
 1

Mobile Service Platform: A Middleware for
Nomadic Mobile Service Provisioning

Aart van Halteren, Pravin Pawar, University of Twente, The Netherlands.

Abstract— Ongoing miniaturization and power efficiency of

mobile devices have led to widespread availability of devices that
have an increasing amount of processing power and storage, and
that support multiple wireless network interfaces connecting to
various auxiliary devices and to the Internet. It is now feasible
for a mobile device to host services and participate in a service
discovery network. Roaming of a mobile device from one wireless
network to another entails nomadic characteristics to the hosted
services. We denote this class of services as Nomadic Mobile
Services.

This paper discusses the requirements for Nomadic Mobile
Service provisioning and proposes the Mobile Service Platform
(MSP) as a supporting infrastructure and middleware which
extends the Service Oriented Architecture paradigm to the
mobile device. The MSP design is based on the Jini Surrogate
Architecture Specification which enables devices that can not
directly participate in a Jini Network to join a Jini network with
the aid of a third party. MSP consists of an HTTPInterconnect
protocol to meet the specifications of Jini Surrogate Architecture
and provides a custom set of APIs to develop and deploy a
Nomadic Mobile Service. This paper also presents case studies of
MSP enabled services in diverse domains such as healthcare,
robotics and positioning services. To conclude, we outline the
need for a context-aware MSP.

Index Terms— Service Oriented Architecture, Nomadic
Mobile Service, Mobile Service Platform, Mobile Middleware

I. INTRODUCTION
Service Oriented Architecture (SOA) is essentially a

collection of services that communicate with each other
to achieve a common goal. The SOA paradigm includes
advertising, discovery and utilization of diverse services by
means of service directories. The principal components of the
SOA consist of a service, service description, service
advertising and discovery and artifacts [14]. A service is a
contractually defined behavior that can be implemented and
provided by a component for use by another component. The
service description consists of the technical parameters,
constraints and policies that define the terms to invoke the
service. The service advertises its service description for
potential clients. A client interested to access the service

obtains information about the existence of a service, its
applicable parameters and terms through service discovery.
An artifact specifies the associated data model for the service
(such as XML schemas and web-service descriptions) to
which a client should bind for using the service. A service
provider may make an entry into the service directory to
reference the artifact and explain how to bind to it. The clients
may retrieve this information and use it to bind to the artifacts

The authors are with Architecture and Services of Network Applications

group, Department of EEMCS, University of Twente, The Netherlands (e-
mail: {A.T.vanHalteren, P.Pawar}@utwente.nl, Phone: +31(0)534895466,
Fax: +31(0)534895477).

This work is supported by Freeband Awareness project under grant
BSIK5902390 (To be presented in WIMOB 2006, Montreal, Canada).

[14].
Nowadays, mobile devices have become an integral part of

daily life. These devices are characterized by higher
processing power, lower costs and the ability to connect to the
Internet using a wireless network. Mobile devices often get
equipped with multiple network interfaces including Infrared,
Bluetooth, Wi-Fi, GSM, UMTS. This enables these devices to
support multiple auxiliary devices (e.g. camera, robots).
Furthermore, the applications running on a mobile device can
provide context information (e.g., the computational and
communication environment of the mobile device, positioning
information) which is of interest in the area of context aware
computing [4]. The SOA paradigm can be extended to the
mobile device to model these auxiliary devices and
applications as services. Such services provide the flexibility
of allowing a mobile device to participate in the service
discovery network and provide these services to the clients
located anywhere in the Internet. Herewith, we name this class
of services as Nomadic Mobile Services. A Nomadic Mobile
Service is hosted by the mobile host such as a handheld
device, mobile phone or any type of embedded device capable
of connecting to the Internet using a wireless network. The
mobile device roams from one mobile communication service
to another which gives nomadic characteristics to the services
it hosts.

This paper discusses the requirements for Nomadic Mobile
Service provisioning and proposes the Mobile Service
Platform (MSP) as a supporting infrastructure which extends
the SOA paradigm to the mobile device. MSP is a middleware
that facilitates the development and deployment of innovative
services on the mobile device for clients located anywhere in
the Internet. The MSP design is based on the Jini Surrogate
Architecture Specification which enables a device which can
not directly participate in a Jini Network to join a Jini network
with the aid of a third party [21]. MSP consists of an
HTTPInterconnect protocol to meet the specifications of the
Jini Surrogate Architecture and provides a custom set of APIs
for building and running services on a mobile device. Using

A

 2

MSP, a service hosted on a mobile device can participate as a
Jini service in the Jini network. This paper also presents case
studies of MSP enabled services in diverse domains such as
healthcare, robotics and location based services.

