DISCRETE
APPLIED
MATHEMATICS

Chordality and 2-factors in tough graphs

D. Bauer ${ }^{\text {a, }, 1}$, G.Y. Katona ${ }^{\text {b, } 2}$, D. Kratsch ${ }^{\text {c }}$, H.J. Veldman ${ }^{\text {d,1 }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
${ }^{\mathrm{b}}$ Mathematical Institute of the Hungarian Academy of Sciences, H-1364 Budapest POB 127, Reáltanoda u. 13-15, Hungary
${ }^{\text {c }}$ Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany
${ }^{\mathrm{d}}$ Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands

Received 30 September 1997; received in revised form 29 January 1998; accepted 9 March 1999

Abstract

A graph G is chordal if it contains no chordless cycle of length at least four and is k-chordal if a longest chordless cycle in G has length at most k. In this note it is proved that all $\frac{3}{2}$-tough 5 -chordal graphs have a 2 -factor. This result is best possible in two ways. Examples due to Chvátal show that for all $\varepsilon>0$ there exists a ($\frac{3}{2}-\varepsilon$)-tough chordal graph with no 2 -factor. Furthermore, examples due to Bauer and Schmeichel show that the result is false for 6 -chordal graphs. © 2000 Elsevier Science B.V. All rights reserved.

MSC: 68R10; 05C38
Keywords: Toughness; 2-factors; Chordal graphs

1. Introduction

We begin with a few definitions and some notation. Other definitions will be given later, as needed. A good reference for any undefined terms is [7]. We consider only undirected graphs with no loops or multiple edges. Let G be a graph. Then G is hamiltonian if it has a Hamilton cycle, i.e., a cycle containing all of its vertices. It is traceable if it has a path containing all of its vertices. Let $\omega(G)$ denote the number of components of G. Then G is t-tough if $|S| \geqslant t \omega(G-S)$ for every subset S of the vertex set V of G with $\omega(G-S)>1$. The toughness of G, denoted $\tau(G)$, is the maximum value of t for which G is t-tough (taking $\tau\left(K_{n}\right)=(n-1) / 2$ for all $n \geqslant 1$). A k-factor

[^0]is a k-regular spanning subgraph. Of course, a Hamilton cycle is a 2 -factor. We say G is chordal if it contains no chordless cycle of length at least four and is k-chordal if a longest chordless cycle in G has length at most k.

Our work was motivated by a desire to understand the relationship between the toughness of a graph and its cycle structure. For a survey of recent work in this area, see [3-5]. Toughness was introduced by Chvátal in [9]. An obvious connection between toughness and hamiltonicity is that being 1-tough is a necessary condition for a graph to be hamiltonian. Chvátal conjectured that there exists a finite constant t_{0} such that every t_{0}-tough graph is hamiltonian. This conjecture is still open. Until recently it was believed that the smallest value of t_{0} for which this might be true was $t_{0}=2$. We now know this is false.

Theorem 1.1 (Bauer et al. [1]). For every $\varepsilon>0$, there exists a $\left(\frac{9}{4}-\varepsilon\right)$-tough nontraceable graph.

Chvátal also conjectured that every k-tough graph on n vertices with $n \geqslant k+1$ and $k n$ even has a k-factor. This was established in [10].

Theorem 1.2 (Enomoto et al. [10]). Let G be a k-tough graph on n vertices with $n \geqslant k+1$ and $k n$ even. Then G has a k-factor.

It was also shown in [10] that Theorem 1.2 is best possible.
Theorem 1.3 (Enomoto et al. [10]). Let $k \geqslant 1$. For any $\varepsilon>0$, there exists $a(k-\varepsilon)$ tough graph G on n vertices with $n \geqslant k+1$ and $k n$ even which has no k-factor.

The above results imply that while 2 -tough graphs have 2 -factors, there exists an infinite sequence of graphs without 2 -factors having toughness approaching 2. In [11] it was shown that a similar statement holds for split graphs. A graph G is called a split graph if its vertices can be partitioned into an independent set and a clique.

Theorem 1.4 (Kratsch et al. [11]). Every $\frac{3}{2}$-tough split graph is Hamiltonian.
In [9, p. 223], Chvátal found a sequence $\left\{G_{n}\right\}_{n=1}^{\infty}$ of non-2-factorable graphs with $\tau\left(G_{n}\right) \rightarrow \frac{3}{2}$. These graphs were in fact split graphs.

