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Abstract: This paper introduces the Calculating with Concepts (CC) technique, 
which has been developed to improve the precision of UML class diagrams and al-
lows the formal reasoning based on these diagrams. This paper aims at showing the 
industrial benefits of using such a formal and rigorous approach to reason about 
business processes and software applications in the early phases of the software 
development process. The paper discusses how the CC technique can be used in 
the specification of business processes and in the development of their supporting 
software applications or tools. This paper also illustrates the use of the technique 
with a realistic case study on tool integration. 

1 Introduction 

Business processes, like the handling of insurance claims or the closing of mortgages, 
have to be precisely defined, understood, and thoroughly analysed before software appli-
cations for supporting them can be developed. This implies that business processes have 
to be specified using techniques that are appealing to the business process architects, that 
enforce precision and clarity, and that allow analysis and manipulations. Furthermore, 
software applications to support business processes have to be specified in a similar form 
as these business processes, so that their suitability for supporting these processes can be 
evaluated or validated. 

There are many graphical and formal modelling techniques in software engineering that 
can be used in the specification of distributed systems, in particular business processes 
and software applications. Graphical modelling techniques, such as, e.g., Entity Rela-
tionship (ER) [Ch76], have become popular for information analysis, data modelling and 
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the automated generation of data structures, because they are intuitively appealing and 
relatively easy to use. However, most graphical modelling techniques, such as, e.g., 
some diagrams of the Unified Modelling Language (UML) [WK99], lack a precise defi-
nition of their semantics [Ev98a, Ba96, KC00]. Consequently, different people may 
interpret graphical models drawn using these techniques in different ways. Different 
interpretations can lead to misunderstanding, unfruitful discussions or software imple-
mentations that do not comply with their requirements. This pleads for enhancing the 
precision of these techniques. 

Formal modelling techniques, such as, e.g., Z [WD96], typically have precise syntax and 
semantics, defined in terms of mathematical models. This precision allows a rigorous 
approach to specification and reasoning. However, practitioners normally find these 
notations hard to use, mainly if their rather complex textual syntax is the only vehicle to 
produce specifications. This explains why formal notations are less used than they 
should be. 

This paper introduces the Calculating with Concepts (CC) technique [JP00,Dij01], which 
has been developed to improve the precision of UML class diagrams. The goal of the CC 
technique is to make precise reasoning about functional specifications accessible to a 
large group of people. Therefore the technique has to be kept simple. This paper shows 
how the CC technique can be used to reason about functional specifications of business 
processes and software applications formally, i.e., with the aid of mathematical rigor-
ousness. The paper discusses the applications of this technique in the modelling of busi-
ness processes, and the development of software applications and the tailoring of tools to 
support them. The benefits of the CC technique are illustrated in this paper with a case 
study on tool integration. 

The remainder of this paper is organised as follows: Section 2 introduces the CC tech-
nique, Section 3 discusses the applications of the CC technique that we have already 
identified in the area of business process architecture, Section 4 presents a case study on 
the use of the CC technique for tools integration, and Section 5 presents our conclusions 
and ideas for future work. 

2 The Calculating with Concepts technique 

This section defines the formal interpretation of UML class diagrams that is used in the 
CC technique, and introduces the cycle chasing technique, which allows one to identify 
and describe constraints on the universe of discourse described by the class diagram. 

2.1 Conceptual modelling 

We consider UML class diagrams as the common language for a group of stakeholders 
involved in a software development project. A UML class diagram describes a universe 
of discourse in terms of the different classes of objects that can be found there. Typical 
examples of classes are customer, mortgage file, savings account and letter. 

A modeller constructing a UML class diagram relates classes by means of associations, 
such that each association stands for a sentence template in the universe of discourse. 
For example, by drawing a line between the classes Customer and Letter, and calling this 
association 'received', one can represent all instances of the sentence template 'Customer 
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<C> has received the letter marked <M>'. An example of instance of this template is 
'Customer Brown has received the letter marked SJ01564', which relates a specific cus-
tomer object (Brown) to a specific letter object (SJ01564). The modeller thus constructs 
a class diagram by drawing lines between classes, such that each line represents a differ-
ent language template. Therefore, a class diagram describes a language with which sen-
tences that are meaningful to a specific group of stakeholders can be represented. 

