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Abstract

For two given graphs F' and H, the Ramsey number R(F, H) is the smallest
positive integer p such that for every graph G on p vertices the following holds:
either G contains F' as a subgraph or the complement of G contains H as a
subgraph. In this paper, we study the Ramsey numbers R(P,, f(m), where P,
is a path on n vertices and K,, is the graph obtained from the join of K7 and
P,,. We determine the exact values of R(P,, Km) for the following values of n
and m: 1<n<5andm >3;n>6and (misodd, 3<m<2n—1)or (m
iseven, 4 <m <n+4+1);6 <n<T7and m=2n—2or m > 2n; n > 8§ and
m=2n—2orm=2nor (gn—2¢q+1<m<qgn—q+2withd <g<n-5)or
m > (n—3)%0ddn > 9and (g-n—3q+1 < m < g-n—2q with 3 < ¢ < (n—3)/2)
or (gomn—gq—n+4<m<gq-n—2qwith (n—1)/2 <¢q <n—4). Moreover,
we give lower bounds and upper bounds for R(FP,, Km) for the other values of
m and n.
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1 Introduction

Throughout this paper, all graphs are finite and simple. Let G be such a graph. We
write V(G) or V for the vertex set of G and E(G) or E for the edge set of G. The
graph G is the complement of G, i.e., the graph obtained from the complete graph
on |V(G)| vertices by deleting the edges of G. The graph H = (V', E’) is a subgraph
of G=(V,E)if V' CV and E' C E (implying that the edges of H have all their
end vertices in V).

Ife = {u,v} € E (in short, e = uv), then u is called adjacent to v, and v and v are
called neighbors. For x € V, define N(z) = {y € V]zy € E} and N [z] = N(z)U{z}.
If S c V(G), S # V(G), then G— S denotes the subgraph of G induced by V(G)\ S.
If e € E(G), then G — e = (V(G), E(G) \ {e}).



We denote by P,, C,, and K, the path, the cycle and the complete graph on n
vertices, respectively. A wheel W, is the graph on m 4+ 1 vertices obtained from a
cycle on m vertices by adding a new vertex and edges joining it to all the vertices
of the cycle. A kipas K,y is the graph on m + 1 vertices obtained from the join of
K; and P,,. The vertex corresponding to K is called the hub of the kipas. For
illustration, consider Ky in Figure 1.

Figure 1: The kipas Ko

Given two graphs F' and H, the Ramsey number R(F, H) is defined as the small-
est positive integer p such that every graph G on p vertices satisfies the following
condition: G contains F' as a subgraph or G contains H as a subgraph.

In 1967 Geréncser and Gyarfas [4] determined all Ramsey numbers for paths
versus paths. After that, Ramsey numbers R(P,, H) for paths versus other graphs
H have been investigated in several papers, for example: Parsons [6] when H is
a complete graph; Faudree, Lawrence, Parsons and Schelp [2] when H is a cycle;
Parsons [7] when H is a star; Burr, Erdés, Faudree, Rousseau and Schelp [1] when
H is a sparse graph; Haggkvist [5] when H is a complete bipartite graph; Faudree,
Schelp and Simonovits [3] when H is a tree; Salman and Broersma when H is a fan
[8]; Surahmat and Baskoro [10], Salman and Broersma [9] when H is a wheel. We
study Ramsey numbers for paths versus kipases.

2 Main results

In this paper we determine the Ramsey numbers R(P,, Km) for the following values
of nand m: 1 <n <5andm >3;n>6and (misodd, 3 <m <2n—1) or
(miseven, 4 <m <n+1);6 <n<T7and m=2n—2or m > 2n; n > 8 and
m=2n—2orm=2nor(¢g-n—2¢+1<m<qg-n—q+2with3<qg<n-5)or
m>(n—3)2%o0ddn>9and (¢g-n—3¢+1<m<qg-n—2qwith3 <q<(n—-3)/2)
or (g-n—qg—n+4<m<gq-n—2qwith (n—1)/2 < ¢ <n—4). The Ramsey
numbers for ‘small’ paths versus kipases or paths versus ‘small’ kipases will be given
in Corollary 2. The Ramsey numbers for paths versus ‘large’ kipases will be given
in Corollary 5 and Corollary 7. Moreover, we also give nontrivial lower bounds and
upper bounds for R(Pn,f(m) for (oddn >1land ¢g-n—qg+3<m <qg-n—3¢+n—3
with2<¢g<(n—"7)/2)or (evenn >8andqg-n—q+3<m<gqg-n—2¢+n—2



with 2 < g¢<n-—25)or (n>6and miseven, n+ 2 < m < 2n —4) in Corollary 8,
Corollary 9 and Theorem 10.

