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Stationary interpolatory subdivision schemes which preserve shape properties
such as convexity or monotonicity are constructed. The schemes are rational in
the data and generate limit functions that are at least C2. The emphasis is on a
class of six-point convexity preserving subdivision schemes that generate C2 limit
functions. In addition, a class of six-point monotonicity preserving schemes that
also leads to C2 limit functions is introduced. As the algebra is far too complicated
for an analytical proof of smoothness, validation has been performed by a simple
numerical methodology.
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1. Introduction

Several stationary nonlinear subdivision schemes for the purpose of shape pre-
serving interpolation have been proposed in literature. Many of these schemes
use only four points, however, the limit function generated by these schemes is
at most C1 in general. Examples of such schemes are a rational C1 convexity
preserving interpolatory subdivision scheme, see [13,14,10], and a monotonicity
∗ financially supported by the Dutch Technology Foundation STW
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preserving subdivision scheme, see [11].
In this paper shape preserving interpolatory subdivision schemes are constructed
that generate limit functions that are at least C2. These schemes are less local
than the subdivision schemes from literature: now six points are used. The
main focus is on a class of six-point convexity preserving subdivision schemes
that generate C2 limit functions. In addition, a class of six-point monotonicity
preserving schemes is introduced that also leads to C2 limit functions. The
smoothness properties of the subdivision schemes are analysed numerically, as
the algebra for an analytical proof of smoothness is far too complicated.

Some shape preserving rational spline interpolation methods have been in-
troduced in [8] (monotonicity preservation), and [3], [2] (convexity preserva-
tion). Shape preserving subdivision algorithms have been examined in literature,
e.g., convexity preserving subdivision is examined in [15] and [6]. However, the
proposed methods generate results that are only C1 in general.
The goal of this paper is to examine C2 interpolatory subdivision schemes. The
new subdivision point is defined by making use of a two-point Hermite inter-
polant. The derivatives in this Hermite interpolating function however, are esti-
mated by a four-point scheme on suitable derivative data: divided differences in
the function values.
When we take a cubic two-point Hermite interpolant, and the derivatives are
estimated using the well-known linear four-point scheme [5], a linear six-point
scheme will be obtained. This scheme is known to be C2-smooth from literature
and its approximation order is four.
The same approach is performed for shape preserving subdivision schemes. First,
the case of convexity preservation is discussed. The Hermite interpolant is taken
as the rational Hermite interpolant, based on [2], which preserves convexity. The
derivatives are estimated by using the class of four-point monotonicity preserving
interpolatory subdivision schemes [11]. to the (monotone) divided differences in
the function values. This leads to rational interpolatory subdivision schemes
that preserve convexity. As the expressions arising in the smoothness analysis of
the limit function become too complicated, these properties are analysed using
a numerical approach. A simple methodology is presented for this purpose, and
the method is compared with known results. Based on this numerical approach,
the smoothness of the convex scheme turns out to be C2. Numerical experiments
show that the approximation order is four.



F. Kuijt and R. van Damme / Shape preserving C2 subdivision 3

The construction of C2 convexity preserving subdivision schemes is repeated in a
similar way for monotonicity preserving subdivision. Again, a rational Hermite
spline interpolant, see [8], defines the new subdivision point such that mono-
tonicity is preserved. A suitable four-point interpolatory positivity preserving
subdivision scheme is constructed. This scheme, which turns out to be C1, is
applied to the (positive) divided differences in the functions values. The six-
point monotonicity preserving subdivision scheme that results from this process
appears to be C2, and its approximation order is four.

2. Problem definition

Consider a univariate initial data set {(x(0)
i , f

(0)
i )} in IR2, where the {x(0)

i } are
equidistantly distributed points, i.e., x(k)

i = 2−kih. The differences h(k)
i are de-

fined by

h
(k)
i = dx

(k)
i = x

(k)
i+1 − x

(k)
i , (2.1)

and they satisfy h(k) := h
(k)
i = 2−kh.

The approach in this paper is to construct higher order subdivision schemes which
generate limit functions that are at least C2. We consider subdivision schemes
that define the new points f (k+1)

2i+1 depending on two old data values f (k)
i and

f
(k)
i+1, and two derivative estimates g̃(k)

i and g̃(k)
i+1. Each derivative estimate g̃(k)

j is

assumed to be determined by at most five data points: f (k)
j−2, f (k)

j−1, f (k)
j , f (k)

j+1 and

f
(k)
j+2.