Figure 1 shows a class diagram that represents the authorisation of employees to access 
customer files. 

Employee

Customer

File

-account

-customer file

-access

 
Fig. 1: Class diagram representing the access of an employee to customer files. 

With the CC technique, we use UML class diagrams to generate models from a concep-
tual perspective [FS97], which means that we use class diagrams to define concepts and 
their relationships. Normally, one can specify attributes and operations in a UML class 
diagram, but since we concentrate on the conceptual perspective we do not support at-
tributes and operations in the CC technique. Models from the conceptual perspective are 
called conceptual models. In later phases of the software development process, these 
models are normally used as requirements for the development of more detailed models 
that define the structure of the software application (software architecture). 

2.2 Interpretation of a class diagram 

The semantics of UML class diagrams is defined in the CC technique in terms of set 
theory and relational algebra. The user of the CC technique can choose either to translate 
class diagrams to the formal CC models and reason with these models, or to leave the 
class diagrams as they are, but adhere to the interpretation that is discussed in this sec-
tion. The formal notation requires tool support since it is not appealing to human users, 
while the graphical form can be useful for communicating the models to stakeholders. 

Each class and each (binary) association of a UML class diagram is interpreted as a set. 
The elements of each set represent the instances of the corresponding class or associa-
tion. We postulate that there is a set of generic objects that represents all possible in-
stances of all classes. This allows us to define the interpretation of classes and relation-
ships formally, in terms of sub sets of this set. Therefore we define the interpretation of a 
UML class diagram M as the tuple 

M = < CM, AM, restrictionsM > 
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where: 

• CM ⊆ ℘ (objects) represents the set of classes of model M (℘indicates a power set). 
Throughout this paper we use the variables A, B and C when we refer to an element 
of CM. We use a, a1, a2 and b, b1, b2 and so forth to denote elements of A and B, re-
spectively. Furthermore, we define that elements of CM can only overlap if one is a 
subset of the other, i.e., ∀A, B: A ∩ B = ∅ ∨ A ⊆ B ∨ B ⊆ A; 

• AM represents the set of associations of model M. Throughout this paper we use the 
variables R, S and T when we refer to an element of AM. We use r, r1, r2 and s, s1, s2 
and so forth to denote elements of R and S respectively. An association R between 
classes A and B is represented by R: A → B, which means that (a, b) ∈ R ⇒ a ∈ A ∧ 
b ∈ B. In our interpretation of class diagrams, associations have a direction, i.e., they 
are asymmetric. We indicate the direction of an association in the class diagrams by 
placing its name close to the target class; 

• restrictionsM represents the set of restrictions of model M. Each restriction is repre-
sented as a predicate that holds for all populations of M.  

 
Each R: A → B can be constrained by one or more of the following restrictions: 

total (R) ≡ ∀a: ∃b: (a, b) ∈ R 
functional (R) ≡ ∀a, b1, b2: (a, b1) ∈ R ∧ (a, b2) ∈ R ⇒ b1 = b2 
surjective (R) ≡ ∀b: ∃a: (a, b) ∈ R 
injective (R) ≡ ∀a1, a2, b: (a1, b) ∈ R ∧ (a2, b) ∈ R ⇒ a1 = a2 

These restrictions are used to express the multiplicity constraints of a UML class dia-
gram. Figure 2 shows the correspondence between multiplicity constraints in a UML 
class diagram and the corresponding restrictions. 

Class diagrams often contain equivalence, inheritance and aggregation associations. 
These associations have properties that we can express as follows, for R: A → B 

equivalence A = B 
inheritance A ⊆ B 
aggregation A ⊆ ∪ B 

Both equivalence and inheritance associations relate each element of A to the element of 
B to which it is equivalent, which can be represented as (a, b) ∈ R ⇒ a = b. Aggregation 
associations represent an element/set relation, which can be properly expressed using a 
mathematical part/whole relation. Therefore, we choose to represent each aggregate as a 
set of parts. Considering a simplified example of a car, it could be viewed as a set con-
sisting of an engine and four wheels, represented as car1 = {engine1, wheel1, wheel2, 
wheel3, wheel4}. For an aggregate, the existence of its parts depends on the existence of 
the whole, which implies that these parts do not exist without the aggregate. This is ex-
pressed by the property defined above, since an aggregation relation relates each element 
of A to the elements of B of which it is a part, i.e.,  (a, b) ∈ R ⇒ a ∈ b. 