Section II of the paper lists the requirements for Nomadic
Mobile Service provisioning. Section III introduces the
Mobile Service Platform (MSP), how it addresses the
requirements presented in Section II and a life cycle of an
MSP enabled Nomadic Mobile Service. Section IV elaborates
the implementation details of MSP. Section V presents case
studies of Nomadic Mobile Services prototyped using MSP.
Section VI of the paper discusses the related work. Section
VII concludes the paper and outlines the need for a context-
aware MSP.

II. REQUIREMENTS FOR NOMADIC MOBILE SERVICE
PROVISIONING

A service in the fixed network relies on certain features
provided by the underlying infrastructure for its advertising,
discovery and utilization. These features include fixed
location and IP address, sufficiently powerful servers, a
certain level of guaranteed bandwidth, reliable connectivity
and standardized protocols. Protocols such as RMI, CORBA
IIOP or SOAP facilitate communication between the service
and a client. Services are advertised and discovered using
protocols such as JINI, UPnP, UDDI or SLP. However, the
communication and computational environment of a mobile
device does not always provide these features. A mobile
device and its surrounding environment is characterized by
reduced processing power, limited bandwidth, and limited
storage capabilities as compared to their counterparts in the
fixed network [7]. This section discusses the requirements for
Nomadic Mobile Service provisioning in such a resource
constrained environment.

A. Seamless communication between service and client
Protocols such as RMI, CORBA IIOP or SOAP necessary for
communication between the service and client use an IP
address or DNS name of the server hosting a service. A
Nomadic Mobile Service is not fixed and changes its location
resulting in variable IP address assignments to the mobile
device. 2.5/3G wireless network operators typically assign an
IP address to the mobile device dynamically from the private
address space at the establishment of the wireless connection
(e.g. GPRS) [17]. Network Address Translation (NAT)
inhibits connection from the public Internet to host behind a
NAT router. When a mobile device enters a network without a
DHCP server, it may assign itself an IP address using
Automatic Private IP Addressing (APIPA) [11]. However this
address is not known globally. Consequently, connecting to
the mobile device using its IP address becomes practically
impossible. Assigning a permanent IP address to the mobile
device and ensuring its reachability using Mobile IP is a
promising solution. However, it is subject to the availability of
IP addresses and price that the network operator charges.
Mobile devices are able to connect to the Internet using

multiple network interfaces including GSM, UMTS, and
WLAN. While roaming from one network to another, every
network assigns different IP address to the mobile device. It is
required that the service running on the mobile device must be
reachable and should be able to support a heterogeneous
network environment as discussed above.

B. Consideration of execution environment limitations
Traditionally, a mobile device acts as a client for the service

hosted in the fixed network. Hosting a service inverts the role
of mobile device from ‘Client’ to ‘Server’. This inversion of
the role implies new challenges that have to be considered for
Nomadic Mobile Service provisioning [6]. For the 2.5G and
3G networks, the bandwidth available for the upload is an
order of magnitude lower than that for download. This
requires that the size of a reply to the request from a client
should be optimized. Compression algorithms may be used,
but limited processing power of the mobile device should be
taken into account.

The intermittent network connectivity and limited battery
capacity lead to uncertain lifetime of the service affecting its
availability. Services hosted in the fixed network are generally
capable of supporting bulky operations to fulfill user
requirements. For example, with the Google Web APIs
service, developers can query billions of web pages directly
from their computer programs [8]. It is practically impossible
to store a large amount of data locally and process it. Such
kind of processing is required for services which collect
certain data from the auxiliary devices, collect behavioral
statistics of a mobile user over a prolonged time. For the
services in the fixed network, security verifications to
determine access rights to certain data is taken care of by the
AAA infrastructure or by the application itself. However, for
the mobile devices, security verification is computationally
intensive and demands additional bandwidth [3]. Nomadic
Mobile Service provisioning should take into account
limitations of the execution environment.

