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Abstract

This paper is concerned with the circumstances under which a discrete-time

absorbing Markov chain has a quasi-stationary distribution. We showed in

a previous paper that a pure birth-death process with an absorbing bot-

tom state has a quasi-stationary distribution – actually an infinite family

of quasi-stationary distributions – if and only if absorption is certain and

the chain is geometrically transient. If we widen the setting by allowing

absorption in one step (killing) from any state, the two conditions are still

necessary, but no longer sufficient. We show that the birth-death-type of

behaviour prevails as long as the number of states in which killing can oc-

cur is finite. But if there are infinitely many such states, and if the chain

is geometrically transient and absorption certain, then there may be 0, 1,

or infinitely many quasi-stationary distributions. Examples of each type

of behaviour are presented. We also survey and supplement the theory of

quasi-stationary distributions for discrete-time Markov chains in general.
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killing, decay parameter, quasi-stationarity, rate of convergence.
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1 Introduction

A quasi-stationary distribution of an absorbing discrete-time Markov chain is

any initial distribution on the non-absorbing states with the property that the

state probabilities at time n, conditional on the chain being in one of the non-

absorbing states, do not vary with n. Clearly, eventual absorption should be

certain for a quasi-stationary distribution to exist, but also the geometric con-

vergence to zero as n→∞ of the n-step transition probabilities of the chain is

necessary. When the Markov chain is a birth-death process with an absorbing

bottom state these two conditions happen to be necessary as well as sufficient.

In fact, in this case there exists a one-parameter family of quasi-stationary

distributions (see [4]).

In settings which are more general than that of birth-death processes ad-

ditional assumptions are required to ensure the existence of a quasi-stationary

distribution. Some interesting results in this vein have been reported in the

literature (see the next section), but since the additional conditions that are

brought to light are sufficient, but not necessary, the question as to which

features of a Markov chain are essentially responsible for the existence of a

quasi-stationary distribution has not been answered satisfactorily yet.

Our approach to finding an answer to this question is to build on what

we know already rather than to focus on Markov chains in general and search

for suitable restrictions. Concretely, we will study birth-death processes with

killing, which are birth-death processes with an absorbing state and the ad-

ditional feature that a transition to the absorbing state (killing) may occur

from any, rather than just one state. This class of Markov chains seems only

marginally larger than that of pure birth-death processes with an absorbing

bottom state, but allows for considerably more varied behaviour. In particular,

neat results such as those for pure birth-death processes are no longer valid in

the generalized setting.

In the next section we will introduce some relevant concepts and state some

results concerning quasi-stationarity and related issues in the general setting

of discrete-time Markov chains. Most of these results (or their continuous-time
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analogues) can be found in the literature, and are collected here for convenience.

But also some new results are included. Pertinent definitions and properties

of discrete-time birth-death processes with killing are given in Section 3. In

Section 4 we address the issue of absorption times for such processes, giving in

particular a simple criterion for eventual absorption to be certain. In Section 5

we show that the neat result on quasi-stationary distributions for birth-death

processes can be generalized to birth-death processes with killing provided the

number of states from which a transition to the absorbing state may occur is

finite. We also demonstrate that several types of behaviour may occur if there

are infinitely many such states. Section 6 contains a worked-out example.

2 Preliminaries

Let X ≡ {X(n), n = 0, 1, . . .} denote a homogeneous discrete-time Markov

chain on S ≡ {0, 1, . . .} with matrix P ≡ (Pij) of 1-step transition probabil-

ities. We will assume that S constitutes an irreducible class, and that P is

substochastic, that is,

κi ≡ 1−
∑
j∈S

Pij ≥ 0, i ∈ S.

The quantities κi, henceforth called killing probabilities, may be regarded as

the probabilities of absorption into a fictitious state ∂, say. A transition to the

absorbing state is sometimes referred to in the literature as a total catastrophe.

If κi = 0 for all states i ∈ S then the matrix P is stochastic and X is an honest

Markov chain on S. However, we will assume in what follows that κi > 0 for

at least one state i ∈ S, so that ∂ is accessible from S, and hence S constitutes

a transient class.

We write Pi(.) for the probability measure of the process when X(0) = i

and Ei(.) for the expectation with respect to this measure. For any distribution

µ ≡ (µi, i ∈ S), we let Pµ(.) ≡
∑

i µiPi(.). The n-step transition probabilities of

the process X are denoted by Pij(n) ≡ Pi(X(n) = j). Hence Pij(1) = Pij , and

the matrix P (n) ≡ (Pij(n), i, j ∈ S) of n-step transition probabilities satisfies

P (n) = Pn, n ≥ 0. By T ≡ inf{t ≥ 0 : X(t) = ∂} we denote the absorption
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time, the (possibly defective) random variable representing the time at which

absorption in state ∂ occurs.