For linear subdivision schemes the reproduction of linear functions is a necessary
condition for C1. Since the subdivision schemes in this paper are required to be
at least C1, we restrict ourselves to subdivision schemes that are exact for linear
functions: the schemes are considered to satisfy the following assumption:

Definition 2.1. (Assumption) A nonlinear interpolatory subdivision scheme
can only be C`, if the scheme for the `-th differences ∆`f

(k)
i exists and reproduces

constants, i.e., the scheme reproduces polynomials of degree `.
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A simple calculation yields that we indeed examine the following class of six-point
interpolatory subdivision schemes:

f
(k+1)
2i = f

(k)
i ,

f
(k+1)
2i+1 =

1
2

(
f

(k)
i + f

(k)
i+1

)
+ h(k)F1(∆f (k)

i , g̃
(k)
i , g̃

(k)
i+1),

g̃
(k)
i = F2(∆f (k)

i−2,∆f
(k)
i−1,∆f

(k)
i ,∆f (k)

i+1),

(2.2)

where the divided differences ∆f (k)
i are defined by

∆f (k)
i =

f
(k)
i+1 − f

(k)
i

x
(k)
i+1 − x

(k)
i

=
df

(k)
i

h
(k)
i

. (2.3)

A scheme in this class is attractive, because it is a six-point scheme, whereas the
derivatives are estimated by only a four-point scheme. Another reason to restrict
to this class of schemes is that it turns out that it contains schemes that generate
C2 limit functions that preserve shape properties like convexity or monotonicity.
The choice for the functions F1 and F2 depends on the requirements, e.g., linearity
of the scheme or the requirement of shape preserving properties. Suitable choices
for these functions are discussed in the next sections.

Motivation. As the schemes presented in this paper are required to have a rela-
tively simple generalisation to nonuniform data, the motivation uses a comparison
with nonuniform subdivision schemes.
In [12], a class of convexity-preserving interpolatory subdivision schemes for
nonuniform data has been constructed. One scheme,



x
(k+1)
2i = x

(k)
i ,

x
(k+1)
2i+1 =

1
2

(
x

(k)
i + x

(k)
i+1

)
+

1
2
h

(k)
i G(r(k)

i , R
(k)
i+1),

f
(k+1)
2i = f

(k)
i ,

f
(k+1)
2i+1 =

1
2

(
f

(k)
i + f

(k)
i+1

)
+

1
2
G(r(k)

i , R
(k)
i+1)

(
f

(k)
i+1 − f

(k)
i

)
−h(k)

i F(s(k)
i , s

(k)
i+1, r

(k)
i , R

(k)
i+1),

(2.4)

combined with the function

F(x, y, r,R) =
1
2

1
1+r

(1+G(r,R))x + 1+R
(1−G(r,R))y

, (2.5)
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turns out to have approximation order three. This scheme is compared with the
nonuniform scheme that directly comes from the rational Hermite interpolant
(see [2])

u
(k)
i (x) =

(x(k)
i+1 − x)f (k)

i + (x− x(k)
i )f (k)

i+1

x
(k)
i+1 − x

(k)
i

− 1
1

(x−x(k)
i )(∆f(k)

i −g
(k)
i )

+ 1
(x(k)
i+1−x)(g(k)

i+1−∆f(k)
i )

, (2.6)

by a simple evaluation at x(k+1)
2i+1 :

f
(k+1)
2i+1 =

1
2

(
f

(k)
i + f

(k)
i+1

)
+

1
2
G(r(k)

i , R
(k)
i+1)

(
f

(k)
i+1 − f

(k)
i

)
− 1

2
h

(k)
i

1
1

(1+G(r(k)
i ,R

(k)
i+1))(∆f(k)

i −g̃
(k)
i )

+ 1
(1−G(r(k)

i ,R
(k)
i+1))(g̃(k)

i+1−∆f(k)
i )

,(2.7)

The question that arises is the following: how should the derivatives in this scheme
be chosen such that it reduces to the scheme for nonequidistant data? A simple
calculation shows that the scheme is obtained by estimating the derivatives using

gi =
hi

hi−1 + hi
∆fi−1 +

hi−1

hi−1 + hi
∆fi, hi = xi+1 − xi, (2.8)

which is the nonuniform variant of estimating the derivatives by a two-point
scheme on divided differences ∆f (k)

i . For equidistant data, this yields:

g̃
(k)
i =

1
2

(
∆f (k)

i−1 + ∆f (k)
i

)
. (2.9)

A useful interpretation of (2.9) is that the derivative is estimated using a two-
point scheme that preserves monotonicity. This scheme operates on successive
divided differences ∆f (k)

j , and indeed, the divided differences from a monotone
sequence for any convex data set. In order to preserve convexity, the derivatives
have to be estimated in a monotonicity preserving way: ∆f (k)

i−1 ≤ g̃
(k)
i ≤ ∆f (k)

i .
Any monotone two-point scheme for the derivative estimates can be written as
g̃

(k)
i =M(∆f (k)

i−1,∆f
(k)
i ).

