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Abstract

We present an approximation algorithm for the maximization version of the
two level uncapacitated facility location problem achieving a performance guar-
antee of 0.47. The main idea is to reduce the problem to a special case of MAX
SAT, for which an approximation algorithm based on randomized rounding is
presented.
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1 Introduction

The two level uncapacitated facility location problem (two level UFLP), in the
maximization version, can be described as follows. There are two types of poten-
tial facility locations : the hub facilities, denoted by F and the transit facilities,
denoted by E. Building and opening the facility i ∈ F has an associated non-
negative cost fi and j ∈ E a nonnegative cost ej. There is also a set of clients,
D, who should be assigned to open pairs of facilities from F × E. If a client
k ∈ D is assigned to the pair (i, j), a profit cijk is incurred.The problem is to
decide simultaneously which facilities from F and which from E to open (at
least one from each set) and how to assign the clients to the open facilities, such
that the total profit is maximized.

Formally, the problem can be stated as

max
S1×S2⊆F×E

C(S1, S2) =
∑
k∈D

max
(i,j)∈S1×S2

cijk −
∑
i∈S1

fi −
∑
j∈S2

ej .

Denote by CR =
∑
k∈D

min(i,j)∈F×E cijk−
∑
i∈F

fi−
∑
j∈E

ej and by C∗ the optimal

value of the problem.
Throughout this paper, a ρ−approximation algorithm is a polynomial time

algorithm that always finds a feasible solution with objective function value at
least ρ times the optimum. The value ρ is called the performance guarantee of
the algorithm.
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If the set E is empty, one obtains the one level uncapacitated facility location
problem. Cornuejols, Fisher and Nemhauser [4] proved that for this NP-hard
problem a simple greedy algorithm finds a solution S such that

C(S)− CR ≥ (1− 1
e
)(C∗ − CR).

Recently, Ageev and Sviridenko, [2], improved the performance guarantee to
0.828. Their algorithm has two steps: in the first one they reduce the one level
uncapacitated facility location problem to a special case of the maximum satisfi-
ability problem (MAX SAT∗) and in the second they find an 0.828−approximation
algorithm for the MAX SAT∗ applying a generalization of the randomized al-
gorithm proposed in [6] for the general MAX SAT problem.

Being a generalization of the one level uncapacitated facility location prob-
lem, the two level UFLP is NP-hard as well .Only a few algorithms for the two
level UFLP have been developed ( see Aardal et al.[1] for a survey).The tech-
niques which have been used are branch-and-bound, Lagrangean relaxation,
cutting planes.

In this paper we describe a polynomial time approximation algorithm for
solving the two level UFLP problem based on the technique of randomized
rounding. We prove that the algorithm delivers a solution S1 × S2 ⊆ F × E
such that

C(S1, S2)− CR ≥ 0.47(C∗ − CR).

The algorithm is based on the observation that the two level UFLP in the
”shifted form”,i.e.

max
S1×S2⊆F×E

(C(S1, S2)− CR)

admits a two-way approximation preserving reduction to a special case of
MAX SAT.

2 Approximation preserving reductions between
two level UFLP and MAX SAT SP

In this section we present a way to reduce the two level UFLP problem to a
special case of MAX SAT,called MAX SAT SP and the reverse reduction, such
that the relative errors of the corresponding feasible solutions are preserved. The
reductions follow the same line as the reduction of the one level uncapacitated
facility location problem to MAX SAT, proposed by Ageev&Sviridenko in [2] .

We introduce a special subclass MAX SAT SP of the wellknown MAX SAT
problem.

In MAX SAT SP, there are two sets of boolean variables {y1,...ym} and
{z1,...,zn} and L sets I1,...,IL ,included in {1, ...,m} × {1, ..., n} .For each yi ,
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i = 1,m there is a clause of the form yi,of weight ui.Similarly, for each zj
, j = 1, n there is a clause of the form zj ,of weight vj .Finally, for each Il ,
l = 1, L, there is a clause of the form

∨
(i,j)∈Il

(yi ∧ zj) of weight wl.