When using the semantics described above, an easy to read formal specification can be 
derived directly from a UML class diagram. We currently have tool support to derive a 
formal specification from a UML class diagram both in Z, and in predicate logic. 
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Fig. 2: Multiplicity constraints and their corresponding restrictions 

2.3 Adding restrictions 

In addition to objects and sentences, a universe of discourse may have some laws that 
constrain the number of valid instances of a sentence template. In Figure 1, for example, 
we could have the following law: ‘an employee has access to a file, provided that this 
employee is the account manager of the customer who owns the file’. 

Cycle chasing is a technique that consists of following alternative paths determined by 
the associations between classes in a UML class diagram until a cycle is found, and 
verifying if the associations in the cycle can be constrained by a law. We discovered the 
law mentioned above by applying this technique to the class diagram in Figure 1. In this 
case, the cycle is formed by two paths: (1) 'access', and (2) 'account' followed by 'cus-
tomer file'. We also suppose that the stakeholders have confirmed that such a law indeed 
constrains the model. Path 1 says which employees have access to which files, and path 
2 defines a composed association that relates account managers to the files of their cli-
ents. 
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Laws are expressed in a CC-model by means of restrictions. The OCL [Ob97a] notation 
could have been used as an alternative to represent these restrictions. 

Consider two relations R: A → B, and S: B → C. In order to be able to represent laws 
that can be found by chasing cycles, we define two operators on relations: 

inverse  R ~ = {(b, a) | (a, b) ∈ R } 
composition  R ; S = { (a, c) | ∃b: (a, b) ∈ R ∧ (b, c) ∈ S } 

The law we identified in the example in Figure 1 can be represented by  

access ⊆ account ; customer file ~ 

Only for comparison, an OCL expression that describes the same law could be:  

Employee 
self.customer.file->includesAll(self.file) 

3 Usage in process architecture 

This section discusses the applications of the CC technique to business process architec-
ture that have been identified and worked out in [Dij01]. These applications are con-
cerned with improving design methodologies, integrating applications, and evaluating 
the functionality of software applications. Each one of these uses of the CC technique is 
briefly addressed below.  

3.1 Improving methodologies 

From our experience applying the CC technique to case studies in [Dij01] we learned 
that the following principles, which can be applied in design methodologies, play an 
important role in software development projects: 

• inter-relation dependencies, such as the dependencies that can be identified using 
cycle chasing (see Section 2.3), may contain important design information. The ca-
pability of representing inter-relation dependencies explicitly improves the expres-
sive power of the modelling technique; 

• models can be generated at different abstraction levels, depending on the stake-
holders (users, architects, implementers) or the purpose of the model. One should be 
capable of relating these different models, amongst other reasons, to produce a com-
mon language for communication between stakeholders. In order to achieve this we 
can define mathematical relations between the classes of the different models, and re-
strictions involving the associations of the different models, so that the correspon-
dence between the models is formally represented; 

• the explicit distinction between a definition part and an execution part in a business 
process model is normally essential to guarantee the common understanding of the 
concepts in a model. 

Figure 3 illustrates the definition part of a model (Activity definition and Connection 
concepts) and the execution model (Activity and Trigger). In this example a person is 
responsible for activities of some type, and the corresponding activity instances once 
they are created. Activity types are connected to each other in the definition part of the 
model, while an activity instance may trigger another activity in the execution part of the 
model.  
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The CC technique in this example plays an important role since cycle chasing can be 
used to keep the type consistency between the definitions and the instances. We can, for 
example, express the restriction that a trigger can only cause an activity, if this trigger is 
an instance of a connection to the activity’s type: 

causes ⊆ type ; to ; type ~ 

Candidates for inter-relation dependencies can be identified using cycle chasing, as illus-
trated in Section 2.3. The use of the CC technique for relating models at different ab-
straction levels will be tackled in a forthcoming paper. 