The straightforward generalisation is to apply a four-point monotonicity preserv-
ing subdivision scheme to successive divided differences, instead of the simple
two-point scheme.
Taking the two-point scheme (which is only C0) for the divided differences, finally
yields a convex limit function that is C1, see chapter 3. Therefore it is reasonable
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that convex C2 limit functions are obtained if a C1 monotonicity preserving
scheme for the divided difference is used to determine the derivative estimates.
The derivative estimates in the class

g̃
(k)
i =M(∆f (k)

i−2,∆f
(k)
i−1,∆f

(k)
i ,∆f (k)

i+1), (2.10)

are discussed and analysed in section 5.

In the next section, we discuss linear six-point subdivision schemes in the class
(2.2). The smoothness properties of these linear schemes are known from lit-
erature and can be analysed using standard techniques, e.g., based on Laurent
polynomials: no further smoothness analysis is required for these schemes.

3. Linear six-point interpolatory subdivision

In this section six-point interpolatory subdivision schemes in the class (2.2) are
examined which are linear in the data.
First, we state some known results for linear six-point schemes. A general class
of linear six-point interpolatory subdivision schemes is given in [5]:

f
(k+1)
2i+1 =

(
1
2

+ w + 2θ
)(

f
(k)
i + f

(k)
i+1

)
− (w + 3θ)(f (k)

i−1 + f
(k)
i+2) + θ(f (k)

i−2 + f
(k)
i+3),

=
1
2

(
f

(k)
i + f

(k)
i+1

)
− h(k)(w + 2θ)(∆f (k)

i+1 −∆f (k)
i−1) + h(k)θ(∆f (k)

i+2 −∆f (k)
i−2)

=
1
2

(
f

(k)
i + f

(k)
i+1

)
− h(k)(w + θ)(s(k)

i + s
(k)
i+1) + h(k)θ(s(k)

i+2 + s
(k)
i−1), (3.1)

where the second differences s(k)
i are defined as

s
(k)
i = ∆f (k)

i −∆f (k)
i−1. (3.2)

Subdivision scheme (3.1) reproduces quadratic (even cubic) polynomials if w =
1/16. As a linear subdivision scheme is required to reproduce quadratic poly-
nomials in order to be able to generate C2 functions, we restrict to this value
w = 1/16 and the scheme then is at least fourth order accurate. A sufficient
range for C2-convergence of (3.1) is 0 < θ < 0.02, see [5].
A special case is obtained by the six-point subdivision scheme (3.1) with w =
1/16 and θ = 3/256. The scheme then reproduces quintic polynomials and has
approximation order six. Since θ < 0.02, see [5], this scheme is C2.
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For the purpose of this chapter, the subdivision value f (k+1)
2i+1 is determined by the

two-point cubic Hermite-interpolant:

f
(k+1)
2i+1 =

1
2

(
f

(k)
i + f

(k)
i+1

)
− 1

8
h(k)(g̃(k)

i+1 − g̃
(k)
i ).

The derivative estimates g̃(k)
i are determined by applying the linear four-point

scheme [5],
f

(k+1)
2i = f

(k)
i ,

f
(k+1)
2i+1 = −wf (k)

i−1 +
(

1
2

+ w

)
f

(k)
i +

(
1
2

+ w

)
f

(k)
i+1 − wf

(k)
i+2,

(3.3)

for some w1, to four successive divided differences, i.e., as in (2.10). Then this
results in the following six-point interpolatory subdivision scheme:

f
(k+1)
2i+1 =

1
2

(
f

(k)
i + f

(k)
i+1

)
−h(k) 1

16
(1 + 2w1)(s(k)

i + s
(k)
i+1) + 2h(k) 1

16
w1(s(k)

i−1 + s
(k)
i+2),

The smoothness properties of this scheme are further discussed. The scheme
automatically reproduces quadratic polynomials, which is necessary for C2.
If we take w1 = 1/16 this generates in the six-point scheme with w = 1/16 and
θ = 1/128, which is C2 as θ < 0.02 (and fourth order accurate), see [5]. However,
the derivatives are only estimated second order accurate then. If the derivatives
are estimated fourth order accurate, a simple calculation shows that the tension
parameter has to be taken as w1 = 1/12, and this generates the six-point C2

scheme with w = 1/16 and θ = 1/96, see [5]. Both schemes have approximation
order four, where as the scheme determined by the quintic fit (with θ = 3/256 is
six-th order accurate.