Given m,n, the sets I1,...,IL , the weights wl, for l = 1, L, ui, for i = 1,m
and vj for j = 1, n ,one has to find an assignment of true values to y1,...ym and
to z1,...,zn maximizing the total weight of satisfied clauses.

In this paper we will identify the truth and false values with 1 and 0 respec-
tively. Then,

MAX SAT SP can be formulated as follows

max
y∈{0,1}m,
z∈{0,1}n

L∑
l=1

wl(
∨

(i,j)∈Il

(yi ∧ zj)) +
m∑
i=1

uiyi +
n∑
j=1

vjzj, (1)

Next we will present the reductions between the two level UFLP problem
and the MAX SAT SP.

Consider an instance of the two level UFLP problem.
For each k ∈ D, suppose that

ci1(k)j1(k)k ≥ ci2(k)j2(k)k ≥ ...cip(k)jp(k)k,

where p = |F | × |E| .
For every s ∈ {1, ...p} define the sets Isk as being the set of the s most

profitable pairs for k

Isk = {(i1(k), j1(k)), ..., (is(k), js(k))}
With each set defined above we associate a number wsk

wsk = cis(k)js(k)k − cis+1(k)js+1(k)k, for s ≤ p− 1

and

wpk = 0.

For the sets S1 ⊆ F and S2 ⊆ E let y = {y1,...ym} and z = {z1,...,zn} be the
incidence vectors of S1, respectively S2.The objective function of the two level
UFLP problem can be rewritten as

∑
k∈D

max
(i,j)∈S1×S2

cijk −
∑
i∈S1

fi −
∑
j∈S2

ej =
∑
k∈D

 p∑
s=1

wsk

 ∨
(i,j)∈Isk

(yi ∧ zj)

+ min
(i,j)∈F×E

cijk


+
∑
i∈F

fiyi +
∑
j∈E

ejzj −
∑
i∈F

fi −
∑
j∈E

ej

=
∑
k∈D

 p∑
s=1

wsk

 ∨
(i,j)∈Isk

(yi ∧ zj)

+
∑
i∈F

fiyi +
∑
j∈E

ejzj

+
∑
k∈D

min
(i,j)∈F×E

cijk −
∑
i∈F

fi −
∑
j∈E

ej.
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Hence,

C(S1, S2)− CR =
∑
k∈D

 p∑
s=1

wsk

 ∨
(i,j)∈Isk

(yi ∧ zj)

+
∑
i∈F

fiyi +
∑
j∈E

ejzj,

which implies that the two level UFLP problem reduces to MAX SAT SP in
the form (1).

The backward reduction is as follows. Let (m,n,L, I1,...,IL,
w1, ..., wL, u1...um, v1,...vn) be an instance of MAX SAT SP. If we apply to
the instance of the two level UFLP with F = {1, ...,m} , E = {1, ..., n} , D =
{1, ..., L} , fi = ui for i = 1,m, ej = vj for j = 1, n and

cijl =
{
wl if (i, j) ∈ Il
0 otherwise , for each l ∈ L and (i, j) ∈ F ×E

the reduction described previously, we will arrive to the original instance of
MAX SAT SP.

Thus, the described reductions between two level UFLP and MAX SAT SP
preserve relative errors of the corresponding feasible solutions.

3 An 0.47 approximation algorithm for MAX
SAT SP

In this section we will present a 0.47 approximation algorithm for MAX SAT
SP, based on independent randomized rounding.

