Latency-Rate servers & Dataflow models

Maarten Wiggers Marco Bekooij
September 28, 2006

1 Introduction

In the signal processing domain, dataflow graphs [2] [10] and their associated analysis
techniques are a well-accepted modeling paradigm. The vertices of a dataflow graph
represent functionality and are called actors, while the edges model which actors com-
municate with each other. Traditionally, these actors have been scheduled in a static
order or in a fully static fashion [9] [16]. However, for firm real-time applications,
run-time scheduling is required if there are tasks, that operate on different streams and
share the same resource, for which either the execution time or the execution rate is
unknown or impractical to bound.

Furthermore a fully static schedule is not attractive since computing a fully static
schedule is NP-hard [6], storing the fully static schedule can require a large on-chip
memory, it requires a global notion of time, and a schedule for each combination of ap-
plications, and when the actual execution time is smaller than the worst-case execution
time then this leads to idle time.

Static order scheduling does not intrinsically require a conservative bound on the
execution times. However, in order to determine the worst-case response time of a
task, a conservative bound on the execution time is required to be known of all tasks
that share the same resource. Static order scheduling does, however, require a known
execution rate. And static order scheduling also requires a schedule for each combina-
tion of applications.

This paper presents a method to perform throughput analysis of firm real-time ap-
plications when the tasks that constitute these applications are scheduled at run-time.
More precisely, we will show that it is possible to include the effects of a class of
schedulers, which are called Latency-Rate (LR) servers [17], in a dataflow graph, and
we further show that traditional analysis techniques can still be applied on the resulting
dataflow graph.

LR servers were originally proposed as a modeling paradigm to model the effect
of scheduling on traffic passing through a chain of routers in a network with real-time
constraints. The analysis goal of the LR model is to be able to determine whether
traffic that is injected into the network according to a specific traffic model arrives at
its destination in time, and determine sufficient buffer capacities. The presented work
removes a number of limitations of LR servers.

We allow dependencies between more than two LR servers, in which a request
for service only arrives when requests on possibly multiple LR servers have received



service. An example would be a task that combines results from two different tasks,
this task is only enabled if both its inputs are present.

In a dataflow model, cyclic dependencies can be analysed. As will be explained in
later sections, this allows us to analyse task graphs in which the tasks are scheduled on
LR servers and in which tasks are only enabled if both data is available on the input
buffers and output space is present in the output buffers. This mechanism results in
back-pressure, which will not enable the task if any of its output buffers is filled with
data. We will show that application of this backpressure mechanism leads to reduced
buffer capacities.

This document is structured as follows. First in Section 2 we briefly present work
related to worst-case analysis of task graphs that include tasks that are scheduled at
run-time. Then in Section 3 we present the single-rate dataflow model that we in sub-
sequent sections use to derive our initial results. In Section 4 we describe the tradi-
tional relation between implementation and dataflow models. A more general relation
between implementation and its dataflow model is described in Section 5. In Section 6
we introduce LR servers, and in Section 7 we show a dataflow component of which
we show that this component has an input-output behaviour that is equivalent to the
LR model of a task that is scheduled on an LR server. In Section 8 we show how
the application of LR servers improves upon our previous work. And in Section 9 we
show that dataflow analysis leads to smaller buffer capacities than LR analysis. Then
in Section 10 we show that dataflow subgraphs can be conservatively modelled by
other dataflow subgraphs, which allows to create a hierarchical model. In Section 11
we show how to construct these abstract dataflow subgraphs. And in Section 12 we
generalise the results obtained using single-rate dataflow to more expressive dataflow
models.

2 Related work

Network calculus, as presented by Cruz [3] [4], is related to the LR model. However
as explained in [17], since the LR model uses the concept of a busy period instead of
a backlogged period, the LR model leads to tighter server latency bounds and a larger
class of schedulers that can provide these latency bounds, when the offered service is
linearly bounded.

Not only the LR model and Network calculus, but also other scheduling approaches
that include run-time scheduling, as for instance presented by Jersak [8], Goddard [7],
or Maxiaguine [12], do not allow feedback cycles that influence the temporal behaviour
of the system.

Bekooij [1] previously included resource sharing in dataflow models, however, only
Time Division Multiplex and Round Robin scheduling are considered, while the class
of LR servers is broader. And further, the analysis approach as proposed in [1] is less
accurate than the analysis approach presented in this paper. This is because [1] assumes
that the worst-case response time is the same for every execution of a task, while we
will show that for sequences of task executions that immediately follow each other this
assumption is overly pessimistic.



3 Single-Rate Dataflow

In this section we define Single-Rate Dataflow (SRDF) graphs and summerise a num-
ber of relevant properties of SRDF graphs. An SRDF graph is a directed graph
G = (V, E,d,r) that consists of a finite set of actors V, and a set of directed edges,
E = {(vi,v})|vs,v; € V}. Actors synchronise by communicating tokens over edges
that represent queues. The graph G has an initial token placement d : E — N.

An actor is enabled to fire when a token is available on each input edge. The
response time 7(v;), 7 : V' — R, is the difference between the finish and start time of
actor v;. When actor v; finishes, then it produces a token on each output edge in one
atomic action.

For a strongly connected and consistent SRDF graph, we can derive the period p
of the graph through Maximum Cycle Mean (MCM) analysis [16]. To determine the
MCM, the maximum of the cycle means of all simple cycles in the SRDF graph needs
to be determined, where the cycle mean of a cycle c is the sum of the response times of
the actors on c divided by the number of initial tokens on the cycle c. The throughput

of the graph relates to p1 1.

3.1 Monotonic Execution
In this section we will show that SRDF graphs are temporally monotonic.

Definition 1 (temporal monotonicity) An SRDF graph is temporally monotonic if no
decrease in response time, increase in number of initial tokens, or decrease in the
difference between actor enabling time and actor start time leads to a later actor start
time.

In [14] it is stated that an SRDF graph is monotonic in the response times, if the
SRDF graphs maintains a FIFO ordering of tokens. An SRDF graph maintains a FIFO
ordering of tokens if each actor either has a constant response time or a self-edge with
one initial token [5]. This is because the queues by definition maintain a FIFO ordering.

No proof was provided in [14] to show that an SRDF graph is monotonic in the
response times, only the observation that the evolution equations as given in Chapter 2
of [5] are monotonic in the response times. These evolution equations only hold if the
SRDF graph maintains a FIFO ordering of tokens. This is because in the evolution
equations the start time of the k’th firing of actor v; depends on firings k — m,0 <
m < M of actors v;, where M is the maximum number of initial tokens on any edge.
If FIFO ordering is not maintained, then firing %k of actor v; is enabled by firing q of
actor vy, where ¢ can be larger than, smaller than, or equal to k.