Person

Activity definition

Activity

Connection

Trigger

notified of

responsible for

caused by

causes

typetype

from

to

 
Fig. 3: Definition and execution parts of a model 

3.2 Applications integration 

In most cases, business processes are not really supported by a single software applica-
tion, but by a set of applications. These applications are normally developed separately, 
possibly by different development teams or companies, and are integrated later to form 
the automated support that is required. The major challenge of this integration task is to 
assure that the resulting support is consistent and complies with the requirements dic-
tated by the business process. The CC technique allows one to formally define relation-
ships between concepts of the applications to be integrated, so that consistency rules can 
be defined and allowing the consistency of the resulting support to be assessed. Section 4 
describes in more detail a case study on tool integration using the CC technique. 

3.3 Functionality evaluation 

Sometimes we have to evaluate whether some legacy piece of software can be replaced 
by a more advanced tool or application. Users are normally reluctant when doing that 
because they feel comfortable with the legacy software that they know well and do not 
want to learn something new, or because they are afraid that they will lose functionality. 
In [Dij01] we show that the CC technique can help users getting confidence that the 
replacement of legacy software will not imply loss of functionality. This can be achieved 
by making models of both the legacy software and its intended replacement, and defin-
ing formal mappings from concepts and associations of the model of the legacy software 
onto corresponding concepts and associations of the model of the intended replacement. 
While defining the correspondence, which gives already design information for imple-
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menters, one can evaluate the suitability of the replacement, generating documentation 
that can be used to convince the user. This usage of the CC technique will also be re-
ported in more detail in a forthcoming paper. 

4 Case study on tools integration 

The software support to business processes can consist of a set of applications or tools, 
which are developed separately and integrated afterwards. In order to integrate these 
applications or tools in a proper way according to the requirements of the business proc-
esses we have to evaluate these applications or tools at a conceptual level. This evalua-
tion should reveal the alternatives for integration and whether the integration is possible 
at all. In the sequel we show that CC-technique can help performing this evaluation. 

4.1 Formal definitions 

In order determine how two subsystems, represented by the CC models M and N, can be 
integrated, we define a third CC model G (for glue), which contains the associations 
between classes in M and classes in N. G also contains the restrictions that range over 
these associations. 

After having determined G, we assemble the CC models using the ∪ operator, which is 
defined for two CC models M and N as: 

M ∪ N = < CM ∪ CN, AM ∪ AN, restrictions M ∪ restrictions N > 

The technique used to assemble CC models resembles the principles of database view 
integration [BLN86], and the principles of knowledge-base integration [BK99]. After the 
integration has been performed, the resulting model should be evaluated, to check if it is 
realistic. 

4.2 Protos and Staffware 

A case study reported in [Be00] discusses the integration of the process modelling tool 
Protos [Pa98] with the workflow tool Staffware [St96], allowing business processes 
modelled using Protos to be supported by Staffware. In this case study the CC models of 
both tools were assembled, proving that the most straightforward translation from a 
Protos model to a Staffware model leads to useless workflow designs, thereby prevent-
ing a costly mistake to be made. The mapping between these tools that leads to useful 
workflow designs was much more sophisticated and could be better represented using a 
formal model such as the CC technique. 

4.3 Resulting integration 

Figure 4 illustrates the use of the CC technique in this case study in a strongly simplified 
form. Staffware handles the co-ordination of work using the classes procedure, step and 
group. A step is a unit of work that can be performed by a single person in a singular unit 
of time like, for example, 'prepare interview with customer'. A procedure is a collection 
of work related to a specific goal, like 'loan application', which is the collection of work 
related to the goal of selling a loan. Typically the work involved in a workflow proce-
dure is described as a series of steps. The procedure 'loan application' contains, for ex-
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ample, the steps 'prepare interview with client', and 'carry out interview with client'. A 
group is a set of people that are similar with respect to the tasks they perform, like 'client 
advisors'. 

Protos models business processes using the classes procedure, activity and role. The 
definitions of procedure and role are similar to the definition of procedure and group in 
the workflow pattern. An activity is the smallest unit of work that makes sense to a per-
son, like 'check that loan amount does not exceed limit'. These classes and their associa-
tions have been captured in the solution part of the business process pattern. 

From the definitions of the classes in the two original models, we conclude that the 
workflow class procedure has an equivalence association to the business process class 
procedure. The role and group classes also hold an equivalence association. The step 
class has an aggregation association to the activity class, because activities that can be 
carried out by a single person in a singular unit of time, can be grouped into steps. The 
activities 'check that loan amount does not exceed limit' and 'write proposal' can, for 
example, be grouped into the step 'prepare interview with client'. The assembly of the 
two patterns, by the associations, results in new cycles from which we derived the fol-
lowing laws: 

• two activities are in the same step, provided that they are performed by the same role 
or group; and 

• a step follows another step, provided that the first step contains an activity that fol-
lows an activity in the second step. 