The MAX SAT SP problem can be formulated as the following integer pro-
gram:

max
L∑
l=1

wltl +
m∑
i=1

ui(1− yi) +
n∑
j=1

vj(1− zj)

s.t. tl ≤
∑

(i,j)∈Il

xij , for each l = 1, ...L (2)

xij ≤ yi , for each i = 1, ...,m , j = 1, ..., n (3)
xij ≤ zj , for each i = 1, ...,m , j = 1, ..., n (4)
xij ∈ {0, 1} , for each i = 1, ...,m , j = 1, ..., n (6)
yi ∈ {0, 1} , for each i = 1, ...,m
zj ∈ {0, 1} , for each j = 1, ..., n
tl ∈ {0, 1} , for each l ∈ L

For each i = 1, ...,m , j = 1, ..., n the variable xij substitutes yi ∧ zj , i.e.
takes value 1 if both yi and zj are 1 and 0 otherwise. For each l = 1, ...L ,
the variable tl substitutes

∨
(i,j)∈Il

(yi ∧ zj) , so it takes value 1 if there is a pair
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(i, j) ∈ Il such that both yi and zj take value 1;if there is no such pair, tl will
be 0.

The Algorithm

We will consider the LP relaxation of the integer programming formulation
of MAX SAT SP with all variables taking values in the interval [0, 1].

Let (x̃, ỹ, z̃, t̃) be an optimal solution of the LP relaxation, and let C̃LP be
its optimal value, i.e.

C̃LP =
L∑
l=1

wlt̃l +
m∑
i=1

ui(1− ỹi) +
n∑
j=1

vj(1− z̃j).

Clearly, C̃LP is an upperbound of the optimal value of MAX SAT SP.
Consider a λ ∈ [0, 1] . Next the algorithm independently sets each yi to 1

with probability pi = (1−λ) +λỹi and to 0 with probability 1− pi = λ(1− ỹi).
Similarly, each zj will take value 1 with probability qj = (1−λ)+λz̃j and value
0 with probability 1 − qj = λ(1 − z̃j). For each (i, j) ∈ {1, ...,m} × {1, ..., n} ,
set xij to 1 if both yi and zj were set to 1. For each l ∈ {1, ..., L} , set tl to 1 if
there is a pair (i, j) ∈ Il such that xij was previously set to 1.

In this way we obtain for every value of λ in [0, 1]a feasible solution of the
integer program.

Denote with C(λ) the expected value of the algorithm. To prove the perfor-
mance guarantee of the algorithm we will compare C(λ) with C̃LP .

Theorem 1 The expected value of the algorithm is at least 0.47 C̃LP .

Proof

From the linearity of the expectation it follows

C(λ) =
L∑
l=1

wlProb(tl = 1) +
m∑
i=1

ui(1− Prob(yi = 1)) +
n∑
j=1

vj(1− Prob(zj = 1))

=
L∑
l=1

wlProb(tl = 1) + λ
m∑
i=1

ui(1− yi) + λ
n∑
j=1

vj(1− zj).

To calculate the probabilities that tl take value 1 we will study more cases,
dependent on the structure of the sets Il.The main idea is that the events of
choosing the value 0 or 1 for yi’s and zj’s are independent.

Case 1. Il = {(i, j)}

Prob(tl = 1) = Prob((yi = 1) ∧ (zj = 1)) = Prob(yi = 1)Prob(zj = 1)
= [(1− λ) + λỹi][(1− λ) + λz̃j ]
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Using the inequality

a+ b ≥ 2
√
ab

we can obtain the following lowerbound

Prob(tl = 1) ≥ 4(1− λ)λ
√
ỹiz̃j ≥ 4(1− λ)λt̃l

Case 2.Il = {(i, j1), ..., (i, js)} , s ≥ 2

Prob(tl = 1) = Prob(yi = 1)Prob((zj1 = 1) ∨ ... ∨ (zjs = 1))
= Prob(yi = 1)(1− Prob((zj1 = 0) ∧ ... ∧ (zjs = 0))

= Prob(yi = 1)(1−
s∏
q=1

Prob(zjq = 0))

= [(1− λ) + λỹi][1− λs
s∏
q=1

(1− z̃jq )]

The arithmetic/geometric mean inequality, applied to 1− z̃jq , q = 1, s gives

s∏
q=1

(1− z̃jq) ≤

1−

s∑
q=1

z̃jq

s


s

.

