
Implementing Business Logic on Sensor Nodes

M. Marin-Perianu
University of Twente

Enschede, The Netherlands

m.marinperianu@utwente.nl

T.J. Hofmeijer
Ambient Systems

Enschede, The Netherlands

hofmeijer@ambient-
systems.net

P.J.M. Havinga
University of Twente

Enschede, The Netherlands

p.j.m.havinga@utwente.nl

ABSTRACT
Wireless sensor networks (WSNs) will be able to assist in-
dustrial and business processes and to render rich function-
ality in a dependable way. Two key elements that can make
this real are: a simple and efficient way of expressing the
business logic, and a reliable mechanism for selectively re-
configuring sensor nodes. We present a solution that com-
bines both elements. The main objective is to guarantee the
dissemination of business rules to multicast groups of sen-
sor nodes, while striving for energy efficiency and low over-
head. Simple cross-layer optimizations are used to achieve
this. For scalability reasons, our solution demands only local
knowledge, performs local retransmission of lost packets and
uses aggregation of acknowledgements. The results of our
experimental evaluation indicate a good ability of recovering
from serious errors, even under high error rates.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
Protocols, Wireless Communications; J.1 [Administrative

Data Processing]: Business; J.7 [Computers in other

Systems]: Process control

General Terms
Algorithms, Reliability, Experimentation

Keywords
Wireless Sensor Networks, Reliable Dissemination, Trans-
port Protocols, Business Processes

1. INTRODUCTION
A large range of business processes [2], [10] can benefit

from relocating more logic at the point of action, through
the use of intelligent sensor networks. To make this real we
need reliable and easy to reconfigure sensor nodes that can
overcome resource limitations through collaboration. In the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

following we study this requirement from both perspectives
(reconfiguration and reliability) and describe a complete so-
lution targeting a concrete scenario.

The scenario concerns transport and logistics processes [3],
which deal with the large-scale distribution of perishable
goods (such as flowers) from the producer to the retail shops.
Due to human intervention, there are a number of errors to
be considered, e.g. goods are improperly stored, lost, loaded
incorrectly or delivered to the wrong store. Often during the
delivery process, the goods are transported in rolling con-
tainers, or Returnable Transport Items (RTIs). The RTIs
intended for a specific shop are grouped together, either at
the distribution center (in an area called “expedition floor”)
or in the trailer. By outfitting the RTIs with wireless sensor
nodes, errors can be detected and avoided. The tasks of the
sensor nodes are: (1) observe the current situation (e.g. cli-
matic conditions, location, time, neighbourhood, etc.), (2)
check if the situation matches a set of rules (further referred
as business rules) specified for each shop, and (3) trigger
alarms or even take actions if the rules are not fulfilled.

Due to the dynamics of the business process, the rules
are expected to change accordingly. The central system or
a mobile operator has to reconfigure frequently the vari-
ous groups of nodes in a reliable way (see Figure 1). It is
therefore desired to have a multicast reliable protocol, which
disseminates the new rules to the specified group and affects
as less as possible the other nodes (in terms of energy and
bandwidth).

The main requirement of such a protocol is to correctly
deliver all the data to every intended recipient. However, in
the context of WSNs, this requirement exhibits unique chal-
lenges due to the scarcity of available energy, memory, com-
puting power and bandwidth. To answer to these challenges,
we propose a compact form of expressing and executing the
business logic through rules, and an energy efficient, reliable
dissemination protocol. We perform a practical evaluation
of the integrated solution and draw conclusions based on the
experimental results.

2. BUSINESS RULES
The business rules represent a simple, yet powerful method

of programming sensor nodes. The structure of the rules
aims to express the business logic in a compact and efficient
way. Since the sensor nodes will assist real-life processes,
the most common tasks are expected to address the moni-
toring of parameters against certain conditions. If the con-
ditions are not met or erroneous situations are detected, the
nodes should inform the backend system and take corre-

Figure 1: The expedition floor.

sponding actions. A simple example would be the following
rule: ”Measure humidity x at rate r; if it is outside the in-
terval [xmin; xmax], launch alarm service Salarm”. Complex
conditions can also be expressed by forming chains of rules
(logically linked) and by providing more elaborate actions
to be taken when the rules are fulfilled or not.

