)

a(1)
1 ≥ . . . ≥ a(K)

1

a
(K

3 +1)
2 ≥ . . . ≥ a(K)

2 ≥ a(1)
2 ≥ . . . ≥ a

(K

3 )
2

a
( 2K

3 +1)
3 ≥ . . . ≥ a(K)

3 ≥ a(1)
3 ≥ . . . ≥ a

( 2K

3 )
3

E.g.t Figure 5.4 represents a cyclic polyhedron (assuming that the volume of
the prisms is equal). However, the orientation in the setup suggested by this
figure is clockwise, i.e., mathematically negative. The orientation above is
mathematically positive. Yet, both versions are, in a sense, well ordered.

Figure 5.4: a cyclic bargaining problem

The above example requires that the total number K of prisms involved is
a multiple of the dimension n. This condition is actually not too restrictive.
It can be achieved by replacing each prism by a sum of three homothetic
1
n–copies of itself. Also, the requirement that all the prisms involved have
equal volume is not as strong as it might appear on a first glance. The details
of the discussion can be found in [9] and [10].

Thus, we come up with
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Definition 5.3. A family a• of positive vectors as well as the cephoid Π
generated is called well ordered if the following conditions are satisfied.

1. a• is weakly nondegenerate in the sense that it is obtained by a nonde-
generate family via a possible repetition of some of its members, thus
admitting of homothetic prisms.

2. The K prisms involved have equal volume.

3. n is a divisor of K.

4. There is a decomposition of K into n disjoint subsets Ki (i ∈ I) such

that a(k)
i ≥ a(l)

i (k ∈ Ki, l /∈ Ki) holds true.

We are now in the position to state the version of superadditivity that holds
true for our solution.

Theorem 5.4 (see [10]). µ behaves superadditively along decompositions of
a well ordered polyhedron. More precisely, if Π is a well ordered polyhedron
and Π is the sum of two bargaining problems, say Π = Υ + Ψ, then

1. Υ,Ψ are cephoids.

2. µ is superadditive, i.e.,

(5.3) µ(Π) ≥ µ(Υ) + µ(Ψ)

holds true.
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Games and Geometry

S. Tijs and R. Brânzei

1 Introduction

The main aim of this paper is to look with a geometric eye to the theory
of cooperative games with transferable utility. We observe that several con-
cepts from Euclidean and convex geometry such as hyperplanes, hypercubes,
simplices, (polyhedral) cones, extreme points and directions, generating sets,
polytopes, halfspaces, orthants, centers of gravity or barycenters have been
used in cooperative game theory to obtain insight in the structure of games
and in the description of solution concepts.

The outline of the paper is as follows. Section 2 recalls basic cooperative
game theoretic notions and game properties which are used throughout the
paper. In Section 3 we briefly present three geometric representations of
cooperative games with transferable utility that have been extensively used
in the analysis of such games. Section 4 deals with polyhedral cones of
cooperative games and Section 5 is devoted to the geometry of solution
concepts for such games. We conclude the paper in Section 6 with some
remarks on geometry in non-cooperative game theory.

2 Preliminaries

A cooperative n-person game is a pair < N, v > where N is the set of
players, usually of the form {1, 2, . . . , n}, and v : 2N → R with v(φ) = 0
is the characteristic function with domain the family 2N of subsets of N.
For each coalition S, v(S) indicates the worth generated by cooperation of
players in S. Normally a game is identified with its characteristic function.

The subgame of a game v relative to a non-empty coalition S is the
game < S, v|S > where v|S is defined to be the restriction of v to 2S . The
unanimity game uS based on φ �= S ⊂ N is defined by uS(T ) = 1 if T ⊃ S
and uS(T ) = 0 otherwise. The dual game v∗ of v is defined by v∗(S) =
v(N)− v(N\S) for each φ �= S ⊂ N.

The value v({k}) is called the individual value of player k, and i(v) =
(v({1}), v({2}), . . . , v({n}) is the individual rational point of v. The real
number v∗({k}) = v(N) − v(N\{k}) is the marginal contribution of k
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to the grand coalition N, called also the utopia payoff for player k, and
u(v) = (v∗({1}), v∗({2}), . . . , v∗({n})) is the utopia point of v. The maximal
remainder point a(v) of v, called also the minimum right vector, is defined
by ak(v) = max

S:S�k
(v(S)−

�
i∈S\{k}

ui(v)) for each k ∈ N.

A game v is called quasi-balanced if
n�

i=1
ai(v) ≤ v(N) ≤

n�
i=1

ui(v) and

ai(v) ≤ ui(v) for all i ∈ N. A game v is said to be monotonic if v(S) ≤ v(T )
for all S, T ∈ 2N with S ⊂ T.

Given an ordering σ = (σ(1),σ(2), . . . ,σ(n)) of players in N, the σ-
marginal vector mσ(v) ∈ Rn of v is the vector which has for each k ∈ N as
its σ(k)-th coordinate the real number
v(σ(1),σ(2), . . . ,σ(k))− v(σ(1),σ(2), . . . ,σ(k − 1)).

For a coalition S ∈ 2N , eS denotes the characteristic vector of S with
(eS)i = 1 if i ∈ S and (eS)i = 0 otherwise. For S ∈ 2N\{φ}, the per capita
value of S is v(S)/|S|, where |S| denotes the number of elements of S.

To solve the problem of how to divide v(N) among the players in N
when all of them agree to cooperate, several solution concepts have been
proposed. Sometimes subsets of payoff distributions of v(N) are assigned to
games as solutions. The following three such subsets will play a role in this
paper:

• the imputation set I(v) of v defined by

I(v) = {x ∈ Rn|
n�

i=1
xi = v(N), xi ≥ v({i}) for each i ∈ N};

• the dual imputation set I∗(v) of v defined by

I∗(v) = {x ∈ Rn|
n�

i=1
xi = v(N), xi ≤ v∗({i}) for each i ∈ N};

• the core C(v) of v introduced by Gillies (1953) is defined by

C(v) = {x ∈ Rn|
n�

i=1
xi = v(N),

�
i∈S

xi ≥ v(S) for all S ∈ 2N}.

A game with a non-empty core is called balanced. A balanced game
whose subgames are also balanced is called totally balanced. A game is called
exact if for each S ∈ 2N\{φ} there exists x ∈ C(v) such that x(S) = v(S).

Of the one-point solution concepts for cooperative games we mention
here only the Shapley value (Shapley, 1953), the nucleolus (Schmeidler,
1969) and the τ -value (Tijs, 1981).
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• The Shapley value φ(v) of v is equal to the average 1
n!

�
σ∈Π(N)

mσ(v) of

marginal vectors; here we denote by Π(N) the set of n! orderings of
N.

• The nucleolus N(v,X) of a game v w.r.t. a non-empty closed set
X ⊂ Rn is defined by N(v,X) := {x ∈ X|θ(x) � θ(y) for all y ∈
X}, where θ(x) is a (2n − 1)-dimensional vector of the excesses of
coalitions S ∈ 2N\{φ} w.r.t. x in decreasing order and � denotes the
lexicographical order.

• The τ -value τ(v) of a quasi-balanced game v is defined as the feasible
compromise between u(v) and a(v); in formula τ(v) = αu(v) + (1 −
α)a(v), where α is the unique real number such that

n�
i=1

τi(v) = v(N).

It turns out that for various classes of games the nucleolus and the τ -value
coincide and then τ(v) has a computational advantage over the nucleolus.

A game v is called superadditive if

v(S ∪ T ) ≥ v(S) + v(T ) for all S, T ∈ 2N , S ∩ T = φ

An interesting and important class of cooperative games is the class of con-
vex games introduced by Shapley (1971). A game v is called convex if

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for all S, T ∈ 2N .

A game v is called a big boss game with n as big boss if the following
properties hold:

(i) v(S) = 0 if n /∈ S (big boss property);

(ii) v is monotonic;

(iii) v(N)− v(N\S) ≥
�
i∈S

Mi(v) for each S ∈ 2N\{n} (union property).

For an introduction to cooperative game theory the reader is referred to
Driessen (1988), Tijs (2003) and Branzei, Dimitrov and Tijs (2005).

3 Geometric representations of cooperative games

A first geometric representation identifies a game with a vector in R2n−1.
This can be done by ordering in some way all non-empty coalitions
(S1, S2, . . . , S2n−1) and identifying the game v with the (2n−1)-dimensional
vector whose i-th coordinate is v(Si). The game space GN is treated as a
Euclidean vector space with dimension 2n − 1 in which many of the con-
sidered classes of games may be seen as polyhedral cones, i.e. as a finite
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intersection of closed halfspaces. It is possible to find a set of simple games,
for example the unanimity games, that form a basis for the linear space GN .

The second geometric approach is to represent any n-person game v
as a real-valued function w defined on the set of extreme points of the
unit hypercube in Rn by w(eS) = v(S) for each S ∈ 2N . This geometric
representation is based on the idea that there is a one-to-one correspondence
between 2N and ext[0, 1]N which associates with each coalition S ∈ 2N its
characteristic vector eS . The multi-linear extension of v, introduced by Owen
(1972), extends the function w to the entire hypercube. Further, Aubin
(1974, 1981) introduces the notion of fuzzy game, specifically a cooperative
game with fuzzy coalitions, as a function from [0, 1]N to N. In Muto et al.
(2005) generalized cores of fuzzy games are introduced based on looking with
a geometrical eye to the (Aubin) core.

The third geometric representation of an n-person game v is to convert

it to a real-valued function u :
�

eS

|S| |S ∈ 2N\{φ}
�
∪ {0} → R defined by

u

�
eS

|S|

�
= v(S)

|S| for each S ∈ 2N\{φ}, and u(0) = 0. With each subsim-

plex’s barycenter
eS

|S| the function u associates the per capita value of S.

Such representation is used by Branzei and Tijs (2001a) to reformulate the
Bondareva-Shapley result in geometric terms. Azrieli and Lehrer (2004)
consider the concavification of u, denoted cav u, which is a function defined
on the entire simplex as the minimum of all concave functions that are larger
than or equal to u. They show that cav u induces a game which is the totally
balanced cover of v and use cav u to characterize well-known classes of co-
operative games like balanced, totally balanced, exact and convex games. A
similar approach is developed by Tijs et al. (2005) for games with restricted
cooperation and fuzzy games.

4 Polyhedral cones of cooperative games

A primary task of cooperative game theory is to obtain insight in the struc-
ture of several types of games considered as subsets in the game space GN .
Most of the corresponding classes of games may be seen as polyhedral cones.

A cone K in GN is a set of games with the property that αv + βw ∈ K
if v, w ∈ K and α, β are non-negative real numbers. Note that IN = {v ∈
GN |I(v) �= φ} and IN

∗ = {v ∈ GN |I∗(v) �= φ} are cones of games as well
as the related classes of games with a simplicial core SIN = {v ∈ GN |φ �=
C(v) = I(v)} and SIN

∗ = {v ∈ GN |φ �= C(v) = I∗(v)} which are called sim-
plex games and dual simplex games, respectively (Branzei and Tijs (2001b)).
A cone K is said to be polyhedral if it is the intersection of a finite family
of closed halfspaces. Examples of polyhedral cones of cooperative games are
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the cones of: superadditive games, convex games, (totally) balanced games,
big boss games, quasi-balanced games, information market games (Muto,
Potters and Tijs (1989); Branzei, Tijs and Timmer (2000)).