A proper probability distribution µ ≡ (µj , j ∈ S) over S is called x-invariant

for P (on S) if∑
i∈S

µiPij = xµj , j ∈ S. (1)

Obviously, if µ is x-invariant for P we must have x < 1, and, by the irreducibility

of S, x > 0 and µj > 0 for all j ∈ S. On the other hand, if 0 < x < 1 an x-

invariant distribution for P need not exist, and if it does exist it need not be

unique. Kesten [12, Theorem 1] has established conditions on P which ensure

that there is at most one x-invariant distribution.

The distribution µ ≡ (µj , j ∈ S) is said to be a quasi-stationary distribution

for X if, for all n = 0, 1, . . . ,

Pµ(X(n) = j |T > n) = µj , j ∈ S. (2)

Evidently, a quasi-stationary distribution can exist only if Pi(T > n) → 0 as

n→∞ for all i ∈ S, that is, absorption is certain. Defining

κµ ≡ Pµ(T = 1) =
∑
i∈S

µiκi, (3)

we can now formulate the following theorem.

Theorem 1 Let µ ≡ (µj , j ∈ S) be a proper probability distribution over S,

then the following statements are equivalent:

(i) µ is a quasi-stationary distribution for X ;

(ii) µ is x-invariant for P for some x, 0 < x < 1;

(iii) µ is (1− κµ)-invariant for P ;

(iv) for all j ∈ S and n = 0, 1, . . . , and some x, 0 < x < 1, one has

Pµ(X(n) = j) = xnµj ; (4)

(v) for all j ∈ S and n = 0, 1, . . . one has

Pµ(X(n) = j) = (1− κµ)nµj . (5)
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This theorem has (essentially) been known for a long time in the setting of

finite Markov chains, when, actually, there is precisely one quasi-stationary dis-

tribution (see [2], where the quasi-stationary distribution is called a stationary

conditional distribution). The equivalence of (i), (iii) and (v) was established

in [4] in the setting of discrete-time birth-death processes with infinite state

space. Other sources, for example [16], mention partial results for the more

general setting at hand. The full theorem may be established by an appeal to

related results in continuous time (see in particular [17, Proposition 3.1 and

Theorem 3.1]), but for completeness’ sake we provide a direct proof.

Proof of Theorem 1 To show that (i) implies (v), let µ ≡ (µj , j ∈ S) be

a quasi-stationary distribution for X . For all j ∈ S we then have Pµ(X(0) =

j) = µj and

Pµ(X(n) = j) = Pµ(T > n)µj , n = 1, 2, . . . .

Consequently, for all n = 0, 1, . . . ,

Pµ(X(n+ 1) = j) = Pµ(T > n+ 1)µj

=

(
Pµ(T > n)−

∑
i∈S

Pµ(X(n) = i)κi

)
µj

= Pµ(T > n)

(
1−

∑
i∈S

µiκi

)
µj

= (1− κµ)Pµ(X(n) = j),

from which (v) follows by induction.

As a consequence of our assumption that S constitutes an irreducible and

transient class, we have 0 < κµ < 1 when (v) holds true, so that (v) ⇒ (iv).

The implication (iv) ⇒ (ii) is trivial, while (iii) easily follows from (ii) by

summing (1) over j ∈ S.

Finally, we will show (iii) ⇒ (i). So suppose µ is (1 − κµ)-invariant for P .

Evidently, (2) is valid for n = 0. Assuming that (2) holds true for n = k, it

follows that

Pµ(X(k + 1) = j) =
∑
i∈S

Pµ(X(k) = i)Pij
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= Pµ(T > k)
∑
i∈S

µiPij

= (1− κµ)Pµ(T > k)µj .

Summing over all j ∈ S subsequently implies that (1−κµ)Pµ(T > k) = Pµ(T >

k + 1) and, hence, that (2) holds true for n = k + 1. The validity of (i) follows

by induction. 2

A major challenge is to find conditions on P for a quasi-stationary distribution

to exist. In the remainder of this section we describe the present status of this

problem and fill in some gaps.

It is well known (see [15]) that there exists a real number ρ, 0 < ρ ≤ 1, such

that

lim
n→∞

(Pij(n))1/n = ρ, i, j ∈ S. (6)

The number ρ is called the decay parameter of the Markov chain X in S, and the

chain is said to be geometrically transient if ρ < 1. Moreover (see [19, Theorem

4.1]), x must be in the interval ρ ≤ x < 1 when µ is x-invariant for P on S.

Hence, Theorem 1 implies that we must have

ρ ≤ 1− κµ < 1, (7)

when µ is a quasi-stationary distribution for X , so that geometric transience is

necessary for the existence of a quasi-stationary distribution.