The structure of a business rule is defined in Table 1. Each
rule is evaluated at the specified sample rate by testing the
values provided by the sensing driver against certain condi-
tions. The driver usually represents the code that samples
the sensed data, but it can be any function that provides a
numerical result. In this way, richer functionality, computa-
tion or reasoning (e.g. in our scenario, obtain a consensus
with the other group members) can be embedded in the
rules. The conditions specify interval limits for minimum
and maximum values, as well as the admissible variation
∆ of the last sample compared with the previous ones. The
evaluation of the rule outputs a TRUE or FALSE result that
activates a service, i.e. executes a user defined code module.
Moreover, each rule may be valid only for a certain running
time, given by the start and stop moments. Finally, in order
to construct chains of rules, a next rule field is provided.

The evaluation of business rules is carried out by a rule
engine, which is a standalone, periodic task. For every rule
in turn, according to its sample rate, the rule engine calls the
driver function, compares the data against the conditions
and launches the appropriate service.

3. TREE-BASED DISSEMINATION
Tree-based reliable multicast protocols (TRMP) [6], [9]

are shown to have good scalability properties by delegating
responsibility to local groups (i.e., a node and its children
in the tree). In addition, a considerable amount of network
traffic can be saved by using local and aggregate ACKs.
Although WSNs usually rely on a mesh structure, a tree or
cluster overlay organisation is often required for a proper,
distributed operation. The reliable multicast protocol can
thus directly use the available overlay structure. This paper
does not focus on the construction or maintenance of such a
tree structure, but on its efficient exploitation with respect
to the problem of reliable data dissemination.

3.1 Cross-layer approach
In our previous work [8] we reported on experiments with

a point-to-point, window-based reliable transport solution.

ID Sensing Sample Conditions Services Running Next
driver rate (min, max, ∆) time rule

Table 1: Business rule structure

(a) (b)

Figure 2: Protocol operation.

We showed that a cross-layer approach, where the transport
layer interacts with routing and MAC, can bring about sig-
nificant benefits in terms of energy and throughput. One
specifically important optimization was to use local MAC
ACKs, which have no additional energy cost, and resort to
transport layer ACKs only for the whole window. In this
paper, we extend the idea for the multicast situation, fol-
lowing the scheme described by Levine et. al [7]: the local
ACKs are MAC-based and the aggregate ACKs correspond
to window ACKs. In this way we ensure a relatively fast
sending rate (because MAC ACKs take no additional time)
and perform error detection and repairs locally. The ag-
gregate ACKs are needed for two reasons: (1) MAC ACKs
increase the confidence in the correct reception of a packet,
but do not guarantee it, and (2) the source must have an
indication for safely releasing the data from the memory.

3.2 Protocol Description
We consider the case of a dense network of heterogeneous

nodes, organised into multicast groups according to appli-
cation specific criteria (for example, nodes with similar re-
sources or placed in a certain area). For simplicity, we con-
sider that the protocol operates on a multicast tree rooted at
the source. The nodes of the tree are either members of the
group or forwarders needed for propagating the information.

The message to be disseminated is split in fixed size win-
dows of packets. The packets are identified by sequence
numbers. The receivers acknowledge the window with ACK
or NACK packets indicating through a bitmask the correctly
received and missed packets, respectively.

The protocol starts with an initial phase, during which a
packet announcing the new message is flooded into the tree
and the nodes initialize the dissemination session as follows:

• Set the protocol parameters, such as sequence num-
bers, message length, etc.

• Forward the message announcement to all children,

• Based on the replies from the children, compute the
height in the tree, the timeouts and decide the role,

• Acknowledge the parent and piggyback the height and
role.

Figure 3: Node with SHT and LDR sensors.