Hence, we obtain the following lowerbound for Prob(tl = 1) :

Prob(tl = 1) ≥ [(1− λ) + λỹi][1− λs

1−

s∑
q=1

z̃jq

s


s

].

The function f : [0, 1]→R defined by

f(x) = 1− a
(
1− x

s

)s
, where a ∈ [0, 1],

is concave. Observing that any x ∈ [0, 1] can be written as a convex combi-
nation between 0 and 1, the concavity of f implies

f(x) = f(1 ∗ x+ 0 ∗ (1− x)) ≥ x ∗ f(1) + (1− x) ∗ f(0).

From

f(0) = 1− a ≥ 0,

f(1) = 1− a
(

1− 1
s

)s
,

6



it follows that

f(x) ≥ [1− a
(

1− 1
s

)s
]x.

Substituting in this inequality a = λs, x =
s∑
q=1

z̃jq and taking into account

that by (2) and (4)
s∑
q=1

z̃jq ≥ t̃l,we obtain

1− λs

1−

s∑
q=1

z̃jq

s


s

≥ [1− λs
(

1− 1
s

)s
]
s∑
q=1

z̃jq ≥ [1− λs
(

1− 1
s

)s
]t̃l.

Thus, for this case the lowerbound for the probability of tl being 1 is:

Prob(tl = 1) ≥ [(1− λ) + λỹi][1− λs
(

1− 1
s

)s
]t̃l ≥ (1− λ)[1− λs

(
1− 1

s

)s
]t̃l.

Case 3. Il ⊇ {(i1, j1) , (i2, j2)} with i1 6= i2 and j1 6= j2.
In this case, the event that the pair (i1, j1) is open is independent of the

event that the pair (i2, j2) is open and consequently,

Prob(tl = 1) ≥ Prob [(yi1 = 1 ∧ zj1 = 1) ∨ (yi2 = 1 ∧ zj2 = 1)]
= Prob (yi1 = 1 ∧ zj1 = 1) + Prob (yi2 = 1 ∧ zj2 = 1)
− Prob (yi1 = 1 ∧ zj1 = 1) Prob (yi2 = 1 ∧ zj2 = 1)
= pi1qj1 + pi2qj2 − pi1qj1pi2qj2
≥ 2
√
pi1qj1pi2qj2 − pi1qj1pi2qj2 .

By the definition of pi and qj , pi ≥ 1 − λ and qj ≥ 1 − λ for each i and
j.Hence,

pi1qj1pi2qj2 ≥ (1− λ)4.

The function f : R+ →R+ defined by f(x) = 2
√
x−x is increasing on [0, 1],

which together with the inequality above implies that

Prob(tl = 1) ≥ 2
√

(1− λ)4 − (1− λ)4 ≥ [2(1− λ)2 − (1− λ)4]t̃l.

¿From the cases (1)− (3) it follows that for a λ ∈ [0, 1],

C(λ) ≥ min{λ, 4λ(1− λ), 2(1− λ)2 − (1− λ)4,min
s≥1

(1− λ)[1− λs
(

1− 1
s

)s
]}C̃LP .
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Hence, the performance guarantee of the algorithm is equal with

ρ = max
λ∈[0,1]

min{λ, 4λ(1− λ), 2(1− λ)2 − (1− λ)4,min
s≥1

(1− λ)[1− λs
(

1− 1
s

)s
]}

Using the fact that
(
1− 1

s

)s ≤ e−1, for every s ≥ 1, we obtain that ρ = 0.47,
for λ = 0.47.

�

Remark

The randomized algorithm presented above can be derandomized using the
method of conditional expectations [3]. The result is a deterministic algorithm
which finds in polynomial time a solution with a value at least 0.47 the optimum.
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