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Abstract

A graph G is chordal if it contains no chordless cycle of length at least four and is k-chordal
if a longest chordless cycle in G has length at most k. In this note it is proved that all %-tough
5-chordal graphs have a 2-factor. This result is best possible in two ways. Examples due to
Chvatal show that for all ¢ > 0 there exists a (% — ¢)-tough chordal graph with no 2-factor.
Furthermore, examples due to Bauer and Schmeichel show that the result is false for 6-chordal
graphs. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

We begin with a few definitions and some notation. Other definitions will be given
later, as needed. A good reference for any undefined terms is [7]. We consider only
undirected graphs with no loops or multiple edges. Let G be a graph. Then G is
hamiltonian if it has a Hamilton cycle, i.e., a cycle containing all of its vertices. It is
traceable if it has a path containing all of its vertices. Let w(G) denote the number of
components of G. Then G is t-tough if |S| =tw(G—S) for every subset S of the vertex
set V of G with o(G — §) > 1. The toughness of G, denoted 7(G), is the maximum
value of ¢ for which G is ¢-tough (taking ©(K,) = (n — 1)/2 for all n>=1). A k-factor
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is a k-regular spanning subgraph. Of course, a Hamilton cycle is a 2-factor. We say
G is chordal if it contains no chordless cycle of length at least four and is k-chordal
if a longest chordless cycle in G has length at most .

Our work was motivated by a desire to understand the relationship between the
toughness of a graph and its cycle structure. For a survey of recent work in this area,
see [3-5]. Toughness was introduced by Chvatal in [9]. An obvious connection between
toughness and hamiltonicity is that being 1-tough is a necessary condition for a graph
to be hamiltonian. Chvatal conjectured that there exists a finite constant 7y such that
every fo-tough graph is hamiltonian. This conjecture is still open. Until recently it was
believed that the smallest value of #;, for which this might be true was #, =2. We now
know this is false.

Theorem 1.1 (Bauer et al. [1]). For every & > 0, there exists a (% — ¢)-tough non-
traceable graph.

Chvatal also conjectured that every k-tough graph on n vertices with n>=k + 1 and
kn even has a k-factor. This was established in [10].

Theorem 1.2 (Enomoto et al. [10]). Let G be a k-tough graph on n vertices with
n=k+ 1 and kn even. Then G has a k-factor.

It was also shown in [10] that Theorem 1.2 is best possible.

Theorem 1.3 (Enomoto et al. [10]). Let k=1. For any ¢ > 0, there exists a (k — ¢)-
tough graph G on n vertices with n=k + 1 and kn even which has no k-factor.

The above results imply that while 2-tough graphs have 2-factors, there exists an
infinite sequence of graphs without 2-factors having toughness approaching 2. In [11]
it was shown that a similar statement holds for split graphs. A graph G is called a
split graph if its vertices can be partitioned into an independent set and a clique.

Theorem 1.4 (Kratsch et al. [11]). Every %-tough split graph is Hamiltonian.

n [9, p. 223], Chvatal found a sequence {G,}>°, of non-2-factorable graphs with
‘c(G ) — % These graphs were in fact split graphs.

Theorem 1.5. There is a sequence {G,}5°, of non-2-factorable split graphs with
(Gy) —

[SJIe8)

In this note we prove that all —-tough chordal graphs have a 2-factor. In fact we
prove a bit more.

Theorem 1.6. Let G be a %-tough 5-chordal graph. Then G has a 2-factor.
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Since all split graphs are chordal, the graphs Chvatal constructed in [9] are also
chordal. Thus Theorem 1.6 is best possible with respect to toughness. Furthermore, the
graphs G, in [2, p. 251] are 6-chordal graphs without a 2-factor. By choosing / and
m large the toughness of these graphs can be made to approach 2 from below. Note
that Theorem 1.6 is in some sense the definitive result of the form “If G is a ¢-tough
k-chordal graph, then G has a 2-factor”: it follows from the examples in [9] that this
is false for ¢ < % and any k, by Theorem 1.2 it is true for =2 and any k, and from
the examples in [2] it follows that for %<t < 2 the best one can hope for is a result
with £ =35.

Unlike the case with split graphs, however, it is not true that all %-tough chordal
graphs are hamiltonian.

Theorem 1.7 (Bauer et al. [1]). For every ¢ > 0 there exists a (% — ¢&)-tough chordal
nontraceable graph.

Recently, Chen et al. [8] have shown that every 18-tough chordal graph is
hamiltonian. We now conjecture the following.

Conjecture. Every 2-tough chordal graph is hamiltonian and for every ¢ > 0 there
exists a (2 — ¢)-tough chordal nonhamiltonian graph.