The goal of this chapter is to construct six-point subdivision schemes which are
shape-preserving. In contrast with linear six-point schemes discussed in this
section, we cannot use smoothness properties from literature. On the other hand,
the algebraic expressions that arise from an analytical proof of C1 and especially
C2-smoothness become complicated. To deal with this problem, a numerical
approach is required for proving, or at least validating, the smoothness properties.
Such a numerical method is presented in the next section.

4. A numerical approach for smoothness analysis

In the previous chapters, some four-point interpolatory subdivision schemes have
been presented that preserve the shape in the data. To prove the smoothness
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and approximation properties of these schemes however, the complexity of the
algebraic expressions turns out to be much involved. Especially, the rational six-
point schemes constructed in this chapter give rise to unmanageable expressions,
which means that a numerical method is unavoidable to determine the smooth-
ness properties of the subdivision schemes. Such a numerical approach is briefly
discussed in this section. The method is validated with known results for linear
subdivision schemes as well as the rational subdivision schemes from the previous
chapters.

Numerical determination of the Hölder regularity. The numerical ap-
proach for the analysis of smoothness properties of subdivision schemes which is
set up in this section deals with the notion of Hölder regularity Hr:

Definition 4.1 (Hölder regularity). An ` times continuously differentiable func-
tion f : Ω ⊂ IR→ IR is said to have Hölder regularity Hr = `+ α, if

∃C <∞ such that

∣∣∣∣∣∂`f(x1)
∂x`

− ∂`f(x2)
∂x`

∣∣∣∣∣ ≤ C |x1 − x2|α , ∀x1, x2 ∈ Ω.

Next, the definition of Hölder regularity is applied to subdivision schemes, which
requires a suitable definition for the discrete case.
For any data set on the k-th iteration, {x(k)

i , f
(k)
i }i, consider any two successive

data points, say x1 = 2−kih and x2 = 2−k(i+ 1)h. According to definition 4.1, a
subdivision scheme is said to have Hölder regularity Hr = α, if:

∃C <∞ such that max
i

∣∣∣f (k)
i+1 − f

(k)
i

∣∣∣ ≤ C(2−kh)α, ∀k.

The Hölder regularity `+ α of a subdivision scheme is more complicated. First,
the subdivision scheme is required to be at least C`, and the `-th derivatives
in definition 4.1 are replaced by divided differences according to f `(x(k)

i ) ≈
`!∆`f

(k)
i +O(h); this O(h) turns out to be irrelevant.

The Hölder regularity `+ α is defined using `-th divided differences:

Definition 4.2 (Hölder regularity of subdivision). A C` subdivision scheme is
said to have Hölder regularity `+ α`, if

∃C <∞ such that lim
k→∞

`!
∣∣∣∆`f

(k)
i+1 −∆`f

(k)
i

∣∣∣ ≤ C(2−kh)α` .

When α` = 1 in definition 4.2, this means that the subdivision scheme is almost
C`+1.
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This definition suggest to define an algorithm to determine the Hölder regularity
of a subdivision scheme. Therefore, define

ρ
(k)
` = `! ·max

i
|∆`f

(k)
i+1 −∆`f

(k)
i |,

and we assume that the maximum values are attained, i.e., ρ(k)
` ≈ C(2−kh)α. The

contraction factor λ` satisfies

λ` =
ρ

(k+1)
`

ρ
(k)
`

≈ C(2−(k+1)h)α`

C(2−kh)α`
= 2−α` ,

and hence

α` := − log2

(
ρ

(k+1)
`

ρ
(k)
`

)
. (4.1)

provides a good estimate for the Hölder regularity `+ α`.
Note that the calculation of the Hölder regularity Hr = `+ α` only makes sense
if αj ≈ 1, j = 0, . . . , `− 1. When we briefly write e.g., Hr ≈ 1.442, we mean that
α0 = 1 and α1 = 0.442.