Of interest to us is also the speed of convergence of the n-step absorption

probabilities Pi(X(n) = ∂) = Pi(T ≤ n) to their limits τi ≡ Pi(T < ∞) =

limn→∞ Pi(T ≤ n), i ∈ S, the (eventual) absorption probabilities. We note

that τi > 0 because of our assumptions that ∂ is accessible and S irreducible.

For future reference we also note at this point that by conditioning on the first

event in X we obtain the relations

1− τi =
∑
j∈S

Pij(1− τj), i ∈ S. (8)

We denote the rate of convergence to zero of the quantities τi−Pi(X(n) = ∂) =

Pi(n < T <∞) by ρ∂ , that is,

ρ−1
∂ = inf

{
s > 1 :

∞∑
n=0

snPi(n < T <∞) = ∞

}
, i ∈ S, (9)
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and note that ρ∂ is independent of i by an irreducibility argument. A simple

argument reveals that ρ∂ may also be expressed as

ρ−1
∂ ≡ inf

{
s > 1 : Ei

(
sT
)

= ∞
}
, i ∈ S, (10)

so that ρ∂ is also the rate of convergence to zero of the probabilities Pi(T = n).

It can be shown (see Theorem 3 below) that ρ = ρ∂ when

#{i ∈ S : κi > 0} <∞, (11)

but equality does not prevail in general (see Section 6 for a counterexample).

We can, however, establish the following.

Theorem 2 The rates of convergence ρ and ρ∂ associated with the Markov

chain X satisfy the inequalities

ρ ≤ ρ∂ ≤ 1.

Proof We note that 1 ≥ Pi(T > n) ≥ Pii(n), so if τi ≡ Pi(T < ∞) = 1,

that is, absorption is certain, the result immediately follows with (9). Now let

X̄ ≡ [X |T < ∞]. It is readily seen that the process X̄ is a Markov chain

with 1-step transition probabilities P̄ij = Pijτj/τi, and hence n-step transition

probabilities

P̄ij(n) =
τj
τi
Pij(n), i, j ∈ S, (12)

while

Pi(T ≤ n |T <∞) =
1
τi

Pi(T ≤ n), i ∈ S. (13)

Evidently, eventual absorption for X̄ is certain, so that, by the result above and

with evident notation, ρ̄ ≤ ρ̄∂ ≤ 1. But (12) and (13) imply that ρ̄ = ρ and

ρ̄∂ = ρ∂ , respectively, so that the statement follows. 2

As announced a sufficient condition for ρ = ρ∂ is given in the next theorem,

which is the discrete-time counterpart of [10, Theorem 3.3.2 (iii)]. Certain

absorption is an implicit assumption in [10], but the argument used in the

proof of the previous theorem shows that it can be dispensed with.
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Theorem 3 If X is such that absorption can occur in one step from at most

a finite number of states, then ρ = ρ∂ .

Theorem 2 enables us to improve upon (7) as follows, showing in particular

that ρ∂ < 1 is necessary for a quasi-stationary distribution to exist.

Theorem 4 If µ ≡ (µj , j ∈ S) is a quasi-stationary distribution for X then

ρ ≤ ρ∂ ≤ 1− κµ < 1.

Proof We must prove the second inequality only. With the help of Theorem

1, statement (v), we find that, for any i ∈ S and n = 0, 1, . . . ,

(1− κµ)n = Pµ(T > n) ≥ µiPi(T > n),

if µ is a quasi-stationary distribution. The inequality immediately follows with

(9), since absorption is certain when a quasi-stationary distribution exists. 2

In analogy with Ferrari et al. [9, p. 515] (note that the definition used on p. 504

is formally different) we will call a quasi-stationary distribution µ minimal if

κµ = 1− ρ∂ . Theorem 4 now has the following obvious corollary.

Corollary If there exists a ρ-invariant quasi-stationary distribution then it is

minimal, and ρ = ρ∂ .

For discrete-time birth-death processes it is known that when absorption at

∂ is certain, geometric transience is necessary and sufficient for the existence

of a quasi-stationary distribution. Moreover, for any number x in the interval

ρ ≤ x < 1, there is a unique quasi-stationary distribution µ such that κµ = 1−x

(see [4]). These results can actually be generalized to Markov chains that are

skip-free to the left, that is, Markov chains in which the matrix P ≡ (Pij) of

1-step transition probabilities satisfies Pij = 0 if j < i− 1.