C. Scalability
The fixed network can offer scalable services as

communication and computational resources to a certain
degree can be added effortlessly. This ensures that a
potentially large number of services and clients can be
supported. However, for the Nomadic Mobile Service, the
number of clients simultaneously accessing the service
depends on the available bandwidth and processing power of
the mobile device. Offering a scalable service is of significant
importance for a real-time service such as the one which
transmits a patient’s vital signs data to a healthcare center [9].
Hosting Nomadic Mobile Services requires that the potential
number of services hosted, service code size and memory
utilization must stay within certain limits while serving the
client requests.

 3

III. MSP ENABLED NOMADIC MOBILE SERVICE
A Nomadic Mobile Service realized using Mobile Service

Platform is composed of two components: 1) a service
running on the mobile device (referred to as a device service);
and 2) a representation of the device service in the fixed
network which is referred to as a surrogate. Fig. 1 shows
these components of a Nomadic Mobile Service.

Fig. 1. Elements of a Nomadic Mobile Service

The device service communicates with its surrogate that is
hosted by the surrogate host. The surrogate functions as a
proxy for the device service. Both, the client in the wireless
network as well as in the fixed network need to communicate
with the surrogate to access the service. A mobile device can
host multiple device services whereas each device service has
its corresponding surrogate residing at the surrogate host.

Using a surrogate in the fixed network as a representation
of device service in the wireless network has certain
advantages. Due to the distributed implementation of a
Nomadic Mobile Service, it is possible to offload a device
service by caching/storing data at its surrogate. For the service
demanding intensive computations, the processing can be
divided between the device service and surrogate. The
surrogate can be implemented as a Java RMI service, a
CORBA service, or a Web service. By introducing the
surrogate in the fixed network, it is feasible to serve a larger
number of clients as compared to the wireless network [See
Section II on requirements]. The clients are largely unaware of
the fact that the environment in which the real service resides
is resource constrained. A surrogate host can also perform

essential security functions to provide secure services to the
client.

However, splitting a Nomadic Mobile Service into a device
service and surrogate also introduces a state synchronization
problem. The surrogate must be aware of the change in the
state of a device service. As well, the surrogate should be
reachable by the clients as long as the device service is
available to the surrogate. The Mobile Service Platform
supports the communication between the device service and
surrogate. The design of MSP and lifecycle of a Nomadic
Mobile Service is presented in the Section II-A. Section II-B
briefly explains the implementation of MSP.

A. Lifecycle of Nomadic Mobile Service
The MSP design is based on Jini technology. The Jini

Surrogate Architecture Specification [21] defines the
requirements on the communication between a device service
and surrogate. The surrogate participates in a fixed network as
a Jini service [20]. The device service runs on a mobile device
and communicates with the surrogate host in a fixed network
using an Interconnect protocol. An Interconnect is the logical
and physical connection between the surrogate host and a
device and is defined as a part of Jini Surrogate Architecture
Specification [21]. Although [21] does not provide details for
any specific Interconnect implementation, it requires an
Interconnect protocol to fulfill at least three features: device
discovery, surrogate upload and keep-alive. We have
developed an HTTP implementation of the Interconnect
protocol for MSP which fulfills these features as well as
supports the exchange of messages between a device service
and surrogate. HTTP has been specifically chosen for the
implementation of the Interconnect protocol because more and
more devices, such as mobile phones and PDAs have out-of-
the-box HTTP support. Moreover, ISPs and 2.5/3G wireless
network infrastructure also support connectivity to the Internet
using HTTP. Fig. 2 shows the elements of MSP. The stages
during the lifecycle of a Nomadic Mobile Service (as shown
by 1 to 6 in Fig. 2) are:

1) Stage 1: Registration of a device service at a surrogate
host

Fig. 3 shows the interactions during the registration of
device service at a surrogate host. These interactions include
the following:

Fig. 2. The elements of Mobile Service Platform

 4

Device discovery: The purpose of the device discovery

mechanism (stage 1 in Fig. 2) is to make a surrogate host
aware of the existence of a device hosting a Nomadic Mobile
Service and vice versa. Once a device and the surrogate host
have discovered each other, the device can register with the
surrogate host. The device needs to authenticate itself with the
surrogate host prior to the registration. This authentication is
required to prevent the registration of malicious devices.

Surrogate upload: After the device service is started, the
surrogate host must be provided with the surrogate. The
device itself can upload the surrogate or it can send to the
surrogate host the location from where the surrogate can be
downloaded. Once the surrogate is downloaded, the surrogate
host loads and starts the surrogate.

