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Abstract

In this report we study several approaches of the discontinuous Galerkin finite ele-
ment methods for elliptic problems. An important aspect in these formulations is the
use of a lifting operator, for which we present an efficient numerical approximation
technique. Numerical experiments for two different discontinuous Galerkin methods are
presented for one dimensional problems and compared with exact results. In addition,
the theoretical order of accuracy is verified numerically.
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1 Introduction

The Discontinuous Galerkin Finite Element Method (DGFEM) is rather widely used in
recent years for the numerical solution of partial differential equations. This is stimulated
by the computational convenience of the method due to its high degree of locality, which
is beneficial for hp-adaptation, and provides a good efficiency on parallel computers. An
overview about the DG method is discussed in [10].

There are extensive developments of the DG method with discontinuous discretizations
for first, second, and higher-order partial differential equations. In particular, the DG
method for second-order elliptic problems has been studied in Bassi and Rebay [5], Brezzi
et al. [7], and Cockburn et al. [11]. In [1], Arnold et al. started to collect and analyze
all approaches that have been developed. In their second paper [2], they gave a unified
analysis and comparison for most of the methods that have been developed over the past
thirty years.

In [2], the authors give the weak formulation of the DG method for elliptic problems
formulated for homogenous boundary conditions. We choose two approaches described in
[2] and derive the bilinear form of these approaches for general boundary conditions. We
perform numerical experiments with these approaches and use an elliptic problem with
homogenous boundary conditions as a standard test case. We choose method developed
in [5] as an example for method with stabilization term and an approach developed by

1



2 J.J.Sudirham, J.J.W.van der Vegt, R.M.J.van Damme

Baumann and Oden in [13] for a method without stabilization term. We compare the
two methods based on the numerical experiments. Our conclusions are used as background
information for the development of space-time DG method for time-dependent second-order
parabolic partial differential equations, see [15].

The organizaation of the report is as follows. In Section 2, we present the general
formulation of DG methods and derive the bilinear form of Baumann-Oden method and
Bassi-Rebay method. In Section 3, we discuss in detail efficient numerical approximation
technique for local lifting operator. In Section 4, we perform numerical experiments for one
dimensional elliptic problems using both methods. We compare the results based on these
experiments. We also study the order of accuracy of the Bass-Rebay method numerically.
Finally, we end in Section 5 with some conclusions.

2 DG Methods for Elliptic Problems

In this section we cite the main results from Arnold et al. [2]. We define our problem in d

dimensions. Let Ω ⊂ R
d be a convex polygonal domain, with boundary ∂Ω partitioned as

∂Ω = ΓD ∪ ΓN , with ΓD ∩ ΓN = ∅. We consider the following boundary value problem

−∆u = f in Ω, (2.1)

u = gD on ΓD, (2.2)

∇u · n = gN on ΓN , (2.3)

where f, gD and gN are given functions in L2(Ω), and n the unit outward normal vector
at ∂Ω. Introducing the auxiliary variable σ = ∇u, the problem is rewritten as a first-order
system

σ = ∇u in Ω, (2.4)

−∇ · σ = f in Ω, (2.5)

u = gD on ΓD, (2.6)

σ · n = gN on ΓN . (2.7)

Next we want to derive a weak formulation for this elliptic partial differential equation using
the DG method. Before we do that, first we introduce the finite element spaces for this
problem and some trace operators.

2.1 Finite Element Spaces and Trace Operators

In this section we introduce the definition of the finite element spaces for our formulation
and define the necessary trace operators related to the discontinuity of the functions accross
element faces. An approximation to Ω is defined as Ωh = {K} with K a finite element,
which is a subset of Ω. The tessellation Th = {K} of Ωh is defined as
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Th := {Kj |
N⋃

j=1

Kj = Ωh and Kj ∩ Kj′ = ∅ if j �= j′, 1 ≤ j, j′ ≤ N},

such that Ωh → Ω as h → 0, with h the radius of the smallest sphere completely containing
each element K ∈ Th, and N the total number of elements in Ωh. Each element K ∈ Th

is an image of a fixed master element K̂; i.e., K = FK(K̂) for all K ∈ Th, where K̂ is
either the open unit simplex or the open unit hypercube in R