Numerical validation. The simple numerical approach proposed in this section
is applied to subdivision schemes for which the smoothness properties are known.
In the recent preprint [17] some Lagrange and Hermite interpolatory subdivision
schemes are examined, and bounds on the Hölder regularity have been obtained
numerically. For some linear subdivision schemes, the results in [17] are compared
with the numerical method proposed in this section.
First we examine linear schemes and calculate the numerical results that are
obtained for Hr, and compare these results with the literature. The numerical
validation is continued for nonlinear subdivision schemes for which no methodol-
ogy for smoothness analysis is known to us in literature:

• The linear four-point scheme [5]. For the value w = 1/16, the numerical value
for the Hölder regularity is Hr ≈ 2.000, since α0 ≈ 1, α1 ≈ 1 and α2 ≈ 0.
Indeed, note that it is known from literature, e.g., [4], that this scheme is
almost C2. For example, if w = 1/32, we obtained that Hr ≈ 1.228: indeed a
C1 scheme.

• The second example concerns the linear six-point scheme, see (3.1), with w =
1/16. We give the numerical results for three values of θ: θ = 3/256 yields
Hr ≈ 2.8301, θ = 1/128 yields Hr ≈ 2.3919 and Hr ≈ 2.6309 for θ = 1/96.
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For the case θ = 3/256, the smoothness results can be compared with lower
and upper bounds in [17]: 2.8094 ≤ Hr ≤ 2.8301. The upper bound turns out
to be sharp.

• The first example for numerical validation of nonlinear subdivision schemes
considers an equidistant convex data set for which the second differences satisfy
d2f

(0)
2i =

√
β and d2f

(0)
2i+1 = 1/

√
β. We show the relation of β with the Hölder

regularity of the convexity preserving four-point scheme in [14], i.e., the scheme

f
(k+1)
2i+1 =

1
2

(
f

(k)
i + f

(k)
i+1

)
− 1

4
1

1
f

(k)
i+1−2f(k)

i +f(k)
i−1

+ 1
f

(k)
i+2−2f(k)

i+1+f(k)
i

, (4.2)

which is known to be C1.
Using the numerical methodology for several values of β we determine α1 for
which the scheme has regularity Hr = 1 + α1. The contractivity factor that
arises in the proof of C1-smoothness in [14], is q(0)/(1 + q(0)) = β/(1 + β),
where β equals the ratios of second differences d2f

(0)
j .

From the numerical results then is obtained that α0 = 1 and

α1 = − log2

(
q(0)

1 + q(0)

)
= − log2

(
β

1 + β

)
,

which indeed shows a strong relation with the single step proof in [14]: λ1 =
2−α1 .

• Another example for a nonlinear subdivision scheme deals with monotonicity
preserving subdivision schemes, see [11], i.e., schemes of the form

f
(k+1)
2i+1 =

1
2

(
f

(k)
i + f

(k)
i+1

)
+

1
2

(f (k)
i+1−f

(k)
i )G

f (k)
i − f (k)

i−1

f
(k)
i+1 − f

(k)
i

,
f

(k)
i+2 − f

(k)
i+1

f
(k)
i+1 − f

(k)
i

 , (4.3)

Numerical experiments on several monotone data show that the class of four
order accurate schemes is C1: for all schemes in the class

G(x, y) =
x− y

`1 + (1 + `2)(x+ y) + `3xy
, `1 + 2`2 + `3 = 6, `1, `2, `3 ≥ 0, (4.4)

it is obtained that Hr = 1.466722 . . . independent of the initial data. The value
for the Hölder regularity corresponds with a contraction factor of λ ≈ 0.724.
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• The final example concern a so-called trinary subdivision scheme based on an
algorithm that in every step inserts two points instead of one in every interval.
A general class of trinary interpolatory subdivision schemes is given by:

f
(k+1)
3i = f

(k)
i ,

f
(k+1)
3i+1 =

2
3
f

(k)
i +

1
3
f

(k)
i+1 −F(d(k)

i , d
(k)
i+1),

f
(k+1)
3i+2 =

1
3
f

(k)
i +

2
3
f

(k)
i+1 −F(d(k)

i+1, d
(k)
i ).