A polyhedral cone is characterized by the existence of a finite generating
set, which is a finite subset of the cone with the property that each ele-
ment in the cone can be described as a non-negative weighted sum of the
elements of this set. Each polyhedral cone can be described by its extreme
directions. For a systematic study of polyhedral cones of cooperative games
we refer to Derks (1991). See also Tijs and Branzei (2002) for perfect cones
of cooperative games.

The characterization of the extreme directions of a cone of games and
the construction of a (finite) generating set are also useful for describing the
behavior of solution concepts defined on the underlying cone. An exhaustive
study of the cone of superadditive games and the cone of convex games is
done by Rosenmüller (1977) from the viewpoint that the extremality of a
game in the geometrical sense should correspond to a notion of extremality
in the social behavior sense.

5 Geometry and solution concepts for cooperative
games

We start this section by looking from a geometric point of view to the
imputation set I(v) and the dual imputation set I∗(v) of a game v ∈ GN .

The imputation set I(v) of v is equal to the intersection of the efficiency

hyperplane {x ∈ Rn|
n�

i=1
xi = v(N)} and the orthant {x ∈ Rn|x ≥ i(v)} of in-

dividual rational vectors. I(v) is non-empty iff v(N) ≥
n�

i=1
v({i}). If v(N) >

n�
i=1

v({i}), i.e. the game v is N -essential, I(v) is an (n− 1)-dimensional sim-

plex with extreme points f1(v), f2(v), . . . , fn(v), where (f i(v))k = v({k}) if
k �= i, and (f i(v))i = v(N)−

�
k∈N\{i}

v({k}).

The dual imputation set I∗(v) of v is equal to the intersection of the effi-
ciency hyperplane and the orthant {x ∈ Rn|x ≤ u(v)} of subutopic vectors.

I∗(v) is non-empty iff
n�

i=1
v∗{i} ≥ v(N). In case of strict inequality I∗(v) is

an (n− 1)-dimensional simplex with extreme points g1(v), g2(v), . . . , gn(v),
where (gi(v))k = v∗({k}) if k �= i, and (gi(v))i = v(N)−

�
k∈N\{i}

v∗({k}).

The core C(v) of v is a subset of I(v) ∩ I∗(v). The core C(v) is the
bounded solution set of a set of linear inequalities, which means that the
core is a polytope, i.e. the convex hull of a finite set of vectors in Rn.
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The core C(v) is non-empty iff v(N) ≥
�

S∈2N\{φ}
λSv(S) in case λS ≥ 0 for

all S ∈ 2N\{φ}, and
�

S∈2N\{φ}
λSeS = eN . These balancedness conditions

(Bondareva (1963) and Shapley (1967)) have been reformulated by Branzei
and Tijs (2001a) in geometric terms: C(v) is non-empty iff for each way of
writing the barycenter of the imputation set I(v) as a convex combination
of barycenters of subsimplices of I(v), the per capita value of N is at least
as large as the corresponding convex combination of per capita values of the
coalitions S ∈ 2N\{φ}.

The core of a convex game and the core of a big boss game are special
polytopes with a beautiful geometric structure. The paper by Shapley (1971)
basically describes the shape of the core of an convex game. The paper by
Muto et al. (1989) describes the shape of the core of a big boss game.

The core is a useful solution concept and it is extensively studied. How-
ever, as we already noted, not all games possess a non-empty core. Moreover,
in case C(v) �= φ, often the core is large and then the problem to single out a
unique allocation in the core arises. From a geometric viewpoint the “center
of gravity” of the core could be a candidate.

Now we briefly discuss three well-known single-valued (or one-point) so-
lution concepts for cooperative games focusing on their geometric facet.

The Shapley value of v is the average of marginal vectors and each
marginal vector mσ(v), σ ∈ Π(N), corresponds to a walk according to the
ordering σ along the edges of the unit hypercube [0, 1]N starting from the
vertex 0 and ending at the vertex eN . For a convex game the Shapley value
is essentially the center of gravity of the core. However, there are games
with a non-empty core whose Shapley value does not lie in the core.

In this respect, the nucleolus has an advantage over the Shapley value.
The nice properties that the nucleolus possesses and its geometric construc-
tion motivate its choice as a unique outcome in the core. In the paper by
Maschler, Peleg and Shapley (1979) a sequence of geometric constructions
leading to the nucleolus point is given, which is based on “pushing” at equal
speed hyperplanes of the form x(S) = v(S) + k, where k is a constant.

The τ -value of a quasi-balanced game v is the intersection point
between the efficiency hyperplane and the line segment with endpoints the
utopia point u(v) and the maximal remainder point a(v) of v. This corre-
sponds to the situation for quasi-balanced games where the utopia point and
the minimum right vector are at different sides of the efficiency hyperplane.
For a big boss game the τ -value is the center of the core and coincides with
the nucleolus (see Muto et al. (1988)). Two single-valued solution concepts
discussed by Branzei and Tijs (2001b), namely CIS (the center of the impu-
tation set) and ENSR (the equal split of the non-separable rewards solution)
have the property CIS(v) = ENSR(v) = τ(v) for each superadditive simplex
game v and ENSR(v) = τ(v) for each dual simplex game v. Recall that
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CIS : IN → Rn is defined by CIS(v) = 1
n

n�
i=1

f i(v) for each v ∈ IN , and

ENSR : IN
∗ → R∗ is defined by ENSR(v) = 1

n

n�
i=1

gi(v) for each v ∈ IN
∗ . For

the geometry of the τ -value for games on matroids we refer to the paper of
Bilbao et al. (2002).

For additional information on the geometry of solution concepts for n-
person cooperative games the reader is referred to Spinetto (1971, 1974).

For (super)additivity properties of solution concepts for cooperative games
have been sudied on different cones of games; we refer here to Dragan, Pot-
ters and Tijs (1989), Branzei and Tijs (2001b) and Tijs and Branzei (2002).

6 Final remarks

In the foregoing sections we have concentrated on geometric issues in co-
operative game theory. The next few sentences deal with geometry and
non-cooperative game theory. The interesting proof of the minimax theo-
rem of J. von Neumann (1928) by Ville (1938) uses a separation theorem
of two disjoint convex sets. For a finite matrix game the sets of optimal
mixed strategies are polytopes in the simplices of mixed strategies for which
interesting dimension relations exist (cf. Bohnenblust, Karlin and Shapley
(1950) and Gale and Sherman (1950)). The extreme points of these opti-
mal strategy spaces correspond to submatrices (Shapley and Snow (1950)).
Geometric methods to solve 2× n- and m× 2-matrix games are well-known
(see Tijs (2003), chapter 3). For each finite bimatrix game (Nash (1950))
the set of Nash equilibria is a finite union of polytopes (cf. Jansen, Jurg
and Vermeulen (2002)). For m×∞-matrix games (Tijs (1975)) the strategy
spaces of the players are convex sets but not necessarily polytopes. In fact
for each compact convex subset C of the mixed strategy space ∆m of player
1 there exists an m ×∞-matrix such that C is the optimal strategy space
of player 1.
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Comparing selfishness and versions of cooperation
as the voting strategies in a stochastic environment

Pavel Chebotarev∗, Vladimir Borzenko, Zoya Lezina, Anton Loginov, and Jana Tsodikova
Institute of Control Sciences of the Russian Academy of Sciences, 65 Profsoyuznaya Str., Moscow 117997, Russia

Sociologists have been discussing for a long time the matter of whether altruistic behavior is socially advanta-

geous or not. Evidently, a single “altruist” can hardly expect any advantage among “egoists” except moral gain;

most probably he/she will be “swallowed up”. The initial idea of this work was as follows. A certain version

of altruism can be approximated by “group egoism” with respect to a very large group. Suppose that, in some

community, a group consisting of group egoists competes with individual egoists. In case the group wins and it is

possible to freely join it (and leave it as well), the inflow of new members will expand the group (possibly, even

all people will enter it), and as a result, the group-egoistic behavior will become more and more altruistic. This

idea reminds the idea of competition between the capitalist and radical socialist development trends, but some

very important peculiarities distinguish it from the well-known historical implementations.

The present paper investigates the dynamics of communities that consecutively vote for external motions

distributed in accordance with a stochastic law. More specifically, the current state of the system is characterized

by the vector of actors’ welfare. At every stage, the body of voters can preserve status quo or accept a new

external motion. The motion is a vector of algebraic increments (d1, . . . , dn) of actors’ welfare, where n is the

number of voters and (d1, . . . , dn) a sample from a normal distribution N(µ, σ2). Each actor votes for a motion

or against it, being guided by his/her own selfish or cooperative voting principle. A selfish person i votes for a

motion if and only if di > 0. The number of selfish persons (=egoists) is �; n − � = g is the number of group

members. We consider a variety of group voting principles. The simplest ones are as follows:

Principle A1. The group, G, votes for a motion (d1, . . . , dn) if and only if #{i ∈ G | di > 0} > g/2.
Principle B. The group, G, votes for a motion (d1, . . . , dn) if and only if

�
i∈G di > 0.

Thus, all members of G vote similarly. The collective decisions are made by means of threshold majority voting

with some threshold α ∈ [0, 1]: a motion passes if and only if the number of voters that support it exceeds αn.

In this case, then (d1, . . . , dn) is added to the vector of actors’ welfare; otherwise this vector remains the same.

One more natural principle of group voting is as follows:

Principle A2. The group, G, votes for a motion (d1, . . . , dn) if and only if #{i ∈ G | di > 0} > αg.

Let 2β = �/n. The following diverse examples of social dynamics are typical of the corresponding parameters.

In all of them, n = 200, σ = 10, and the group follows the utilitarian principle B.

a. µ = 0, 2β = 0.5, α = 0.5 b. µ = −1, 2β = 0.08, α = 0.07 c. µ = −1, 2β = 0.08, α = 0.04 d. µ = 0.5, 2β = 0.08, α = 0.97

Figure 1: Examples of social dynamics: the average welfare of egoists and group members vs step number.

∗Corresponding author. E-mail addresses: chv@lpi.ru, pchv@rambler.ru
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These figures have been obtained by simulation, as well as the following plots which represent the average

welfare of egoists and group members after 500 steps versus the decision threshold α.

Figure 2: Average welfare in one simulated implementation with n = 450, σ = 10, principle B, and s = 500.

The first author has found the mathematical expectations of actors’ one-step welfare increments: M(�dE) for

egoists and M(�dG) for group members. Their approximations in the matrix notation are as follows:

M(�dA
E ) ≈ [PA

G QA
G]

�
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+

σf√
pq�
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where
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G ≈ F

�
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√
pqg

�
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�
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√
pqg

�
(3)

with α� = g/2 in the case of principle A1 and α� = α in the case of principle A2, [α�g] the integer part of α�g,

PB
G = F

�
µ
√

g

σ

�
, QB

G = 1− PB
G , fB

G = f

�
µ
√
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σ

�
, (4)

Fθ = F

�
p�− 0.5− [θn]√

pq�

�
, fθ = f

�
p�− 0.5− [θn]√

pq�

�
, γ = α− (1− 2β), (5)

p = F
�µ

σ

�
, q = 1− p, f = f

�µ

σ

�
, the superscripts A and B denote the voting principles, (6)

F (·) and f(·) being the cumulative distribution function and the density of the standard normal distribution.