d. For a nonnegative integer
k, we denote by Pk(K̂) the set of polynomials of total degree k on K̂. When K̂ is the
unit hypercube, we also consider Qk(K̂), the set of all tensor product polynomials on K̂ of
degree k in each coordinate direction. To each K ∈ Th we assign a nonnegative integer pk

as local polynomial degree. The finite element spaces are defined as

Vh := {vh ∈ L2(Ω) : v |K ◦FK ∈ Rpk
(K̂), ∀K ∈ Th}

Σh := {τh ∈ (L2(Ω))d : τ |K ◦FK ∈ (Rpk
(K̂))d, ∀K ∈ Th}

where R is either P or Q and we require that ∇(Vh) ⊂ Σh. Each function v(x) ∈ Vh in
element Kj is defined as

v(x) =
pk∑

m=0

V̂m,jφm,j(x), (2.8)

with pk the polynomial degree in element Kj , φm,j(x) = φ̂m(F−1
K (x)) the basis functions on

element Kj , and V̂m,j the expansion coefficients.
We introduce now an appropriate functional setting. We denote by H l(Th) the space of

functions on Ω whose restriction to each element K belongs to the Sobolev space H l(K).
The finite element spaces Vh and Σh are subsets of H l(Th) and (H l(Th))d, respectively, for
any l. The traces of v and q at the element boundary ∂K are defined as

vK = lim
ε↓0

v(x − εnK), ∀v ∈ Vh, (2.9)

qK = lim
ε↓0

q(x − εnK), ∀q ∈ Σh, (2.10)

which means that vK and qK are restricted to element K, with nK the unit outward
normal vector at ∂K. The traces vK and qK belong to classes T (Γ) :=

∏
K∈Th

L2(∂K)
and (T (Γ))d, where Γ denotes the union of the boundaries of the elements K of Th. The
interior faces Γint are defined as Γint := Γ \ ∂Ωh. Next we define the average and jump
operators. We define an internal face eint ∈ Γint shared by elements K1 and K2, and a
boundary face ebnd ∈ (∂K1 ∩ ∂Ωh). The functions v ∈ T (Γint) and q ∈ (T (Γint))d are
multivalued on an internal face eint ∈ Γint. The unit normal vectors nK1 and nK2 are
defined on eint and ebnd pointing exterior to K1 and K2, respectively. Defining functions
vi := vKi , qi := qKi, ni := nKi, the average operator is defined as
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{v} =
1
2
(v1 + v2), on eint, (2.11)

{q} =
1
2
(q1 + q2), on eint, (2.12)

{v} = v1, on ebnd, (2.13)

{q} = q1, on ebnd, (2.14)

and the jump operator is defined as

[v] = v1n1 + v2n2, on eint, (2.15)

[q] = q1 · n1 + q2 · n2, on eint, (2.16)

[v] = v1n1, on ebnd, (2.17)

[q] = q1 · n1, on ebnd. (2.18)

Notice that the jump [v] of a scalar function v is a vector parallel to the normal, and the
jump [q] of a vector function q is a scalar quantity. In the next section we show main steps
to obtain a weak formulation for DG methods for elliptic problems.

2.2 Weak Formulation for DG Methods

In this section we derive the weak formulation for (2.4) - (2.7) using a DG method. We
start by multiplying (2.4) and (2.5) by test functions τ ∈ Σh and v ∈ Vh, respectively, and
integrate by parts formally on an element K to obtain

∫
K

σ · τdx = −
∫

K
u∇ · τdx +

∫
∂K

unK · τds, τ ∈ Σh, (2.19)
∫

K
σ · ∇vdx =

∫
K

fvdx +
∫

∂K
σ · nKvds, v ∈ Vh. (2.20)

The DG finite element discretization is obtained by approximating the functions u and
σ in each element K ∈ Th with uh ∈ Vh and σh ∈ Σh. Because of these choices, the
functions u and σ in the element boundary integrals are replaced with linear numerical
fluxes ûK = (ûK)K∈Th

and σ̂h = (σ̂K)K∈Th
, which are the approximations at the boundary

of K to u and σ, respectively. Choosing appropriate numerical fluxes is the main topic in
many articles discussing the DG method, see for instance [2]. The general weak formulation
can now be expressed as
Find a uh ∈ Vh and σh ∈ Σh such that for all K ∈ Th we have