Theorem 5 Let X be a Markov chain that is skip-free to the left for which

absorption at ∂ is certain. Then a quasi-stationary distribution exists if and

only if ρ < 1. Moreover, for each x in the interval ρ ≤ x < 1, there is a unique

x-invariant quasi-stationary distribution.
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Proof Kijima [14] has shown that, up to a multiplicative constant, there is

a unique positive solution to the system (1) for x ≥ ρ. Since state ∂ can be

reached in one step from state zero only, the argument on p. 414 of [19] may

be used to show that for each x in the interval ρ ≤ x < 1, this solution must

be summable, and hence, after normalization, constitutes a quasi-stationary

distribution. 2

A more general setting is that of Markov chains in which asymptotic remoteness

prevails, that is,

lim
i→∞

Pi(T ≤ n) = 0 for all n > 0. (14)

By the discrete-time analogue of [9, Theorem 1.1] (see also Kesten [12, Theorem

A]) ρ∂ < 1 is necessary and sufficient for the existence of a quasi-stationary dis-

tribution when absorption at ∂ is certain. In fact, the discrete-time analogues

of [9, Theorem 4.1 and Proposition 5.1(a)] tell us that the existence of a quasi-

stationary distribution implies the existence of a minimal quasi-stationary dis-

tribution. We also know from the discrete-time counterpart of [9, Corollary

5.3] that asymptotic remoteness is yet another sufficient condition for ρ = ρ∂ if

ρ∂ < 1. In summary, when the Markov chain is such that asymptotic remote-

ness prevails, absorption at ∂ is certain, and ρ∂ < 1, then ρ = ρ∂ and there

exists a minimal (and hence ρ-invariant) quasi-stationary distribution.

Another approach towards obtaining sufficient conditions for the existence

of a quasi-stationary distribution is to confine attention to R-recurrent Markov

chains, which are Markov chains satisfying
∞∑

n=0

RnPij(n) = ∞ for some i, j ∈ S (15)

(and, hence, for all i, j ∈ S), where R ≡ 1/ρ. R-recurrence implies (see [20])

that there exists, up to normalization, a unique positive solution to the system

(1) with x = ρ. However, besides ρ∂ < 1 and certain absorption, additional re-

strictions on P are required to ensure summability, and hence the existence of

a (unique) ρ-invariant quasi-stationary distribution. One such sufficient condi-

tion, given in [19, p. 414], is (11). Actually, in [19] the Markov chain is assumed
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to be R-positive, that is,

lim
n→∞

RnPii(n) > 0 for some i ∈ S (16)

(and, hence, for all i ∈ S), but this can be relaxed to R-recurrence.

Since R-recurrence is usually difficult to verify, attempts have been made

to replace it by a condition which is stated directly in terms of P . The most

powerful result to date seems to be Kesten’s result [12, Theorem 2]. Insofar

as it concerns quasi-stationary distributions, this theorem states that a unique

ρ-invariant quasi-stationary distribution exists if, besides (11) and certain ab-

sorption, certain restrictions on the sizes of downward jumps, and a type of

uniform irreducibility condition are satisfied; we refer to [12] for details.

Evidently, any quasi-stationary distribution for X is also a limiting condi-

tional distribution, which is a (proper) distribution µ ≡ (µj , j ∈ S) such that

for some initial distribution ν over S

lim
n→∞

Pν(X(n) = j |X(n) ∈ S) = µj , j ∈ S. (17)

But the reverse is also true (see [19, Theorem 4.1]), so our quest for conditions

on P for a quasi-stationary distribution to exist may also be brought to bear

on limiting conditional distributions.

Of particular interest is the discrete-time analogue of [9, Proposition 5.1(b)],

which states that if ρ∂ < 1 and, for some i ∈ S, the limits

µj = lim
n→∞

Pij(n)∑
k∈S Pik(n)

, j ∈ C, (18)

exist and constitute a distribution (and, hence, a quasi-stationary distribution),

then µ ≡ (µj , j ∈ S) must be a minimal quasi-stationary distribution. The

existence of the limits in (18) has been proven in various settings, usually more

restricted, however, than those required for the existence of a quasi-stationary

distribution (see, for example, [19], [3], [18], [13], [5], [8] and [16]).

3 Birth-death processes with killing

In this and subsequent sections X ≡ {X(n), n = 0, 1, . . .} will denote a birth-

death process with killing, that is, the matrix P ≡ (Pij) of 1-step transition
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probabilities has the tridiagonal structure

P =



r0 p0 0 0 . . .

q1 r1 p1 0 . . .

0 q2 r2 p2 . . .

. . . . . . .

. . . . . . .


. (19)

We will assume throughout that pi > 0, qi+1 > 0 and ri ≥ 0 for i ≥ 0. We

define q0 ≡ 0 and let

κi = 1− pi − qi − ri ≥ 0, i ∈ S.