Acknowledgements and retransmissions are used to ensure
that the initial phase ends up correctly and all interested
nodes are ready to receive the message.

After the completion of the initial phase, the source starts
to send the message. Each packet from a window is sent
until all the direct children acknowledge it through MAC
ACKs (see Figure 2(a)) or a maximum number of errors is
exceeded. At the end of one window, the source waits for
transport level ACKs/NACKs from all the direct children.
If there are NACKs or a timeout occurs, the source will
start resending the missed packets (or the whole window),
following the same procedure. Accordingly, the leaves of
the tree (i.e., nodes that do not have children that are mem-
bers or forwarders) will acknowledge every packet at MAC
level and every window at transport level. The intermedi-
ate nodes carry out a double task, being both parents and
children, and therefore they are the most exposed in terms
of energy consumption. An intermediate node maintains a
small cache, equal to the window size, in order to act as a
source for its children, taking care of all local repairs. Only
after all the children have sent window ACKs, it can send
an aggregate window ACK to its parent (see Figure 2(b)).

3.3 Errors
Our protocol can recover from the following types of er-

rors:

• Packet losses. Packets may be lost or corrupted when
transmitted from parent to children. These errors are
detected by the parent at MAC layer or signaled by
the children through window NACKs.

• Faults. By fault we mean an error that causes the re-
transmission of the entire current window. There are
two possible reasons for a fault: a topology change (a
node loses the contact with its parent and has to regis-
ter to another parent) or a hardware error (due to im-
perfect battery contacts, harsh environments, watch-
dog behaviour, etc.).

4. PRACTICAL EVALUATION
In this section we present the implementation of the com-

plete solution for reliably disseminating business rules to
groups of sensor nodes and we describe the tests performed
within an experimental setting.

Figure 4: Cross-layer interactions.

4.1 Platform
In our experiments, we are using Ambient uNode 2.0 plat-

form [1] (see also Figure 3). The onboard micro-controller is
the Texas Instruments MSP430F1611, which offers 48kB of
Flash memory and 10kB of RAM. The radio transceiver has
a maximum data rate of 100kbps. The uNodes run Ambien-
tRT [5], which is a real-time multitasking operating system
designed for supporting data centric architectures. The key
points of AmbientRT are:

• Real-Time Scheduler, also providing mutual exclusion
for resource sharing;

• Data Manager, based on a publish/subscribe mecha-
nism for inter-task communication;

• Dynamic Loadable Modules (DLMs), which support
system reconfiguration at runtime.

4.2 Cross-layer interactions
As mentioned in Section 3.1, we rely on a cross-layer de-

sign for increased efficiency. Figure 4 sketches the interac-
tions between the main modules: LMAC, the reliable dis-
semination protocol and the business rule engine. LMAC [4]
is a lightweight medium access control protocol that provides
the following features:

• Collision avoidance through scheduled access,

• Neighbour information, including neighbour ID, link
quality and distance to gateway (in hops),

• Acknowledgments and retransmissions, within the lo-
cal neighbourhood,

• Control points through callbacks, an extension of the
original LMAC that practically enables the cross-layer
interaction.

LMAC delivers the received packets and notifies the MAC
ACKs to the dissemination module. The latter, in turn,
instructs LMAC to listen only to those packets intended to
the specific multicast group. Considerable energy is saved
by applying this selective listening scheme.

When a new set of rules is announced in the initial phase
of the dissemination, the sensor nodes enter a reconfigura-
tion state. Since both the business rule engine and the re-
liable dissemination are critical tasks and may compete for
the communication medium, we prevent them from running

Figure 5: Experimental setting.

in parallel. The dissemination protocol uses exclusively the
radio to transfer the data, while the rule engine is stopped.
However, in practice, we have to account for unexpected
errors in the dissemination process. Failures of the dissemi-
nation should not corrupt the entire operation of the nodes.
For this, as long as the dissemination process is still ac-
tive, it “freezes” the rule engine task by periodically post-
poning its activation (similar to a watchdog behaviour). If
an exception occurs and the dissemination does not termi-
nate correctly, the business rule engine eventually resumes
its execution. If the new rules are safely transferred, the
dissemination process forwards them to the rule engine for
reconfiguration. Both partial and complete reconfiguration
are supported: new rules can be added to the current set or
can replace previous rules with the same IDs.