Returning to 2-factors, it is natural to ask how large the minimum vertex degree
of a z-tough (1<¢ < 2) graph can be, if the graph contains no 2-factor. This problem
was answered in [2] for 1<t<% and for infinitely many ¢ satisfying %ét < 2. A key
lemma (Lemma 8) in [2] is the basis for the proof of our main result. Of course,
any paper dealing with sufficient conditions for a graph to have a regular factor relies
heavily on a well-known theorem of Belck [6] and Tutte [12]. This result is given in
Section 2. The proof of our main result appears in Section 3.

2. Preliminary results

Let G be a graph. If 4 and B are subsets of V' or subgraphs of G, and v € V, we
use e(v,B) to denote the number of edges joining v to a vertex of B, and e(4,B) to
denote ) , e(v,B). We use (4) to denote the subgraph of G induced by 4. A vertex
v € V will be called complete if v is adjacent to every other vertex in ¥, and is called
simplicial if the subgraph induced by the neighborhood of v is complete.

Our proof of Theorem 1.6 relies heavily on a theorem that characterizes those graphs
not containing a 2-factor. This theorem is a special case of the theorems of Belck [6]
and Tutte [12]. For disjoint subsets 4,B of V(G) let odd (4, B) denote the number of
components H of G — (4 U B) with e(H,B) odd, and let

O(4,B)=2|4| + Y dg_a(y) — 2|B| — 0dd(4, B).
yEB



326 D. Bauer et al. | Discrete Applied Mathematics 99 (2000) 323—329

Theorem 2.1 (Belck [6] and Tutte [12]). Let G be any graph. Then

(i) for any disjoint sets A,BC V(G),O(4,B) is even;

(i1) the graph G does not contain a 2-factor if and only if ©@(A4,B)< —2 for some
disjoint pair of sets A,BCV(G).

We call a pair (4,B) of disjoint subsets of V' (G) with @(4,B)< — 2 a Tutte pair
for G. Note that in any Tutte pair (4,B) for G we have B # (), since by definition
> yes dG—a(y) = 0dd (4, B) and so ©(4,B) < —2 implies [B| > |4|>0. We define a
Tutte pair (4,B) to be minimal if ©@(4,B’)>0 for any proper subset B’ C B. Clearly
any graph without a 2-factor contains a minimal Tutte pair.

The next lemma follows easily from a result in [10]. The proof also appears in [2].

Lemma 2.2. Let G be a graph having no 2-factor. If (A,B) is a minimal Tutte pair
for G, then B is an independent set.

To facilitate the proof in the next section we define a Tutte pair (4, B) to be a strong
Tutte pair if B is an independent set.

3. Proof of Theorem 1.6
We begin with the following lemma, which is also implicit in [2].

Lemma 3.1. Let v be a simplicial vertex in a non-complete graph G. Then 1(G—v) >
(G).

Proof. First denote G — v by G,. Note that if G, is complete, then
V(G -1 _ V(G| -2
2 2
Suppose 1(Gy,) < 1(G). Then there exists X C V(G,) such that (G, — X)>2 and
|X|/o(G, — X) < ©(G). However o(G — X )= w(G, — X ) =2, since the neighbors of v
in G induce a complete subgraph. But this gives |[X|/o(G—X) < |X|/o(G,—X) < ©(G),
a contradiction. [

©(Gy) =

=>1(G).

Proof of Theorem 1.6. Let G be a %-tough 5-chordal graph having no 2-factor and
(4,B) be a strong Tutte pair for G, existing by Lemma 2.2. Thus ©&(4,B)< — 2. Let
C=V(G)—(AUB). Since B is an independent set of vertices, ZyeB d_4(y)=e(B,C).
Hence by Theorem 2.1,

2|A| + e(B, C)<2|B| + 0dd(4,B) — 2. (1)

Among all possible choices, we choose G and the strong Tutte pair (4,B) as follows:
(1) |V(G)| is minimal,
(ii) |E(G)| is maximal, subject to (i);
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(iil) |B| is minimal, subject to (i) and (ii);
(iv) |4| is maximal, subject to (i)—(iii).

We now show that G has properties (a)—(g) below.

(a) For any x € B and any component H of (C),e(x,H)<1.

Proof of (a): Let x € B with dg_4(x) =k, and let C|,C,,...,C; denote the compo-
nents of (C) to which x is adjacent. If j <k — 1, delete x from B and add x to C (thus
redefining B and C). Since odd (4,B) has decreased by at most j<k — 1, it is easy
to check that @(4,B) has increased by at most 1. Thus, we still have O(4,B)< — 2
(by Theorem 2.1(i)) and we contradict (iii).

(b) The vertices of A4 are complete.