Three examples of the expected welfare dynamics obtained with the above expressions are given in Fig. 3.

a. n = 300, µ = −0.3, 2β = 0.92 b. n = 450, µ = −0.3, 2β = 0.14 c. n = 300, µ = 0.03, 2β = 0.8

Figure 3: Expected welfare after a series of s = 1000 steps with σ = 10 and principles A1, A2 and B.

Owing to the preferable welfare dynamics of the group, the prospects of group expansion through the entry

of egoists are quite natural. As another conclusion, the group is challenged by the tradeoff between maximizing

the absolute values of its welfare and relative advantages over egoists.
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Cooperative models of Joint Implementation �

Anna Gan’kova a, Maria Dementieva a,b,∗,
Pekka Neittaanmäki b, Victor Zakharov a
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Saint-Petersburg, Russia 198504
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In this work we construct multistage cooperative model of the Kyoto Protocol
realization and suggest time-consistent solutions to numerical examples with
three country groups.

Without a doubt, climate change is the first among the global environmental
threats to civilization at the beginning of the XXI Century. The importance of
this problem is demonstrated by the adaptation costs the global community
pays to protect itself from a growing number of natural disasters. The United
Nations Framework Convention on Climate Change was signed at the World
Summit on the Environment and Development in Rio de Janeiro in 1992,
and the Kyoto Protocol to the Convention was adopted in 1997 [20]. The
Kyoto Protocol proposes six innovative “mechanisms:” joint implementation,
clean development, emission trading, joint fulfilment, banking, and sinks. The
mechanisms aim to reduce the costs of curbing emissions by allowing Parties
(Party is a term of Kyoto Protocol and means a country, or group of countries,
that has ratified the Kyoto Protocol) to pursue opportunities to cut emissions
more cheaply abroad than at home. The cost of curbing emissions varies con-
siderably from region as a result of differences in, for example, energy sources,
energy efficiency and waste management. It makes economic sense to cut emis-
sions where it is cheapest to do so, given that the impact on the atmosphere
is the same.

� This work was partly supported by RFBR, program University of Russia, and
COMAS graduate school
∗ Corresponding author

Email addresses: anforyou@yandex.ru (Anna Gan’kova), madement@cc.jyu.fi
(Maria Dementieva), pn@mit.jyu.fi (Pekka Neittaanmäki),
mcvictor@icape.nw.ru (Victor Zakharov).
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The Kyoto protocol defines six flexibility mechanisms and three of them have
the following sense: “joint implementation” provides for Annex B Parties
(mostly highly developed industry countries) to implement projects that re-
duce emission, or remove carbon from the air, in other Annex B Parties, in re-
turn for emission reduction units (ERUs); the “clean development” mechanism
provides for Annex B Parties to implement projects that reduce emissions in
non-Annex B Parties, in return for certified emission reductions (CERs), and
assist the host Parties in achieving sustainable development and contributing
to the ultimate objective of the Convention; “emission trading” provides for
Annex B Parties to acquire units from other Annex B Parties. The emission
reduction units and certified emission reductions generated by the flexibil-
ity mechanisms can be used by Annex B Parties to help meet their emission
targets.

That flexibility mechanisms are the base of the co-operation behavior because
joint implementation, clean development, and emission trading comprehend
that Parties work together and receive common “benefit” (emission reduction
and economy of total cost). which should be allocated fairly. Joint implementa-
tion projects demand to develop distribution principles to allocate the benefit.
Cooperative games with transferable utility (TU-games) are the mathematical
models of such conflicts. Cooperative theory takes into account only income
of cooperation but does not consider various coalitional attitudes towards ex-
tra payoffs due to common actions. In the problem of extra payoff allocation
analyst should pay attention to desires and ambitions of individual players
and coalitions to propose realizability of a solution. Cooperative game theory
treats many optimality concepts (core, Shapley value, nucleolus, etc.) It is pos-
sible to choose an appropriate solution by a number of axioms [12]. We offer a
tool to compare different solutions via their attraction for every coalition. The
main idea of the proposed method is based on multicriteria methodology and
the ASPID technique [10]. Vector Shapley and nucleolus are compared under
different available information about excess preferences.

It is natural to use the dynamic cooperative theory to model the Kyoto Pro-
tocol realization [8]. An important problem in a dynamic cooperative theory
is the time-consistency of a solution [13]. As in the theory of non zero-sum
differential games [1,3,9], the use of optimality principles from the static the-
ory in dynamic TU-games leads to contradictions arising from loss of time-
consistency. Time-consistency of the optimality principle means that any seg-
ment of an optimal trajectory determines the optimal motion with respect to
relevant initial states of the process. This property holds for the overwhelming
majority of classical optimal control problems and follows from the Bellman
optimality principle [2].

The absence of time-consistency in the optimality principle involves the pos-
sibility that the previous “optimal” decision are abandoned at some current
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moment of time, thereby making meaningless the problem of seeking an op-
timal control as such. This is why particular emphasis is placed on the con-
struction of time-consistent optimality principles. This problem has attracted
much attention [4,5,11,14–19].

The problem of time-consistency of a solution in a differential TU-cooperative
game was investigated for the first time in [13]. It is directly relevant to reg-
ularization methods of cooperative games [13,21,22]. We suggest constructing
time-consistent optimality principles for multistage cooperative games on the
basis of “regularization” of optimality principles from the differential cooper-
ative game theory. The idea of regularization is based on constructing delays
of the payoffs to the players along optimal trajectory of the game.

We study time-consistency of the subcore selectors and propose two imputa-
tion distribution procedures that provide non-negative payoffs at every mo-
ment of the game. Both algorithms are based on delays of total payoff at
a current moment of the game to avoid debtors at the following steps. We
formulate necessary and sufficient conditions for the time-consistency of an
imputation from the subcore in a multistage cooperative game. The results of
this part were partially presented in [23,24].

Then we formulate a new problem of minimal reduction, and apply it to the
regularization of dynamic TU-games. We apply a reduced game due to Davis
and Maschler [6] and a modified Davis-Maschler reduced game to get the
appropriate IDPs. This approach we can use even in the case of no time-
consistent imputation in the core of a balanced game [7] .
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[7] M. Dementieva, P. Neittaanmäki, V. Zakharov (2003). Minimal reduction

and time-consistency. Report of the Department of Mathematical Information
Technology, Series B: Scientific Computing, University of Jyväskylä, B 11 (to
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Repeated games with lack of information on one
side and multistage auctions

Domansky Victor (Saint-Petersburg)

Models of multistage counter-auctions with asymmetric information, as

introduced by De Meyer and Saley (2002), are considered. At such auctions

two stockbrokers carry on repeated bidding with risky assets (shares). Before

the bidding chance move determines the final value of one share once for all.

This value is 1 with probability p and 0 with probability 1− p. Player 1 is

informed on the final value, Player 2 is not. Both players know p. At each

subsequent step t = 1, 2, ..., n both players propose simultaneously their

prices. The maximal bid wins and one share is transacted at this price.

Each player aims to maximize the value of his final portfolio (money plus

shares).

At each step both players are supposed to remind all previous bids in-

cluding these of their opponent. This allows uninformed player to draw

conclusions on the proper final value of risky asset from the opponent’s ac-

tions. The informed player should take it into account and try to reveal as

few as possible information.

In game theory this kind of problems is modelled with repeated games

with lack of information at one side (Aumann, Maschler (1995)). In such

games players have to play a matrix game n times. Payoffs depend on the

state of nature s, chosen at the beginning of the game from the finite set S by

a chance move. Player 1 is informed on the result of the chance move while

Player 2 knows only its prior probability distribution. During the game both

players learn the opponent’s choice of actions and make statistical inference

based on these observations. At the end of the game Player 2 pays to Player

1 the average of intermediate payoffs. Such game may be regarded as a

stochastic game with a set of probability distributions over S as a state

space.

At each stage of the game Player 2 should reestimate his prior informa-

tion on the base of Player 1’s actions. Player 1 should take into account

the opportunity of such reestimation and try to reveal as less as possible

information to the opponent.

De Meyer and Saley constructed a class of zero-sum repeated games

Gn(p) with lack of information at one side modelling multistage counter-

auctions. The sets of strategies (the sets of bids) are intervals [0,1]. Two

payoffs are defined over the unit square according to two possible outcomes
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of chance move. One step gain of player buying the asset (and the opponent’s

loss) is equal to the difference between the final value of asset and his bid.

Before the start of the game chance move determines the payoff function

with probabilities p and 1 − p. Players play this game n times. Player 1 is

informed on the outcome of chance move. Both players know p. After each

step players learn opponent’s move. At the end of the game player 2 pays

player 1 the sum of one step gains.

They obtain solutions for these n-step games and their asymptotics. The

values Vn(p) of n-step games infinitely grow up as
√

n. Vn(p)/
√

n converges

to a limit expressed through normal distribution. Thus the asymptotics of

values for these games turns to be similar to the asymptotics of values for

the games studied in the works Mertens, Zamir (1995), while the structure

of games essentially differs.

It seems more realistic to assume that players may assign only thresh-

old auction bids. We consider games Gm
n (p) modelling auctions with the

admissible bids being multiples of 1/m.

The game Gm
n (p) is an ”eventually revealing” game. It means that in

the long run the information advantage of Player 1 annihilates and the loss

of Player 2 becomes equal to his loss in the case if he knows the state of

nature a priori.

The asymptotics of values for these games essentially differs from such

asymptotics for the games studied by De Meyer and Saley. We show that

as the number of steps n infinitely increase the values of the games Gm
n (p)

converge to a piecewize-linear function of p. For p ∈ [k/m, (k + 1)/m], k =

0, . . . ,m− 1

lim
n→∞

valGm
n (p) = p(m− 2k − 1)/2 + k(k + 1)/2m.

For p from this interval the optimal first move of player 2 converges to the

bid k/m.

Thus, in the game with m admissible bids player 2 in the long run learns

almost for sure the final value of risky asset. On the other hand, optimal

behavior of player 1 requires permanent randomization. To determine his

bids he employs lotteries depending on his private information. Therefore,

in this model it is just the randomized behavior of player 1 that generates

stochastic fluctuations of stock prices.
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War and Peace in Veto Voting ∗

Vladimir Gurvich †

Abstract

Let I = {i1, . . . , in} be a set of voters (players) and A = {a1, . . . , ap}
be a set of candidates (outcomes). Each voter i ∈ I has a preference
Pi over the candidates. We assume that Pi is a complete order on A.
The preference profile P = {Pi, i ∈ I} is called a situation. A situation
is called war if the set of all voters I is partitioned in two coalitions K1

and K2 such that all voters of Ki have the same preference, i = 1, 2,
and these two preferences are opposite. For a simple class of veto vot-
ing schemes we prove that the results of elections in all war situations
uniquely define the results for all other (peace) situations.
Key words: veto, voting scheme, voting by veto, veto power, veto re-
sistance, voter, candidate, player, outcome, coalition, block, effectivity
function, veto function, social choice function, social choice correspon-
dence

1 Main Theorem

We follow standard concepts and notation of veto voting theory; see e.g.
[1, 2]. Let I = {i1, . . . , in} be a set of voters (players) and A = {a1, . . . , ap}
be a set of candidates (outcomes). Each voter i ∈ I has a preference (a
complete order) Pi over all candidates. The set of all preferences P =
{Pi, i ∈ I} is called a preference profile or a situation. A situation is called
war if the set of voters I is partitioned in two coalitions K1 and K2 such that
all voters of Ki have the same preference, i = 1, 2, and these two preferences
are opposite.