∫
K

σh · τdx = −
∫

K
uh∇ · τdx +

∫
∂K

ûKnK · τds, ∀τ ∈ Σh, (2.21)
∫

K
σh · ∇vdx =

∫
K

fvdx +
∫

∂K
σ̂K · nKvds, ∀v ∈ Vh. (2.22)
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If we sum (2.21) and (2.22) over all elements, we obtain

∫
Ω

σh · τdx = −
∫

Ω
uh∇ · τdx +

∑
K∈Th

∫
∂K

ûKnK · τds, ∀τ ∈ Σh, (2.23)

∫
Ω

σh · ∇vdx =
∫

Ω
fvdx +

∑
K∈Th

∫
∂K

σ̂K · nKvds, ∀v ∈ Vh. (2.24)

Following the derivation in Arnold et. al [2], for all v ∈ T (Γ) and for all q ∈ (T (Γ))d we
have the relation

∑
K∈Th

∫
∂K

vKqK · nKvds =
∫

Γ
[v] · {q}ds +

∫
Γint

{v}[q]ds. (2.25)

Using this identity, we obtain

∫
Ω

σh · τdx = −
∫

Ω
uh∇ · τdx +

∫
Γ
[û] · {τ}ds +

∫
Γint

{û}[τ ]ds, ∀τ ∈ Σh, (2.26)
∫

Ω
σh · ∇vdx =

∫
Ω

fvdx +
∫

Γ
{σ̂} · [v]ds +

∫
Γint

[σ̂]{v}ds, ∀v ∈ Vh. (2.27)

Using integration by parts formula and (2.25), the equation for σh (2.26) can be trans-
formed into

∫
Ω

σh · τdx =
∫

Ω
∇uh · τdx −

∫
Γ
[uh − û] · {τ}ds −

∫
Γint

{uh − û}[τ ]ds. (2.28)

Define the lifting operators r : (L2(Γ))d → Σh and l : L2(Γint) → Σh by

∫
Ω

r(q) · τdx = −
∫

Γ
q · {τ}ds, (2.29)

∫
Ω

l(v) · τdx = −
∫

Γint

v[τ ]ds, (2.30)

for all τ ∈ Σh. Using the lifting operators, (2.28) can be written as

∫
Ω

σh · τdx =
∫

Ω
∇uh · τdx +

∫
Ω

r([uh − û]) · τdx +
∫

Ω
l({uh − û}) · τdx. (2.31)

From the last equation, we obtain

σh = ∇uh + r([uh − û]) + l({uh − û}) a.e. (2.32)

Inserting the last equation into (2.27), we obtain
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Table 1: Some DG methods and their numerical fluxes.

Method ûK σ̂K Reference
1. Bassi-Rebay {uh} {σh} [4]
2. Brezzi et al. 1 {uh} {σh} − αr([uh]) [7]
3. LDG {uh} − β · [uh] {σh} + β[σh] − αj([uh]) [11]
4. IP {uh} {∇uh} − αj([uh]) [12]
5. Bassi et al. 2 {uh} {∇uh} − αr([uh]) [6]
6. Baumann-Oden {uh} + nK · [uh] {∇uh} [13]
7. NIPG {uh} + nK · [uh] {∇uh} − αj([uh]) [14]
8. Babuska-Zlamal (uh |K) |∂K −αj([uh]) [3]
9. Brezzi et al. 2 (uh |K) |∂K −αr([uh]) [8]

∫
Ω
(∇uh + r([uh − û]) + l({uh − û})) · ∇vdx =

∫
Ω

fvdx +
∫

Γ
{σ̂} · [v]ds +

∫
Γint

[σ̂]{v}ds, ∀v ∈ Vh. (2.33)

The weak formulation for DG finite element discretizations for elliptic problems finally can
be written as follows

B(uh, v) =
∫

Ω
fvdx, ∀v ∈ Vh, (2.34)

where

B(uh, v) :=
∫

Ω
∇uh · ∇vdx −

∫
Γ
([uh − û] · {∇v} + {σ̂} · [v])ds

−
∫

Γint

({uh − û}[∇v] + [σ̂]{v})ds. (2.35)

In [2] Arnold et al. have listed all the choices for the numerical fluxes used in (2.21) and
(2.22) that have been proposed so far. The choices of ûK and σ̂K for different approaches
are summarized in Table 1. Note that in this table the last column contains the reference of
each method. The choices of the numerical fluxes holds for interior elements or homogenous
boundary conditions. For general boundary conditions, these choices can be different. These
choices can be found in [13] for Baumann-Oden method, in [7] for Methods 1, 2, 5, and 9,
while for LDG method, the numerical fluxes for general boundary conditions can be found
in [9].