Keep-Alive: The keep-alive mechanism is used to inform
the surrogate host that the device service is still active and
connected. If the device service cannot confirm its online
status after a certain time period (i.e., the surrogate host did
not receive a keep-alive message in time), the surrogate host
will deactivate the surrogate of corresponding device service.

Device service and surrogate interactions: Once a device
service and its surrogate are active, they can interact with each
other. MSP defines three types of interactions between the
device service and surrogate, which are as follows:

One-Way messaging: The One-Way messaging allows for
unconfirmed message delivery between the device service and
its surrogate. This kind of message does not have a
corresponding reply.

Request-Response messaging: The Request-Response
messaging supports reliable message delivery. The request
message must have a corresponding reply message. An
example of this message is the keep-alive message, which is
sent by the device service at fixed intervals and the surrogate
host acknowledges this message by sending a response.

Streaming: Streaming supports exchange of continuous

data (streams) between the device service and surrogate. For

example, a mobile device continually receives the vital signs
of the patient and streams these to the surrogate for (near)
real-time delivery to the healthcare center [6].

Fig. 3: Surrogate loading, activation, execution and keep-alive Fig. 4: Lookup service discovery, service registration and renewal

Fig. 5: Lookup Service discovery, service description download and
service invocation

2) Stage 2 and 3: Lookup service discovery, service
registration and renewal

Once the surrogate is activated, it may contact the Jini
lookup service [20] for service registration (stage 2). After the
lookup service is discovered either through unicast or
multicast discovery, the device service description is
registered (stage 3) with the lookup service. The surrogate
needs to periodically renew the service registration failing to
which the lookup service will discard the registration. These
interactions specific to Jini technology are shown in Fig. 4.

 5

3) Stage 4, 5 and 6: Lookup service discovery, service
description download, service invocation

After discovering a lookup service a client can request a
suitable service by providing the desired service attributes
(Stage 4). If the requested service is registered with the lookup
service, the client receives a service description (Stage 5). The
client uses the service according to its service description
(Stage 6). Fig. 5 shows the communication between the client,
lookup service and surrogate. These interactions are also
specific to Jini technology [20].

B. MSP Implementation
We identify two main parts in the implementation of an

MSP enabled Nomadic Mobile Service. The first part consists
of the device service, surrogate and interactions between
them. The second part consists of surrogate, lookup service,
client and interactions between them. HTTPInterconnect, as
described in Section III-A, is an HTTP implementation of the
Interconnect protocol and it is responsible for communication
between the device service and its surrogate. The device
service is usually implemented using J2ME technology, which
provides an optimized Java runtime environment for resource
constrained devices. MSP provides a set of custom APIs
necessary for managing service lifecycle on a mobile device,
interactions between device service and surrogate and
administering these interactions [13]. The second part of MSP
implementation is based on Jini service provisioning [20].

1) HTTP Interconnect
The HTTPInterconnect implementation consists of three

packages: Messages, IO and Interconnect. Fig. 6 shows the
elements of HTTPInterconnect.

a) Messages
 The messages package defines the structure of messages

exchanged between the device service and the surrogate, via
the interconnect protocol. This package contains functionality
for encoding and decoding data that can be sent in these
messages. The message starts with a serviceId, followed by an

operationId and a sequenceId. The serviceId is the ID of the
service that sent the message (or the ID of the service the
message is destined for, when sending from the surrogate to
the device service). The operationId is a unique ID that is
given to the operation of the service or the surrogate. Each
operation offered by the service to its surrogate and vice
versa, need to have a unique ID, so each message can trigger a
certain operation. The sequenceId identifies the order of the
messages.

Fig. 6. HTTPInterconnect implementation

The body of a message contains data specific to the
operation to be performed by the message. A nomadic
positioning service may, for example, send temporary position
updates to the surrogate. The body of these update messages
can contain the new position of the device.

b) IO and Interconnect
The IO package contains the part of HTTPInterconnect

implementation that resides on the mobile device. This
package handles all the messages sent to and from the device
service. The key parts of the IO package are
SurrogateHostHTTPConnection, SurrogateConnection and
DeviceHTTPConnection. The Interconnect package contains
the part of the HTTPInterconnect implementation that exists
in the surrogate host. This package handles the activation and
deactivation of surrogates and all the messages sent to and
from the surrogate. The essential parts of the Interconnect
package are SurrogateHostHTTPHandler,
InterconnectSession and DeviceHTTPHandler.