We will first extend [14] by proving that an SRDF graph that maintains FIFO order-
ing of tokens is temporally monotonic. Subsequently we will show that the requirement
of FIFO ordering is not necessary.



Theorem 1 An SRDF graph that maintains a FIFO ordering of tokens is temporally
monotonic.

Proof. Since the SRDF graph maintains a FIFO ordering of tokens, the enabling time
of actor v,, in iteration k, l(v,, k), is given by [15]

(v, k) = max({s(vi, k — d(v;,v0)) + r(vi, k — d(vi,0,))|(i2) € BY) (1)

where s(v;, k) is the start time of actor v; in iteration k, and r(v;, k — d(v;, v )) is the
response time of actor v; in iteration k — d(v;, v, ). The start time of actor v,, in iteration
k is therefore given by

$(vg, k) = (v, k) + €(vg, k) (2)

where €(v;, k) > 0 is the difference between the start time and the enabling time of
actor v, in iteration k.

Since @’ < a = Vb : max(a’,b) < max(a,b), a decrease of the start times or
response times of v;, which is a predecessor of v,, in iteration k¥ — d(v;, v,) cannot
lead to an increase of the enabling time of actor v, in iteration %, and therefore also
cannot lead to an increase of the start time of actor v, in iteration k.

If the number of initial tokens d(v;, v, ) is increased of some edge (v;, v, ) to be-
come d' (v, vy), with d’'(v;,v;) > d(v;,v,), then the enabling time of v, in itera-
tion k& becomes dependent on the start time and response time of actor v; in iteration
k — d'(v;,vy). Since FIFO ordering is maintained we have that k — d'(v;,v,) <
k—d(vi,vz) = s(vi,k —d'(vi,vz)) +r(vi, k — d (vi,v2)) < s(vi, k — d(vi,vg)) +
r(vs, k — d(v;, v,). This means that an increase in the number of initial tokens cannot
lead to an increase of the enabling time of actor v, in iteration k, and therefore also
cannot lead to an increase of the start time of actor v,, in iteration k.

Further if the difference €(v,, k) between the start time and enabling time of actor
v, in iteration k is decreased to become €' (v,, k),0 < €'(vz, k) < €(vy, k), then this
does not lead to an increase of the start time of actor v, in iteration k.

Since for any actor v, and any iteration k no decrease of the response time, increase
in the number of initial tokens, or decrease of the difference between start time and
enabling time leads to a later start time, the SRDF graph is temporally monotonic. [

We will now show that an SRDF graphs are also temporally monotonic without the
constraint that FIFO ordering is maintained.

Theorem 2 An SRDF graph is temporally monotonic.
Proof. The enabling time of actor v, in iteration k, [(v,, k), is determined by
l(vg, k) = max({s(vi, k") + r(vi, k)| (i,x) € E}) (3)

where s(v;, k') is the start time of actor v; and r(v;, k') is the response time of actor v;
in some iteration k’. The start time of actor v, in iteration k is therefore given by

S(UIvk) = l(vzvk) +€(U:L’7k) €]

where ¢(v;, k) > 0 is the difference between the enabling time and the start time of
actor v, in iteration k.



Since ¢/ < a = Vb : max(a’,b) < max(a,b), a decrease of the start times or
response times of v;, which is a predecessor of v, in iteration k¥’ cannot lead to an
increase of the enabling time of actor v, in iteration k. Since the SRDF graph does
not maintain FIFO ordering of tokens, it can occur that a decrease of the start time or
response times of an actor v;, which is a predessor of v, in iteration k" determines the
enabling time of v, in iteration k. This can only occur if iteration k" of v; produces
earlier than iteration k" and thus s(v;, k") + r(vi, k") < s(vi, k') 4+ 7(vs, k). This
situation can therefore not lead to a later enabling time of actor v, in iteration k, and
therefore also not to a later start time of actor v, in iteration k.

If the number of initial tokens d(v;,v,,) is increased of some edge (v;, v,) to be-
come d'(v;,v,), with d'(v;,v,) > d(v;,v,), then the enabling time of v, in itera-
tion k£ becomes dependent on the start time and response time of actor v; in iteration
k. k # K, with s(v,;,@) + T’(’Ui,i{?\) < s(vi, k) + r(vs, k). This is because firing k is
no longer dependent on the k — d(v;, v, ) th token to arrive on edge (v;, v,,) but on the
k — d'(v;,v,) th token to arrive. Since d’(v;,v;) > d(v;,v,), the k — d' (v, v,)’th
token arrives no later than the k£ — d(v;, v, ) th token.

Further if the difference ¢(v,, k) between the start time and enabling time of actor
v, in iteration k is decreased to become €' (v,, k),0 < €' (vy, k) < €(vg, k), then this
does not lead to an increase of the start time of actor v,, in iteration k.

Since for any actor v,, and any iteration k£ no decrease of the response time, increase
in the number of initial tokens, or decrease of the difference between start time and
enabling time leads to a later start time, the SRDF graph is temporally monotonic. [

4 Analysis model and implementation

In this section we show how traditionally an SRDF graph is constructed from the im-
plementation of our applications, and we show that the analysis of the resulting SRDF
graph gives a conservative bound on the behaviour of the implementation.

We assume the following. Our applications are implemented as a weakly connected
directed task graph, of which the vertices represent tasks and the edges represent FIFO
buffers with a fixed capacity. Tasks only communicate fixed sized containers over FIFO
buffers, where a container can be full or empty. A task produces one container on each
output FIFO and consumes one container from each input FIFO in every execution.
Furthermore, the execution of a task only starts when a full container is present on every
input FIFO buffer and an empty container is present on every output FIFO buffers. The
finish time of each task is at most the worst case response time later than the enabling
time. And further at most one instance of a task can execute at any time.

The corresponding SRDF graph can now be constructed as follows. Each task is
modelled by an actor. The response time of the actor equals the worst-case response
time of the task. Containers are represented by tokens. Each FIFO buffer is modelled
by a pair of queues in opposite direction, where the tokens on one queue represent full
containers, and on the other queue represent empty containers. The fixed capacity of
a FIFO buffer is modelled by the number of initial tokens on the corresponding pair
of queues. The number of containers communicated per task execution is modelled
by the token production and token consumption rates of the actor, which are all equal



to one in an SRDF graph. The constraint that no two instances of a task can execute
simultanuously is represented by an edge from the actor to itself, a self-cycle, with one
initial token.