In Table 1, some numerical fluxes for σ̂K contain the operators αj([uh]) and αr([uh]).
Here we explain briefly the formulation for these operators, which are called local lifting
operators.
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• The operator αj(φ) is simply µφ with µ ∈ R
+. This operator comes from the interior

penalty (IP) term

αj(w, v) =
∫

Γ
µ[w] · [v]ds (2.36)

with the penalty weighting function µ : Γ → R
+ given by ηeh

−1
e φ on e, with ηe a

positive number.

• The operator αr(φ) is defined as αr(φ) = −ηe{re(φ)} on a face e ∈ Γint and as
αr(φ) = −ηere,gD

(φ) on a face e ∈ ΓD. For all τ ∈ Σh, the local lifting operators
re : (L1(e))d → Σh and re,gD

: (L1(e))d → Σh are given by

∫
Ω

re(φ) · τdx = −
∫

e
φ · {τ}ds, on e ∈ Γint, (2.37)

∫
Ω

re,gD
(φ) · τdx = −

∫
e
φ · τds +

∫
e
gDn · τds, on e ∈ ΓD. (2.38)

Note that re(φ) vanishes outside the union of one or two elements containing the face
e and that r(φ) =

∑
e∈∂K re(φ) for any K ∈ Th. In Section 3 we will explain one

formulation to compute the lifting operator of this type.

In [2], it was concluded that Methods 2 to 5 in Table 1 are consistent, adjoint consistent
and stable under certain condition on parameters µ and η. These methods have a local
lifting operator in their formulation, either in the form of αj or αr. This fact indicates that
the lifting operator gives an important contribution to the properties of the DG method.
Most DG methods with the local lifting operators have optimal rates of convergence of hk

in H1(Th) and hk+1 in L2, see [2]. It was also concluded that DG methods whose numerical
fluxes σ̂K are independent of σh (Methods 4 to 9 in Table 1) produce stiffness matrices with
a smaller number of non-zero entries. This makes the matrices are more sparse than the
others. In the next section we will choose some methods from Table 1 and discuss the weak
formulation of each of these methods.

2.3 Weak Formulation for Several Approaches

In this section we derive the weak formulations for different DG finite element discretizations
for elliptic problems in more detail.

• Baumann-Oden method (Method 6 in Table 1)

This method uses

ûK =



{uh} + nK · [uh], on Γint,

nK · [uh − gD], on ΓD,

uh, on ΓN ,
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and

σ̂K · nK =



{∇uh} · n, on Γint,

∇uh · n, on ΓD,

gN , on ΓN ,

as their numerical fluxes. Substituting these fluxes into (2.35), we obtain

B(uh, v) :=
∫

Ω
∇uh · ∇vdx +

∫
Γint∪ΓD

(
[uh] · {∇v} − {∇uh} · [v]

)
ds

−
∫

ΓN

gNvds −
∫

ΓD

gDn · ∇vds. (2.39)

• Bassi et al. method (Method 5 in Table 1)

This method uses

ûK =



{uh}, on Γint,

gD, on ΓD,

uh, on ΓN ,

and

σ̂K · nK =




({∇uh} + ηe{re([uh])}) · n, on Γint,

(∇uh + ηe{re,gD
([uh])}) · n, on ΓD,

gN , on ΓN ,

as their numerical fluxes. Substituting these fluxes into (2.35), we obtain

B(uh, v) :=
∫

Ω
∇uh · ∇vdx −

∫
Γint∪ΓD

([uh] · {∇v} + {∇uh} · [v])ds

−
∑

e∈Γint

ηe

∫
e
{r̂e([uh])} · [v]ds −

∑
e∈ΓD

ηe

∫
e
r̂e,gD

([uh]) · vnds

+
∫

ΓD

gDn · ∇vds −
∫

ΓN

gNvds. (2.40)

In order to have a stable method, [7] and [2] suggested to take the parameter ηe > F
with F the number of element faces.
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3 Local Lifting Operator

In this section we derive a way to compute the local lifting operator. There is considerable
freedom in computing the local lifting operator, the paper from Bassi and Rebay [5] gives
one example. Since we use a local lifting operator of αr type for the Bassi-Rebay method, we
explain in this report how to formulate this operator in terms of the expansion coefficients
in (2.8).