In [9] we have determined the Ramsey numbers for paths versus wheels for the
values of m and n that are presented in Theorem 1. This theorem provides upper
bounds that yield several exact Ramsey numbers for paths versus kipases.

Theorem 1.

(1 forn=1and m >3
m+1 for either (n =2 and m > 3)

or (n =3 and even m > 4)
R(P,,Wp)=<{ m+2 for (n=3 and odd m >5)
3n—2 for either (n =3 and m = 3)

or (n>4and m is odd,3 <m <2n—1)
2n—1 for n >4 and m is even,4 <m <n+ 1.

Corollary 2.

1 forn=1and m >3
m+1  for either (n =2 and m > 3)
or (n =3 and even m > 4)
R(Py, Kyn)={ m+2 for (n=3and odd m > 5)
3n—2 for either (n =3 and m = 3)
or (n>4 and m is odd,3 <m < 2n—1)
 2n—1 for n >4 and m is even,4 <m <n+ 1.

Proof. The graphs

P forn=1and m >3
mPy forn =2 and m > 3
LmTHJKQ forn=3 and m > 4
3K, for (n =3 and m = 3)
or (n>4and misodd, 3<m<2n-—1)
L 2K, form>4and miseven, 4 <m<n-+1

give lower bounds for R(P,, K,,) for the values of m and n in Corollary 2. Since
K,, is a subgraph of W,,,, Theorem 1 completes the proof. O

The next lemma plays a key role in our proofs of Lemma 4 and Lemma 6. The
proof of this lemma has been given in [8].

Lemma 3. Letn > 3 and G be a graph on at least n vertices containing no P,. Let
the paths P*, P2, ..., P* in G be chosen in the following way: U?Zl V(Pj) =V(G),
Pl is a longest path in G, and, if k > 1, Pt is a longest path in G — U3‘:1 V(P7)
for 1 <i <k —1. Denote by {; the number of vertices on the path P’. Let z be an
end vertex of P*. Then:



(1) If £, > |n/2], then N(z) C V(PF);
(it3) If U < |n/2], then |N(2)| < |n/2| — 1.

The following lemma provides upper bounds that yield several exact Ramsey
numbers in the sequel.

Lemma 4. Ifn >4 and m > 2n — 2, then

m+n—1 form=1mod(n—1)

<) <
R(Py, Km) < { m+n—2 for other values of m.

Proof. Let G be a graph that contains no P, and has order

m+n—1 form=1mod(n—1)
m+n — 2 for other values of m.

V(G| = { (1)

Choose the paths P!, ..., P* and the vertex z in G as in Lemma 3. Because of (1),
not all P? can have n — 1 vertices, so £y < n—2. If £, < |n/2] then by Lemma 3(iii)
we obtain |N(z)| < |n/2] —1<n-—3. If [n/2|] </, <n—2 then by Lemma 3(ii)
we obtain [N (z)| < £y —1 < n—3. Hence, |N[z]| <n —2. We will use the following
result that has been proved in [2]: R(P;,Cs) = s+ [t/2] — 1 for s > | (3t +1)/2].
We distinguish the following cases.

Case 1 |N(z)| < |n/2] —2ornisodd and [N(2)| = |n/2] — 1.
Since [V(G) \ N [z]| > m + [n/2] — 1, we find that G — N [z] contains a Cy,. So,

there is a K,,, in G with z as a hub.

Case 2 niseven and |[N(z)| =n/2 — 1.