In Section 3 we have established that an SRDF graph is temporally monotonic. This
means that analysis of an SRDF graph where every actor has a worst-case response time
leads to worst-case token arrival times. Furthermore, we have that the SRDF graph is
constructed in such a way that there is a one-to-one correspondance between tokens and
containers. And because tasks can only have a smaller response time than actors, while
the number of tokens equals the FIFO buffer capacity and in the implementation tasks
start their execution as soon as they are enabled, we arrive at the conclusion that tasks
produce their containers no later than the corresponding actors produce their tokens.

S Analysis of tasks on LR servers

While in Section 4 every task is modelled by one actor, we will in later sections like to
model a task that is scheduled on a LR server with two actors v, and v,. However, since
in that case there is no longer a clear correspondence between queues and tokens in the
SRDF graph and FIFO buffers and containers in the task graph, we can no longer use
the argumentation of Section 4. In this section, we will show that a correspondence be-
tween model and implementation and a sufficient condition exists such that worst-case
container production times can still be computed with dataflow analysis techniques.

We assume that the application is implemented as a task graph G 4 as described in
Section 4.

We define a4 (m, j) to be the arrival time of the j-th container in the input FIFO
m € I, and as(n,j),n € O, to be the arrival time of the j-th container in the output
FIFO n both of a task u,, in the implementation.

We assume an SRDF graph G that models the implementation. We define C' as
a partitioning of the set of actors V, VC,,,C, € C,C, # C, = C, NCy =0,V =
{C;|C; € C}. Each element in C'is called a component. Components consume tokens
from component input queues and produce tokens on component output queues. A
component input queue of component C,, is an edge (7, j) in the SRDF graph that has
an actor v; € Cy as destination and an actor v; ¢ C as its source. A component
output queue of component C,, is an edge (¢, 7) in the SRDF graph that has an actor
v; € Cy as its source and an actor v; ¢ C,, as its destination.

The component graph needs to match with the task graph, i.e. there should be
a one-to-one correspondence between tasks and components, and between bounded
FIFO buffers in the task graph and pairs of edges in the component graph. We define
I, as the set of input queues of component C,, and O,, as the set of output queues of
Cy.

We define a s (m, j) to be the arrival time of the j-th token in the component input
queue m € I, and ap(n,j),n € O, to be the arrival time of the j-th token in the
component output queue n both of a component C',, in the SRDF graph.



Definition 2 We say that the token production and consumption behaviour of com-
ponent Cy, is conservative with respect to the container production and consumption
behaviour of task u, if the following holds

Vm € Iz, aa(m,j) < ap(m,j) = Vn € Oy,aa(n,j) < an(n,j) (5)

Theorem 3 If every component C,, is conservative with respect to task u,, i.e. Equa-
tion 5 holds, then the worst-case arrival times of containers in the output FIFOs of
every task u, can be computed with dataflow analysis techniques.

Proof. We know that (1) Equation 5 holds, (2) every SRDF graph is temporally
monotonic, and (3) there is a one-to-one correspondence between the component
graph and the task graph. The one-to-one correspondence combined with the fact
that Equation 5 holds, means that for constant response times token arrival times
form a conservative bound on container arrival times. This is because tokens are
produced when the actor finishes, while containers are produced before a task finishes.
Furthermore we know that an SRDF graph is temporally monotonic, which means
that no reduction of the response time of an actor in the component graph leads to
a later start time of an actor in the component graph. Combining this fact with the
facts that the components are conservative with respect to the tasks and that there is
a one-to-one correspondence between the component graph and the task graph, leads
to the conclusion that token arrival times in the component graph are conservative
container arrival times in the task graph, and are therefore worst-case container arrival
times. O

An implication of Theorem 3 is that the execution of one task in the system can be
represented by a component which can be a collection of dataflow actors as long as the
component is conservative with respect to the task. In the next sections, we will use
this property to model tasks that are scheduled using an LR server with a component
that consists of two dataflow actors, similar to Figure 1(b), of which we will show
that this component conservatively models the execution a task on an LR server. In
the traditional approach as for example shown in Figure 1(a) this relationship between
model and implementation was not possible.

6 Latency-rate servers

In this section we introduce LR servers from a dataflow perspective. Let e(v,, 1), e :
U x N — R, with U the set of tasks, be the time at which sufficient containers are
available on all input FIFOs, such that execution 7 of task u, can start, and say that
execution 7 of task u, is externally enabled at e(v,, 7). This is because a task is only
enabled if also its previous execution has finished. We define A, (s,t), A: RxR — N,
as the number of external enablings of task u, within the interval (s,t]. Further, let
f(ug,4), f: UxN — R, be the finish time of execution ¢ of task u,,. Let W, (s,t), W :
R x R — N be the number of finishes of task u, in the interval (s, t].

A busy period is defined in [17] as a maximum interval of time (s, ¢] for which
Equation 6 holds. This means that at any time 7 in a busy period the number of external
enablings is at least equal to the number of finishes at the allocated rate p, € R.



U1

dy

_‘_"

V2

(a) Example of the traditional one-to-
one relation between dataflow graph and

task graph
N [ N [
4 ° 0
oyl %
@ - U2’1 @
AN AN

\ ! /
O

(b) Example one-to-one relation between component graph and task graph

Figure 1: Examples of the traditional and proposed relations between dataflow graphs

and task graphs.



V1 € (s,t]: Ap(s,7) > E(8,7) = pg - (T — 9) (6)

According to [17], if and only if we can show for a scheduler that a nonnegative
constant L, € R can be found such that Equation 7 holds, where (s, t] is a busy period
of task u, and 7 € (s, t], then this scheduler is a LR server for task u, with rate p,.
The minimum nonnegative constant L, for which Equation 7 holds, is defined to be
the latency O, of the scheduler for task .

Wa(s,m) 2 Q(s,7) = max(0, pg - (1 — 5 — L)) M

Since W (s,t) € N, we obtain a tighter lower bound Q on W, (s,t), by enforcing
that Q € N. This is done by taking the floor of () and we therefore require that a
nonnegative constant L, can be found such that Equation 8 holds. And again, the
minimum nonnegative constant L, for which Equation 7 holds, is defined to be the
latency ©, of the scheduler for task u,,.