The local lifting operators re : (L1(e))d → Σh and re,gD
: (L1(e))d → Σh for [uh] can be

written as

∫
Ω

re([uh]) · τdx = −
∫

e
[uh] · {τ}ds, ∀τ ∈ Σh, for e ∈ Γint, (3.1)

∫
Ω

re,gD
([uh]) · τdx = −

∫
e
uhn · τds +

∫
e
gDn · τds, ∀τ ∈ Σh, for e ∈ ΓD. (3.2)

One possibility for the operator re is to express it as polynomial expansion as in (2.8)

re([uh]) =
pk∑

p=0

R̂p,jφp,j(x), (3.3)

with coefficients R̂p,j ∈ R
d. Techniques for computing the local lifting operators in (3.1)

and (3.2) will be explained separately in the next sections.

3.1 Lifting operator on an internal face

In this section we consider the local lifting operator defined in (3.1) on an internal face
e ∈ Γint, where two elements Ki and Kj share this face. Using (3.3) in the weak formulation
for the lifting operator (3.1), we obtain

∫
Ki

re,i([uh]) · τidx+
∫

Kj

re,j([uh]) · τjdx = −1
2

∫
e
(uh,ini +uh,jnj) · (τi + τj)ds, ∀τi, τj ∈ Σh,

(3.4)
as the operator re(uh) vanishes outside the union of the two elements containing the face e,
and hence the left-hand side in the equation only contains the contribution from elements
Ki and Kj . Here we expand the jump operator of uh (2.15) and the average operator for
τ (2.12). Comparing the left-hand and right-hand sides in (3.4), the operator re,i in an
element Ki can be written as

∫
Ki

re,i([uh]) · τidx = −1
2

∫
e
uh,ini · τi −

1
2

∫
e
uh,jnj · τids, ∀τi ∈ Σh. (3.5)

Substituting the expansions (3.3) into (3.5), and using the argument that (3.5) holds for
any τi ∈ Σh, we obtain
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pi∑
n=0

R̂n,i

∫
Ki

φl,i(x)φn,i(x)dx = −1
2

pi∑
m=0

Ûm,i

∫
e
φl,i(xi)φm,i(xi)nids

− 1
2

pj∑
p=0

Ûp,j

∫
e
φl,i(xi)φp,j(xj)njds, l = 0, . . . , pi, (3.6)

with pi, pj denote the local polynomial degree of element Ki and Kj , respectively. If we
define the matrices Ai ∈ R

(pi+1)×(pi+1) as

Ai =
∫

Ki

φl,i(x)φn,i(x)dx,

and the right-hand side in (3.6) as P (Ûi, Ûj) ∈ R
(pi+1)×d, the linear system for coefficients

R̂i ∈ R
(pi+1)×d is obtained

Ai R̂i = P (Ûi, Ûj). (3.7)

We can solve this linear system using a linear solver or express the coefficients R̂i directly
in terms of Ûi and Ûj . The lifting operator re,i in element Ki which shares a face e with
element Kj can now be represented as

re,i([uh]) =
pi∑

n=0

A−1
i P (Ûi, Ûj)φn,i(x). (3.8)

3.2 Lifting operator on a Dirichlet boundary face

In this section we shows how to compute the lifting operator on a Dirichlet boundary face
e ∈ ΓD in terms of approximate functions uh and the boundary condition gD. The lifting
operator re,gD

: (L1(e))d → Σh in a boundary element Kj is given by
∫

Kj

re,gD,j([uh]) · τjdx = −
∫

e
uh,jnj · τjds +

∫
e
gDnj · τjdS, ∀τj ∈ Σh. (3.9)