(4.5)

Linear four-point interpolatory subdivision schemes can be constructed which
generate C2 limit functions: the function F(x, y) = (1/9 − c)x + cy is proved
in [16] to generate a C2 scheme for the range 1/27 < c < 2/45.
If F satisfies 0 ≤ F(x, y) ≤ 1/6 min{x, 2y} and F(x, y) ≤ 2F(y, x), ∀x, y ≥ 0,
subdivision scheme (4.5) preserves convexity. A suitable ansatz therefore is

F(x, y) =
1

γ1
x + γ2

y

and for the parameter values γ1 = 6 and γ2 = 3 this scheme turns out to be
convexity preserving independent of the initial data. The numerical approach
sketched above indicates that this trinary subdivision scheme is also C2.

5. Six-point convexity preserving subdivision

Six-point convexity preserving interpolatory subdivision schemes are constructed
in this section, following the ideas presented in section 2.

Consider the class of subdivision schemes (2.2). We define function values f (k+1)
2i+1

as the two-point rational Hermite-interpolant, see (2.6), evaluated at the mid-
point x(k+1)

2i+1 (see also (2.7)). Hence,

f
(k)
2i+1 =

1
2

(
f

(k)
i + f

(k)
i+1

)
− 1

2
h(k) 1

1
∆f(k)

i −g̃
(k)
i

+ 1
g̃

(k)
i+1−∆f(k)

i

, (5.1)

where g̃(k)
j are estimates of derivatives.

In section 2, it is shown that if the derivative estimates are determined by the
two-point scheme on successive divided differences, this generates the convexity
preserving four-point scheme (4.2).
In addition, we suggested in section 2 to apply a four-point monotonicity preserv-
ing subdivision scheme. Such monotonicity preserving subdivision schemes have
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been proposed in [11], i.e., (4.3) with (4.4) as a class of C1 rational four-point
schemes, briefly written as:

g̃
(k)
i =M(∆f (k)

i−2,∆f
(k)
i−1,∆f

(k)
i ,∆f (k)

i+1).

As each derivative estimate then depends on five data points, the resulting sub-
division scheme becomes a six-point scheme. Note that this six-point scheme is
a Lagrange scheme and not a Hermite-interpolatory scheme, as the derivatives
change: e.g., g̃(k+1)

2i 6= g̃
(k)
i in general.

According to this construction and using the definitions (3.2) and (5.3), we finally
arrive at the derivative estimate:

g̃
(k)
i =

1
2

(
∆f (k)

i−1 + ∆f (k)
i

)
+

1
2
s

(k)
i G(q(k)

i−1, Q
(k)
i ), (5.2)

where the ratios q(k)
j are defined by

q
(k)
i =

s
(k)
i

s
(k)
i+1

and Q
(k)
i =

1

q
(k)
i

, (5.3)

and G is determined by e.g., (4.4). For these explicit derivative estimates, the
following theorem can be formulated:

Theorem 5.1. The stationary six-point interpolatory subdivision scheme

f
(k+1)
2i+1 =

1
2

(
f

(k)
i + f

(k)
i+1

)
− 1

4
h(k) 1

1

s
(k)
i

(
1−G(q(k)

i−1,Q
(k)
i )
) + 1

s
(k)
i+1

(
1+G(q(k)

i ,Q
(k)
i+1)
) (5.4)

preserves convexity. Furthermore, the scheme reproduces quadratic functions, it
generates C2 limit functions, and it has approximation order four.

Proof. Convexity preservation is easily checked from the construction and this
directly yields that the scheme converges and generates continuous limit func-
tions. Reproduction of quadratic polynomials is guaranteed, as then the ratios
q

(k)
i are equal to 1 and hence G = 0 in that case.

Further properties are not examined analytically, as the algebraic expressions
involved are too complicated. Using the numerical method from section 4, it is
shown that the scheme is C2: we obtained that the Hölder regularity is Hr =
2.392 . . . for all data sets.
A simple Taylor expansion on initial data and the stability of this scheme yields
that the scheme is fourth order accurate.
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It is briefly summarised why subdivision scheme (5.4) is believed to generate C2

limit functions:

• The numerical approach from section 4 gives the Hölder regularity Hr =
2.392 . . ..

• The linear six-point subdivision scheme (3.1) with w = 1/16 and θ = 1/128 is
constructed in a similar but linear way. This scheme is known to be C2, see
[5].

• The four-point interpolatory monotonicity preserving subdivision scheme is
applied to the divided differences, and this scheme is C1. Therefore, it is
reasonable that the resulting scheme for the function values is C2.