Wa(s, 1) > Q(SaT) =max(0, [pz - (T — s — La)]) (®)

Because W, (s,t) € N, using the bound Q(s,t) leads to a latency L/, that is %

lower than the latency L/’ derived using the bound Q(s, t). This is because when using

Q(s,t), we have that Q,.(s,7) < nforr < s+ L, + ”:‘1, while when using Q(s, t),

we have that Q,(s,7) < nfor7 < s+ LI + o Since at the finish time of some

execution m both bounds are exact, we have that L/, = L/ — p%. In [17] latencies of a
number of LR-servers are derived using the bound Q(s, t).

Figure 2 illustrates the relation between the number of external enablings and the
number of finishes.

Ve ,I;
E(SvT) // J1_ JQ(57T)
, K
// _J
WA
s s+ 06
time

Figure 2: The lines starting at s and s + © both have a slope p. The number of
external enablings should be at least E(s,7) and the number of finishes should be at
least Q(s, 7).

Often the arrival function A and service function W are expressed in the amount
of time requested from and provided by the LR server, while we have defined them
in terms of number of enablings and finishes of task executions. However, in worst-
case analysis these two notions are equivalent. This is because, in worst-case analysis
we can associate the worst case execution time (WCET), which is the maximum time
required by a task execution when the task executes in isolation, with every request



or provision of service. If with every arrival and provision of service the WCET is
associated, then p,, would be multiplied by the WCET to become p!, = p, - WCET,,
while ©, remains the same. In this case, p/, would mean the fraction of time that a
requester is allowed to execute on the LR server, i.e. after ©, time, which corresponds
with the traditional notion of rate. Therefore % would mean the fraction with which
the execution time of the requested is stretched due to execution on the LR server,
excluding ©,. And therefore w would be the worst case time required to finish a

A
; : WCET _ WCET _ 1
request for service, excluding ©,. However, we have that 7 = 7 WOET = po

which means that the definitions as used in the present discussion are equivalent to the
traditionally used definitions.

7 LR server as an SRDF Component

In this section we present an SRDF component that can be included into a larger SRDF
graph that conservatively models a task that executes on an LR server by showing
that the number of token releases by this dataflow construct in an interval (s, ¢] equals
Q(s, t) as defined in Equation 8.

We will first show that bounding the finish time of an execution in a busy period
with respect to the start of the busy period as expressed by Equation 9 is equivalent
to bounding the number of finishes over a time interval that starts from the start of
the busy period as expressed by Equation 8. Subsequently we show that bounding the
finish time of an execution in a busy period with respect to the start of the busy period
as expressed by Equation 9 is equivalent to bounding the finish time of an execution
in a busy period with respect to either its external enabling time or the finish time of
the previous execution as expressed by Equation 31. Subsequently we will show that
Equation 31 is equivalent to an SRDF component that models a task with one input and
one output FIFO that is scheduled on an LR scheduler.

In the following we will only consider task u, and we therefore use the shorthand
notation e(j) and f(j) to mean the external enabling time of execution j of task u,, and
the finish time of task wu,,.

Lemma 1 If the scheduler is a LR server with latency © and rate p, then bounding
the finish time as in Equation 9 is equivalent to bounding the number of finishes as in
Equation 8 in every busy period.

Proof. Let execution k be the first execution in a busy period (s, ¢] and let execution j
occur in the same busy period, that is e(k) = sand j > k and f(j) < ¢, then the finish
time of execution j is bounded by

j—k+1

fG) <7 =ek) +0©+ ©

According to Equation 9, execution j of actor v, is guaranteed to have finished at
7; = e(k)+ O+ # For Equation 9 to equal Equation 8, it should hold that starting
from 7; the guaranteed number of finishes is at least j — k 4 1. More formally it should
hold that

v

V' > 1 Qe(k), 7)) > j—k+1,and (10)

10



vr'le(k) < 7" <75 Q(e(k),T”) <j—k+1 (11)

Equation 10 holds, because, according to Equation 8,

9

Q(s,7j) = max(0, |p- (7; —e(k) — ©)]) (12)
s, 7;) = max(0, [p- (e(k) + 0+ L1 ey —e)  13)
Qs ) = max(0, p- () (14
Q(s, ;) =max(0, [j —k+1))=j—k+1 (15)

And Equation 11 holds, because for 7/ = 7; — €,0 < € < 7; — e(k), we have that
O(s,7") = max(0, |- (r; — € — (k) — ©)) (16)
Ols,7") = max(0, [p- (e(b) + 0+ L EFL ey —e)y  am
Qs 7") = max(0, p- (=L _ ) ()
Q(s, ") =max(0,[j —k+1—¢]) <j—k+1 (19)
Furthermore execution k is not guaranteed to have finished at any 7 for which holds
e(k)<%<7'k:e(k)+@+% (20)

Equation 20 is true because for 7 = 73, — €,0 < € < e(k) we have that
o 1
Qe(k), 7 — €) > max(0, |p- (e(k) + O + F e—e(k)—0)]) 21)

Ge(k), 7 — €) > max(0, [p- <§ — ) 22)

v

Qe(k), 7 —€) > max(0,|1—p-€]) =0 (23)
0

Lemma 2 [f the scheduler is a LR server with rate p, then bounding the external en-
abling time as in Equation 24 is equivalent to bounding the number of externally en-
abled executions as in Equation 6 in every busy period.

Proof. Let execution k be the first execution in a busy period (s, t] and let execution
Jj occur in the same busy period, that is e(k) = s and j > k and f(j) < t, then the
external enabling time of execution j is bounded by

j—k

e(j) < o5 =e(k) + e (24)

11



According to Equation 24, execution j of actor v, is guaranteed to be externally
enabled at ¢; = e(k) + %. For the bounds, as provided by Equation 24 and Equation
6, to be equal, it should hold that starting from ¢; the number external enablings is at
least j — k. More formally, it should hold that

V¢ > ¢;: E(e(k),¢') = j — k,and (25)
Vo' < ¢;: Ele(k),¢") <j—k (26)
Equation 25 holds, because, according to Equation 6
E(e(k),d5) = p- (¢; — e(k)) (27)
B(e(h). ) = p- (elk) + = = c(l) = = & (8)
And further for ¢” = ¢; — €,0 < € < ¢; — e(k), we have that
E(e(k),¢") = p- (¢; — e —e(k)) 29)

i — k
Hd@@@zp%d@+l;——e—d@:j—k—m<j—k (30)

O

Lemma 3 The bound on the finish time of execution j, 7;, as defined by Equation 9 is
equivalent to the bound g(j) as defined by Equation 31.