Analogous to the previous section we substitute the expansions (3.3) into (3.9) and using
the argument that (3.9) holds for any τj ∈ Σh, we obtain

pj∑
n=0

R̂n,j

∫
Kj

φl,j(x)φn,j(x)dx = −
pj∑

m=0

Ûm,j

∫
e
φl,j(xj)φm,j(xj)njds

+
∫

e
φl,j(xj)gDnjds, l = 0, . . . , pj. (3.10)

Defining the right-hand side of (3.10) as P (Ûj , gD) ∈ R
(pj+1)×d, the linear system for the

coefficients R̂j ∈ R
(pj+1)×d is obtained

Aj R̂j = P (Ûj , gD). (3.11)
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X XX X X X1 32 NN−1 N+1

K K K K1 2 NN−1

Figure 1: 1D space elements

The local lifting operator re,gD,j in element Kj can be expressed as

re,gD,j([uh]) =
pj∑

n=0

A−1
j P (Ûj , gD)φn,j(x). (3.12)

This completes the description of the formulation of local lifting operator. In the next
section we will discuss numerical experiments of DG methods for elliptic problems in one
dimension.

4 Numerical Experiments

In this section we present the numerical discretization and solutions obtained with the two
methods discussed in Section 2.3 for a one dimensional problem with homogenous boundary
condition

−uxx = f(x), 0 ≤ x ≤ 1,

u(0) = 0,

u(1) = 0.

The interval (0, 1) is partitioned into N elements Kj, j = 1, . . . , N (Figure 1). The end
points of element Kj are denoted by xj and xj+1. Each element Kj has two boundaries
which are the end points of the element and we denote these boundaries Sj and Sj+1. Each
element K is related to the master element K̂ = (−1, 1) through the parametrization (see
[16])

x = FKj (ξ) =
1
2
(1 − ξ)xj +

1
2
(1 + ξ)xj+1.

The basis functions φm,j on element Kj and the basis functions φ̂m on the master element
K̂ have the following relation

φ̂m(ξ1) = φ̂m(F−1
Kj

(ξ1)) = φm,j(x)

with ξ ∈ K̂ and φ̂m = ξm. In the next sections we will discuss the numerical discretization
for the 1D elliptic problem in detail.
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4.1 Baumann-Oden Method for the 1D Problem

In this section we discuss the numerical discretization of Baumann-Oden method in detail.
For a one dimensional problem with homogenous boundary condition, the formulation of
Baumann-Oden method (2.39) gives the discrete formulation

N∑
j=1

∫
Kj

duh

dx

dv

dx
dx +

N+1∑
i=1

(
[uh]{dv

dx
}
∣∣
Si

)
−

N+1∑
i=1

(
{duh

dx
}[v]

∣∣
Si

)
=

N∑
j=1

∫
Kj

fvdx.

After substituting the average and jump operators for uh, for each interior element Kj , j =
2, . . . , N − 1 we obtain

∫
Kj

duj(x)
dx

dvj(x)
dx

dx

+
1
2

(
(uj(x−

j+1)n
− + uj+1(x+

j+1)n
+)

dvj(x−
j+1)

dx

)
+

1
2

(
(uj(x+

j )n− + uj−1(x−
j )n+)

dvj(x+
j )

dx

)

− 1
2

(
(
duj(x−

j+1)
dx

+
duj+1(x+

j+1)
dx

)vj(x−
j+1)n

−
)
− 1

2

(
(
duj(x+

j )
dx

+
duj−1(x−

j )
dx

)vj(x+
j )n−

)

=
∫

Kj

fvj(x)dx, (4.1)

where n− denotes the unit outward normal vector at ∂Kj , n+ the unit outward normal
vector of elements connected to element Kj, (n+ = −n−), and x±

i is defined as limε→0(xi±ε).
For elements at the domain boundary (K1 and KN ), we substitute the average and jump
operators defined at the boundary ((2.13), (2.14), (2.17), and (2.18)). At the boundary
Sj+1 the unit normal vectors are defined as n− = 1, n+ = −1 while at Sj, we have n− =
−1, n+ = 1.