Note that the derivative estimate (5.2) with (4.4) is only second order accurate if
`1 + 2`2 + `3 = 6. For the case if `1 + 2`2 + `3 = 4, the estimate (5.2) with (4.4) is
easily checked to be fourth order accurate. Then, subdivision scheme (5.4) still
satisfies theorem 5.1. The numerical analysis shows that the regularity of the
scheme satisfies Hr = 2.63091 . . ., which indicates that a smoother scheme has
been obtained by the fourth order accurate derivative estimates.

6. Six-point monotonicity preserving subdivision

In this section we repeat the same constructive approach from the previous section
for the purpose of deriving a monotonicity preserving subdivision scheme that
generates C2 limit functions. The method is based on a monotonicity preserving
rational spline Hermite interpolant. For a suitable determination of the derivative
estimates, a positivity preserving four-point interpolatory subdivision scheme is
required. Therefore, positivity preserving subdivision is first discussed in section
6.1. Then, in section 6.2, the resulting subdivision schemes for positive data are
used to construct C2 monotonicity preserving subdivision schemes.

6.1. Positivity preserving interpolatory subdivision schemes

In this section positivity preserving interpolatory subdivision schemes are exam-
ined.
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The general class of four-point interpolatory positivity preserving subdivision
schemes is given by: {

f
(k+1)
2i = f

(k)
i ,

f
(k+1)
2i+1 = P(f (k)

i−1, f
(k)
i , f

(k)
i+1, f

(k)
i+2),

(6.1)

where the function P has to be further specified.
A simple class of schemes is given by two-point schemes that only depend on f (k)

i

and f (k)
i+1. The simplest two-point scheme is

f
(k+1)
2i+1 =

1
2

(
f

(k)
i + f

(k)
i+1

)
, (6.2)

which preserves convexity, monotonicity and positivity. However, the limit func-
tion is only continuous, as the scheme generates the piecewise linear interpolant
to the given data.
Another positivity preserving subdivision scheme is the scheme based on the
harmonic mean, see [1,7]:

f
(k+1)
2i+1 =

2f (k)
i f

(k)
i+1

f
(k)
i + f

(k)
i+1

. (6.3)

However, it can easily be proved that a two-point subdivision scheme cannot gen-
erate C1 limit functions. As the purpose is C1 positivity preserving subdivision
schemes, we therefore proceed with the construction of four-point schemes.

In contrast with convexity preserving subdivision and monotonicity preserving
subdivision, there are not many conditions and invariances that can be naturally
imposed on the function P to restrict the general class of schemes (6.1).
As in (6.3), the function P is assumed to be bilinear in the numerator and linear
in the denominator. In addition, P is assumed to satisfy the symmetry condition
P(f1, f2, f3, f4) = P(f4, f3, f2, f1). The functions P then automatically have the
property of homogeneity, i.e., P(λf1, λf2, λf3, λf4) = λP(f1, f2, f3, f4).
These observations suggest to restrict the function P to class

P(f1, f2, f3, f4) =
a1f2f3 + a2(f1f2 + f3f4) + a3(f1f3 + f2f4) + a4f1f4

a5(f2 + f3) + a6(f1 + f4)
, (6.4)

and this class of subdivision schemes is further restricted by additional conditions
on the coefficients aj in (6.4).
For linear subdivision schemes, exactness for linear polynomials is a necessary
condition for C1. Therefore, we assume that P in (6.4) satisfies the condition
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for reproduction of linear functions. This yields the following conditions on the
coefficients: a1 + 2a2 + 2a3 + a4 = 2a5 + 2a6 and a1 − 6a2 + 6a3 + 9a4 = 0.
A necessary condition for approximation order three is obtained by taking initial
data from a smooth function and requiring that the results after one subdivision
are third order accurate, which yields: 12a3 + 16a4 + 3a5 − 5a6 = 0. These three
conditions reduce P in (6.4) to a class of schemes that satisfies the necessary
condition on the initial data for approximation order four. Note that, no scheme
in this class reproduces quadratic functions.
Necessary and sufficient for preservation of positivity of subdivision scheme (6.1)
with (6.4) is that aj ≥ 0, j = 1, . . . 6, which respectively yields

4a4 + 9a5 + a6 ≥ 0, 8a4 + 3a5 + 11a6 ≥ 0, 5a6 − 3a5 − 16a4 ≥ 0, a4, a5, a6 ≥ 0.