The probabilities pi, qi and ri are the birth, death and self-transition probabil-

ities, respectively, in state i ∈ S, while, as before, κi is the killing probability

in state i, that is, the probability of absorption into a fictitious state ∂. As

mentioned in Section 2, we will assume throughout that κi > 0 for at least one

state i ∈ S, so that ∂ is accessible from S, and S constitutes a transient class.

A prominent role in what follows will be played by the polynomials {Qj}

which are uniquely determined by the 1-step transition probabilities of X via

the recurrence relation

xQj(x) = qjQj−1(x) + rjQj(x) + pjQj+1(x), j ≥ 1,

Q0(x) = 1, p0Q1(x) = x− r0.
(20)

We let

π0 ≡ 1 and πj ≡
p0p1 . . . pj−1

q1q2 . . . qj
, j ≥ 1, (21)

and observe that

pjπj(Qj+1(x)−Qj(x)) =

pj−1πj−1(Qj(x)−Qj−1(x)) + (κj − 1 + x)πjQj(x), j ≥ 1,

p0π0(Q1(x)−Q0(x)) = (κ0 − 1 + x)π0Q0(x),

so that

pjπj(Qj+1(x)−Qj(x)) =
j∑

k=0

(κk − 1 + x)πkQk(x), j ≥ 0. (22)
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It follows that

Qn+1(x) = 1 +
n∑

j=0

1
pjπj

j∑
k=0

(κk − 1 + x)πkQk(x), n ≥ 0, (23)

and in particular

Qn+1(1) = 1 +
n∑

j=0

1
pjπj

j∑
k=0

κkπkQk(1), n ≥ 0, (24)

a result which will be used in the next section.

Karlin and McGregor [11] have shown that the transition probabilities Pij(n)

may be represented in the form

Pij(n) = πj

∫ 1

−1
xnQi(x)Qj(x)ψ(dx), n ≥ 0, i, j ∈ S, (25)

where ψ is the (unique) measure of total mass 1 and infinite support in the

interval [−1, 1] with respect to which the polynomials {Qj} are orthogonal. Of

particular interest to us is the fact that the decay parameter of the process X

equals the largest point in the support of the measure ψ, that is,

ρ = sup supp(ψ) (26)

(see [4, Theorem 3.1]). As a consequence (see, for example, [4]) ρ may also be

characterized in terms of the polynomials {Qj} by

x ≥ ρ ⇐⇒ Qj(x) > 0 for all j ≥ 0. (27)

Since Qj(x) is a polynomial with positive leading coefficient the preceding ac-

tually implies

y > x ≥ ρ ⇐⇒ Qj(y) > Qj(x) > 0 for all j ≥ 0, (28)

which will prove useful in Section 5.

4 Absorption probability

Before turning our attention to quasi-stationary distributions we have to find

out under which condition absorption in state ∂ is certain, because certain

absorption is necessary for the existence of quasi-stationary distributions. In
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fact, in this section we will determine the eventual absorption probabilities τi

of the birth-death process with killing X .

Writing ξi ≡ 1− τi and employing (8) we obtain the recurrence relations

ξi = piξi+1 + riξi + qiξi−1, i ≥ 1,

ξ0 = p0ξ1 + r0ξ0,

so, in view of (20),

ξi = ξ0Qi(1), i ∈ S,

and hence

τi = 1− (1− τ0)Qi(1), i ∈ S. (29)

Since {τi} constitutes the minimal non-negative solution of (29) (see Feller

[7, p. 403]), we must have τi = 1 for all i ∈ S if Q∞(1) ≡ limi→∞Qi(1) = ∞,

whereas τi = 1−Qi(1)/Q∞(1) otherwise. We can formulate these results slightly

more efficiently as follows.

Theorem 6 For any initial state i ∈ S absorption is certain if and only if
∞∑

j=0

1
pjπj

j∑
k=0

κkπk = ∞, (30)

otherwise the absorption probabilities satisfy

τi = 1− Qi(1)
Q∞(1)

< 1, i ∈ S. (31)

Proof It follows immediately from (24) that Q∞(1) = ∞, and hence τi = 1,

if (30) is satisfied. Conversely, let us define

βj ≡
1

pjπj

j∑
k=0

κkπk, j ≥ 0,

and assume that
∑
βj converges. Again using (24) we have

Qn+1(1) = Qn(1) +
1

pnπn

n∑
k=0

κkπkQk(1) ≤ Qn(1)(1 + βn), n ≥ 0,

since, by (24) again, Qk(1) is increasing in k. It follows that

Qn+1(1) ≤
n∏

j=0

(1 + βj), n ≥ 0.

But
∏

(1 + βj) and
∑
βj converge together, so we must have Q∞(1) <∞. The

theorem now follows by the statement preceding the theorem. 2
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5 Quasi-stationary distributions

In what follows we will tacitly assume (30), so that absorption at ∂ is certain.