 

Procedure

Activity

Role

-in

-performs

-follows

SW Procedure

Step

Group

-in

-performs
-follows

-equal to

-equal to

-part of

1

Protos StaffwareG

 
Fig. 4: Combination of Staffware and Protos 
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These laws are represented by the following restrictions: 

functional( part of ~ ; performs ~ ) 
follows ⊆ part of ~ ; follows ; part of 

The glue model G thus is composed of the following elements: 

CG = { Procedure, SW Procedure, Activity, Step, Role, Group } 
AG = { equals: Procedure → SW Procedure, part of: Activity → Step,  

equals: Role → Group } 
restrictionsG = { functional( part of ~ ; performs ~ ),  

follows ⊆ part of ~ ; follows ; part of } 

We have performed the integration by applying the ∪ operator to the formalised 
Staffware and Protos models, and G. Figure 4 shows a UML class diagram of the assem-
bled workflow and business process CC model. 

We have developed tool support for formalising class diagrams into CC models, and for 
assembling them. This tool delivers formal specifications in Z. Figure 5 shows the Z 
specification of the integration of Staffware (represented as Workflow) and Protos (rep-
resented as Proceduremodeling). 

 
Fig. 5: Z specification of the integration of Staffware and Protos 

This example shows that the CC technique helps defining the rules for integrating two 
applications (tools) and provides the machinery to reason about the resulting integration 
from the perspective of the requirements of the business processes. 
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5 Conclusions 

In this paper we introduce the Calculating with Concepts (CC) technique. The CC tech-
nique provides a precise basis for UML class diagrams, aimed at simplifying and sup-
porting reasoning about designs in an industrial environment. To do so, the CC tech-
nique specifies a formal semantics for UML class diagrams, and a technique called cycle 
chasing, for identifying additional restrictions to the resulting models. 

The paper identifies a number of applications of the CC technique in which this tech-
nique is used as a reasoning tool. The paper shows that the CC technique can be used to 
relate the languages spoken by different stakeholders in an organisation, thereby helping 
them to communicate. We also show that the technique can be used to assess if a tool 
can be used to replace a legacy system, assessing if, and how, functionality is translated 
from the legacy system to the replacement tool. The CC technique is used to specify the 
relation between tools that together support a business process, and to assess if this rela-
tion results in a consistent system. The paper also shows how the relation between the 
tools can be specified in Z, thereby providing a formal specification of the customisation 
necessary to integrate the tools. 

The CC technique has been applied in a number of practical situations. This paper shows 
an example from practice, where the application of the CC technique proved that the 
integration of two tools was wrongly defined, preventing that a costly mistake was made. 
We also applied the CC technique in two other situations, in which two consultants, with 
relatively little experience, where asked to review a functional design. The CC technique 
helped them improving the designs significantly, proving itself useful. 

The work described in this paper is strongly related to the work of the precise UML 
(pUML) group [Ev98a, Ev98b, Ev98c, Ev99, BF98]. This group, however, aims mainly 
at describing a formal semantics for UML, while we aim at making formal reasoning 
with UML models accessible to a large group of people. Therefore our semantics must 
be easy to learn, and hence it should remain simple. Many references can be found in the 
literature in which the generation of formal models from informal conceptual models 
from the software development point of view is addressed [KC00, Ba96, MP95, 
DLC00]. From these, only [DLC00] addresses the integration of formal restrictions in 
conceptual models. The latter reference, however, does not go as far as using the result-
ing formal specifications for reasoning. Apparently not much has been published on the 
integration of tools at a conceptual level.  

Further research related to the CC technique will be mainly done in three areas: (1) the 
formalisation of the dynamic aspects of systems, since the work so far only addresses the 
static aspects; (2) the development of tool support to perform evaluations on assembled 
models, and (3) more practical applications of the technique, by defining more operators 
on CC models and identifying design questions that can be answered with the help of the 
CC technique. In future, we also intend to apply the CC technique to the field of design 
patterns. We will use the CC technique to formalise design patterns and integrate them 
systematically into designs of complete systems. 
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