Theorem 1.5. There is a sequence $\left\{G_{n}\right\}_{n=1}^{\infty}$ of non-2-factorable split graphs with $\tau\left(G_{n}\right) \rightarrow \frac{3}{2}$.

In this note we prove that all $\frac{3}{2}$-tough chordal graphs have a 2 -factor. In fact we prove a bit more.

Theorem 1.6. Let G be a $\frac{3}{2}$-tough 5-chordal graph. Then G has a 2-factor.

Since all split graphs are chordal, the graphs Chvátal constructed in [9] are also chordal. Thus Theorem 1.6 is best possible with respect to toughness. Furthermore, the graphs $G_{l, m}$ in [2, p. 251] are 6-chordal graphs without a 2 -factor. By choosing l and m large the toughness of these graphs can be made to approach 2 from below. Note that Theorem 1.6 is in some sense the definitive result of the form "If G is a t-tough k-chordal graph, then G has a 2-factor": it follows from the examples in [9] that this is false for $t<\frac{3}{2}$ and any k, by Theorem 1.2 it is true for $t \geqslant 2$ and any k, and from the examples in [2] it follows that for $\frac{3}{2} \leqslant t<2$ the best one can hope for is a result with $k=5$.

Unlike the case with split graphs, however, it is not true that all $\frac{3}{2}$-tough chordal graphs are hamiltonian.

Theorem 1.7 (Bauer et al. [1]). For every $\varepsilon>0$ there exists $a\left(\frac{7}{4}-\varepsilon\right)$-tough chordal nontraceable graph.

Recently, Chen et al. [8] have shown that every 18 -tough chordal graph is hamiltonian. We now conjecture the following.

Conjecture. Every 2-tough chordal graph is hamiltonian and for every $\varepsilon>0$ there exists $a(2-\varepsilon)$-tough chordal nonhamiltonian graph.

Returning to 2 -factors, it is natural to ask how large the minimum vertex degree of a t-tough $(1 \leqslant t<2)$ graph can be, if the graph contains no 2 -factor. This problem was answered in [2] for $1 \leqslant t \leqslant \frac{3}{2}$ and for infinitely many t satisfying $\frac{3}{2} \leqslant t<2$. A key lemma (Lemma 8) in [2] is the basis for the proof of our main result. Of course, any paper dealing with sufficient conditions for a graph to have a regular factor relies heavily on a well-known theorem of Belck [6] and Tutte [12]. This result is given in Section 2. The proof of our main result appears in Section 3.

2. Preliminary results

Let G be a graph. If A and B are subsets of V or subgraphs of G, and $v \in V$, we use $e(v, B)$ to denote the number of edges joining v to a vertex of B, and $e(A, B)$ to denote $\sum_{v \in A} e(v, B)$. We use $\langle A\rangle$ to denote the subgraph of G induced by A. A vertex $v \in V$ will be called complete if v is adjacent to every other vertex in V, and is called simplicial if the subgraph induced by the neighborhood of v is complete.

Our proof of Theorem 1.6 relies heavily on a theorem that characterizes those graphs not containing a 2 -factor. This theorem is a special case of the theorems of Belck [6] and Tutte [12]. For disjoint subsets A, B of $V(G)$ let odd (A, B) denote the number of components H of $G-(A \cup B)$ with $e(H, B)$ odd, and let

$$
\Theta(A, B)=2|A|+\sum_{y \in B} d_{G-A}(y)-2|B|-\operatorname{odd}(A, B) .
$$

Theorem 2.1 (Belck [6] and Tutte [12]). Let G be any graph. Then
(i) for any disjoint sets $A, B \subseteq V(G), \Theta(A, B)$ is even;
(ii) the graph G does not contain a 2-factor if and only if $\Theta(A, B) \leqslant-2$ for some disjoint pair of sets $A, B \subseteq V(G)$.

We call a pair (A, B) of disjoint subsets of $V(G)$ with $\Theta(A, B) \leqslant-2$ a Tutte pair for G. Note that in any Tutte pair (A, B) for G we have $B \neq \emptyset$, since by definition $\sum_{y \in B} d_{G-A}(y) \geqslant \operatorname{odd}(A, B)$ and so $\Theta(A, B) \leqslant-2$ implies $|B|>|A| \geqslant 0$. We define a Tutte pair (A, B) to be minimal if $\Theta\left(A, B^{\prime}\right) \geqslant 0$ for any proper subset $B^{\prime} \subseteq B$. Clearly any graph without a 2 -factor contains a minimal Tutte pair.