Since |[V(G)\N [z]| > (m4+n—2)—n/2 = m+n/2—2, we find that G — N [2] contains
a C,,—1; denote its vertices by v1,v9,vs,...,Um—1 in the order of appearance on the
cycle with a fixed orientation. There are n/2 —1 vertices in U = V(G) \ (V(Cyp—1) U
N [2]), say ui,uz,...,up/o—1. If some vertex v; (i = 1,...,m — 1) is no neighbor
of some vertex u; (j = 1,...,n/2 — 1), w.lo.g. assume vy,—1u1 € E(G). Then G
contains a K,, with z as a hub and its other vertices V1, V2, U3, ., U2, Um—_1, U1.
Now let us assume each of the v; is adjacent to all u; in G. For every choice of a
subset of n/2 vertices from V (Cy,—1), there is a path on n—1 vertices in G alternating
between the vertices of this subset and the vertices of U, starting and terminating in
two arbitrary vertices from the subset. Since G contains no P, there are no edges
viv; € E(G) (4,7 € {1,...,m —1}). This implies that V(Cy,—1) U {z} induces a K,,
in G. Since G contains no P,, no v; is adjacent to a vertex of N(z). This implies
that G contains a K, 11 — zw for any vertex w € N(z), and hence G contains a K
with one of the v; as a hub.



Case 3 Suppose that there is no choice for P* and z such that one of the former
cases applies. Then |N(w)| > |n/2]| for any end vertex w of a path on ¢} vertices
in G — Uf;ll V(P7). This implies all neighbors of such w are in V(P*) and ¢}, >
|n/2]+1. So for the two end vertices z1 and 2o of P* we have that [N (z;)nV (P¥)| >
|n/2| > /2. By standard arguments in hamiltonian graph theory, we can find an
index i € {2,...,0, — 1} such that z;v,4; and z9v; are edges of G. It is clear that
we can find a cycle on £, vertices in G. This implies that any vertex of V(P¥) could
serve as w. By the assumption of this last case, we conclude that there are no edges
in G between V (P¥) and the other vertices. This also implies that all vertices of P*
have degree at least m in G.

We now turn to P*~! and consider one of its end vertices w. Since j_; > £}, >
|n/2| + 1, similar arguments as in the proof of Lemma 3 show that all neighbors of
w are on P*~1 If [N(w)| < [n/2], we get a K, in G as in Case 1 or Case 2. So
we may assume |N(w;) NV (P¥1Y| > |n/2] > £;_1/2 for both end vertices w; and
wy of P*~1. By similar arguments as before we obtain a cycle on £;_; vertices in
G. This implies that any vertex of V (P*~1) could serve as w. By the assumption of
this last case, we conclude that there are no edges in G' between V(P*~1) and the
other vertices. This also implies that all vertices of P*~! have degree at least m — 1
in G. (Note that P*~! can have n — 1 vertices, whereas £, < n — 2.)

Repeating the above arguments for P*~2, ... P! we eventually conclude that all
vertices of G have degree at least m — 1 in G. Now let H = G — V(P¥). Then
all vertices in V(H) have degree at least m — 1 — €, > m/2+ (n —1) — 1 — £, >
fm+2n—4—0,—(n—2))=L(m+n—-2-4)=31(V(H)| —1). Hence, there
exists a Hamilton path in H. Since |V (H)| > m and z is a neighbor of all vertices
in H (in G), it is clear that G contains a K,, with z as a hub. This completes the
proof of Lemma 4. O

Corollary 5. If (4 <n<6andm=2n—2 orm >2n) or (n >7 and m = 2n — 2
orm=2norm>Mn-3?2 or(n>8andq-n—2¢+1<m<q-n—q+2 with
3<qg<n-5), then

>\ | m+n—-1 form=1mod(n—1)
R(P"’Km)_{ m+mn—2 for other values of m.

Proof. Let r denote the remainder of m divided by n — 1, so m = p(n — 1) + r for

some 0 <r <n—2. Then for (4 <n <6and m =2n—2or m > 2n) or (n > 7 and

m=2n—2orm=2norm > (n—3)2?)or(n>8andg-n—2¢+1<m<qgn—q+2

with 3 < ¢ < n —5), the graphs

(p—1)Kp—1U2K, forr=0
(p+1)Kn forr=1or2
p+r+1-n)K,_1U(n+1—7r)K,_o for other values of r



show that
m+n—2 form=1mod(n—1)

R(Pn, Kip) > { m+n —3 for other values of m.

Lemma 4 completes the proof. O

Lemma 6. Ifn is odd, n > 7 and g-n—q+3 <m < q-n—2¢+n—2 with
2<qg<n-5, then R(P,,K;,) <m+n—3.