4.3 Tests
We used for evaluation a multihop network of 11 nodes

placed as indicated in Figure 5. The group members corre-
spond in our scenario to the RTIs for a given shop. We used
the dissemination protocol to reliably deploy and change
sets of rules for the group of nodes. A typical set of rules is
presented in Table 2. Besides the internal voltage and tem-
perature sensors, the nodes were equipped with the follow-
ing: one light dependent resistor (LDR), one temperature
and humidity sensor (SHT) and one push-button (see rules
4-7).

We used for dissemination a mobile gateway composed of
a sensor node connected to an iPAQ through serial interface.
A second gateway (business rules gateway) was logging the
results issued by the business rules running on the nodes.
The communication on the serial links was done reliably by
using a simple stop-and-wait ARQ protocol. For efficiency
reasons, the packet size was chosen to fit one business rule.
We performed 30 experiments, in each disseminating a set of
rules to the multicast group from Figure 5. In all the cases,
the nodes reconfigured correctly. The total disseminated
data (over all experiments) cumulated ≈ 4kB. Each node
stored logging information (such as the number of packets
sent and received, the type and number of errors, etc.) and
reported it back to the dissemination gateway. The user
could thus follow on the iPAQ the ongoing process and an
estimation of the energy consumption in the network.

ID Name Driver Explanation

1 Vcc internal Battery level
2 Tint internal CPU temperature
3 Age counter Running time
4 Light LDR Light level
5 T SHT Temperature
6 H SHT Humidity
7 Message push-button User message

Table 2: Example set of business rules.

Parameter Value

Packet size 32 bytes
Window size 5 packets
MAC frame length 1 sec.
Tree height (max. hops) 4
Tree degree (avg. children) 2

Table 3: Experimental parameters.

We now discuss the most important numerical results.
The observed overall packet loss rate was 2,4%. Moreover,
all lost packets have been received properly at the first re-
transmission. This result points out that analysing MAC
ACKs and performing local retransmissions represent a good
choice. The average time for transferring one business rule
was 2.7 seconds, but this value depends substantially on the
parameters of the setting, listed in Table 3. Figure 6 (a)
gives an overview of the average energy spent by each node
for disseminating one rule. Node 0 represents the source, i.e.
the dissemination gateway. As expected, the intermediate
nodes (nodes 1, 2, 4 and 5) are the most loaded, being in-
volved in forwarding both data and acknowledgements. The
amount of energy spent on transmissions and receptions is
balanced. In contrast, the leaf nodes and the source consume
energy mostly on one operation (sending or receiving), ac-
cording to their role. Finally, the nodes that are not group
members (nodes 3, 6 and 7) remain completly passive during
dissemination and save energy.

We performed a second round of 30 experiments, in or-
der to test the behaviour of our system under higher error
rates. We had to provoke the errors ourselves by randomly
resetting nodes involved in dissemination and forcing in this
way the protocol to recover from faults. The ratio of faults
was on average 1.5%. This had also a marginal effect on the
packet loss rate, which increased at 3.3%. It took, however,
at most two retransmissions to repair a packet loss. The
most affected parameter was the average time per business
rule, which raised at 6 seconds. Figure 6 (b) shows still
reasonable values for the energy consumption; the increase
computed over the whole network is ≈ 5%. This proves that
the system has good ability of recovering from serious errors,
even under high error rates.