Proof of (b): If not, form a new graph G’ by adding the edges required to make
the vertices of 4 complete. Clearly G’ is still %—tough and (4, B) is still a strong Tutte
pair for G’. Obviously, no chordless cycle of G’ can contain a vertex of 4. Since G
is 5-chordal, it follows that G’ is also 5-chordal. Thus we contradict (ii).

(c) For any y € C,e(y,B)<1.

Proof of (¢): Suppose that e(y,B)>=2 for some y € C. Delete y from C and add y
to 4 (thus redefining 4 and C). It is easy to check that (4, B) remains a strong Tutte
pair. Thus we contradict (iv).

(d) Each component of (C) is a complete graph.

Proof of (d): If not, form a new graph G’ by adding the edges required to make
each component C,Cs,...,Cs of (C) a complete graph. Clearly, G’ is still 3/2-tough
and (4, B) is still a strong Tutte pair for G’. Assuming G’ is not 5-chordal, let C* be a
shortest chordless cycle in G’ of length at least 6. Clearly C* can not contain a vertex
of A4, nor can it have more than two vertices from any component of (C). Since B is
independent, C* is of the form

C* ZblTllszz/"'ka/ébl,

where, for 1<i<k, each T/ represents an edge t/¢? of a component C; in G’.

Form the cycle C** in G by taking C* and substituting 7; for 7/(1<i<k), where
T; is a shortest ¢t} — > path in C; in G. The graph G is 5-chordal, so C** has a
chord. Since any chord of C** must join a vertex of B and a vertex of C and C* is
a chordless cycle in G’, we may assume, without loss of generality, that there exists a
chord byu of C** such that
e u is an internal vertex of some 7;, say of 7, and
e the cycle b, T1b,T5 - - - b,,Ub;, where U is the t,il — u subpath of T}, is chordless.
By (a) we have 1 < m < k. But then by T{b,T; - - - bytlub; is a chordless cycle in G’
of length at least 6 which is shorter than C*, contradicting the choice of C*. Thus G’
is 5-chordal and we contradict (ii).

(e) For any y € C, e(y,B) =1 (and thus e(B,C) = |C|).
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Proof of (e): Suppose now that C contains a vertex y with e(y,B)=0. It follows
from (b) and (d) that v is simplicial. Hence by Lemma 3.1, ©(G — y) =>1(G). Further-
more, (4,B) is still a strong Tutte pair for the 5-chordal graph G — y. Hence, by (i),
the graph G — y contradicts the choice of G.

f) |B|>2.

Proof of (f): We saw earlier that |B| > |4|>0, and so |B|>1. Suppose B = {x}.
Since (4,B) is a Tutte pair with |B| =1 and |4| =0, we have e(B,C)<odd(4,B) by
(1). If e(B,C) =2, then (G —B)>0dd(4,B)=e(B,C)>2 > |B|, and G is not 1-tough.
If e(B,C) =1, then G is not 1-tough either. Hence |B|>2.

(2) odd (4,B) = w(C)).

Proof of (g): Suppose there exists a component C; in (C) with e(C;,B) = |C;|, an
even integer. Let y be any vertex in C;. Add y to A4, thus redefining 4 and C. It is
easy to see that (4,B) is still a strong Tutte pair for G. Thus we contradict (iv).

Hence G and its minimal Tutte pair (4, B) have properties (a)—(g). Set s=w(C))=
odd (4, B).

Consider the components Ci,Cs,...,C; of (C) and let y; € V(C;). Define X =
AUC —{y1,...,ys}. Since B is independent and e(y;,B) =1 for 1<i<s, we have
(G —X)=|B|=2. For convenience let a=|4|, b=|B| and ¢ = |C|. Using properties
(e), (g) and inequality (1), we have

§< |X| _a+c—s_a+e(B,C)—0dd(A,B)<2b—a—2
2 wG-X) b b h b
Hence
b>2a+ 4. (2)

To complete the proof we establish the following.
Claim. b>c—s5+ 1.

Once the claim is established, it follows that

Eg |X] :a—l—c—sga—i—b—l'
2 "o(G-X) b b
Thus
b<2a-—2. (3)

The fact that (2) and (3) are contradictory completes the argument.

Proof of Claim. Form a bipartite graph F from G by deleting 4 and contracting each
component of (C) into a single vertex. By (a), F has no multiple edges. The key
observation is that since G is 5-chordal, F' is a forest. Otherwise, let Cr be a shortest
cycle in F. Then Cr is of the form

CF . bllesz-“prpbl,
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where each T;,1<i< p, represents the contracted component C;. By (d) and (e), it
follows that the 2 edges incident with each 7; in Cr correspond to edges b;t}, b 12,
where ]2 is an edge in C;. It follows that G has a chordless cycle of length at least 6,
a contradiction.

Hence

> dr(v)=c=EF)|<[V(F) - 1=b+s—1.
veC

Thus b+ s — 1 >c and the claim is established. O
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