On start up, the surrogate host initiates the
SurrogateHostHTTPHandler to handle the requests received
by the surrogate host. When a device service is started, it
sends a registration request to the
SurrogateHostHTTPConnection. This class represents the
connection to the surrogate host. If there are no device
services registered before, on receiving the registration
request, the surrogate host creates a DeviceHTTPHandler to
handle requests from the mobile device hosting the service.
The surrogate host later returns a DeviceHTTPConnection to

 6

the mobile device. Once the DeviceHTTPConnection is
available, the sevice service sends a Surrogate Activation
request to the DeviceHTTPHandler. The surrogate and the
DeviceHTTPHandler share an InterconnectSession which is
created by the surrogate host as a part of surrogate activation.
Via the InterconnectSession, the surrogate can interact with
the device service. If the activation request succeeds, the
DeviceHTTPConnection returns a SurrogateConnection to the
device service. This SurrogateConnection represents a
connection to the surrogate and it allows the device service to
interact with its surrogate.

The DeviceHTTPConnection receives the reply for these
messages (in case of Request-Response messaging) and
determines the corresponding device service for the message.
A DeviceHTTPConnection can support up to 255 surrogate
connections, thus allowing 255 device services to run on a
mobile device.

When the device service is stopped, the surrogate host
needs to be notified so it deactivates the surrogate. The device
service requests Register Surrogate operation via the
SurrogateHostHTTPConnection. This request is forwarded to
the DeviceHTTPConnection. The DeviceHTTPConnection
creates a deregister message and sends it to the surrogate host.
The surrogate is deactivated and a confirmation is notified
back. As a part of the surrogate deactivation, the
InterconnectSession that existed between the
DeviceContextHandler and the surrogate is terminated. The
DeviceHTTPConnection removes the corresponding
SurrogateConnection. If the terminated surrogate is the only
surrogate for this device, the DeviceHTTPConnection is also
closed.

To address the problem of low bandwidth and high latency
in the 2.5G and 3G mobile networks, HTTPInterconnect
features a number of optimizations. Along with the provision
for One-Way messaging [See Section III-A], a number of
messages for the same DeviceContext may be combined in
one HTTP request. Additional improvement can be achieved
with HTTP chunking [11], where the messages are conveyed
as chunks of one long-term HTTP request. The other
optimization is achieved by implementing a deflate
compression algorithm [5] for the messages sent between
mobile device and surrogate host. For secure communication,
the messages can also be transmitted using HTTPS.

The message from the surrogate to a device service is
piggybacked in an HTTP Response to the HTTP Request from
the device. This solves the communication problem between
the client and service as the device service keeps the
connection alive for the response. Routers forward response
messages to the correct address. These response messages are
used to deliver data to the service that is behind NAT. To
facilitate the response messages, the device periodically sends
request messages to the surrogate host.

2) Publishing and utilizing service
On execution, the device service connects to the surrogate

host via the HTTPInterconnect and requests the activation of
its surrogate. The surrogate host downloads the byte code for

the surrogate from a location (e.g. URL) that is provided by
the device service during registration. MSP currently uses
Madison as an implementation of the Surrogate host designed
and implemented by Sun [22]. Madison offers an interface for
device discovery, activation and keep-alive management
which is implemented by our HTTPInterconnect protocol.

In MSP, the surrogate can join the Jini network [20] and
has access to Jini services. The surrogate discovers the Jini
lookup service and registers a service proxy with the lookup
service. The service proxy implements all the interfaces of a
service and contains the logic to communicate with the
surrogate. It is also downloadable from the network. MSP
does not specify any communication protocol between a Jini
client and a surrogate. A service proxy and corresponding
surrogate can make use of any communication protocol such
as RMI, CORBA IIOP, or SOAP depending on the
requirements.

The Jini client discovers a lookup service and requests a
desired service either by the service interface or description
(as discussed in the Section III-A.3). If this type of service is
registered with the lookup service, a service proxy will be
returned to the client. The client instantiates a service proxy to
utilize the service.

IV. MOBILE SERVICE PLATFORM CASE STUDIES
This section presents the Nomadic Mobile Services

prototyped using MSP in diverse domains. MSP has been
made available publicly [13]. By going through the presented
case studies, developers can get a general idea how to make
use of MSP for innovative Nomadic Mobile Services.