The next lemma follows easily from a result in [10]. The proof also appears in [2].

Lemma 2.2. Let G be a graph having no 2-factor. If (A, B) is a minimal Tutte pair for G, then B is an independent set.

To facilitate the proof in the next section we define a Tutte pair (A, B) to be a strong Tutte pair if B is an independent set.

3. Proof of Theorem 1.6

We begin with the following lemma, which is also implicit in [2].
Lemma 3.1. Let v be a simplicial vertex in a non-complete graph G. Then $\tau(G-v) \geqslant$ $\tau(G)$.

Proof. First denote $G-v$ by G_{v}. Note that if G_{v} is complete, then

$$
\tau\left(G_{v}\right)=\frac{\left|V\left(G_{v}\right)\right|-1}{2}=\frac{|V(G)|-2}{2} \geqslant \tau(G) .
$$

Suppose $\tau\left(G_{v}\right)<\tau(G)$. Then there exists $X \subseteq V\left(G_{v}\right)$ such that $\omega\left(G_{v}-X\right) \geqslant 2$ and $|X| / \omega\left(G_{v}-X\right)<\tau(G)$. However $\omega(G-X) \geqslant \omega\left(G_{v}-X\right) \geqslant 2$, since the neighbors of v in G induce a complete subgraph. But this gives $|X| / \omega(G-X) \leqslant|X| / \omega\left(G_{v}-X\right)<\tau(G)$, a contradiction.

Proof of Theorem 1.6. Let G be a $\frac{3}{2}$-tough 5 -chordal graph having no 2 -factor and (A, B) be a strong Tutte pair for G, existing by Lemma 2.2. Thus $\Theta(A, B) \leqslant-2$. Let $C=V(G)-(A \cup B)$. Since B is an independent set of vertices, $\sum_{y \in B} d_{G-A}(y)=e(B, C)$. Hence by Theorem 2.1,

$$
\begin{equation*}
2|A|+e(B, C) \leqslant 2|B|+\operatorname{odd}(A, B)-2 . \tag{1}
\end{equation*}
$$

Among all possible choices, we choose G and the strong Tutte pair (A, B) as follows:
(i) $|V(G)|$ is minimal;
(ii) $|E(G)|$ is maximal, subject to (i);
(iii) $|B|$ is minimal, subject to (i) and (ii);
(iv) $|A|$ is maximal, subject to (i)-(iii).

We now show that G has properties (a)-(g) below.
(a) For any $x \in B$ and any component H of $\langle C\rangle, e(x, H) \leqslant 1$.

Proof of (a) : Let $x \in B$ with $d_{G-A}(x)=k$, and let $C_{1}, C_{2}, \ldots, C_{j}$ denote the components of $\langle C\rangle$ to which x is adjacent. If $j \leqslant k-1$, delete x from B and add x to C (thus redefining B and C). Since odd (A, B) has decreased by at most $j \leqslant k-1$, it is easy to check that $\Theta(A, B)$ has increased by at most 1 . Thus, we still have $\Theta(A, B) \leqslant-2$ (by Theorem 2.1(i)) and we contradict (iii).
(b) The vertices of A are complete.

Proof of (b) : If not, form a new graph G^{\prime} by adding the edges required to make the vertices of A complete. Clearly G^{\prime} is still $\frac{3}{2}$-tough and (A, B) is still a strong Tutte pair for G^{\prime}. Obviously, no chordless cycle of G^{\prime} can contain a vertex of A. Since G is 5 -chordal, it follows that G^{\prime} is also 5 -chordal. Thus we contradict (ii).
(c) For any $y \in C, e(y, B) \leqslant 1$.

Proof of (c) : Suppose that $e(y, B) \geqslant 2$ for some $y \in C$. Delete y from C and add y to A (thus redefining A and C). It is easy to check that (A, B) remains a strong Tutte pair. Thus we contradict (iv).
(d) Each component of $\langle C\rangle$ is a complete graph.