Further, each voter i ∈ I has µi veto cards and each candidate a ∈ A
has λa counter-veto cards. Positive integers µi and λa are called the veto

power of i ∈ I and veto resistance of a ∈ A, respectively. The corresponding
integral-valued functions. µ : I → ZZ+ and λ : I → ZZ+ are called veto
power and veto resistance distributions.
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and by DIMACS, the NSF Center for Discrete Mathematics and Theoretical Computer

Science
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Let us define the veto order σµ as a word in the alphabet I = {i1, . . . , in}
in which every letter i ∈ I appears exactly µi times and hence each word
σµ has the same length

�
i∈I µi. The triplet (λ, µ, σµ) is called veto voting

scheme (VVS). It is realized as follows. In the given order σµ the voters put
their veto cards against the candidates until all veto cards are finished. The
voters have perfect information. It is forbidden to over-veto, that is as soon
as a candidate a has got λa veto cards he is eliminated and no more veto
cards can be used against him. All non-eliminated candidates are elected.
Obviously, this set will be empty unless total veto power is strictly less than
total veto resistance, that is

�

i∈I

µi <
�

a∈A

λa (1.1)

If we assume further that
�

a∈A

λa −
�

i∈I

µi = 1. (1.2)

then exactly one candidate is elected in each situation. However, unlike
(1.1), this assumption is not mandatory.

The voters may behave in many different, sometimes rather sophisti-
cated, ways, see [1, 2]. In this paper we consider only the simplest concept
of their so-called sincere behavior. This means that each voter i ∈ I al-
ways put each veto card against the worst (with respect to the preference
Pi) not yet eliminated candidate. Hence, given a VVS (λ, µ, σµ), a set of
elected candidates B = B(P ) ⊆ A is uniquely defined for every situation
P = {Pi, i ∈ I}.

In general, a mapping S : P → 2A which assigns a set of candidates to
every preference profile is called a social choice correspondence (SCC), and
it is called a social choice function (SCF) if only one candidate is elected,
that is |S(P )| = 1 for each situation P . Thus, every veto voting scheme
(λ, µ, σµ) defines a SCC Sλ,µ,σµ which is an SCF whenever (1.2) holds. The
SCC or SCF generated by a veto voting scheme are called veto SCC and

SCF, respectively.
A veto order σµ is called simple if the voters do not alternate, or more

precisely, if there exists a permutation τ of I such that first the voter τ−1(i1)
put all veto cards, followed by τ−1(i2), etc. Obviously, a simple veto order σµ

is uniquely determined by µ and τ . The corresponding veto voting scheme
and SCC we will call simple and denote by (λ, µ, τ) and Sλ,µ,τ , respectively.

In this paper we prove that each simple veto SCC is uniquely defined
by the values it takes in the war situations. More precisely, the following
statement holds.
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Theorem 1 Given two simple veto voting schemes V V S� = (λ�, µ�, τ) and

V V S�� = (λ��, µ��, τ) which generate social choice correspondences S� = Sλ�,µ�,τ (P )
and S�� = Sλ��,µ��,τ (P ), respectively, if S�(P ) = S��(P ) for each war situation

P then S�(P ) = S��(P ) for all P .

Note, however, that Theorem 1 can not be promoted to the rank of
a ”general law of diplomacy”. For example, it is not general enough just
because it only holds when the two involved veto orders coincide, moreover,
it must be a simple order; see Example 1 below.

Further, let us remark that in a war situation the veto order (simple or
not) does not matter at all. In this case all candidates are uniquely ordered
and all voters are split in two coalitions which veto candidates ”from two
opposite ends of this order”. Some ”moderate centrist” candidates will be
elected and the set of these candidates does not depend on the order in
which the voters act. More accurately these arguments are summarized as
follows.

Lemma 1 Given distributions λ, µ and two veto orders σ�µ,σ��µ, the equality

Sλ,µ,σ�
µ
(P ) = Sλ,µ,σ��

µ
(P ) holds for each war situation P .

Yet, for other (peace) situations the result can depend on the veto order.

Example 1 Let us consider two voters of veto power 3 and 1 and three

candidates of veto resistance 1,2, and 2, that is I = {i1, i2}, A = {a1, a2, a3},
µ1 = 3, µ2 = 1, λ1 = 1,λ2 = λ3 = 2. Note that (1.2) holds and hence this

voting scheme generates an SCF. Let the preferences be a1 > a2 > a3 and

a2 > a1 > a3 for i1 and i2 respectively. This profile defines a peace situation

P .

First, let us consider two simple veto orders. If i1 votes first then i1
eliminates a3 and puts one remaining veto card against a2. Still a2 is not

eliminated, yet. Moreover, a2 will be elected, since i2 vetoes a1. If i2 votes

first i2 puts the veto card against a3. This allows i1 to eliminate both a3 and

a2. Hence. in this case a1 is elected.

Now let us consider two veto orders i1, i1, i2, i1 and i1, i2, i1, i1. These

orders are not simple and they have similar pattern: first i1, then i2, and

then i1 again. Yet, these two orders result in electing different candidates.

In the first case i1 eliminates a3, then i2 eliminates a1, and a2 is elected. In

the second case i1 puts just one veto card against a3, then i2 eliminates a3,

and now i1 can eliminate a2 by the two remaining veto cards, hence, a1 is

elected.

Finally, let us remark that, according to Lemma 1, all four veto orders

considered above would give the same result in each war situation.

163



2 An equivalent statement

The theorem can be equivalently reformulated in a less emotional way.
The veto function is defined as a mapping V : 2I × 2A → {0, 1}, that is

V has two arguments: a coalition of voters K ⊆ I and a block of candidates
B ⊆ A. The equalities V (K, B) = 1 and V (K, B) = 0 mean that K can,
and respectively can not, veto B. The complementary function E(K, B) =
V (K, A \ B) is called effectivity function; see [1, 2].

Each pair of distributions µ : I → ZZ+ and λ : I → ZZ+, generates a
veto function V = Vµ,λ

V (K, B) = 1 iff
�

i∈K

µi ≥
�

a∈B

λa. (2.3)

In other words, K can veto B if the voters from K has sufficiently many veto-
cards to eliminate all candidates from B. In these terms we can reformulate
Theorem 1 as follows.

Theorem 2 Let V V S� = (λ�, µ�, τ) and V V S�� = (λ��, µ��, τ) be two sim-

ple veto voting schemes such that they have the same simple veto order τ
and their veto functions V � = Vµ�,λ� and V �� = Vµ��,λ�� are equal, that is

V �(K, B) = V ��(K, B) for all K ⊆ I, B ⊆ A. Then the SCCs S � = Sµ�,λ�,τ

and S�� = Sµ��,λ��,τ are equal, too, that is S�(P ) = S��(P ) for every situation

P .

To prove that Theorems 1 and 2 are equivalent we only need to show
that Theorem 2 becomes trivial if we restrict ourselves by the war situations
only. In other words, given a veto function, the results of elections in all
war situations are uniquely defined, and vice versa. Due to Lemma 1, this
is true for all (not only simple) veto orders.

Lemma 2 Given two veto voting schemes V V S� = (λ�, µ�,σ�µ�) and V V S�� =
(λ��, µ��,σ��µ��) which generate veto functions V � = Vλ�,µ�,σ�

µ�
, V �� = Vλ��,µ��,σ��

µ��

and SCCs S� = Sλ�,µ�,σ�
µ�

, S�� = Sλ��,µ��,σ��
µ��

, the following claims are equiva-

lent:

(i) V � = V ��
, that is V �(K, B) = V ��(K, B) for all K ⊆ I, B ⊆ A,

(ii) S�(P ) = S��(P ) for every war situation P .

Proof . Suppose that V � �= V ��, say 1 = V �(K, B) �= V ��(K, B) = 0 for some
K ⊆ I, B ⊆ A, that is in V V S� coalition K can veto block B but in V V S��

it can not. Consider a complete order P0 over A such that each candidate
from B precedes each candidate from A \ B. Let a0 be the last candidate
from B in this order. Define a war situation P as follows. All voters from
K prefer candidates according to P0, (that is for them A \ B is better than
B) and all voters from I \ K have the opposite preference. Then obviously,
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a0 �∈ S�(P ), since V �(K, B) = 1 and in V V S� coalition K can veto the whole
block B including a0. Yet a0 ∈ S��(P ) since V ��(K, B) = 0, that is in V V S��

coalition K has not enough veto power to eliminate B and hence a0 will
remain unvetoed. Thus S�(P ) �= S��(P ).

Vice versa, suppose that S�(P ) �= S��(P ) for a war situation P defined
by a complete order P0 over A and a partition K, I \ K. Without loss of
generality, we can assume that a0 ∈ S��(P ) \ S�(P ), that is a0 �∈ S�(P ) and
a0 ∈ S��(P ). Let B consists of a0 and all candidates preceding a0 in order
P0. Then obviously, V �(K, B) = 1, otherwise a0 would be elected in V V S�,
and V ��(K, B) = 0, otherwise a0 would be vetoed in V V S��.

Let us underline again that all above arguments are based on Lemma 1.
✷

3 Proof of Theorems 2

Now without loss of generality we can assume that permutation τ is identical,
that is i1 distributes all veto cards first, followed by i2, etc. In this case the
argument τ becomes irrelevant and we will omit it in all formulas.

Given a voting scheme (λ, µ), let us fix a voter i ∈ I and a candidate
a ∈ A. We say that i kills a if a is eliminated and the last veto card against
him is put by i. We say that i wounds a if i puts at least one veto card
against a but does not eliminate a, that is either a is elected or eliminated
(killed) later by some other voter. Finally, we say that i ignores a if i puts
no veto card against a.

Lemma 3 A voter can ignore and/or kill several candidates but wound at

most one.

Proof . Indeed, if i wounds a then i can not switch to another candidate
a� before a is killed. This follows from our two basic assumptions: (i) the
veto order is simple and (ii) the voting is sincere. Let us remark that both
assumptions are important. ✷

Given a veto voting scheme (λ, µ), we will divide the voting procedure in
|I| = n steps. The m-th one begins after m− 1 voters are finished. In other
words, we will consider voting schemes V V Sm = (λ, µ, m) with a truncated
set of voters Im = {i1, . . . , im}, where m = 1, . . . , n.

Given m and a candidate a ∈ A, let sm(a) be the sequence of those
voters from Im who put at least one veto card against a. The length of
this sequence is a non-decreasing function of m. We will also add a special
symbol 0 at the end of sm(a) if after m steps a is eliminated. This symbol
0 will remain the last one, since it is not allowed to over-veto.

Now let us compare two veto voting schemes V V S� = (λ�, µ�, τ) = (λ�, µ�)
and V V S�� = (λ��, µ��, τ) = (λ��, µ��). Theorem 2 claims that if two veto
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functions are equal V �(K, B) = V ��(K, B) for all K ⊆ I and B ⊆ A then
the result of elections is always the same, that is S�(P ) = S��(P ) for every
situation P .