A. Healthcare Domain: Tele-Monitoring of the Patient
The MSP has been originally designed, implemented, tested

and verified for the MobiHealth tele-monitoring service as a
part of MobiHealth project [9]. The real life trials of the
mobile health applications developed in MobiHealth project
have been successful [19][1] for the patients with ventricular
arrhythmia, respiratory inefficiency, and high risk
pregnancies. The purpose of the tele-monitoring service is to
gather patient’s data collected from medical sensors attached
on the patient’s body and to deliver this data in near real-time
to the healthcare professionals. An important aspect of the
tele-monitoring service is that a patient may reside at home or
office performing daily tasks and is at the same time under a
doctor’s supervision (Fig. 7).

Fig. 7: Concepts of m-Health monitoring

 7

To facilitate the acquisition process of medical data, each

patient is equipped with a Body Area Network (BAN), where
the BAN sensor system attached to patient’s body collects
vital sign data such as heart rate, blood pressure or ECG
signals. MSP facilitates the vital signs delivery through public
network infrastructures such as GPRS, UMTS, WLAN
networks or any other type of network infrastructure that
supports Internet access.

The tele-monitoring device service communicates with the
BAN sensor system using Bluetooth connectivity. The tele-
monitoring device service and in turn its surrogate can instruct
the BAN sensor system to sample certain signals at a certain
sampling frequency [10]. As per the instruction, the BAN
sensor system streams the real-time sampled signals to the
tele-monitoring device service using the optimized TMSI fiber
protocol [2]. The tele-monitoring device service sends these
signals to its surrogate. The tele-monitoring surrogate makes
these signals available to the interested clients which are as
follows:

• BAN Data Repository (BDR): Storage of BAN data.
• Alarm Service (AS): Detection of a critical patient

condition based on the received signals and delivery of an
SMS message to the mobile phone of a healthcare professional
in case of emergency.

• BAN Streaming Service (BSS): Near real-time delivery
of BAN data to a healthcare professional.

• Healthcare center: The doctors at the healthcare center
can view the graphical representation of the patient’s vital
signs as well as instruct the BAN to sample interested data at
certain available frequencies. It is possible to detect whether a
BAN is active or not and whether a BAN is capable or not of
delivering patient measurements.

The MobiHealth functionality relies on an XML schema for
the configuration of a BAN and exposing sensor data to the
end user applications [16].

B. Positioning Services Domain: Position of a Mobile Host
The nomadic positioning service provides the current

position of a mobile device in a privacy sensitive way using
MSP and positioning hardware. Such a service may be used as
a standalone service or as a building block for context aware
applications interested in the positioning information of a
mobile host.

The positioning service uses the Place Lab library that
determines a position of the mobile host by spotting beacons,
such as WiFi access points, GSM cell phone towers, fixed
Bluetooth beacons or other sensors. These beacons have a
unique or semi-unique id (e.g. their MAC address). When a
service detects one or more beacons, the position of the device
can be determined based on the location of beacons [24]. The
algorithm to calculate the position of a mobile device can be
executed at the surrogate host or at the mobile device
depending on the user preferences.

The positioning service is a device service. It is represented
by positioning surrogate in the fixed network. The client

subscribes to the location change event with the positioning
surrogate. Whenever the positioning service detects a change
in the location of mobile host, it sends the location change
event to the positioning surrogate, which is later sent to the
interested clients. Further details on the nomadic positioning
service such as performance and accuracy measurements, and
implementation details can be obtained from [24].

C. Robotics Domain: Controlling LEGO MindStorm robots
The Nomadic Robot Service [23] provides the capability to

a client to control a Lego robot as desired. The robot service is
a device service and the robot surrogate is the representation
of that service in the fixed network. The robot service
communicates with the LEGO Mindstorm robot using infrared
connectivity. This service has different functionality
requirements than those described in Section IV-A and IV-B
as the robot needs to move in real-time as soon as the client
issues a request.

V. RELATED WORK
Hosting services on a mobile device is an emerging

research area. This section describes the efforts in this
direction.

A lightweight infrastructure referred to as Micro-Services
capable of hosting web services from the mobile devices has
been proposed in [15]. A Micro-Service is a subset of
complex web services architecture and is specifically adapted
for resource scarce devices. A Micro-Service is partitioned
into three distinct components that include the Compact
Listener, Core Server and Supporting Modules. The Compact
Listener is the highest level component that is responsible for
managing client requests received on a particular port. The
Core Server receives encapsulated HTTP requests from the
Compact Listener. It then performs the necessary validations
and determines the appropriate Supporting Modules to
forward these requests to. Lastly, the Supporting Module
represents the implementation of a particular Internet protocol
(i.e. HTML, SOAP and others [15]).