Proof of (d) : If not, form a new graph G^{\prime} by adding the edges required to make each component $C_{1}, C_{2}, \ldots, C_{s}$ of $\langle C\rangle$ a complete graph. Clearly, G^{\prime} is still 3/2-tough and (A, B) is still a strong Tutte pair for G^{\prime}. Assuming G^{\prime} is not 5 -chordal, let C^{*} be a shortest chordless cycle in G^{\prime} of length at least 6 . Clearly C^{*} can not contain a vertex of A, nor can it have more than two vertices from any component of $\langle C\rangle$. Since B is independent, C^{*} is of the form

$$
C^{*}: b_{1} T_{1}^{\prime} b_{2} T_{2}^{\prime} \cdots b_{k} T_{k}^{\prime} b_{1}
$$

where, for $1 \leqslant i \leqslant k$, each T_{i}^{\prime} represents an edge $t_{i}^{1} t_{i}^{2}$ of a component C_{i} in G^{\prime}.
Form the cycle $C^{* *}$ in G by taking C^{*} and substituting T_{i} for $T_{i}^{\prime}(1 \leqslant i \leqslant k)$, where T_{i} is a shortest $t_{i}^{1}-t_{i}^{2}$ path in C_{i} in G. The graph G is 5 -chordal, so $C^{* *}$ has a chord. Since any chord of $C^{* *}$ must join a vertex of B and a vertex of C and C^{*} is a chordless cycle in G^{\prime}, we may assume, without loss of generality, that there exists a chord $b_{1} u$ of $C^{* *}$ such that

- u is an internal vertex of some T_{i}, say of T_{m}, and
- the cycle $b_{1} T_{1} b_{2} T_{2} \cdots b_{m} U b_{1}$, where U is the $t_{m}^{1}-u$ subpath of T_{m}, is chordless.

By (a) we have $1<m<k$. But then $b_{1} T_{1}^{\prime} b_{2} T_{2}^{\prime} \cdots b_{m} t_{m}^{1} u b_{1}$ is a chordless cycle in G^{\prime} of length at least 6 which is shorter than C^{*}, contradicting the choice of C^{*}. Thus G^{\prime} is 5 -chordal and we contradict (ii).
(e) For any $y \in C, e(y, B)=1$ (and thus $e(B, C)=|C|)$.

Proof of (e) : Suppose now that C contains a vertex y with $e(y, B)=0$. It follows from (b) and (d) that v is simplicial. Hence by Lemma 3.1, $\tau(G-y) \geqslant \tau(G)$. Furthermore, (A, B) is still a strong Tutte pair for the 5 -chordal graph $G-y$. Hence, by (i), the graph $G-y$ contradicts the choice of G.
(f) $|B| \geqslant 2$.

Proof of (f) : We saw earlier that $|B|>|A| \geqslant 0$, and so $|B| \geqslant 1$. Suppose $B=\{x\}$. Since (A, B) is a Tutte pair with $|B|=1$ and $|A|=0$, we have $e(B, C) \leqslant \operatorname{odd}(A, B)$ by (1). If $e(B, C) \geqslant 2$, then $\omega(G-B) \geqslant \operatorname{odd}(A, B) \geqslant e(B, C) \geqslant 2>|B|$, and G is not 1-tough. If $e(B, C)=1$, then G is not 1-tough either. Hence $|B| \geqslant 2$.
(g) odd $(A, B)=\omega(\langle C\rangle)$.
Proof of (g) : Suppose there exists a component C_{i} in $\langle C\rangle$ with $e\left(C_{i}, B\right)=\left|C_{i}\right|$, an even integer. Let y be any vertex in C_{i}. Add y to A, thus redefining A and C. It is easy to see that (A, B) is still a strong Tutte pair for G. Thus we contradict (iv).

Hence G and its minimal Tutte pair (A, B) have properties (a) $-(\mathrm{g})$. Set $s=\omega(\langle C\rangle)=$ odd (A, B).

Consider the components $C_{1}, C_{2}, \ldots, C_{s}$ of $\langle C\rangle$ and let $y_{j} \in V\left(C_{j}\right)$. Define $X=$ $A \cup C-\left\{y_{1}, \ldots, y_{s}\right\}$. Since B is independent and $e\left(y_{i}, B\right)=1$ for $1 \leqslant i \leqslant s$, we have $\omega(G-X)=|B| \geqslant 2$. For convenience let $a=|A|, b=|B|$ and $c=|C|$. Using properties (e), (g) and inequality (1), we have

$$
\frac{3}{2} \leqslant \frac{|X|}{\omega(G-X)}=\frac{a+c-s}{b}=\frac{a+e(B, C)-\operatorname{odd}(A, B)}{b} \leqslant \frac{2 b-a-2}{b} .
$$

Hence

$$
\begin{equation*}
b \geqslant 2 a+4 . \tag{2}
\end{equation*}
$$

To complete the proof we establish the following.
Claim. $b \geqslant c-s+1$.

