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Chordality and 2-factors in tough graphs
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Abstract

A graph G is chordal if it contains no chordless cycle of length at least four and is k-chordal
if a longest chordless cycle in G has length at most k. In this note it is proved that all 32 -tough
5-chordal graphs have a 2-factor. This result is best possible in two ways. Examples due to
Chv�atal show that for all �¿ 0 there exists a ( 32 − �)-tough chordal graph with no 2-factor.
Furthermore, examples due to Bauer and Schmeichel show that the result is false for 6-chordal
graphs. ? 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

We begin with a few de�nitions and some notation. Other de�nitions will be given
later, as needed. A good reference for any unde�ned terms is [7]. We consider only
undirected graphs with no loops or multiple edges. Let G be a graph. Then G is
hamiltonian if it has a Hamilton cycle, i.e., a cycle containing all of its vertices. It is
traceable if it has a path containing all of its vertices. Let !(G) denote the number of
components of G. Then G is t-tough if |S|¿t!(G−S) for every subset S of the vertex
set V of G with !(G − S)¿ 1. The toughness of G, denoted �(G), is the maximum
value of t for which G is t-tough (taking �(Kn) = (n− 1)=2 for all n¿1). A k-factor
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is a k-regular spanning subgraph. Of course, a Hamilton cycle is a 2-factor. We say
G is chordal if it contains no chordless cycle of length at least four and is k-chordal
if a longest chordless cycle in G has length at most k.
Our work was motivated by a desire to understand the relationship between the

toughness of a graph and its cycle structure. For a survey of recent work in this area,
see [3–5]. Toughness was introduced by Chv�atal in [9]. An obvious connection between
toughness and hamiltonicity is that being 1-tough is a necessary condition for a graph
to be hamiltonian. Chv�atal conjectured that there exists a �nite constant t0 such that
every t0-tough graph is hamiltonian. This conjecture is still open. Until recently it was
believed that the smallest value of t0 for which this might be true was t0 =2. We now
know this is false.

Theorem 1.1 (Bauer et al. [1]). For every �¿ 0; there exists a ( 94 − �)-tough non-
traceable graph.

Chv�atal also conjectured that every k-tough graph on n vertices with n¿k + 1 and
kn even has a k-factor. This was established in [10].

Theorem 1.2 (Enomoto et al. [10]). Let G be a k-tough graph on n vertices with
n¿k + 1 and kn even. Then G has a k-factor.

It was also shown in [10] that Theorem 1.2 is best possible.

Theorem 1.3 (Enomoto et al. [10]). Let k¿1. For any �¿ 0; there exists a (k − �)-
tough graph G on n vertices with n¿k + 1 and kn even which has no k-factor.

The above results imply that while 2-tough graphs have 2-factors, there exists an
in�nite sequence of graphs without 2-factors having toughness approaching 2. In [11]
it was shown that a similar statement holds for split graphs. A graph G is called a
split graph if its vertices can be partitioned into an independent set and a clique.

Theorem 1.4 (Kratsch et al. [11]). Every 3
2 -tough split graph is Hamiltonian.

In [9, p. 223], Chv�atal found a sequence {Gn}∞n=1 of non-2-factorable graphs with
�(Gn)→ 3

2 . These graphs were in fact split graphs.

Theorem 1.5. There is a sequence {Gn}∞n=1 of non-2-factorable split graphs with
�(Gn)→ 3

2 .

In this note we prove that all 3
2 -tough chordal graphs have a 2-factor. In fact we

prove a bit more.

Theorem 1.6. Let G be a 3
2 -tough 5-chordal graph. Then G has a 2-factor.
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Since all split graphs are chordal, the graphs Chv�atal constructed in [9] are also
chordal. Thus Theorem 1.6 is best possible with respect to toughness. Furthermore, the
graphs Gl;m in [2, p. 251] are 6-chordal graphs without a 2-factor. By choosing l and
m large the toughness of these graphs can be made to approach 2 from below. Note
that Theorem 1.6 is in some sense the de�nitive result of the form “If G is a t-tough
k-chordal graph, then G has a 2-factor”: it follows from the examples in [9] that this
is false for t ¡ 3

2 and any k, by Theorem 1.2 it is true for t¿2 and any k, and from
the examples in [2] it follows that for 3

26t ¡ 2 the best one can hope for is a result
with k = 5.
Unlike the case with split graphs, however, it is not true that all 3

2 -tough chordal
graphs are hamiltonian.

Theorem 1.7 (Bauer et al. [1]). For every �¿ 0 there exists a ( 74 − �)-tough chordal
nontraceable graph.

Recently, Chen et al. [8] have shown that every 18-tough chordal graph is
hamiltonian. We now conjecture the following.

Conjecture. Every 2-tough chordal graph is hamiltonian and for every �¿ 0 there
exists a (2− �)-tough chordal nonhamiltonian graph.