If we substitute polynomial expansions for u and v into (4.1), the numerical discretiza-
tions for the coefficients Ûm,j is obtained

M1Ûj−1 + M2Ûj + M3Ûj+1 = Fj , (4.2)

with

M1 =
1
2
Cj,j−1(x+

j , x−
j ) +

1
2
Bj,j−1(x+

j , x−
j ),

M2 = Dj +
1
2
Cj,j(x−

j+1, x
−
j+1) −

1
2
Cj,j(x+

j , x+
j ) − 1

2
Bj,j(x−

j+1, x
−
j+1) +

1
2
Bj,j(x+

j , x+
j ),

M3 = −1
2
Cj,j+1(x−

j+1, x
+
j+1) −

1
2
Bj,j+1(x−

j+1, x
+
j+1).

The matrices Dj ∈ R
(pj+1)×(pj+1), Bi,j ∈ R

(pi+1)×(pj+1), Ci,j ∈ R
(pi+1)×(pj+1) and vector

Fj ∈ R
(pj+1) are defined as
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Figure 2: Results with Baumann-Oden method using quadratic basis functions

Dj =
∫

Kj

dφn,j(x)
dx

dφm,j(x)
dx

dx,

Bi,j(x1, x2) = φn,i(x1)
dφm,j(x2)

dx
,

Ci,j(x1, x2) =
dφn,i(x1)

dx
φm,j(x2),

Fj =
∫

Kj

φn,j(x)f(x)dx.

The matrix structure obtained with the Baumann-Oden method is a compact stencil, as
it only contains the contributions from the element and its direct neighbours. We perform
simulations using linear, quadratic, and cubic functions as the basis functions φ̂m. We choose
the function f(x) to be 0, 1, x, x2 so that the problem has the analytical solution u(x) equal
to 0,−x2/2+x/2,−x3/6+x/6,−x4/12+x/12, respectively. For linear basis functions, the
stiffness matrix is singular as can be expected theoretically from [2], for the higher order
basis functions we obtain good approximations of analytical solution. An example of the
result using quadratic basis functions and ten uniform-length elements is shown in Figure 2.
As the stiffness matrix is singular for linear basis functions, Baumann-Oden method is not
suitable for space-time DG finite element method and will not be considered any further.

4.2 Bassi-Rebay Method for the 1D Problem

In this section we describe the numerical discretization and some results from numerical
experiments using the Bassi-Rebay method. We use the same one dimensional problem as
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in the previous section.
The DG method proposed by Bassi and Rebay in (2.40) has formulation

N∑
j=1

∫
Kj

duh

dx

dv

dx
dx −

N+1∑
i=1

(
[uh]{dv−

dx
}
∣∣
Si

)
−

N+1∑
i=1

(
{duh

dx
}[v]

∣∣
Si

)

−
N+1∑
i=1

(
ηe{re([uh])}[v]

∣∣
Si

)
=

N∑
j=1

∫
Kj

fvdx.

For each interior element Kj, j = 2, . . . , N − 1, the discretization is of the form

∫
Kj

duj(x)
dx

dvj(x)
dx

dx

− 1
2
(
uj(x−

j+1)n
− + uj+1(x+

j+1)n
+
)dvj(x−

j+1)
dx

− 1
2
(
uj(x+

j )n− + uj−1(x−
j )n+

)dvj(x+
j )

dx

− 1
2

(duj(x−
j+1)

dx
+

duj+1(x+
j+1)

dx

)
vj(x−

j+1)n
− − 1

2

(duj(x+
j )

dx
+

duj−1(x−
j )

dx

)
vj(x+

j )n−

− ηe{re([u])}|Sj+1vj(x−
j+1)n

− − ηe{re([u])}|Sj vj(x+
j )n− =

∫
Kj

f(x)vj(x)dx. (4.3)

If we subtitute the polynomial expansions into (4.3), the following equations for coefficients
Ûm,j is obtained

N1Ûj−1 + N2Ûj + N3Ûj+1 = Fj , (4.4)

with

N1 = − 1
2
Cj,j−1(x+

j , x−
j ) − 1

4
ηLj,j−1(x+

j , x−
j )A−1

j−1Lj−1,j−1(x−
j , x−

j )

+
1
2
Bj,j−1(x+

j , x−
j ) − 1

4
ηLj,j(x+

j , x+
j )A−1

j Lj,j−1(x+
j , x−

j ),

N2 = Dj −
1
2
Cj,j(x−

j+1, x
−
j+1) +

1
2
Cj,j(x+

j , x+
j ) +

1
4
ηLj,j(x−

j+1, x
−
j+1)A

−1
j Lj,j(x−

j+1, x
−
j+1)