Once the claim is established, it follows that

$$
\frac{3}{2} \leqslant \frac{|X|}{\omega(G-X)}=\frac{a+c-s}{b} \leqslant \frac{a+b-1}{b} .
$$

Thus

$$
\begin{equation*}
b \leqslant 2 a-2 \tag{3}
\end{equation*}
$$

The fact that (2) and (3) are contradictory completes the argument.
Proof of Claim. Form a bipartite graph F from G by deleting A and contracting each component of $\langle C\rangle$ into a single vertex. By (a), F has no multiple edges. The key observation is that since G is 5 -chordal, F is a forest. Otherwise, let C_{F} be a shortest cycle in F. Then C_{F} is of the form

$$
C_{F}: b_{1} T_{1} b_{2} T_{2} \cdots b_{p} T_{p} b_{1}
$$

where each $T_{i}, 1 \leqslant i \leqslant p$, represents the contracted component C_{i}. By (d) and (e), it follows that the 2 edges incident with each T_{i} in C_{F} correspond to edges $b_{i} t_{i}^{1}, b_{i+1} t_{i}^{2}$, where $t_{i}^{1} t_{i}^{2}$ is an edge in C_{i}. It follows that G has a chordless cycle of length at least 6 , a contradiction.

Hence

$$
\sum_{v \in C} d_{F}(v)=c=|E(F)| \leqslant|V(F)|-1=b+s-1
$$

Thus $b+s-1 \geqslant c$ and the claim is established.

References

[1] D. Bauer, H.J. Broersma, H.J. Veldman, Not every 2-tough graph is hamiltonian, Discrete Appl. Math., this volume.
[2] D. Bauer, E. Schmeichel, Toughness, minimum degree and the existence of 2-factors, J. Graph Theory 18(3) (1994) 241-256.
[3] D. Bauer, E. Schmeichel, H.J. Veldman, Some recent results on long cycles in tough graphs, in: Y. Alavi, G. Chartrand, O.R. Oellermann, A.J. Schwenk (Eds.), Graph Theory, Combinatorics, and Applications - Proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs, Wiley, New York, 1991, pp. 113-121.
[4] D. Bauer, E. Schmeichel, H.J. Veldman, Cycles in tough graphs - updating the last four years, in: Y. Alavi, A.J. Schwenk (Eds.), Graph Theory, Combinatorics, and Applications - Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs, Wiley, New York, 1995, pp. 19-34.
[5] D. Bauer, E. Schmeichel, H.J. Veldman, Progress on tough graphs - another four years, in: Graph Theory, Combinatorics, and Applications - Proceedings of the Eighth Quadrennial International Conference on the Theory and Applications of Graphs.
[6] H.B. Belck, Reguläre Faktoren von Graphen, J. Reine Angew. Math. 188 (1950) 228-252.
[7] G. Chartrand, L. Lesniak, Graphs and Digraphs, Chapman \& Hall, London, 1996.
[8] G. Chen, M.S. Jacobson, A.E. Kézdy, J. Lehel, Tough enough chordal graphs are hamiltonian, Networks 31 (1998) 29-38.
[9] V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Math. 5 (1973) 215-228.
[10] H. Enomoto, B. Jackson, P. Katerinis, A. Saito, Toughness and the existence of k-factors, J. Graph Theory 9 (1985) 87-95.
[11] D. Kratsch, J. Lehel, H. Müller, Toughness, hamiltonicity and split graphs, Discrete Math. 150 (1996) 231-245.
[12] W.T. Tutte, The factors of graphs, Canad. J. Math. 4 (1952) 314-328.

[^0]: * Corresponding author.
 ${ }^{1}$ Supported in part by NATO Collaborative Research Grant CRG 921251.
 ${ }^{2}$ Supported in part by Hungarian National Foundation for Scientific Research, OTKA Grant Numbers F 014919 and T 014302.