We would like to prove (by induction on m) a stronger claim: s�m(a) =
s��m(a) for each m and a ∈ A. Unfortunately, this is not true. Yet, it
becomes true if we slightly modify the voting procedure. Let us introduce
one additional rule: the last veto card of a voter must wound, not kill. We
will refer to this rule as the DNK-rule. Suppose that a voter i ∈ I runs out
of the veto cards exactly after killing a candidate a� ∈ A. In this case we will
give one extra veto card to i and one extra anti-veto card to the candidate
a who follows a� in the order Pi. Anyway, these two cards will immediately
annihilate each other since i will put the extra card against a by the next
(and the last) move. Hence, this modification preserves the SCC S(P ) in
every situation P . Though the veto function V (K, B) changes, we will see
that this does not create a problem.

We will prove by induction on m that s�m(a) = s��m(a) for all a ∈ A. Let
m = 1 and suppose that s�1(a) �= s��1(a). There are two possibilities.

Case 1. The candidate a is eliminated in one voting scheme, say V V S�,
but not in the other, that is µ�(i1) ≥ λ�(B) =

�
b∈B λ�(b), µ��(i1) <

λ��(B) =
�

b∈B λ��(b), where block B consists of a and all candidates worse
than a with respect to Pi1 . In other words, i1 has enough veto power to
eliminate B in V V S� but not in V V S��. Indeed, in this case s�1(a) �= s��1(a),
more precisely, s�1(a) = (s��1(a), 0). Then it is clear that veto functions V �

and V �� are not equal either, because 1 = V �({i1}, B) �= V ��({i1}, B) = 0,
and we get a contradiction.

Case 2. In V V S� and V V S�� voter i1 eliminates the same set of can-
didates. Yet, in V V S� i1 runs out of the veto cards exactly after killing a
candidate, while in V V S�� i1 still have some extra veto cards to wound a
new candidate a but not enough for killing a. Though in this case s�1(a) and
s��1(a) differ, yet, we must apply the DNK-rule and they become equal.

Analogous (just a little more sophisticated) arguments work for the gen-
eral inductive step from m − 1 to m. We assume that s�m−1(a) = s��m−1(a)
for all a ∈ A and will prove indirectly that s�m(a) = s��m(a) for all a ∈ A.
Assume that s�m(a) �= s��m(a) for some a ∈ A and consider again the same
two cases. In case 2 our arguments do not change, except we substitute im
for i1.

Case 2. In V V S� and V V S�� voter im eliminates the same set of can-
didates. Yet, in V V S� im runs out of the veto cards exactly after killing a
candidate a�, while in V V S�� im still have some extra veto cards to wound
a new candidate a, though not enough to kill a. In this case s�m(a) �= s��m(a)
but we apply the DNK-rule and they become equal.

Case 1. Candidate a is killed by im in one voting scheme, say in V V S��,
but not in the other. Perhaps, in V V S� voter im did not even wound a.
Yet obviously, there is a candidate a0 wounded but not killed by im. By

166



induction hypothesis, in V V S�� the voter im kills a0 before a. In this case
s�1(a0) �= s��1(a0) (more precisely, (s�m(a0), 0) = s��m(a0)) and we will prove that
V � �= V ��. Consider V V S�, set B1 = {a0}, and denote by K1 the coalition of
all voters who wound a0. In particular, im ∈ K1. By Lemma 3, the voters
of K1 wound no other candidate but perhaps they kill some other. Denote
by B2 the set of all candidates killed by K1 (if any) and by K2 the set of all
voters who wound a candidate from B2. By construction, K1 ∩K2 = ∅ and
B1 ∩ B2 = ∅. By Lemma 3, the voters of K2 wound no other candidates,
except the candidates from B2, but perhaps they kill some other. Denote
by B3 the set of all candidates killed by K2 (if any) and by K3 the set of
all voters who wound a candidate from B3, etc. Obviously, this process will
finish and we get a family of coalitions K1, . . . ,Kp and blocks B1, . . . , Bq

such that
(i) p = q or p = q + 1;
(ii) the obtained coalitions and blocks are pairwise disjoint;
(iii) the voters from Kj wound only candidates from Bj and kill only

candidates from Bj+1, and vice versa, the candidates from Bj are wounded
only by the voters from Kj and are killed only by the candidates from Kj−1.

Let K = ∪p
j=1Kj and B = ∪q

j=1Bj . By (iii), K put all veto cards
only against B and vice versa, each veto card put against B belongs to
K. Yet, K can not eliminate B in V V S�, hence V �(K, B) = 0. Now let us
consider V V S�� and the same pair (K, B). By induction hypothesis, (iii)
“almost holds” again, except the voter im after eliminating a0 can (and
must, according to the DNK-rule) spend the remaining veto cards out of B.
Hence, V ��(K, B) = 1, since in V V S��, unlike V V S�, a0 is killed by im. Thus
1 = V ��(K, B) �= V �(K, B) = 0.

Finally, we have to recall that in m steps the original distributions
λ�, µ�,λ��, µ�� can change. Yet, S�(P ) and S��(P ) can not. Let us show that
V �(K, B) and V ��(K, B) (for the considered pair (K, B)) can not change ei-
ther. Indeed, in both V V S� and V V S��, the voters from K\{im} put all veto
cards only against B and the candidates from B receive all veto cards only
from the voters of K. Hence, the numbers of extra cards given to K and
to B are equal. Thus the modified veto functions take in (K, B) the same
values as the original ones. In particular, 1 = V ��(K, B) �= V �(K, B) = 0
and we get a contradiction.

Acknowledgments. The author is thankful to E.Boros and L.Khachiyan
for helpful comments.
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Abstract

We show that the Owen value for TU games with coalition structure
can be characterized without additivity axiom similarly as it was done
by Young for the Shapley value for general TU games. Our axiom-
atization via four axioms of efficiency, marginality, symmetry across
coalitions, and symmetry within coalitions is obtained from the origi-
nal Owen’s one by replacement of the additivity and null-player axioms
via marginality. We show that the alike axiomatization for the gener-
alization of the Owen value suggested by Winter for games with level
structure is valid as well.

Keywords: cooperative TU game, coalitional structure, Owen
value, axiomatic characterization, marginality.
Mathematics Subject Classification 2000: 91A12

1 Introduction

We consider the Owen value for TU games with coalition structure that can
be regarded as an expansion of the Shapley value for the situation when
a coalition structure is involved. The Owen value was introduced in [2]
via a set of axioms it determining. These axioms were vastly inspired by
original Shapley’s axiomatization that in turn exploits the additivity axiom.
However, the additivity axiom that being a very beautiful mathematical
statement does not express any fairness property. Another axiomatization
of the Shapley value proposed by Young [5] via marginality, efficiency, and
symmetry appears to be more attractive since all the axioms present dif-
ferent reasonable properties of fair division. The goal of this paper is to
evolve the Young’s approach to the case of the Owen value for games with
coalition structure. We provide a new axiomatization for the Owen value
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without additivity axiom that is obtained from the original Owen’s one by
the replacement of additivity and null-player via marginality. We show that
the similar axiomatization can be also obtained for the generalization of the
Owen value suggested by Winter in [4] for games with level structure.

Sect. 2 introduces basic definitions and notation. In Sect. 3, we present
an axiomatization for the Owen value for games with coalition structure and
for the Winter’s generalization for games with level structure on the basis
of marginality axiom.

2 Definitions and notation

First recall some definitions and notation. A cooperative game with trans-

ferable utility (TU game) is a pair �N, v�, where N = {1, . . . , n} is a finite
set of n ≥ 2 players and v : 2N → R is a characteristic function, defined on
the power set of N , satisfying v(∅) = 0. A subset S ⊆ N (or S ∈ 2N ) of
s players is called a coalition, and the associated real number v(S) presents
the worth of the coalition S. For simplicity of notation and if no ambiguity
appears, we write v instead of �N, v� when refer to a game, and also omit the
braces when writing one-player coalitions such as {i}. The set of all games
with a fixed player set N we denote GN . For any set of games G ⊆ GN , a
value on G is a mapping ψ : G → Rn that associates with each game v ∈ G a
vector ψ(v) ∈ Rn, where the real number ψi(v) represents the payoff to the
player i in the game v.

We consider games with coalition structure. A coalition structure
B = {B1, ..., Bm} on a player set N is a partition of the player set N ,
i.e., B1 ∪ ...∪Bm = N and Bi ∩Bj = ∅ for i �= j. Denote by BN a set of all
coalition structures on N . In this context a value is an operator that assigns
a vector of payoffs to any pair (v,B) of a game and a coalitional structure
on N . More precisely, for any set of games G ⊆ GN and any set of coalition
structures B ⊆ BN , a coalitional value on G with a coalition structure from

B is a mapping ξ : G × B → Rn that associates with each pair �v,B� of a
game v ∈ G and a coalition structure B ∈ B a vector ξ(v,B) ∈ Rn, where
the real number ξi(v,B) represents the payoff to the player i in the game v

with the coalition structure B.
We say players i, j ∈ N are symmetric with respect to the game v ∈ G

if they make the same marginal contribution to any coalition, i.e., for any
S ⊆ N\{i, j}, v(S ∪ i) = v(S ∪ j). A player i is a null-player in the
game v ∈ G if he adds nothing to any coalition non-containing him, i.e.,
v(S ∪ i) = v(S), for every S ⊆ N\i.

In what follows we denote the cardinality of any set A by |A|.
A coalitional value ξ is efficient if, for all v ∈ G and all B ∈ B,

�

i∈N

ξi(v,B) = v(N).
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A coalitional value ξ is marginalist if, for all v ∈ G and all B ∈ B,
for every i ∈ N , ξi(v,B) depends only upon the ith marginal utility vector
{v(S ∪ i)− v(S)}S⊆N\i, i.e.,

ξi(v,B) = φi({v(S ∪ i)− v(S)}S⊆N\i),

where φi : R2n−1 → R1.
A coalitional value ξ possesses the null-player property if, for all v ∈ G

and all B ∈ B, every null-player i in game v gets nothing, i.e., ξi(v,B) = 0.
A coalitional value ξ is additive if, for any two v, w ∈ G and all B ∈ B,

ξi(v + w,B) = ξi(v,B) + ξi(w,B),

where (v + w)(S) = v(S) + w(S), for all S ⊆ N .
We consider two symmetry axioms. First note that for a given game

v ∈ G and coalition structure B = {B1, ..., Bm} ∈ B, we can define a
game between coalitions or in other terms a quotient game �M,vB� with
M = {1, . . . ,m} in which each coalition Bi acts as a player. We define the
quotient game vB as:

v
B(Q) = v(

�

i∈Q

Bi), for all Q ⊆ M.

A coalitional value ξ is symmetric across coalitions if, for all v ∈ G and all
B ∈ B, for any two symmetric in vB players i, j ∈ M , the total payoffs for
coalitions Bi, Bj are equal, i.e.,

�

k∈Bi

ξk(v,B) =
�

k∈Bj

ξk(v,B).

A coalitional value ξ is symmetric within coalitions if, for all v ∈ G and all
B ∈ B, any two players who are symmetric in v and belong to the same
coalition in B get the same payoffs, i.e., for any i, j ∈ Bk ∈ B that are
symmetric in v,

ξi(v,B) = ξj(v,B).
The Owen value was introduced in Owen [2] as the unique efficient, addi-
tive, symmetric across coalitions, and symmetric within coalitions coalitional
value that possesses the null-player property.1 In the sequel the Owen value
in a game v with a coalition structure B we denote Ow(v,B). For any v ∈ GN

and any B ∈ BN , for all i ∈ N , Owi(v,B) can be given by the following
formula

Owi(v,B) =
�

Q⊆M
Q ��k

�

S⊆Bk
S ��i

q! (m− q − 1)! s! (bk − s− 1)!
m! bk!