If P ≡ (Pij) is the matrix of 1-step transition probabilities of the birth-

death process with killing X , then the solution of the system of equations (1)

is readily seen to be given by

µj = µ0πjQj(x), j ∈ S, (32)

where µ0 is some constant. Thus Theorem 1 tells us that, to obtain all quasi-

stationary distributions for X , we have to find out for which values of x, 0 < x <

1 the numbers µj of (32) constitute a proper distribution with an appropriate

choice of µ0. Clearly, two conditions have to be satisfied. First, since the

components of a quasi-stationary distribution are strictly positive, we must

have Qj(x) > 0 for all j and hence, by (27), x ≥ ρ. More problematical is the

second requirement, namely that the sum∑
j∈S

πjQj(x) (33)

be finite. But in any case we have proven the first part of the following theorem.

Theorem 7 Let X be a birth-death process with killing such that absorption

at ∂ is certain. Then the following hold:

(i) If ρ = 1 there is no quasi-stationary distribution for X . If ρ < 1 then

µ ≡ (µj , j ∈ S) is a quasi-stationary distribution for X if and only if there is a

real number x, ρ ≤ x < 1, such that µj = µj(x), j ∈ S, where

µj(x) ≡ µ0(x)πjQj(x), j ∈ S, (34)

and µ0(x)−1 ≡
∑

j∈S πjQj(x) <∞.

(ii) If (µj(x), j ∈ S) constitutes a quasi-stationary distribution, then∑
j∈S

κjπjQj(x) = (1− x)
∑
j∈S

πjQj(x). (35)

(iii) If (µj(x), j ∈ S) constitutes a quasi-stationary distribution, then also

(µj(y), j ∈ S) is a quasi-stationary distribution for all y in the interval ρ ≤ y ≤

x.
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Proof The second statement is a consequence of the equivalence of statements

(i) and (iii) in Theorem 1. To prove (iii) we observe from (28) that if (µj(x), j ∈

S), constitutes a quasi-stationary distribution, then
∑
πjQj(y) ≤

∑
πjQj(x) <

∞, and so (µj(y), j ∈ S) is a quasi-stationary distribution, for all y in the

interval ρ ≤ y ≤ x. 2

We note that as a consequence of this theorem there must be a ρ-invariant

quasi-stationary distribution, and so, by the Corollary to Theorem 4, we must

have ρ = ρ∂ , if a quasi-stationary distribution exists.

The next result gives a sufficient condition for µ(x) ≡ (µj(x), j ∈ S), to

constitute a quasi-stationary distribution for each value of x in the interval

ρ ≤ x < 1. It is a generalization of [4, Theorem 4.2], which concerns pure

birth-death processes.

Theorem 8 Let X be a birth-death process with killing for which absorption

at ∂ is certain and κi > 0 for only finitely many states i ∈ S. If ρ < 1 then

(µj(x), j ∈ S) constitutes a quasi-stationary distribution for each x in the

interval ρ ≤ x < 1.

Proof Since κi > 0 for only finitely many states i ∈ S we have,
∞∑
i=0

1
pjπj

= ∞,

by Theorem 6. Now suppose that ρ ≤ x < 1, and the sum in (33) diverges.

Then,
j∑

i=0

(κi − 1 + x)πiQi(x) → −∞ as j →∞,

so that, by (23), Qi(x) must be negative for i sufficiently large. This, however,

contradicts (27) and (26). Hence the sum in (33) must be finite for each x in

the interval ρ ≤ x < 1, and so, by the previous theorem, with each such x a

quasi-stationary distribution can be associated in the manner indicated. 2

When infinitely many killing probabilities are positive the situation is quite

different. In fact, there may be 0, 1 or infinitely many quasi-stationary dis-

tributions when ρ < 1 and absorption is certain. Moreover, even if there are
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infinitely many quasi-stationary distributions, (µj(x), j ∈ S) need not be a

quasi-stationary distribution for all x in the interval ρ ≤ x < 1. We give exam-

ples of each type of behaviour.

First, we construct a process which is such that an x-invariant, and hence

quasi-stationary, distribution exists if and only if ρ ≤ x < a for some a < 1.