− 1
2
Bj,j(x−

j+1, x
−
j+1) +

1
2
Bj,j(x+

j , x+
j ) +

1
4
ηLj,j+1(x−

j+1, x
+
j+1)A

−1
j+1Lj+1,j(x+

j+1, x
−
j+1)

+
1
4
ηLj,j−1(x+

j , x−
j )A−1

j−1Lj−1,j(x−
j , x+

j ) +
1
4
ηL−

j,j(x
+
j , x+

j )A−1
j Lj,j(x+

j , x+
j ),

N3 =
1
2
Cj,j+1(x−

j+1, x
+
j+1) −

1
4
ηLj,j(x−

j+1, x
−
j+1)A

−1
j Lj,j+1(x−

j+1, x
+
j+1)

− 1
2
Bj,j+1(x−

j+1, x
+
j+1) −

1
4
ηLj,j+1(x−

j+1, x
+
j+1)A

−1
j+1Lj+1,j+1(x+

j+1, x
+
j+1),

and η ≡ infe ηe. The matrix P (Ûi, Ûj) in (3.8) is defined as

P (Ûi, Ûj) = −1
2
niLi,iÛi −

1
2
njLi,jÛj ,
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Figure 3: Results with Bassi-Rebay method with linear basis functions

with matrix Li,j ∈ R
(pi+1)×(pj+1) defined as

Li,j(x1, x2) = φn,i(x1)φm,j(x2).

The definition of the matrices Dj , Bi,j, Ci,j , and vector Fj is the same as in the previous sec-
tion. The stencil of the Bassi-Rebay DG discretization is also compact. For one-dimensional
problems, each element is connected to two neighbours, hence a block tridiagonal matrix is
obtained.

First we perform the simulation of the 1D model problem using linear basis functions.
We choose the same functions f(x) as in Baumann-Oden method and hence have the same
analytical solution. The plot of the numerical solution using 10 uniform-length elements is
presented in Figure 3.

Next we want to analyze the order of accuracy of the method. For u(x) = −x4/12+x/12
we perform simulations for linear, quadratic and cubic basis functions using an increasing
number of elements. Plots of the order of accuracy in the L2 and L∞ norms are presented in
Figure 4. We approximate the L2 norm by computing the differences between the numerical
and analytical solutions at several points on the elements, while for the L∞norm we analyze
the maximum values of all element middle points. For the L2 norm, it is shown that the
order of accuracy is higher than what we expected, that is hk+1.5. This can be caused
by the approximations we make in the compution of the L2 norm or by the choice of the
elliptic problem. The order of accuracy hk+1 is obtained in the L∞norm for linear and
cubic basis functions, for quadratic basis functions, the order of accuracy is hk+2. The same
results are obtained when we choose the solution to be u(x) = sin(πx)/π2 (Figure 5) and
u(x) = sin(2πx)/π2 + sin(πx)/π2 (Figure 6).
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Figure 4: analytical solution u(x) = −x4/12 + x/12
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Figure 5: analytical solution u(x) = sin(πx)/π2
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Figure 6: analytical solution u(x) = sin(2πx)/π2 + sin(πx)/π2
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5 Conclusions

In this report we derive the weak formulation of two DG methods for the elliptic problem
with general boundary conditions, which is a generalization of the weak formulation derived
in [2].

The local lifting operator plays an important role in the stability of a DG method, but
presently there is no paper available which discusses in detail how to compute this operator.
In this report we derive one formulation to compute them.

We have chosen several different approaches and perform numerical experiments for the
one dimensional Poisson equation with homogenous boundary conditions. As expected the-
oretically [2], our numerical experiments show that the Baumann-Oden approach is unstable
for linear basis functions, as it gives a singular matrix for the numerical discretization. For
higher order polynomials, the numerical experiments give stable solutions. This implies
that this method is not suitable for computation of multidimensional problems and also for
space-time DG method, where we use linear basis functions in time and space.

The Bassi-Rebay method gives a stable method with compact stencil and has rates of
convergences both in the L2 and L∞ norms, equivalent with what we expected theoretically,
in some cases even higher rates of convergence.
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