· (1)

(v(
�

j∈Q

Bj ∪ S ∪ i)− v(
�

j∈Q

Bj ∪ S)),

1
We present above the original Owen’s axioms in the formulation of Winter [4].
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where k is such that i ∈ Bk ∈ B.

3 Axiomatization of the Owen

value via marginality

We prove below that the Owen value defined on entire set of games GN

with any possible coalition structure from BN can be characterized by four
axioms of efficiency, marginality, symmetry across coalitions, and symmetry
within coalitions. Our proof strategy by induction is similar to that in Young
[5].

Theorem 1 The only efficient, marginalist, symmetric across coalitions,

and symmetric within coalitions coalitional value defined on GN ×BN is the

Owen value.

Remark 2 Notice that similar as in Young for the Shapley value every
efficient, marginalist, symmetric across coalitions, and symmetric within
coalitions coalitional value defined on GN × BN possesses the null-player
property.

Remark 3 It is reasonable to note that for some subclasses of games G ⊂
GN , for example for the subclass Gsa

N of superadditive games or for the sub-
class Gc

N of constant-sum games, if it is desired to stay entirely within one
of these subclasses and not in the entire set of games GN , the same axiom-
atization for the Owen value via efficiency, marginality, symmetry across
coalitions, and symmetry within coalitions is still valid. It can be proved
similarly to the case of the Shapley value (see [5], [1]) adapting the ideas
applied in the proof of Theorem 1.

Winter [4] introduced a generalization of the Owen value for games with
level structure. A level structure is a finite sequence of partitions L =
(B1, ...,Bp) such that every Bi is a refinement of Bi+1. Denote by LN the set
of all level structures on N . In this context, for any set of games G ⊆ GN

and any set of level structures L ⊆ LN , a level structure value on G with a

level structure from L is an operator defined on G×L that assigns a vector of
payoffs to any pair (v,L) of a game v ∈ G and a level structure L ∈ L. It is
not difficult to see that the Winter’s extension of the Owen value for games
with level structure admits the similar axiomatization with the replacement
of two above mentioned symmetry axioms by the following two captured
from [4].

A level structure value ξ is coalitionally symmetric if, for all v ∈ G and
any level structure L = (B1, ...,Bp), for each level 1 ≤ k ≤ p for any two
symmetric in vBk players i, j ∈ Mk such that Bi, Bj ∈ Bk are subsets of the
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same component in Bt for all t > k, the total payoffs for coalitions Bi, Bj

are equal, i.e., �

r∈Bi

ξr(v,L) =
�

r∈Bj

ξr(v,L).

A level structure value ξ is symmetric within coalitions if, for all v ∈ G
and any level structure L = (B1, ...,Bp), any two players i, j who are
symmetric in v and for every level 1 ≤ k ≤ p simultaneously belong or
not to the same non-singleton coalition in Bk, get the same payoffs, i.e.,
ξi(v,L) = ξj(v,L).

Theorem 4 The only efficient, marginalist, coalitionally symmetric, and

symmetric within coalitions level structure value defined on GN × LN is the

Winter value for games with level structure.
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Pareto choice functions and elimination of
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Abstract

Regarded demand functions as a special case of choice functions, Uzawa
and Arrow referred analysis of rational demand behavior to an abstract
framework of studying rational choice functions. The foundation for the
rationalizability results in tradition choice theory is formed by properties
of the Weak Axiom of Revealed Preference for a binary choice and Path
Independence for a general choice. Plott considered the concept of “path
independence“ of a choice function C (i.e. for all A, B ⊂ P, C(A ∪ B) =
C(C(A) ∪C(B))) as a means of weakening the condition of rationality in a
manner which preserves one of the key properties of rational choice, namely
that choice over any subset should be independent of the way the alternatives
were initially divided up to consideration.

The aim of the talk is to apply theory of choice functions to analyze
rationality of strategic behavior in noncooperative game theory. The idea is
as follows. Let U be a set of n-persons games in the normal form. Given a
game G = (S1, . . . , Sn;u1, . . . , un), Si denotes the set of strategies of the i-th
agent and ui : ×i∈NSi → R denotes its payoff function, a solution concept
Sol(G) = (Sol(G)i ⊂ Si, i ∈ N) is a tuple of strategies of each players which
are used in the solution.

Given a solution concept Sol, define a choice function for each player,
say the first, of the form

CSol(A) := Sol(G|A)1 ⊂ A,

where we denote by G|A := (A,S2, . . . , Sn;u1, . . . , un) a sub-game of G under
shrinking the strategy set of the first player from S1 to A. So that, we call
the strategic behavior of the first player rational under the solution concept
Sol if the corresponding choice function is rational.
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We demonstrate that a solution concept of the form elimination of purely
dominated strategies lead to rational choice function being ordinally ratio-
nalizable and, moreover, any ordinally rationalizable choice function is of
such a form. Elimination of weakly dominated strategies as the solution
concept leads to path independent choice functions, and Plott choice func-
tion might be implemented of this form. The Nash equilibrium as a solution
concept does not reveal a rationale strategic behavior in the framework of
our approach.
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Generalized kernels and bargaining sets for coalition
systems.

Natalia Naumova
St.Petersburg State University, Russia

We consider a generalization of the theory of bargaining sets for coop-
erative TU–games (see [1], [4], [8]). Objections and counter-objections are
permited only between elements of a fixed collection A of subsets of the
player set. For A, we define a generalization of the kernel KA, contained
in the corresponding bargaining set Mi

A. We give sufficient condition on A
for existence of KA. This condition is also necessary for existence of KA for
all games but is not necessary for existence of the corresponding bargaining
set. For a set of coalitions A we also define a generalization of the nucleolus
NA but we have an example when it does not belong to nonempty KA.

Let (N, v) be a cooperative TU-game, K, L ⊂ N , x be an imputation
for (N, v). A vector-objection of K against L in x is a vector yC = {yi}i∈C

such that K ⊂ C ⊂ N , L ∩ C = ∅,
�

i∈C yi = v(C), yi > xi for all i ∈ K,
and yi ≥ xi for all i ∈ C. A vector counter–objection of L against K
to the objection yC in x is a vector zD such that L ⊂ D ⊂ N , K �⊂ D,�

i∈D zi = v(D), zi ≥ xi for all i ∈ D, zi ≥ yi for all i ∈ C ∩D. A vector
objection is justified if there is no vector counter–objection to it.

For superadditive v, K has a justified vector objection against L in x iff
K has a justified objection against L in x (w.r.t. the definitions in [1]).

Let A be a set of subsets of N . An individually rational imputation x of
(N, v) belongs to the bargaining set Mi

A(N, v) if for all K, L ∈ A there are
no justified objections of K against L in x.

For a set A of subsets of N consider the following generalization of the
kernel. Let K, L ⊂ N and x be an imputation of (N, v). K overweights L
in x if K ∩ L = ∅,

�
i∈L xi > v(L), and sK,L(x) > sL,K(x), where

sP,Q(x) = max{v(S)−
�

i∈S

xi : S ⊂ N,P ⊂ S, Q �⊂ S}.

The set KA(N, v) is a set of all individually rational imputations x of (N, v)
such that no K ∈ A overweights any L ∈ A.

It was proved in [5] that KA(N, v) ⊂Mi
A(N, v).

In what follows we suppose that v(S) ≥
�

i∈S v({i}) for all S ⊂ N . Then
we can assume without loss of generality that v({i}) = 0 for all i ∈ N and
v(S) ≥ 0 for all S ⊂ N .

If A is a set of all singletons, then Mi
A = Mi

1, KA is the kernel and
the existence theorems for these sets are well known (see [2], [3], [7], [4]).
Here we describe conditions on A that ensure the existence of Mi

A(N, v)
and KA(N, v) for all v.

A set of coalitions A generates the undirected graph G = G(A), where
A is the set of vertices and K, L ∈ A are adjacent iff K ∩ L = ∅.
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Theorem 1. Let A be a set of subsets of N satisfying the following
condition : if a single vertex is taken in each connected component of G(A),
then the union of the remaining elements of A does not contain N . Then
KA(N, v) �= ∅ for all (N, v).

The proof is based on Peleg’s lemma [7].

If A is a collection of subsets of N , then a player i ∈ S is called a fanatic
for A if it belongs to precisely one element of A.

Corollary. If each element of A contains a fanatic of A, then KA(N, v) �=
∅ for all (N, v).

Let us consider the collections of subsets A that satisfy the condition of
Theorem 1. If N is not covered by the elements of A, then this condition
is obviously fulfilled. Let A0 be the set of isolated vertices of graph G(A),
Ā = A\A0. Then the collections of coalitions A and Ā satisfy the condition
of Theorem 1 simultaneously.

Let us describe for some n all collections of coalitions Ā that cover N .
If n = 3 then either Ā = {{1}, {2}, {3}} or Ā = {{i, j}, {k}}.
If n = 4 then either each element of Ā contains a fanatic of Ā or Ā =

{{i, j}, {k, l}, {i, k}, {j, l}}.
If n = 5 then either each element of Ā contains a fanatic of Ā or

Ā = {{i, j}, {k, l,m}, {i, k}, {j, l}} or
Ā = {{i, j}, {k, l,m}, {i, k}, {j, l,m}}.

Note that for A satisfying the condition of Theorem 1 the case |Ā| > n
is possible.

Example 1. n = 11, A = {S ∪ {11}, ({1, 2, 3, 4} \ S) ∪ {i(S)} :
|S| = 2, S ⊂ {1, 2, 3, 4}, i(S) ∈ {5, 6, 7, 8, 9, 10}, i(S) �= i(T ) for S �= T}.
Here Ā = A and |A| = 12.

Theorem 2. If a collection A of subsets of N does not satisfy the
condition of Theorem 1, then there exits (N, v) such that KA(N, v) = ∅.

For nonemptyness of Mi
A the condition of Theorem 1 is not necessary.

Example 2. Let A = {K, L, M}, where K ⊂ L, K �= L, M ∩ L = ∅,
M ∪L = N . Then A does not satisfy the condition of Theorem 1 but it can
be proved (as in Theorem 1) that Mi

A(N, v) �= ∅.

An open problem is to find selectors of the set KA. A generalization
of the nucleolus is the set NA(N, v), where we consider only excesses of
coalitions containing elements of A. Differently from the case when A is the
collection of singletons, it is possible that NA(N, v) ∩ KA(N, v) = ∅ and A
satisfies the condition of Theorem 1.