Mﬁ_{lmﬂdﬁ+@g0—1»+% ifj >0 a1

0 otherwise

Proof. We will first show the correctness for the first busy period by induction on the
number of executions, and subsequently use this result as the base step to prove this
lemma by induction on the number of busy periods.

Base step — induction on the number of executions: For the first execution we have
that

o(1) = max(e(1) + ©.9(1 ~ 1)) + - ()
and because g(1 — 1) = g(0) = 0.

MD:dD+@+%:n (33)

Inductive step — induction on the number of executions: We assume that for execu-

tion 7,7 > 1 holds that g(j) = 7;, and thus that

j—k+1

e(k) + 0+ =max(e(j) +0,9(j — 1)) + % (34)

12



We will now show that given this assumption also for execution j+1 we have g(j+1) =
Tj+1, and thus that

G+1)—k+1

e(k) +O + =max(e(j +1)+06,9(j)) + % (35)

We know from Equation 31 and Equation 24 that

) ) . 1
9 +1) = max(e(j + 1) + 0,9(7)) + (36)
. i +1) —k
e(j+1) < ¢jp1=e(k) + (jp) 37
Given the induction hypothesis from Equation 34, we know that
. —k+1
9(i) =75 = e(k) + 6+ T—— (38)

We therefore conclude that

j—k+1

c(+1)+O < g1 +60 =e(k)+ 6+ n=90) (9

This results in max(e(j + 1) + ©, g(4)) = g(j), and therefore Equation 36 results in
. . 1
9(+1) =g0) + L, T (40

We have now shown the equivalence of g(j) and 7; for the first busy period. This
forms the base step for the proof by induction that this equivalence holds for all busy
periods.

Inductive step — induction on the number of busy periods: We assume that g(j) =
7; for all executions up to and including busy period [3; starting at e(h), we now show
that given this assumption g(j) = 7; is also true for busy period 3;4 starting at e(k).

Let k be the first execution in the busy period 341, then execution & — 1 belonged
to the previous busy period ; starting at e(h). From Equation 24, we have that

(k—1)—h

e(k—1) < ¢r—1 =e(h) + 5 41
And since execution k does not belong to busy period (3}, we have that
4m>qm+5%ﬁ “2)
Furthermore we know from Equation 9 that
Tr—1 =e(h) + O + w (43)

13



k—h
iy = e(h) £ + 7 (44)

Using Equation 42
Te—1 < e(k)+ 0O (45)

Using the induction hypothesis we obtain 7,_; = g(k — 1), which leads to

g(k) = max(e(k) + ©,g9(k — 1)) + % (46)
g(k)=e(k)+ 0+ % =T 47)

The earlier part of this proof, Inductive step — induction on the number of execu-
tions, that showed that g(j + 1) = 7,11, if g(j) = 7, for the first busy period, did
not assume that the executions j and j 4+ 1 were in the first busy period and therefore
holds for any busy period. U

We will now present the most important result of this section.

Theorem 4 The dataflow construct shown in Figure 3 models a task u, with one input
FIFO and one output FIFO that executes on a latency-rate server with latency © , and
allocated rate p,.

ay(i)

('Ukavy)

\ iy

Figure 3: A dataflow component that models the effect of a LR server.

Proof. Let a,(4) be the arrival time of token ¢ on edge (v, vy ), let a,(¢) be the arrival
time of token ¢ on the edge (v, v.), and let a;(¢) be the arrival time of token 7 on the
edge (v, v;), see Figure 3(b).

From Figure 3(b) we can derive that

a.(i) = ay(i) + O, (48)
) . . 1
ar (i) = max(a. (i), a (i — 1)) + . (49)
Substition of Equation 48 in Equation 49 results in
1
a;(1) = max(a(i) + O, a;(i — 1)) + o (50)
x

14



Since every arrival of a token on the edge (v, v,) leads to an external enabling of v,
we have that e(v,,?) = a, (). And since every firing of v, produces one token on the
edge (v, v;), we have that a finish of firing ¢ of actor v, corresponds with the release
of a token on the edge (v.,v;): f(v.,i) = a;(7). This means that Equation 50 becomes

1

f(vz,i) = max(e(vy, i) + O, f (V2,0 — 1)) + — (S

By defining f(v,,i) = 0 for ¢ < 0, we have that substitution of g(j) = f(v.,?) and

e(j) = e(vy, 1) results in an equality of Equations 51 and 31. Lemma 3 and Lemma

1 tells us that the bound on the finish time of actor v, as obtained by Equation 31 is

equivalent to the bound on the number of finishes of actor v, as obtained by Equation
8.

This means that in any busy period (s, t] the number of releases by actor v, in the

interval (s,7],s < 7 < t equals () as defined by Equation 8. O

8 Example

In this section we will show that TDM scheduling is a LR server, and that this insight
leads to more a more accurate analysis then previously applied in [1].

8.1 TDMis a LR server

Let P be the TDM period, .S, be the time slice allocated to task u,, E, ; be the execu-
tion time of execution i of task u,, and F, be the worst-case execution time of task u.,.
We will derive in this section an expression for the latency and rate of a TDM scheduler
in terms of the period, time-slice, and worst-case execution time, such that Equation 7
holds.

8.1.1 The rate of a TDM scheduler

The difference between subsequent task finishes is f(uz,7) — f(ugz, i — 1) = E“S—IZ
in a busy period. This is because, in a busy period, without resource sharing execution
i of task u, will finish E;; time later than the finish of firing ¢ — 1. However, with
TDM scheduling we have that in every period P, there is only a time interval of length
S, time allocated to task u.

The guaranteed rate p, at which task wu, finishes in a busy period with TDM
scheduhng is given by Equation 52. This is because Vi € N @ f(uz, 1) — f(uz,i—1) <
B, £ 5 W1th F,, the worst case execution time of u,. The guaranteed rate p,, is there-

fore z L which can be rewritten to obtain Equation 52.

Sz

Sz
P (52)

ml‘ —

Pz =



8.1.2 The latency of a TDM scheduler

To derive the latency ©, we use a result from [1] to obtain that an exact upper bound
on the response time of the first execution in a busy period is given by Equation 53.