Proof. The proof is modelled along the lines of the proof of Lemma 4. Let G be a
graph on m + n — 3 vertices, and assume G contains no P,. We will show that G
contains a K,,. Choose the paths P!, ..., P* and the vertex z in G as in Lemma 3.
Since [V(G)|=m+n—-3withn>7andg¢g-n—q¢+3<m<gqg-n—2¢+n-—2
with 2 < ¢ <n —5, k> ¢+ 2, and therefore not all P! can have more than n — 3
vertices. So fr < n — 3. By similar arguments as in the proof of Lemma 4, this
implies |N(z)| < n —4. We will use the following result that has been proved in [2]:
R(P,,Cy) = s+ [t/2] — 1 for s > [(3t + 1)/2]. We distinguish the following cases.

Case 1 |[N(2)| < |n/2] —2.
Since |[V(G) \ N [¢]| > m + [n/2] — 1, we find that G — N [2] contains a Cp,. So,

there is a K, in G with z as a hub.

Case 2 |N(z)| = |n/2] — 1.

Since [V(G) \ N[z]| = (m+n —3) — [n/2] = m + [n/2] — 2, we find that
G — N [z] contains a C),_1; denote its vertices by vy, va,v3,...,0,—1 in the or-
der of appearance on the cycle with a fixed orientation. There are [n/2| — 1 ver-
tices in U = V(G) \ (V(Cm-1) UN [2]), say u1,u2,...,uy/2)—1. If some vertex v;
(¢ =1,...,m — 1) is no neighbor of some vertex u; (j =1,...,|n/2] — 1), w.lo.g.
assume vp,_1u; € E(G). Then G contains a K,, with z as a hub and its other
vertices v1,v2, U3, ..., Um—2,Um_1,u1. Now let us assume each of the v; is adjacent
to all u; in G. For every choice of a subset of |n/2] vertices from V(Cy,—1), there
is a path on n — 2 vertices in G alternating between the vertices of this subset and
the vertices of U, starting and terminating in two arbitrary vertices from the sub-
set. Let z; € N(z). Since G contains no P,, there are no edges v;z € E(G) and
viz1 € E(G) (i € {1,...,m — 1}) and there is at most one edge v;v; € E(G) (for
somei,j € {1,...,m—1}). Assume (at most) v1v2 € E(G). This implies G contains
a K,, with hub v,,_1 and its other vertices V1, 2,02, 21, V3, « + + , Um—4, Um—3, Um—29.

Case 3 Suppose that there is no choice for P* and z such that one of the former
cases applies. Then |N(w)| > |n/2] for any end vertex w of a path on ¢ vertices
in G — Uf;ll V(P7). This implies all neighbors of such w are in V(P¥) and ¢, >
|n/2]+1. So for the two end vertices z; and zo of P¥ we have that |N(z;)NV (P*)| >
|n/2] > ¢;/2. By similar arguments as in the proof of Lemma 4 we obtain a cycle
on /j vertices in G. This implies that any vertex of V(P¥) could serve as w. By
the assumption of this last case, we conclude that there are no edges in G between



V(P*) and the other vertices. This also implies that all vertices of P* have degree
at least m in G.

We now turn to P*~! and consider one of its end vertices w. Since g > b, >
|n/2] + 1, similar arguments as in the proof of Lemma 3 show that all neighbors of
w are on P*~1 If [N(w)| < [n/2], we get a K, in G as in Case 1 or Case 2. So
we may assume |N(w;) NV (P¥1| > |n/2] > £;_1/2 for both end vertices w; and
wy of P*~1. By similar arguments as before we obtain a cycle on £;_; vertices in
G. This implies that any vertex of V (P*~1) could serve as w. By the assumption of
this last case, we conclude that there are no edges in G' between V(P*~1) and the
other vertices. This also implies that all vertices of P¥~! have degree at least m — 2
in G. (Note that P*~! can have n — 1 vertices, whereas £; < n — 3.)