Example 3. Let N = {1, 2, 3, 4}, A = {{1}, {2}, {3, 4}}, v({i}) = 0 for
all i ∈ N , v(N) = v(S) = 1 for |S| = 3, v(1, 2) = v(3, 4) = 0, v(1, 3) =
v(2, 3) = 1, 2/3 < v(1, 4) = v(2, 4) < 1.
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Here NA = {z}, where z1 = z2 = z3 = 1/2− v(2, 4)/4, z4 = 3v(2, 4)/4−
1/2. But z /∈ KA(N, v) because s{1},{3,4}(z) = v(2, 4)/2 > s{3,4},{1}(z) =
1/2− v(2, 4)/4.
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Information equilibrium: Existence and core
equivalence∗

Valeri Vasil’ev†

The paper deals with the existence and fuzzy core equivalence problems for so-
called information equilibrium and its modifications in pure exchange economy with
externalities. Some existence results similar to that obtained for the classic Wal-
rasian equilibrium are established, and coalitional stability with respect to several
types of fuzzy blocking is investigated. In particular, the concept of representative
fuzzy core is introduced, and the coincidence of this core and the set of modified
(dual) information equilibria is demonstrated under rather general assumptions. A
notion of replica for the exchange economy with externalities is elaborated, and a
generalization of the famous Debreu-Scarf Theorem on the shrinkability of the cores
is proposed. Besides the existence and core equivalence problems, some Pareto-
optimality and individual rationality properties of equilibrium in the models with
nonautonomous preferences are discussed. The main tool we apply to investigate
the Lindahlian type equilibria proposed in the paper is the information extension of
the original market with externalities, introduced by V.L.Makarov (1982), Modern

Problems of Mathematics, v.19, 23 - 59, Moscow: VINITI (in Russian).
Key words: Information equilibrium, representative fuzzy core, information ex-

tension.

§1. Modified information equilibrium

It is common knowledge (see, e.g., [1], [2]), that the Pareto-optimality
of Walrasian equilibria in the models of economic exchange is guaranteed
only in the case of autonomous preferences when the utility function of
each agent depends only on the agent’s own consumption. At the same
time, many important problems of equilibrium analysis do not fit within the
framework of the classical autonomy requirement. The most typical example
is the problem of choosing the production level of public goods which is to be
one and the same for the whole economic system and various modifications
of the problem (see, e.g., [7], [8], [9] and references therein). Possible ways to
eliminate the inefficiency of the standard market mechanism in the models
with externalities (nonautonomous preferences) might consist in some kind
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of extension of the original market. Such an extension is obtained, for ex-
ample, at the expense of introducing additional commodities for exchanging
the information on the consumption structure of the economic system as a
whole which would be appropriate for the agents.

In this section we introduce a rather general concept of equilibrium
under the presence of externality, based on the information extension that
was first proposed in [2] and in more general setting in [3]. First, remind
that a model of economic exchange with externalities (nonautonomous pref-
erences) is an economy of the form

E =< N, L, {Xi, w
i, ui, }i∈N >,

where N = {1, . . . , n} is the set of agents and Xi ⊆ Rl, wi ∈ Rl, and ui :�
j∈N Xj → R are respectively the consumption set, the initial endowments,

and the utility function of an agent i ∈ N.
The distinction of the model E from the standard exchange model

is that, in the first case, the values of the utility function of each agent
are defined not only by the agent’s individual consumption but also by the
consumption of the other economic agents.

As it was already mentioned, the traditional Walrasian equilibria are,
typically, not Pareto optimal in the presence of externalities. The general-
ized information equilibria presented in the paper not only retains the most
important features of the classical equilibrium but also (according to the
results concerning the fuzzy core, given in the paper) are localized in a
sufficiently narrow section of the Pareto boundary of the model under con-
sideration.

To give the main definitions we start with some technical notations.
Put A = (Rl)N , A0 = {(p1, . . . , pn) ∈ (Rl

+)N | p1 = . . . = pn} and denote
by P the set of individual prices of the model E , defined by the formula

P = {(p1, . . . , pn) ∈ AN \ {0} | ∃p0 ∈ A0[
�

i∈N

pi = p0]}.

From the definition of P it follows, that for any p = (p1, . . . , pn) ∈ P there
exists the vector p0 = p0(p) ∈ Rl such that

�
i∈N pi = (p0, . . . , p0). This

vector p0(p) is said to be the public prices, corresponding to the individual
prices p = (p1, . . . , pn). To introduce the income functions we deal with
denote by A the set of n-tuples α = (α1, . . . ,αn) of functions αi : P →
R, i ∈ N, satisfying requirement similar to the Walras law for the standard
exchange models

�

i∈N

αi(p) = p0 ·
�

i∈N

wi, p ∈ P. (1)

Further, put X =
�

i∈N Xi and denote by X(N) the set of attainable allo-
cations

X(N) = {x = (xi)i∈N ∈ X |
�

i∈N

xi ≤
�

i∈N

wi}.
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Finally, as usual, for any x ∈ X we put

Pi(x) = {z ∈ X | ui(z) > ui(x)}, i ∈ N.

Let α = (α1, . . . ,αn) be any n-tuple of income functions from A.

Definition 1.1 An allocation x̄ ∈ X(N) is said to be an α-information
equilibrium for the model E if there exist individual prices p̄ = (p̄1, . . . , p̄n) ∈
P such that for any i ∈ N it holds

p̄i · x̄ = αi(p̄), and p̄i · x > αi(p̄) for any x ∈ Pi(x̄). (2)

Denote by Wα
I (E) the set of the α-information equilibria for the model E .

From (1) and directly from the definition of α-information equilibria it fol-
lows that any allocation x̄ belonging to Wα

I (E) is weakly Pareto-optimal.
Namely, for any economy E with nonautonomous preferences it holds

Wα
I (E) ⊆ P (E), (3)

where P (E) is the set of weak Pareto-optimal allocations of the economy E .
The most interesting concrete forms of the income functions αi seem to

be two polar ones. Historically, the first one was introduced in the seminal
work by Makarov V.L. [2] (see, also, [3]) as follows

αi(p) = p0(p) · wi, i ∈ N.

Some results, concerning the existence and fuzzy core equivalence problems
for this type of income function can be found in [3], [4], [5] and [8]. Here we
pay more attention to the polar case

αi(p) = pi · w, i ∈ N,

with w to be equal to the allocation of initial endowments of the agents:
w = (w1, . . . , wn). It should be noted that α-information corresponding to
this type of income functions are individually rational (which may not be
the case for the first type mentioned above).

In the paper, we discuss rather natural (and typical in some cases for the
models with externalities only) conditions providing quite general equilib-
rium existence results for several types of income functions, including those
indicated above.

§2. Information fuzzy core

One of the main results of the paper is the core equivalence theorem
that demonstrates the coincidence of the properly defined fuzzy core and
the equilibrium set Wα

I (E) of the exchange model with externalities. As in
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[3] and [8], the equivalence theorem is heavily relied upon a characterization
of equilibrium allocations in terms of an appropriate, rather subtle fuzzy
domination relation.

To show this fuzzy domination in case αi(p) = pi · w, i ∈ N, denote
by TN the set of so-called representative fuzzy coalitions, defined as follows

TN = {(τ1, . . . , τn) ∈ Rn | τi ∈ (0, 1], i ∈ N}.

Definition 2.1 A fuzzy coalition τ = (τ1, . . . , τn) ∈ TN dominates (blocks)
an x ∈ X(N) if there exist an allocations x0 = (x1

0, . . . , x
n
0 ) ∈ X and

zi = (z1
i , . . . , zn

i ) ∈ X, i ∈ N, such that
(CI1) zi ∈ Pi(x), for any i ∈ N,
(CI2) τi(zi − w) = (τ1(x1

0 − w1), . . . , τn(xn
0 − wn)) for any i ∈ N,

(CI3)
�

i∈N τixi
0 ≤

�
i∈N τiwi.

The set of allocations x ∈ X(N) which are not blocked by any fuzzy coalition
τ ∈ TN is denoted by ICw

F (E) and called the representative fuzzy w-core (w-
core, shortly) for the model E .
It is not very hard to prove the following amplification of the inclusion (3).

Proposition 2.1 For any economy E with αi(p) = pi ·w, i ∈ N, it holds

Wα
I (E) ⊆ ICw

F (E).

In the paper, some rather general core equivalence results are given which
demonstrate that the equality

Wα
I (E) = ICw

F (E)

holds, provided that quite standard continuity and convexity assumptions
on the parameters of the model E are fulfilled. In addition, the notions of
replica and blocking in replica of the exchange model with externalities are
proposed. It turns out, that one of the most interesting feature of domina-
tion in replicas is the dependence of utility levels obtained by the members of
a blocking coalition M on the structure of the coalition: when evaluating the
utility of an allocation suggested by this coalition, each economic agent con-
sider both the average consumption of the agent’s partners and the number
of members of M which are identical to the agent. For more details on this
feature of domination relations in replicas in case αi(p) = p0(p) · wi, i ∈ N,
see [3] and [8].

§3. Information extension of the model E
It should be stressed that the key tool we use to investigate the models

with externalities is the so-called information extension of the original econ-
omy E . More or less detailed description of this extension can be found in [2],
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[3], [5], and [8]. Here we restrict ourselves to the case αi(p) = pi · w, i ∈ N.
To give a brief account on the standard model E� without any externalities
which is associated with the original model E =< N,L, {Xi, wi, ui, }i∈N >,
put D = {(i, j) | i, j ∈ N, i �= j}, D0 = D ∪ {0} and define linear operators
Γi : (Rl)N → (Rl)D0 , i ∈ N, by the formulas

Γi(x1, · · · , xn)d =






xi, d = 0;
−xi, d = (k, i), k ∈ N \ {i};
xk, d = (i, k), k ∈ N \ {i};
0 otherwise.

Put N� = N, L� = L× D0, and denote by wi
� and X�

i the ”information
extensions” of the initial endowments and consumption sets of the original
economy E , defined by

wi
� = Γi(w), X�

i = Γi(X), i ∈ N. (4)

Further, for any i ∈ N denote by u�i the function, defined on X�
i by the

formula

u�i (Γi(x)) = ui(x), x ∈ X. (5)

Finally, denote by Y � the aggregated production set of the economy E�,
defined as follows

Y � = {y = (yd)d∈D0 ∈ (−Rl
+)× (Rl)D | y(i,j) = 0, (i, j) ∈ D}. (6)

Now we are in position to give a formal description of so-called information
extension in terms of a standard exchange model with aggregated production
set.

Definition 3.1 The standard exchange model (with aggregated produc-
tion set), defined by

E� =< N,L�, {X�
i , wi

�, u�i }i∈N , Y � >,

with consumption sets, initial endowments, utility functions, and aggregated
production set given by the formulas (4) - (6) is said to be the information
extension (or information market) of the exchange model E with externali-
ties.
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Values for TU games with linear cooperation
structures

Elena Yanovskaya

The study of cooperative TU games with coalitional structures, given
exogenously, are dated from the analysis of games in partition function form
(Thrall, Lucas (1963)). The authors considered TU games generated by the
vectors of coalitional values defined for each partition of the player set.

Later TU games with a coalitional strtucture, i.e. a partition of the
player set have been studied. Auman and Drèze (1975) were the first to
introduce such a structure into a study of value. Their outcomes were the
payoff vectors whose sums of components for each coalition of the partition
was equal to the corresponding characteristic function value. Thus, the
values for such games, in general, were not efficient.

Owen (1977) extended the Shapley value (1953) to games with a coali-
tional structure by a modification of symmetry: in such games the symmetry
is admitted between players from the same coalition and between the whole
coalitions. Winter (1991) extended this approach to the games with an hi-
erarchy of a finite sequence of partitions. Both values are expressed by the
similar formulas: for each player the value is the expectation of its marginal
contributions w.r.t. equally probable random orders of players consistent
with the coalitional or level structure respectively.