5. CONCLUSIONS
Our work focuses on integrating WSNs into real-world

business applications. We approach this from two direc-
tions: reconfiguration and reliability. We propose a sim-
ple, yet efficient method of expressing the business logic, by
means of rules through which the nodes can verify if the ob-
served situations correspond to the proper conditions. Due
to the dynamics of the real-world processes, the rules are
expected to change often. Therefore, we devise and test a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10 11

E
ne

rg
y

[m
J]

Node

Energy / rule

Receive
Send

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10 11

E
ne

rg
y

[m
J]

Node

Energy / rule

Receive
Send

(b)

Figure 6: Energy consumption.

reliable dissemination protocol addressing multicast groups
of nodes. We argue that such an approach is more selective
and scalable than unicast-based or flooding and, at the same
time, maps better to the application scenarios.

Our experimental results show the feasibility of a resource-
lean dissemination layer, which interacts with lower layers,
such as MAC, for increased efficiency. Nevertheless, the im-
plementation work on the sensor nodes revealed that the
cross-layer approach is indeed useful only if the interaction
methods between layers are enough uniform and general.
Otherwise, the code becomes error prone and difficult to
maintain or reuse.

We finally list several brief observations occurring from
our experiments. First, simple techniques, relying only on
local knowledge, should be favoured, as they can bring about
the desired reliability while leaving more resources for the
application space. Second, all theoretical assumptions about
link errors or node failures should be carefully considered. In
practice, all errors eventually happen and most usually in a
burst manner. Third, parameters such as timeouts, window
size or retry bounds prove important and their values may
affect considerably the real behaviour of the protocol. The
best values, however, can be determined only experimentally
and do not match all situations. Therefore, we consider im-
proving our protocol with an adaptive behaviour for future
work.

6. ACKNOWLEDGMENTS
The authors would like to thank Lodewijk van Hoesel,

Stefan Dulman and Nirvana Meratnia for their constructive
comments. This work has been partially sponsored by the
European Commission as part of the CoBIs project (IST
004270).

7. REFERENCES
[1] Ambient System. http://www.ambient-systems.net.

[2] Collaborative Business Items (CoBIs).
http://www.cobis-online.de.

[3] L. Evers, M. J. J. Bijl, M. Marin-Perianu,
R. Marin-Perianu, and P. J. M. Havinga. Wireless
sensor networks and beyond: A case study on
transport and logistics. In International Workshop on
Wireless Ad-Hoc Networks (IWWAN 2005), 2005.

[4] Lodewijk Van Hoesel, Tim Nieberg, Jian Wu, and
Paul Havinga. Prolonging the lifetime of wireless
sensor networks by cross-layer interaction. IEEE
Wireless Communication Magazine, 12 2004.

[5] T. Hofmeijer, S. Dulman, P. G. Jansen, and P. J. M.
Havinga. AmbientRT - real time system software
support for data centric sensor networks. In Intelligent
Sensors, Sensor Networks and Information Processing
(ISSNIP), pages 61–66. IEEE Computer Society
Press, 2004.

[6] Brian Neil Levine and J.J. Garcia-Luna-Aceves. A
comparison of reliable multicast protocols. Multimedia
Syst., 6:334–348, 1998.

[7] Brian Neil Levine, David B. Lavo, and J. J.
Garcia-Luna-Aceves. The case for reliable concurrent
multicasting using shared ack trees. In MULTIMEDIA
’96: Proceedings of the Fourth ACM International
Conference on Multimedia, pages 365–376, New York,
NY, USA, 1996. ACM Press.

[8] Mihai Marin-Perianu and Paul Havinga. Experiments
with reliable data delivery in wireless sensor networks.
In Intelligent Sensors, Sensor Networks and
Information Processing Conference (ISSNIP), pages
109–114, Melbourne, Australia, December 2005. IEEE
Computer Society Press.

[9] K. Obraczka. Multicast transport protocols: A survey
and taxonomy. IEEE Communications Magazine,
36(1):94–102, 1998.

[10] Martin Strohbach, Hans-Werner Gellersen, Gerd
Kortuem, and Christian Kray. Cooperative artefacts:
Assessing real world situations with embedded
technology. In Ubicomp, pages 250–267, 2004.