Micro-Services does not include the security verification to
determine the access rights to service data [15]. It is limited to
performing simple and short operations and does not adapt to
the intermittent bandwidth characteristic of the wireless
medium. It is not clear how addressing issues, such as NAT
traversal, have been dealt with. The details of how a wireless
service provider environment uses this framework are not
provided.

The Mobile Web Server project under development by
MAGION [12] aims to deliver a product prototype of the
Mobile Web Services Framework, comprising a set of
standard web services, which can be deployed on a mobile
satellite user terminal. The standard services include network
performance testing services, web cam service, GPS
positioning service. Additional web services can be created
within the framework, using specific APIs for tight integration
with the satellite modem and other devices deployed.

MAGION employs the concept of a GateKeeper to perform

 8

essential security checks as well as caching data for the
performance improvement. The GateKeeper is placed on the
terrestrial Internet, and acts as the sole gateway to the Mobile
Server. The GateKeeper may serve multiple Mobile Servers.
The project targets mobile satellite terminals. It would be
interesting to explore its suitability for other network service
standards such as UMTS, GPRS, CDMA, and WLAN.

VI. CONCLUSIONS AND FUTURE WORK
The SOA paradigm can be extended to mobile devices to

model auxiliary devices and other applications running on a
mobile device as a Nomadic Mobile Service. The Mobile
Service Platform (MSP) addresses the challenges involved in
Nomadic Mobile Service provisioning by means of the
surrogate architecture. MSP is a middleware which facilitates
the development and deployment of services on the mobile
device for clients located anywhere in the Internet. MSP
provides a custom set of APIs to build and run services on a
mobile device. The MSP has been demonstrated successfully
for healthcare services, nomadic positioning services and
nomadic robot services.

Future work focuses on incorporating context awareness in
the MSP. Context-aware computing is a paradigm closely
related to mobile computing [4]. Context-aware software
adapts according to various context elements such as the
location of use, the collection of nearby people, hosts and
accessible devices, as well as to changes to such things over
time [18]. A system with these capabilities can examine the
computing environment and react to changes in the
environment.

It is desired that Nomadic Mobile Services and MSP should
adapt themselves according to the change in context
information. For example, for the tele-monitoring service
described in Section IV-A when Mr. Janssen, an epileptic
patient roams from a UMTS or WLAN communication
service to GPRS, it is desired that the set of transmitted vital
signs must be reduced to accommodate the transmission
capacity of the GPRS communication service. Similarly, when
the mobile device connects to an available WLAN; the full set
of vital signs must be automatically transmitted to and
displayed in the healthcare center.

The context aware MSP will be able to provide the best
possible quality of service to the clients even under varying
computing and communication contexts. We are approaching
the challenges of the context aware nomadic service
provisioning in our current research on the next version of the
Mobile Service Platform.

ACKNOWLEDGEMENT
The authors are thankful to Dr. Cristian Hesselman and

Ricardo Neisse for reviewing the paper and providing
valuable feedback. The authors also appreciate the
contribution of Emiel Schoot Uiterkamp, Peter van Tol and
Ivar Pruijn in the development of MSP and MSP enabled
Nomadic Mobile Services.

REFERENCES
[1] Alonso, A., “Detailed Description of Trial Scenarios”, D1.3, MobiHealth

project (http://www.mobihealth.org), October 2002.
[2] Broens, T., “Bandwidth Optimization of the TMSI fiber protocol”,

Internship report, University of Twente, Enschede, the Netherlands,
2003.

[3] Burnside M., Clarke D., Mills T. et. al, "Proxy-based security protocols
in networked mobile devices", Proceedings of the 2002 ACM
symposium on Applied computing, Pages 265-272, 2002, Madrid, Spain.

[4] Chen, G., Kotz, D., “A Survey of Context-Aware Mobile Computing
Research”, Technical Report TR 2000-381, Dept. of Computer Science,
Dartmouth College, 2000.

[5] Deutsch P., “DEFLATE compressed data format specification”, Request
for Comments No 1951, Network Working Group, May 1996.