— E,

We know that the response time of the first execution in a busy period is smaller
than or equal to ©, + pi, and that this is the tightest bound. Therefore it should hold
that '

1 — E
—=F P— -z 4
@I+pm »+ ( Sm){sj (54)

We will now rewrite - to obtain an expression for the latency in terms of the
period, time-slice and worst-case execution time. First we rewrite Equation 52 to obtain

1 E,
— —p== (55)
Pz x
which we can rewrite into
1 E,
— =(P—8,+8,)=" (56)
Px x
which also means that . .
1 E, E,
—=(P—-5,)—+S:— 57)
which can be reduced to _
1 E, —
= (PS) T+ EL (58)

And since Equation 54 states that

0,=FE,+(P-S,) {E—;—‘ — piz (59)
which can be rewritten into
0,=FE,+(P-8S,) {%w —(P—Sz)@—ﬁz (60)
we obtain . o
0. = (P-5.(| 7| - 5 1)

The fact that expressions exist for the latency and rate show that TDM is an LR
server.

16



8.2 Improved dataflow analysis results

Figure 4(a) shows how the effects of TDM arbitration are included with the approach
from [1], while Figure 4(b) shows how the effects of TDM arbitration are included with
the approach presented in this paper.

1 1
rp:(%p—o—g rc=66+z

(d)

Figure 4: Inclusion of TDM arbitration according to [1] (a) and proposed inclusion of
TDM arbitration (b)

The MCM of the SRDF graph in Figure 4(a) is

1 Op+ - +6.+ - 1
po = max({0, + —, Pr Pe O, + —} (62)
Pp d2 Pe

And the MCM of the SRDF graph in Figure 4(b) is

1 O+ +6c+ -

Pp Pec
ty = max({— — (63)
(P

Since by definition ©, and ©, are non-negative, we have that 1, > pp. The

more accurate model can thus lead to a lower MCM, which corresponds to a higher

throughput, and can therefore guarantee the satisfaction of more stringent throughput

constraints for the same resource requirements in comparison with the model proposed
in [1].

17



9 Improved buffer capacity bounds compared to
LR analysis

In this section we will show an example in which an implementation where tasks only
execute when there is output space available, as our applications are implemented, leads
to smaller buffer capacities than an implementation in which tasks execute as soon as
input data is available as the LR analysis model assumes.

Figure 5(a) shows the LR analysis model and SRDF model of a chain of three tasks
that operate on a single stream. Let us assume that inputs arrive strictly periodic, e.g.
from an Analog-to-Digital Converter, which is, for the sake of simplicity, left out of
this example. In the LR analysis model such a stream is modelled with a (o, p) model,
where o equals the maximum burst size and p equals the rate. Let us assume that o = 1
and p = 1 accurately model the input stream. Let us further assume that the worst case
execution time E, of each task u is 1.

In the dataflow model as shown in Figure 5(b), we need to guarantee that the
throughput of the graph equals the throughput of the input stream. Since p = 1, which
means that one token arrives per time unit, the MCM of the graph needs to be maxi-
mally 1. If we further assume that @iDF = p?F = 1, for i = 1, 2,3, then it can be
verified that d; = 4 and d2 = 4 are sufficient buffer capacities to let the SRDF graph
have an MCM of 1.

s1= (0", pi) s2 = (037, p5™) s3 = (057, pi")

=== 5 > S > 53 m==
d1 d2

DF

T2,y = O3

(®)

Figure 5: A chain of tasks that operates on a stream, in which all tasks are scheduled
on LR servers, the dashed arrows do not belong to the models, but show the input and
output streams. (a) shows the LR analysis model (b) shows the SRDF model.

18



In the LR analysis model, the maximum number of tokens in the input queue of
the k’th server equals o + p~% Z?Zl ©Ff. This expression is derived using the bound
Q(s,t), which therefore means that L% = @PF pL%, with pFR = pPFE; this
means that O = 2 for i = 1,2,3. The maximum number of tokens in the input
queue of the server ss is therefore d; = 1 + 1 x4 = 5 and the maximum number of
tokens in the input queue of the server s3 is therefore do = 1+ 1 % 6 = 7. However,
the LR analysis assumes that no space in the output buffer is required until the task has
produced a token. While in some embedded streaming applications and architectures
the input and output buffers can share the same memory range, and therefore re-use the
memory space occupied by the input token to produce the resulting data in, this is not
in general true. To deal with the general case, we need to increase each buffer capacity
with one token. This results in d; = 6 and dy = 8.

From the expression for the maximum backlog it becomes clear that, in the LR
analysis, the required buffer capacity scales with the length of the chain. This does not
occur in the dataflow analysis. In the example the buffer capacities derived using LR
analysis are larger than the buffer capacities as derived using dataflow analysis.

If one memory range can be used for both buffers, then this is modelled in the
dataflow model as follows. From the model that is shown in Figure 5(b), we remove
edges (v, v1,y) and (vs3 ., v2,) and add an edge (v3, ., v1,). One can verify that 6
tokens on edge (vs_,, v1,y) suffice to obtain an MCM of 1, which is smaller than the
total required buffer capacity dy + do = 12 that results from the LR analysis.

An important reason for the difference in buffer capacities is that our implementa-
tions include a local flow-control mechanism, because tasks only start when sufficient
space is available in their output FIFOs, i.e. if a task rapidly produces a burst of contain-
ers it will eventually be slowed down because there will be no more empty containers
left. LR analysis cannot model this behaviour, because this is a cyclic dependency
between two tasks.

LR analysis cannot leverage the fact that traffic shapers might be part of the imple-
mentation, as e.g. a (o, p)-regulator [3] or a rate- [19] or credit- [13] based scheduler.
This is in contrast with Network Calculus [4] where application of traffic shapers can
lead to reduced buffer capacities. In dataflow analysis traffic shapers are not required
to reduce buffer capacities, but they might be required to enable the local analysis of
priority based schedulers.

10 Hierarchical Dataflow Graphs

For various reasons, it is attractive to abstract parts of a dataflow graph, e.g. the
dataflow graph shows confidential implementation details or the dataflow graph is too
large or complex to enable efficient analysis. In this section we will show that ab-
straction of parts of the dataflow graph is possible while retaining the property that
worst-case container arrival times can be determined through dataflow analysis tech-
niques..