Myerson (1977) defined an extension of the Shapley value to the case of
a more general cooperation structure. This structure is defined by a graph
whose vertices are players and a link between two vertices means the pos-
sibility of communication. Thus, the complete graph corresponds to the
definition of the usual cooperative game, and the Myerson value coincide
with the Shapley value. For cooperation graphs that are not connected the
Myerson value is, in general, not efficient. Moreover, the definition of coop-
eration structure by graphs, i.e. by bilateral links between the players is not
general, because the complete subgraph for a coalition S can express both
pairwise communications and the complete communication of the players
from S.

In this paper we extend the Owen and the Winter values to TU games
with cooperation structures whose coalitions may intersect.

Let N be a finite set of players. A linear cooperation structure (LCS) on
N is a collection B = (B1, . . . , Bk) of coalitions Bl ⊂ N, l = 1, . . . , k such
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that there is an ordering � of N such that for each l = 1, . . . , k, i, j ∈ Bl

the relations i � m � j imply m ∈ Bl.
Evidently, each partition of N is a linear cooperation structure. If N =

{1, 2, 3}, then besides the partitions the linear cooperation structures con-
sists of the following collections: {(1, 2), (2, 3)}, {(1, 3), (2, 3)}, {(1, 2), (1, 3)}.
The ordering �, participating in the definition of LCS, is in some sense sim-
ilar to the ordering defining single-peakened profiles of preferences: if two
players are permitted to cooperate, all intermediate players w.r.t. the or-
dering may adjoin to them.

Therefore, the class of TU games �N, v,B� with linear cooperation struc-
tures is an extenstion of the class of TU games with coalitional structures
(CS) being partitions of the player sets.

In the sequel the notation B will be used for the LCSs, and the partitions
will be denoted by P.

Definition 1 Given a LCS B on a set N we call a permutation π : N → N
consistent with the LCP B if πB is also a LCS.

Note that consistent permutations always exist. For example, let (1, 2, . . . , n)
be an ordering defining a LCS B. Then the opposite ordering (n, n−1, . . . , 1)
defines the LCS πB for π : (1, 2, . . . , n) → (n, n−1, . . . , 1). It is easy to check
that this definition extends permutations consistent with partitions. In fact,
if B is a partition then any permutation consistent with B in the sense of
Hart–Kurz (1984) is consistent with B in the sense of Definition 1 and vice
versa.

Consider the class Glcs
N of TU games with linear cooperation structures

and a finite player set N. Let Φ be a value for this class. First, we are going
to reformulate the Owen axioms for games with LCS. For this purpose we
should define more precisely linear cooperative structures.

We call a linear cooperation structure B decomposable, if there is a par-
tition P = (P1, . . . , Pl) l > 1 of N such that

B ∈ B =⇒ B ⊂ Ph for some h = 1, . . . , l

and for each h = 1, . . . , l the restriction Bh of B on Ph :

Bh = {B ∈ B, B ⊂ Ph} (1)

is a LCS on Ph. Otherwise, a LCS is called non decomposable.
Thus, if a LCS B is decomposable, then there is a partition P = (P1, . . . , Pl)

of the set N such that for each h = 1, . . . , l the collection Bh defined in (1)
is a LCS which may be decomposable or not. In particular, a partition is
a decomposable LCS. An hierarchical level structure due to Winter (1991),
i.e. a finite sequence of partitions P = (P1,P2, . . . ,Pm) such that Pi is a
refinement of Pi+1, is also a decomposable LCS.
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The general LCS B on N can be represented by the following way:

B = (B1,B2, . . . ,Bp), (2)

where Bk, k = 1, . . . , p is a non decomposable LCS defined on the correspond-
ing coalition Pk of the partition P = (P1, . . . , Pp) of N, and an hierarchial
level structure (P1,P2, . . . ,Pm) can be given on the partition P such that
P = P1, Pk is a partition of N for all k = 1, . . . , p, and

T ∈ Pk+1 =⇒ T =
�

j∈J(T ) Sj , Sj ∈ Pk for some index set
J(T ) ⊂ {1, 2, . . . , , |Pk|} and k = 1, . . . ,m− 1.

(3)

In this case we call the partition Pk a refinement of Pk+1. If all LCS
Bk, k = 1, . . . , p consist of a single coalition Pk, then such a decomposable
LCS B is a (hierarchical) level structure considered by Winter (1991).

We begin with games with non decomposable LCS. Let Gnd
N be the class

of TU games Γ = �N, v,B�, with the player set N, where B is either a non
decomposable LCS, or a partition of N. Let Φ be a value for this class.
Before giving modifications of Owen’s axioms for the value Φ let us note
that the restriction BS of non decomposable LCS B on a subset S ⊂ N
is a LCS which can be decomposable or not. Thus, the Carrier axiom is
formulated for the class Gnd

N as follows:

Carrier. If R ⊂ N is the carrier of v, and the restriction BR of B on
R is a non decomposable LCS or a partition of R, then

Φj(N, v,B) = v({j}) for all j ∈ N \ R,
�

i∈R Φ(N, v,B) = v(R),
BR = B�R, R− the carrier of B� =⇒ Φ(N, v,B) = Φ(N, v,B�).

Additivity. If �N, v,B�, �N, v�,B� ∈ Gnd
N , then

Φ(N, v,B) + Φ(N, v�,B) = Φ(N, v + v�,B).

Anonymity. Let �N, v,B� be a game with a nondecomposable LCS
B, π be a permutation of N, consistent with B. Then

Φ(N,πv,πB) = πΦ(N, v,B). (4)

If �N, v,P� is a game with coalitional structure P, then equality (4)
holds for every permutation π : N → N.

Anonymity of the value for games with LCS states invariance of the value
w.r.t. permutations consistent with the LCS. Indeed, other permutations
transform a LCS into cooperation structures which are not linear.

Associate with each game �N, v,P� with a coalitional structure P =
(P1, . . . , Pm) a TU game �M,v� between coalitions, where M = {1, 2, . . . ,m},
v(S) = v

��
j∈S Pj

�
for each S ⊂ M.
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Inessential game. If the game �M,v� between coalitions is inessen-
tial, then

�
i∈Pj

φi(N, v,P) = v(Pj) for each j = 1, . . . ,m.

Let B be an arbitrary non decomposable LCS on the set N, � be the
ordering of N, corresponding to B. If for some coalitions S, T ⊂ N it holds
i � j for all i ∈ S, j ∈ T, then we write S � T.

The LCS B generates an ordered partition S = {S1, . . . , Sl} of N such
that Sp � Sq for p > q onto coalitions of players belonging to the same
coalitions from B :

i, j ∈ Sk, k = 1, . . . , l, ⇐⇒ {i ∈ B ∈ B ←→ j ∈ B}. (5)

For every coalition S from partition S (5) denote by N1(S), N2(S) the
coalitions of all predecessors and followers w.r.t. the ordering �, defining
the LCS B respectively.

For LCS differing from partitions we should state one more axiom stating
dependence of the value Φ only on characteristic function values of coalitions,
”consistent” with the LCS:

Independence of coalitions not supporting the LCS. Let Sk ∈ S
be an arbitrary coalition from the partition S (5). Then Φi(N, v,B), i ∈
Sk, k = 1, . . . , l(i ∈ Sk, k = 1, . . . , l does not depend on v(T ), for all
T ⊂ N such that

Sk �⊂ T, T ∩N1(Sk) �= ∅, T ∩N2(Sk) �= ∅,

and not equal to the carrier of v.

This means that the values Φi(N, v,B) for players belonging to some
Sk, do not depend on the characteristic function values of coalitions having
”holes” on the coalition Sk.

Now we are ready to characterize the values of games for the whole class
Gnd

N .

Theorem 1 The unique value Φ for the class Gnd
N satisfying axioms Carrier,

Additivity, Anonymity, Inessential games, and Independence of coalitions

not supporting the LCS, is defined by

Φ(N, v,B) = E[v(P i ∪ {i})− v(P i)], (6)

where the expectation E is over all equally probable random orders on a

carrier of v consistent with B. Here B is either a partition, or a non decom-

posable LCS.

A decomposable LCS differs from a level structure by the highest level
where each of coalition of the partition P1 (in the level structure) is re-
placed by a non decomposable LCS. Therefore, it is not difficult to unify
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the axioms given in this and the previous section to the class of games with
decomposable LCS and to characterize the value for this class.

Assume as earlier that the orderings defining the LCS Bk, k = 1, . . . , t
coincides with the natural ordering of the numbers. Denote by Π the set
of all permutations consistent with the level structure P, and by Sk =
(Sk

1 , . . . , Sk
qk

) – the partition of P 1
k , k = 1, . . . , |Mk| defined as in (5). Then

we have

Sk1
j > Sk2

l for all k1 > k2 and all j, l,
Sk

j1 > Sk
j2 for all j1 > j2 and all k = 1, . . . , |M |.

We call a permutation π consistent with the LCS B, if π ∈ Π, and

i, j ∈ πSk
l , i �π�π j =⇒ (π)−1r ∈ Sk

l for all k = 1, . . . , |M |, l = 1, . . . , qk,

where the ordering �π corresponds to the LCS πB. Thus, this definition
is the composition of those of permutations consistent with level structures
and with non decomposable LCS.

Let Gd
N be the class of TU games with decomposable LCS and the player

set N. Give generalizations of the axioms given above for the characterization
of the value for games from the class Gd

N . The axioms Carrier and Additivity
are immediately reformulated for this class of games.

Anonymity. Let �N, v,B� ∈ Gd
N . Then for each permutation π con-

sistent with B
πΦ(N, v,B) = Φ(N,πv,πB).

In the same way as for games from the class Gls
N , with any game �N, v,B� ∈

Gd
N we can associate m games �M1, v1�, . . . , �Mm, vm� between coalitions,

one for each hierarchy level (partition). The number of players |Mk| is
equal to the number of coalitions on the partition Pk, and the characteristic
function vj is defined by

vj(S) = v

�
�

i∈S

P j
i

�
,

where Pj = (P j
1 , . . . , P j

|Mj |), j = 1, . . . ,m. The next axioms are the straight-
forward generalizations of the same axioms for games with level structures
and non decomposable LCS respectively:

Inessential game. If for some k = 1, . . . ,m the game �Mk, vk� is
inessential, then

�

i∈P k
j

Φi(N, v,B) = v(P j
k ) for each k = 1, . . . ,M j .
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Independence of coalitions not supporting the LCS. Let Sk
j ∈ S

be an arbitrary coalition from the partition S. Then Φi(N, v,B), i ∈
Sk

j , j = 1, . . . ,Mk, k = 1, . . . ,m does not depend on v(T ), for all
T ⊂ N such that

Sk
j �⊂ T, T ∩N1(Sk

j ) �= ∅, T ∩N2(Sk
j ) �= ∅,

and not equal to the carrier of v.

The next theorem is the generalization of Theorem 1 and the Winter
Theorem:

Theorem 2 If a value Φ for the class Gd
N of games with decomposable LCS

satisfies axioms Carrier, Additivity, Anonymity, Inessential games, and In-

dependence of coalitions not supporting the LCS, then for each �N, v,B� ∈
Gd

N
Φ(N, v,B) = E(v(P i ∪ {i})− v(P i)),

where the expectation is over all equally probable random orders consistent

with the decomposable LCS B.
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