[6] Dokovsky, N., Halteren, A. V., Widya, I. “BANip: enabling remote
healthcare monitoring with Body Area Networks”, International
Workshop on Scientific Engineering of Distributed Java Applications,
27-28 November, 2003; Luxemburg.

[7] Foreman, G., Zahorjan, J., "The Challenges of Mobile Computing",
IEEE Computer, pages 38-47, April 1994.

[8] http://www.google.com/apis/index.html
[9] Konstantas, D., Bults, R., Herzog, R., “MobiHealth: Innovative 2.5/3G

Mobile Services and Applications for Healthcare”, 11th IST Mobile and
Wireless Telecommunications Summit, June 2002; Thessaloniki, Greece.

[10] Konstantas, D., Bults, R., Wac, K., Halteren, A. V., “Final, Exploitation
Ready MobiHealth BAN”, D2.6, MobiHealth project
(http://www.mobihealth.org), April 2004.

[11] Kozierok, C., “The TCP/IP Guide: A Comprehensive, Illustrated Internet
Protocols Reference”, No Starch Press, 2005.

[12] Magion, “Mobile Web Services Framework”, http://telecom.esa.int/
telecom/www/object/index.cfm?fobjectid=12852, March 2005.

[13] “Mobile Service Platform – Developer’s Resources”, ASNA Group,
University of Twente, http://janus.cs.utwente.nl:8000/twiki/bin/view/
MSP/Developers, 2005; The Netherlands.

[14] Nickull D., “Service Oriented Architecture Whitepaper”, Adobe Systems
Inc., 2005.

[15] Pratistha, D., Nicoloudis, N., Cuce, S., “A Micro-Services Framework
on Mobile Devices”, International Conference on Web Services, 2003;
Nevada, USA.

[16] Pruijn, I., “Web Services in the MobiHealth Service Platform”, Bachelor
Assignment Report, Architecture and Solutions of Network Applications
Group, University of Twente, July 2004; The Netherlands.

[17] Rekhter, et al., “Address Allocation for Private Internets”, RFC 1918,
February 1996.

[18] Schilit, B., Adams, N., Want, R., “Context-aware Computing
Applications”, Proceedings of IEEE Workshop on Mobile Computing
Systems and Applications, pages 85-90, December 1994; Santa Cruz,
California.

[19] Scully, T., “Overall Evaluation of the Mobihealth Trials and Services”,
D5.1, MobiHealth project (http://www.mobihealth.org), October 2003.

[20] Sun Microsystems, “The JINI Architecture Specification”,
http://www.sun.com/software/JINI/specs/ JINI1_2.pdf, December 2001.

[21] Sun Microsystems, “JINI Technology Surrogate Architecture
Specification”, http://surrogate.JINI.org/sa.pdf, October 2003.

[22] Sun Microsystems, “Design Document for Madison - A Contributed
Surrogate Host Implementation”, http://ipsurrogate.jini.org/specs.html,
2003.

[23] Tol P. V., “Service discovery of Lego Mindstorms based nomadic
services”, MasterThesis, Architecture and Solutions of Network
Applications Group, University of Twente, December 2005; The
Netherlands, http://asna.ewi.utwente.nl/

[24] Uiterkamp, E. S., “Nomadic Positioning Services for a Mobile Service
Platform”, Master Thesis, Architecture and Solutions of Network
Applications Group, University of Twente, August 2005; The
Netherlands, http://asna.ewi.utwente.nl/

	I. INTRODUCTION
	II. Requirements for Nomadic Mobile Service Provisioning
	A. Seamless communication between service and client
	B. Consideration of execution environment limitations
	C. Scalability

	III. MSP Enabled Nomadic Mobile Service
	A. Lifecycle of Nomadic Mobile Service
	1) Stage 1: Registration of a device service at a surrogate host
	2) Stage 2 and 3: Lookup service discovery, service registration and renewal
	Stage 4, 5 and 6: Lookup service discovery, service description download, service invocation

	B. MSP Implementation
	1) HTTP Interconnect
	a) Messages
	b) IO and Interconnect

	2) Publishing and utilizing service

	IV. Mobile Service Platform Case Studies
	A. Healthcare Domain: Tele-Monitoring of the Patient
	B. Positioning Services Domain: Position of a Mobile Host
	C. Robotics Domain: Controlling LEGO MindStorm robots

	V. Related Work
	VI. Conclusions and Future Work