We define a block graph G g that consists of blocks B and queues D, where B is a
partitioning of the set of components C, and therefore the following holds

19



VBy,By € B-By # By = B,NB, =0 AC=|B; (64)

Components are as defined in Section 5. The set of queues D is a subset of the set of
queues in the component graph and formed by all queues in the component graph that
connect blocks, and therefore the following holds for the set D

V(Bi7Bj)ED'Bi€B/\BjEB (65)

We define I, = {(B;, B;)|(B;, Bj) € D A B; = B, } as the set of input edges of
block B, and O, = {(B;, B;)|(B;, B;) € D A B; = B,} as the set of output edges
of block B,.

In the following definition we assume two block graphs Gp; and Gpo. Let us
define ap(m,j) to be the arrival time of the j-th token in a queue m of Gy, and
ap2(m, 7) to be the arrival time of the j-th token in a queue m of G ga.

Definition 3 If there is a one-to-one relation between blocks and queues in block
graphs Gp1 and Gpso, then we say that the token production and consumption be-
haviour of a block B> in block graph G g is conservative with respect to the token
production and consumption behaviour of the corresponding block B in block graph
G B, if the following holds

Vm € I;,ap1(m,j) < apa(m,j) = ¥n € Oy, ap1(n,j) < apa(n,j) (66)

where the sets of input and output edges of blocks B1 and B, are both called I, and
O, to ease the notation. This is possible because of the one-to-one correspondence.

Theorem 5 If every block in a block graph G po is conservative with respect to its
corresponding block in block graph G g1, i.e. Equation 5 holds for all blocks, then
the worst-case arrival times of tokens in the output queues of every block B,1 can be
computed with dataflow analysis techniques applied on block graph G po.

Proof. This immediately follows from the fact that all blocks in G g2 are conservative
with respect to their corresponding blocks in GG g1, the existense of the one-to-one
relation between both block graphs, and the fact that every SRDF graph is monotonic.
O

Theorem 6 If every block in a block graph G s is conservative with respect to its
corresponding block in block graph G g1, i.e. Equation 5 holds for all blocks, then
the worst-case arrival times of containers in the FIFO buffers that correspond with
the pairs of queues in the block graph G g1 can be computed with dataflow analysis
techniques that are applied on block graph G po.

Proof. This follows from the one-to-one relation between FIFO buffers in the imple-
mentation and pairs of queues in the component graph, the fact that the set of queues
in a block graph is a subset of the queues in the component graph, and Theorems 3

20



and 5. O

In the next section we will show how to construct a block graph that abstracts a
block from the original block graph.

11 Construction of Hierarchical Dataflow Graphs

In this section we will conservatively model a block B, that contains an SRDF sub-
graph and has one input and one output queue with a block B,,. In later sections we
will generalise this.

For an SRDF (sub)graph Gg a strictly periodic schedule with a period 7" can be
constructed where 7" equals the MCM of G'g [15]. In such a strictly periodic schedule
the start time of actor v,, in the k’th iteration is given by

$(vg, k) = s(vg,0) + kT (67)

If actor v, € B, consumes tokens from the input queue, then the k£ + 1’th token,
with & > 0, is consumed at s(vq, k) = s(vq,0) + kT'. If actor v, € B, produces
tokens on the output queue, then the k& + 1’th token is produced at s(vy, k) + 7(vs) =
s(vp, 0) + kKT + r(vp). We restrict ourselves to blocks in which there is no iteration
difference between actor v, and actor vy, i.e. there is a path from v, to v, without
initial tokens.

The difference L,; between the token production time and the token consumption
time in any iteration therefore equals Lo, = s(vp,0) — $(vq,0) + r(vp), while the
difference between subsequent token production times equals 7.

With ¢(4) the token consumption time in iteration i by v, and p(i) the token pro-
duction time in iteration ¢ by vy, we have that

p(i) = max(c(?) + Lap,p(i — 1)+ T) (68)

Theorem 7 If L,, > 0, then the dataflow component as shown in Figure 6 models
Equation 68.

Proof. In the dataflow component that is shown in Figure 6, token ¢ + 1, with ¢ > 0, is
produced on the output edge (v, v;) at a,; (¢ + 1) which equals the finish time of actor
v, in iteration ¢, which is s(v,4) + 0 = s(v,, ). The start time of v, in iteration ¢ is
given by

5(vz, 1) = max(ag; (i — 1), ay; (7)) (69)

which equals
$(vz,1) = max(a, (i — 1) + T, ay. (7)) (70)

which equals
$(vz,7) = max(s(v,, i — 1) + T, s(vy, 1) + Lap) (71)

which equals
s(vs,1) = max(s(vy,i — 1) + T, s(vy, %) + Lap) (72)

21



wevy)  \ V)

Ty = Lab

Figure 6: A dataflow component that conservatively models a block.

therefore
a1 (1) = s(v,,1) = max(s(vy,?) + Lap, s(vs, 0 — 1) + 1)) (73)
By letting p(i) equal a;(7) and c(i) equal s(vy,7) we have shown equivalence. O

Intuitively one might have thought that since the token production time is deter-
mined by a latency term and a throughput term, also in this case the dataflow compo-
nent as shown in Figure 3 could have been applied with r, = T"and ry, = L, — T for
actors v, and v, from Figure 3. However in that case it is required that L,;, > T in
order to have a non-negative actor response time, which is in general not true.

11.1 Example

Block B, as shown in Figure 7(b) conservatively models block B, as shown in Fig-
ure 7(a). This is because with 4 tokens on the cycle vy, v4, v5, vo the MCM of block
B, is 1. And further in a strictly periodic schedule with 7' = 1 every actor starts im-
mediately when it is enabled. Therefore, the difference in start times between actors
vy and vy is 1, which results in Lss = 1 + 1 = 2. Using the dataflow graph as shown
in Figure 7(b) we can derive that 4 tokens on the cycle v, v3, vs, v, are sufficient to
obtain an MCM of 1. One can verify in Figure 7(a) that this is indeed sufficient.

12 Generalisation

In this section we will generalise the results obtained until now to include tasks with
multiple input and output FIFO buffers and with less constrained container consump-
tion and production behaviour than the behaviour as defined in Section 4. We will
generalise three results, (1) an SRDF graph is temporally monotonic, (2) a task with
one input and output FIFO buffer that consumes and produces one container per execu-
tion and is executed on an LR server can be modeled with a dataflow component, and
(3) parts of an SRDF graph can be abstracted.

22



(®)

Figure 7: An example of abstraction, in which block B, abstracts block B,.