Returning to 2-factors, it is natural to ask how large the minimum vertex degree
of a t-tough (16t ¡ 2) graph can be, if the graph contains no 2-factor. This problem
was answered in [2] for 16t6 3

2 and for in�nitely many t satisfying
3
26t ¡ 2. A key

lemma (Lemma 8) in [2] is the basis for the proof of our main result. Of course,
any paper dealing with su�cient conditions for a graph to have a regular factor relies
heavily on a well-known theorem of Belck [6] and Tutte [12]. This result is given in
Section 2. The proof of our main result appears in Section 3.

2. Preliminary results

Let G be a graph. If A and B are subsets of V or subgraphs of G, and v ∈ V , we
use e(v; B) to denote the number of edges joining v to a vertex of B, and e(A; B) to
denote

∑
v∈A e(v; B). We use 〈A〉 to denote the subgraph of G induced by A. A vertex

v ∈ V will be called complete if v is adjacent to every other vertex in V , and is called
simplicial if the subgraph induced by the neighborhood of v is complete.
Our proof of Theorem 1.6 relies heavily on a theorem that characterizes those graphs

not containing a 2-factor. This theorem is a special case of the theorems of Belck [6]
and Tutte [12]. For disjoint subsets A; B of V (G) let odd (A; B) denote the number of
components H of G − (A ∪ B) with e(H; B) odd, and let

�(A; B) = 2|A|+
∑

y∈B
dG−A(y)− 2|B| − odd(A; B):
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Theorem 2.1 (Belck [6] and Tutte [12]). Let G be any graph. Then
(i) for any disjoint sets A; B⊆V (G); �(A; B) is even;
(ii) the graph G does not contain a 2-factor if and only if �(A; B)6− 2 for some

disjoint pair of sets A; B⊆V (G).

We call a pair (A; B) of disjoint subsets of V (G) with �(A; B)6− 2 a Tutte pair
for G. Note that in any Tutte pair (A; B) for G we have B 6= ∅, since by de�nition∑

y∈B dG−A(y)¿ odd (A; B) and so �(A; B)6 − 2 implies |B|¿ |A|¿0. We de�ne a
Tutte pair (A; B) to be minimal if �(A; B′)¿0 for any proper subset B′ ⊆B. Clearly
any graph without a 2-factor contains a minimal Tutte pair.
The next lemma follows easily from a result in [10]. The proof also appears in [2].

Lemma 2.2. Let G be a graph having no 2-factor. If (A; B) is a minimal Tutte pair
for G; then B is an independent set.

To facilitate the proof in the next section we de�ne a Tutte pair (A; B) to be a strong
Tutte pair if B is an independent set.

3. Proof of Theorem 1.6

We begin with the following lemma, which is also implicit in [2].

Lemma 3.1. Let v be a simplicial vertex in a non-complete graph G. Then �(G−v)¿
�(G).

Proof. First denote G − v by Gv. Note that if Gv is complete, then

�(Gv) =
|V (Gv)| − 1

2
=

|V (G)| − 2
2

¿�(G):

Suppose �(Gv)¡�(G). Then there exists X ⊆V (Gv) such that !(Gv − X )¿2 and
|X |=!(Gv − X )¡�(G). However !(G− X )¿!(Gv − X )¿2, since the neighbors of v
in G induce a complete subgraph. But this gives |X |=!(G−X )6|X |=!(Gv−X )¡�(G),
a contradiction.

Proof of Theorem 1.6. Let G be a 3
2 -tough 5-chordal graph having no 2-factor and

(A; B) be a strong Tutte pair for G, existing by Lemma 2.2. Thus �(A; B)6− 2. Let
C=V (G)−(A∪B). Since B is an independent set of vertices, ∑y∈B dG−A(y)=e(B; C).
Hence by Theorem 2.1,

2|A|+ e(B; C)62|B|+ odd(A; B)− 2: (1)

Among all possible choices, we choose G and the strong Tutte pair (A; B) as follows:
(i) |V (G)| is minimal;
(ii) |E(G)| is maximal, subject to (i);
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(iii) |B| is minimal, subject to (i) and (ii);
(iv) |A| is maximal, subject to (i)–(iii).

We now show that G has properties (a)–(g) below.

(a) For any x ∈ B and any component H of 〈C〉; e(x; H)61.
Proof of (a): Let x ∈ B with dG−A(x) = k, and let C1; C2; : : : ; Cj denote the compo-

nents of 〈C〉 to which x is adjacent. If j6k−1; delete x from B and add x to C (thus
rede�ning B and C). Since odd (A; B) has decreased by at most j6k − 1, it is easy
to check that �(A; B) has increased by at most 1. Thus, we still have �(A; B)6 − 2
(by Theorem 2.1(i)) and we contradict (iii).

(b) The vertices of A are complete.
Proof of (b): If not, form a new graph G′ by adding the edges required to make

the vertices of A complete. Clearly G′ is still 32 -tough and (A; B) is still a strong Tutte
pair for G′. Obviously, no chordless cycle of G′ can contain a vertex of A. Since G
is 5-chordal, it follows that G′ is also 5-chordal. Thus we contradict (ii).