Repeating the above arguments for P*~2, ... P! we eventually conclude that
all vertices of G have degree at least m — 2 in G. Now let H = G — V(P¥).
Then all vertices in V(H) have degree at least m — 2 — 0, > m/2+n —2 — {; >
S(m+2n—4—,—(n—3)) = 2(m+n—1—4;) = L(|V(H)|+2). This implies there
exists a Hamilton cycle in H. Since |V (H)| > m and z is a neighbor of all vertices
in H (in G), it is clear that G contains a K,, with z as a hub. This completes the
proof of Lemma 6. O

Corollary 7. If (n =7 and m = 15) or (n is odd, n > 9 and (¢g-n—3¢+1 <
m<gqg-n—2qwith3<qg<m-=3)/2)or(¢g-n—qgq—n+4<m<q-n—2q with
(n—1)/2 <q<n-—4)), then R(Pp, K,) =m+n — 3.

Proof. For n =7 and m = 15, the graph 3K and for odd n > 9and m = ¢g-n—2q—j
with either (3 < ¢ < (n—3)/2and 0 < j<¢g—1)or((n—-1)/2<qg<n-5
and 0 < j < n—gq—4), the graph (¢ —j — 1)K,_2 U (j + 2)K,,—3 shows that
R(P,, f(m) > m +n — 4. Lemma 6 completes the proof. O

Corollary 8. Ifnisodd, n > 11 andg-n—q+3 <m <q-n—3¢q+n— 3 with
2<q¢<(n—"1)/2, then

m+n—32R(Pn,f(m)zmaanmlJ (n—1)+n, m+ hm;n(n_ll)}“

Proof. Let t = {%—‘ and s denote the remainder of m — 1 divided by ¢. Then for

n

m and n satisfying LﬂJ m—1)+n>m+ LmT_lJ, the graph tK,_1 shows that

n—1
R(Py, Fyn) > L%J (n—1)+n—1.

For other values of m and n, the graph sK[(;,—1)/q U (t — s+ 1) K|(;,—1)/¢] shows
that R(Py, Fp) >m — 1+ {%J .

The upper bound comes from Lemma 6. O



Corollary 9. Ifn is even,n > 8 and ¢g-n—q+3 <m < qgn—2q+n—2 with2 < g <
n—>5, thenm—l—n—QZR(Pn,Km)Zmax{L%J (n—1)+mn, m—i—[[m/n 0 J}

Proof. Let t = {%—‘ and s denote the remainder of m — 1 divided by ¢. Then for

m and n satisfying L%J m—1)+n>m+ L J the graph tK, 1 shows that

n

R(Py, Kp) > [%J (n—1)+n—1.
For other values of m and n, the graph sK(,;,—1)/q U (t—s+ ) K| (m—1)/:) shows

that R(P,, K,,) >m — 1+ [%J :

The upper bound comes from Lemma 4. O

Theorem 10. If n > 6 and m is even with n+ 2 < m < 2n — 4, then

3n . 2n—1 forn+2<m<n+|n/3]
AL ) S >
m+{2J 2_R(P"’Km)—{3£”—1 forn+|n/3] <m <2n—4.

Proof. For n > 6 and m is even with n +2 < m < n + |n/3], the graph 2K,,_;
shows that R(P,, K,;) > 2n—2. For n > 6 and m is even, n+ |n/3] < m < 2n—4,
the graph K, /5 U2K,,/5_; shows that R(Pn,f(m) > 37"‘ —

Let G be a graph on m + [3n/2] — 2 vertices, and assume G contains no P,.
Choose the paths P!, ..., P* and the vertex z in G as in Lemma 3. By Lemma 3,
IN(2)] <mn —2. Hence, |V(G)\ N[z]| > m+ |n/2] —1. We can apply the result
from [2] that R(P,,Cp,) = m+ |n/2] —1 for m is even and 2 < n < m. This implies
that G — N [z] contains a C,. So, there is a K,, in G with z as a hub (there is even
a wheel on m + 1 vertices). O

3 Conclusion

In this paper we determined the exact Ramsey numbers for paths versus kipases of
varying orders. The numbers are indicated in Table 1. We used different shadings
to distinguish the results in the previous section that led to these numbers. The
white elements indicate open cases. For these cases we established lower bounds
and upper bounds for R(P,, R’m)
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From R(P,, Km) 28
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Corollary 2 1 31
32
Corollary 2 m+1 33
34
Corollary 2 m+2 35
36
Corollary 2 3n-2 37
38
Corollary 2 V7] 2n-1 39
40
Corollary 5 m+n-2 41
42
Corollary 5 DY m+n-1 43
44
Corollary 7 Bl m+n-3 45
46

Table 1: The Ramsey numbers for paths versus kipases
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