23



12.1 Monotonicity

We can generalise the result from Theorem 2 to conclude that deterministic Dynamic
Dataflow (DDF) graphs as defined in [11] are temporally monotonic. The start time of
a firing of a deterministic DDF actor depends on the token production times on specific
edges, and therefore on finishes of specific firings of specific DDF actors. For every
firing of a DDF actor v, this can be formulated like Equations 3 and 4, where however
the set of actors that determines the enabling time of v, can change from firing to firing.
The proof of Theorem 2 does not depend on a fixed set of actors that determines the
enabling time and is therefore also applicable to deterministic DDF graphs. This means
that deterministic DDF graphs are temporally monotonic.

Also for a deterministic DDF graph we can define a component graph that par-
titions the deterministic DDF graph. If there is a one-to-one relation between these
components and the task graph, and each component is conservative with respect to the
corresponding task, then since deterministic DDF graphs are temporally monotonic we
have that token arrival times in the deterministic DDF graph are worst-case container
arrival times in the implementation.

12.2 Execution on LR servers

The result of Theorem 4 can be generalised to include any task that can be modelled
with a deterministic DDF actor. In Figure 3, a,(¢) corresponded with the external en-
abling of the i’th execution of a task u,, on an LR server. And a, () was a conservative
finish time of the i’th execution of a task u, on an LR server. If a task starts when a
specific number of tokens is available on a specific subset of input FIFO buffers, which
only depends on the tasks state, and produces a certain number of containers on a cer-
tain set of output FIFO buffers, then this can be modelled with deterministic dataflow
actors that have firing rules and production rules. The enabling rule can be modelled
by an actor vy, that produces a token on edge (vy,v;) as soon as the firing rule is sat-
isfied, excluding the self-cycle. The production rule can be modelled by an actor v;
that produces tokens on various edges as soon as a token is produced on edge (v, v;).
Since both actor v; and v; have a response time that equals zero, it is equivalent to let
vy execute its 4’th firing as soon as the firing rule of the ’th firing is satisfied, and let
firing ¢ of actor v, produce tokens on various edges according to the production rates
of firing 1.

Also the worst case execution time of different firings of a dataflow actor can be
different. Since with our definitions ©, and p, are dependent on the worst case exe-
cution time, this can be modelled by parameterising ©,, and p,,, resulting in ©,(7) and
pz(7) in order to make them dependent on the worst case execution time of firing i.

12.3 Hierarchy

A straightforward extension to include blocks that consume from and produce on mul-
tiple edges is to model the relation between each pair of input and output actors seper-
ately with the dataflow component as shown in Figure 6. In this way any SRDF

24



(sub)graph can be abstracted. Even though the number of required dataflow compo-
nents can be quadratic in the number of input and output actors of the block, we do not
expect this too be problematic. This is based on the task graph topologies that we have
encountered until now, in which the number of different paths is limited.

Also for Multi-Rate Dataflow [10] (MRDF) it is possible to create a strictly periodic
schedule as done in [18]. From this strictly periodic schedule it is again straightforward
to derive the difference in start times between input and output actors of a block and
the rate at which the output actor fires. Currently, in a document, which is under in-
terval review, we create a strictly periodic schedule of a Cyclo-Static Dataflow [2]
graph. It seems probable that a conservative strictly periodic schedule can be con-
structed for dataflow graphs of which upper bounds on the response times, and upper
and lower bounds on the token production and consumption rates — and therefore also
upper bounds on the firing rates — are known.

References

[11 M. Bekooij et al. Dataflow Analysis for Real-Time Embedded Multiprocessor System Design, chapter 15. Dynamic
and Robust Streaming Between Connected CE Devices. Kluwer Academic Publishers, 2005.

[2] G. Bilsen et al. Cyclo-static dataflow. IEEE Transactions on Signal Processing, 44(2):397-408, February 1996.

[3] R.L.Cruz. A calculus for network delay, part i: Network elements in isolation. /EEE Transactions on Information
Theory, 37(1):114-131, January 1991.

[4] R. L. Cruz. A calculus for network delay, part ii: Network analysis. IEEE Transactions on Information Theory,
37(1):132-141, January 1991.

[5] F. Bacelli, G. Cohen, G.J. Olsder, and J-P. Quadrat. Synchronization and Linearity: An Algebra for Discrete Event
Systems. Wiley, 1992.

[6] M. Garey and D. Johnson. Computers and intractability. W.H. Freeman and company, 1979.

[7]1 S. Goddard and K. Jeffay. Managing latency and buffer requirements in processing graph chains. The Computer
Journal, 44(6), 2001.

[8] M. Jersak et al. Performance analysis of complex embedded systems. International Journal of Embedded Systems,
1(1-2):33-49, 2005.

[9] E.Lee and S. Ha. Scheduling strategies for multi-processor real-time dsp. In Proceedings of IEEE Global Telecom-
munications Conference and Exhibition, volume 2, pages 1279-1283, Dallas, TX, USA, November 1989.

[10] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings of the IEEE, 75(9):1235-1245, September
1987.

[11] M. Bekooij, S. Parmar, and J. van Meerbergen. Performance guarantees by simulation of process networks. In 9th
International Workshop on Software and Compilers for Embedded Systems (SCOPES’05), Sept. 2005.

[12] A.Maxiaguine et al. Tuning soc platforms for multimedia processing: Identifying limits and tradeoffs. In Proceedings
of CODES+ISSS’04, pages 128-133, Stockholm, September 2004.

[13] C. Otero Pérez et al. Dynamic and Robust Streaming between Connected CE Devices, chapter Resource Reservations
in Shared Memory Multiprocessor SoCs. Kluwer Academic Publishers, 2005.

[14] P. Poplavko et al. Task-level timing models for guaranteed performance in multiprocessor networks-on-chip. In
Proceedings of CASES’03, November 2003.

[15] R. Reiter. Scheduling parallel computations. Journal of the ACM, 15(4):590-599, October 1968.

[16] S. Sriram and S.S. Bhattacharyya. Embedded Multiprocessors: Scheduling and Synchronization. Marcel Dekker Inc.,
2000.

25



[17] D. Stiliadis and A. Varma. Latency-rate servers: A general model for analysis of traffic scheduling algorithms.
IEEE/ACM Transactions on Networking, 6(5):611-624, October 1998.

[18] M. Wiggers et al. Efficient computation of buffer capacities for multi-rate real-time systems with back-pressure. In
Proceedings of CODES+ISSS’06, October 2006.

[19] H.Zhang and D. Ferrari. Rate-controlled service disciplines. Journal of High-Speed Networks, 3(4), 1994.

26