(c) For any y ∈ C; e(y; B)61.
Proof of (c): Suppose that e(y; B)¿2 for some y ∈ C. Delete y from C and add y

to A (thus rede�ning A and C). It is easy to check that (A; B) remains a strong Tutte
pair. Thus we contradict (iv).

(d) Each component of 〈C〉 is a complete graph.
Proof of (d): If not, form a new graph G′ by adding the edges required to make

each component C1; C2; : : : ; Cs of 〈C〉 a complete graph. Clearly, G′ is still 3=2-tough
and (A; B) is still a strong Tutte pair for G′. Assuming G′ is not 5-chordal, let C∗ be a
shortest chordless cycle in G′ of length at least 6. Clearly C∗ can not contain a vertex
of A, nor can it have more than two vertices from any component of 〈C〉. Since B is
independent, C∗ is of the form

C∗ : b1T ′
1b2T

′
2 · · · bkT ′

kb1;

where, for 16i6k, each T ′
i represents an edge t

1
i t
2
i of a component Ci in G

′.
Form the cycle C∗∗ in G by taking C∗ and substituting Ti for T ′

i (16i6k), where
Ti is a shortest t1i − t2i path in Ci in G. The graph G is 5-chordal, so C∗∗ has a
chord. Since any chord of C∗∗ must join a vertex of B and a vertex of C and C∗ is
a chordless cycle in G′, we may assume, without loss of generality, that there exists a
chord b1u of C∗∗ such that
• u is an internal vertex of some Ti, say of Tm, and
• the cycle b1T1b2T2 · · · bmUb1, where U is the t1m − u subpath of Tm, is chordless.
By (a) we have 1¡m¡k. But then b1T ′

1b2T
′
2 · · · bmt1mub1 is a chordless cycle in G′

of length at least 6 which is shorter than C∗, contradicting the choice of C∗. Thus G′

is 5-chordal and we contradict (ii).

(e) For any y ∈ C; e(y; B) = 1 (and thus e(B; C) = |C|).
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Proof of (e): Suppose now that C contains a vertex y with e(y; B)= 0. It follows
from (b) and (d) that v is simplicial. Hence by Lemma 3.1, �(G− y)¿�(G). Further-
more, (A; B) is still a strong Tutte pair for the 5-chordal graph G − y. Hence, by (i),
the graph G − y contradicts the choice of G.
(f) |B|¿2.
Proof of (f): We saw earlier that |B|¿ |A|¿0, and so |B|¿1. Suppose B = {x}.

Since (A; B) is a Tutte pair with |B|= 1 and |A|= 0, we have e(B; C)6odd(A; B) by
(1). If e(B; C)¿2, then !(G−B)¿odd(A; B)¿e(B; C)¿2¿ |B|, and G is not 1-tough.
If e(B; C) = 1, then G is not 1-tough either. Hence |B|¿2.
(g) odd (A; B) = !(〈C〉).
Proof of (g): Suppose there exists a component Ci in 〈C〉 with e(Ci; B) = |Ci|, an

even integer. Let y be any vertex in Ci. Add y to A, thus rede�ning A and C. It is
easy to see that (A; B) is still a strong Tutte pair for G. Thus we contradict (iv).
Hence G and its minimal Tutte pair (A; B) have properties (a)–(g). Set s=!(〈C〉)=

odd (A; B).
Consider the components C1; C2; : : : ; Cs of 〈C〉 and let yj ∈ V (Cj). De�ne X =

A ∪ C − {y1; : : : ; ys}. Since B is independent and e(yi; B) = 1 for 16i6s, we have
!(G− X ) = |B|¿2. For convenience let a= |A|; b= |B| and c= |C|. Using properties
(e), (g) and inequality (1), we have

3
2
6

|X |
!(G − X ) =

a+ c − s
b

=
a+ e(B; C)− odd(A; B)

b
6
2b− a− 2

b
:

Hence

b¿2a+ 4: (2)

To complete the proof we establish the following.

Claim. b¿c − s+ 1.

Once the claim is established, it follows that

3
2
6

|X |
!(G − X ) =

a+ c − s
b

6
a+ b− 1

b
:

Thus

b62a− 2: (3)

The fact that (2) and (3) are contradictory completes the argument.

Proof of Claim. Form a bipartite graph F from G by deleting A and contracting each
component of 〈C〉 into a single vertex. By (a), F has no multiple edges. The key
observation is that since G is 5-chordal, F is a forest. Otherwise, let CF be a shortest
cycle in F . Then CF is of the form

CF : b1T1b2T2 · · · bpTpb1;



D. Bauer et al. / Discrete Applied Mathematics 99 (2000) 323–329 329

where each Ti; 16i6p, represents the contracted component Ci. By (d) and (e), it
follows that the 2 edges incident with each Ti in CF correspond to edges bit1i ; bi+1t

2
i ,

where t1i t
2
i is an edge in Ci. It follows that G has a chordless cycle of length at least 6,

a contradiction.
Hence

∑

v∈C
dF(v) = c = |E(F)|6|V (F)| − 1 = b+ s− 1:

Thus b+ s− 1¿c and the claim is established.
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