Indeed, let X be a birth-death process with killing with birth, death, self-

transition and killing probabilities pi, qi+1, ri, and κi, i ∈ S, respectively, 1-

step transition matrix P and decay parameter ρ. We allow κi = 0 for all i. Next

choose 0 < κ < 1 and let X̃ be the birth-death process with killing with 1-step

transition probabilities

p̃i ≡ (1− κ)pi, q̃i+1 ≡ (1− κ)qi+1, r̃i ≡ (1− κ)ri, i ∈ S,

and

κ̃i = κ+ (1− κ)κi, i ∈ S,

and 1-step transition matrix P̃ . One might interpret κ as the killing probability

in each state due to some new phenomenon, while the 1-step transition probabil-

ities of X̃ , conditional on non-occurrence of this new phenomenon, equal those

of X . Obviously, the n-step transition probabilities of X̃ and X are related as

P̃ij(n) = (1− κ)nPij(n), i, j ∈ S, n ≥ 0,

whence the decay parameter of X̃ satisfies ρ̃ = (1− κ)ρ. It is evident from (1)

that an x-invariant distribution for P is an (1 − κ)x-invariant distribution for

P̃ , and vice versa. Now, if we choose X such that it satisfies the conditions of,

say, Theorem 8 (so that for each x in the interval ρ ≤ x < 1 there exists an x-

invariant, and hence quasi-stationary, distribution for P ), then for each x̃ in the

interval ρ̃ ≤ x̃ < 1 − κ there exists an x̃-invariant, and hence quasi-stationary,

distribution for P̃ , but there are no x̃-invariant quasi-stationary distributions

for P̃ with x̃ ≥ 1− κ, since an x-invariant distribution for P must have x < 1.

Thus X̃ has the required property, with a = 1− κ.

If, in the setting above, X is positive recurrent, then ρ = 1 and there is

exactly one 1-invariant distribution, namely the equilibrium distribution of X .
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As a consequence ρ̃ = 1−κ, and X̃ has exactly one quasi-stationary distribution,

which is ρ̃-invariant. Another setting in which there is precisely one quasi-

stationary distribution is obtained by taking p < 1/2 in the example in the

next section (see Theorem 10).

Finally, by taking p = 1/2 in the example in the next section we see that

it is possible to have certain absorption and ρ < 1, but no quasi-stationary

distribution at all.

6 Example

Interesting cases arise if κi > 0 for infinitely many states i, while κi is not con-

stant. We will analyse a simple example satisfying these requirements, namely

the process X with birth, death, self-transition and killing probabilities

pi ≡ p, qi ≡ qI{i>0}, ri ≡ (1− p)I{i=0} and κi ≡ κI{i>0}, i ∈ S, (36)

respectively, where p > 0, q > 0 and κ > 0 are such that p+ q + κ = 1, and IE

denotes the indicator function of an event E. The continuous-time counterpart

of this process has been studied in [6], which enables us to translate some

pertinent results from that paper into the discrete-time setting at hand. Our

aim is to determine ρ, ρ∂ and all quasi-stationary distributions.

It is easily seen that (30) is satisfied, so that absorption is certain. To

calculate ρ we employ the representation (26), so we have to study the measure

ψ with respect to which the polynomials {Qn} are orthogonal. By (20) these

polynomials satisfy the recurrence relation

xQn(x) = qQn−1(x) + pQn+1(x), n > 0,

Q0(x) = 1, pQ1(x) = x− 1 + p,
(37)

which, by the transformation

Sn(x) ≡ (−1)n

(√
p

q

)n

Qn(−2x
√
pq), n ≥ 0, (38)

reduces to

Sn(x) = 2xSn−1(x)− Sn−2(x), n > 1,

S1(x) = 2x+ γ, S0(x) = 1,
(39)
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where

γ ≡ 1− p
√
pq
. (40)

The polynomials {Sn} can be represented as

Sn(x) = Un(x) + γUn−1(x), n ≥ 1, (41)

where {Un} denote the Chebysev polynomials of the second kind. The latter

satisfy the recurrence

Un(x) = 2xUn−1(x)− Un−2(x), n > 1,

U1(x) = 2x, U0(x) = 1,
(42)

and may be represented as

Un(x) =
zn+1 − z−(n+1)

z − z−1
, x =

1
2
(z + z−1), n ≥ 0. (43)

It will be useful to observe that

Un(x) = (−1)nUn(−x), n ≥ 0. (44)

After suitably transforming the orthogonalizing measure for {Sn}, given in

Chihara [1, p. 205], we conclude that the polynomials {Qn} are orthogonal

with respect to a measure which consists of a positive density on the interval

(−2
√
pq, 2

√
pq), and, if p +

√
pq < 1, a point mass at 1 − p + pq/(1 − p) =

(γ + γ−1)
√
pq > 2

√
pq. It thus follows from (26) that

ρ =

 2
√
pq if p+

√
pq ≥ 1

1− p+ pq/(1− p) if p+
√
pq < 1.

(45)

To obtain ρ∂ we argue as follows. Let Gα denote a geometrically distributed

random variable on {1, 2, . . .} with mean α−1, and A a random variable repre-

senting the first-passage time from state 1 to state 0 in a simple random walk on

the integers with probabilities p/(p+ q) and q/(p+ q) of making a jump to the

right and to the left, respectively. (If p > q the distribution of A is defective.)