In order to further simplify the class of subdivision schemes, we restrict to the
case a3 = 0 and a4 = 0, which then uniquely determines P:

P(f1, f2, f3, f4) = 2
6f2f3 + f2f1 + f3f4

5(f2 + f3) + 3(f1 + f4)
, (6.5)

and the following result is obtained:

Theorem 6.1. The stationary four-point interpolatory subdivision scheme (6.1)
with (6.5) reproduces linear polynomials and preserves positivity.
Furthermore, the scheme generates C1 limit functions and has approximation
order four.

Proof. Positivity preservation and reproduction of polynomials of degree one
follow from the construction.
The smoothness properties are examined numerically: the experiments based on
the approach in section 4 show that the regularity of the scheme is scheme is
Hr = 2.000 . . ., i.e., the scheme is almost C2. Numerical experiments show that
the approximation order is four.

Next, this monotonicity preserving subdivision scheme is used for the construction
of C2 monotonicity preserving subdivision schemes.
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6.2. Construction of C2 monotone schemes

The rational two-point Hermite interpolant in [8] that preserves monotonicity is
given by

ui(x) =
∆fifi+1t

2 + (figi+1 + fi+1gi) t(1− t) + ∆fifi(1− t)2

∆fit2 + (gi+1 + gi)t(1− t) + ∆fi(1− t)2 , (6.6)

This spline is evaluated at the parameter value x(k+1)
2i+1 , which generates the sub-

division scheme:

f
(k+1)
2i+1 =

1
2

(
f

(k)
i + f

(k)
i+1

)
+

1
2
h(k)∆f (k)

i

g̃
(k)
i − g̃

(k)
i+1

g̃
(k)
i + 2∆f (k)

i + g̃
(k)
i+1

. (6.7)

Estimating g̃(k)
j using two-point schemes yields monotonicity preserving subdivi-

sion schemes in the class (4.3) with (4.4). For example, determining g̃(k)
j using

(6.2) yields `1 = 6 and `2 = `3 = 0. Application of (6.3) for the derivative es-
timates gives `1 = `2 = 1 and `3 = 3. Both schemes are rational, stationary,
four-point C1 subdivision schemes that preserve monotonicity.
As in the previous section, for the construction of C2 shape preserving subdivision
schemes, four-point schemes are used to determine the derivative estimates, In
order to obtain a six-point scheme that preserves monotonicity, these derivative
estimates have to be calculated by a scheme that preserves positivity, i.e.,

g̃
(k)
j = P(∆f (k)

j−2,∆f
(k)
j−1,∆f

(k)
j ,∆f (k)

j+1)).

The positivity preserving subdivision scheme (6.1) with (6.5) is suited for this
purpose.
The resulting six-point monotonicity preserving subdivision scheme becomes:

f
(k+1)
2i+1 =

1
2

(
f

(k)
i + f

(k)
i+1

)
+

1
2
h(k)∆f (k)

i G(r(k)
i−1, r

(k)
i , R

(k)
i+1, R

(k)
i+2), (6.8)

where the function G is a complicated rational function with the following prop-
erty:

G(r1, r2, r2, r1) = 0. (6.9)

The following theorem can be formulated:

Theorem 6.2. The stationary six-point interpolatory subdivision scheme (6.8)
reproduces quadratic polynomials and preserves monotonicity.
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Furthermore, the scheme generates C2 limit functions and has approximation
order four.

Proof. Preservation of strict monotonicity is easily checked from the construc-
tion and this yields that the scheme converges and generates continuous limit
functions. Reproduction of linear polynomials is guaranteed, as then the ratios
r

(k)
i are equal to 1 and according to (6.9), G = 0 in that case. Straightforward

algebra shows that the scheme is also exact for quadratic polynomials.
The smoothness is examined numerically: using the numerical method described
in section 4, it has been obtained that the scheme is C2: the Hölder regularity
satisfies Hr = 2.392 . . ..
In addition, the approximation order equals four, which straightforwardly follows
from the stability of the scheme and approximation order four after one iteration,
see [9].

As in section 5, the derivatives are only estimated second order accurate. A pos-
itivity preserving scheme which yields fourth order accurate derivative estimates
is easily checked to be provided by the function

P(f1, f2, f3, f4) = 3
6f2f3 + f2f1 + f3f4

7(f2 + f3) + 5(f1 + f4)
.

Then, subdivision scheme (6.8) still satisfies theorem 6.2. The numerical analysis
shows that the regularity of the scheme satisfies Hr = 2.63091 . . ., which indicates
that a smoother scheme has been obtained by the fourth order accurate derivative
estimates.
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