A little reflection then shows that, when the initial state is 0, the absorption

time T of the process X may be represented as

T = Gp +GκI{Gκ≤A} + (A+ T ∗)I{Gκ>A},
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where T and T ∗ are independent but identically distributed. Denoting the

probability generating function of T when the initial state is 0 by τ̃0(s), and

parallelling the argument in [6, Section 6] we obtain after some algebra (recall

that p+ q + κ = 1)

τ̃0(s) ≡ E0[sT ] =
s2(1− p− q)(1− p− (1− p)ã((p+ q)s))

(1− (p+ q)s)(1− ps− (1− p)sã((p+ q)s))
, (46)

where ã(s) ≡ E[sA]. It is well known (see, for instance, Feller [7, p. 351] that

ã(s) =
p+ q

2ps

(
1−

√
1− 4pqs2/(p+ q)2

)
,

which, upon substitution in (46) and some algebra again, leads to

τ̃0(s) =
1− p− q
2(1− p)

2p(1− p− q)s2 + (1− s)(1−
√

1− 4pqs2)
(1− (p+ q)s)(1− (1− p+ pq/(1− p))s)

. (47)

An explicit formula for the absorption-time distribution when the initial state is

0 may be obtained by inverting this formula. But we are interested only in ρ∂ ,

which is the reciprocal of the radius of convergence of τ̃0(s). Since the branch

points of τ̃0(s) at ±(4pq)−1/2 are always larger in absolute value than the pole

at (p + q)−1 it follows that ρ∂ = p + q or ρ∂ = 1 − p + pq/(1 − p), whichever

is larger. Noting that p + q ≤ 1 − p + pq/(1 − p) if and only if p ≤ 1/2, and

collecting all our results we conclude the following.

Theorem 9 The process X with transition probabilities (36) has rates of

convergence ρ and ρ∂ given by

ρ = ρ∂ = 1− p+
pq

1− p
if p ≤ 1/2,

ρ = 1− p+
pq

1− p
< ρ∂ = p+ q if

√
pq < 1− p < 1/2,

and

ρ = 2
√
pq < ρ∂ = p+ q if p+

√
pq ≥ 1 (and hence p > 1/2).

By the Corollary to Theorem 4 a quasi-stationary distribution can exist only if

ρ = ρ∂ (and hence p+
√
pq < 1), so, by the preceding result, p ≤ 1/2 is necessary

for the existence of a quasi-stationary distribution. In view of Theorem 7 we
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next have to verify convergence of
∑
πnQn(ρ) in order to establish the existence

of a quasi-stationary distribution. To this end we note that, by (21) and (36),

πn =
(
p

q

)n

, n ≥ 0, (48)

so that, by (38), (40) and Theorem 9,

πnQn(ρ) = (−1)n

(√
p

q

)n

Sn

(
−1

2
(γ + γ−1)

)
, n ≥ 0, (49)

if p+
√
pq < 1. Hence, it follows after some algebra from (41) – (44) that

πnQn(ρ) =
(

p

1− p

)n

, p+
√
pq < 1, n ≥ 0. (50)

Thus we see that if p ≤ 1/2 (and hence p+
√
pq < 1), then the sum

∑
πnQn(ρ)

converges, and hence a quasi-stationary distribution exists, if and only p < 1/2.

We finally wish to establish whether there exists precisely one, or an infinite

family of quasi-stationary distributions when p < 1/2. So we have to investigate

whether
∑
πnQn(x) converges for x > ρ. We note from (38), (41) and (44) that

πnQn(x) =
(√

p

q

)n(
Un

(
x

2
√
pq

)
− γUn−1

(
x

2
√
pq

))
, n ≥ 0. (51)

Assuming x > ρ (= 1 − p + pq/(1 − p) > 2
√
pq), there is a unique z > γ > 1

such that

x

2
√
pq

=
1
2
(
z + z−1

)
, (52)

so that, by (43) and (51),

πnQn(x) =
(√

p

q

)n{zn(z − γ)− z−n(z−1 − γ)
z − z−1

}
, n ≥ 0. (53)

But since

z > γ =
1− p
√
pq

>
q
√
pq

=
√
q

p
,

it follows that
∑
πnQn(x) = ∞ for all x > ρ. We conclude the following.

Theorem 10 For the process X with transition probabilities (36) there is no

quasi-stationary distribution when p ≥ 1/2, and precisely one quasi-stationary

distribution (c(p/(1− p))j , j ∈ S) when p < 1/2, where c ≡ (1− p)/(1− 2p).
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