
Department of Applied Mathematics
Faculty of EEMCS

t
University of Twente

The Netherlands

P.O. Box 217
7500 AE Enschede

The Netherlands

Phone: +31-53-4893400
Fax: +31-53-4893114

Email: memo@math.utwente.nl

www.math.utwente.nl/publications

Memorandum No. 1800

On superadditivity and convexity for

cooperative games with random payoffs

J.B. Timmer

May, 2006

ISSN 0169-2690



On Superadditivity and Convexity for

Cooperative Games with Random Payoffs

Judith Timmer∗

Abstract

In this paper we study the relations between superadditivity and several types of convexity

for cooperative games with random payoffs. The types of convexity considered are marginal

convexity (all marginal vectors belong to the core), individual-merge convexity (any individual

player is better off joining a larger coalition) and coalitional-merge convexity (any coalition

of players is better off joining a larger coalition).

In particular, in this work we answer two open questions in the literature. The first

question is whether a marginal convex game is always superadditive. In general, the answer

is negative as is shown by two counterexamples. However, for some type of games marginal

convexity does imply superadditivity.

The second question is whether individual-merge convexity implies coalitional-merge con-

vexity for games with at least four players. An example of a four-player game that is

individual-merge convex but not coalitional merge convex shows that this is not the case

in general. But also here we show that for some type of games the implication does hold.
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1 Introduction

In this paper we study the relations between superadditivity and several types of convexity for

cooperative games with random payoffs. These games are introduced in [6] and subsequently

studied in [5] and [4]. The main characteristics of these games are that the payoff to a coalition is

modeled as a random variable and that the players have preferences to compare any two payoffs.

For more on these games we refer to [6].

The types of convexity considered are marginal convexity (all marginal vectors belong to the

core), individual-merge convexity (any individual player is better off joining a larger coalition)

and coalitional-merge convexity (any coalition of players is better off joining a larger coalition).

These types arise from extensions of several equivalent formulation of convexity for TU games to

cooperative games with random payoffs, but they are not equivalent. The same holds for the types

of convexity for NTU games [1, 2, 7] and for stochastic cooperative games [3].

In particular, in this paper we answer the two open questions in [6]:

• Is a marginal convex game superadditive?

• Is an individual-merge convex game with at least four players coalitional-merge convex?

The answer to the first question is, in general, negative. We provide two counterexamples for

different types of games. The first one is a three-person game with nonlinear preferences. The

second one is a four-person game with a certain type of linear preferences. Further, we show that

for some other type of linear preferences marginal convexity does imply superadditivity.

The second question follows from the fact that [6] shows that for games with at most three

players individual-merge convexity implies coalitional-merge convexity. This implication fails for

games with at least four players, as is shown by an example of a four player game that is individual-

merge convex but not coalitional-merge convex. However, we show that for games with a certain

type of linear preferences individual-merge convexity implies coalitional-merge convexity.

This paper is organized as follows. In section 2 we introduce the concepts and definitions

needed. The relations between marginal convexity and superadditivity are studied in section

3. Section 4 continues with analysing the relations between individual-merge convexity and

coalitional-merge convexity. All proofs are postponed to appendix A.

2 Preliminaries

We follow the notation of [6]. A cooperative game with random payoffs, or game in short, is a

pair (N,α). N is the finite set of players and α = (αi)i∈N contains a complete description of the
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players’ preferences. This α will be specified below. A subset S ⊆ N is called a coalition and its

cardinality is denoted by |S|. This coalition gives rise to a subgame (S, α) of the original game.

Denote by R(S) the stochastic payoff to coalition S. This payoff is a nonnegative stochastic

variable with finite expectation. An allocation of R(S) among the members in S is a vector of

multiples of R(S), for example p ∈ RS . Then player i ∈ S receives piR(S). Such an allocation is

efficient if p ∈ ∆∗(S) = {p ∈ RS |
∑

i∈S pi = 1}. Let A be the set of coalitions with payoffs unequal

to the payoff zero for sure.

The preference relation of player i is denoted by %i. We assume the following about this

preference relation.

Assumption 1 ([6]) For each player i ∈ N there exist functions f i
S : R → R, for S ∈ A, that

are surjective, continuous and strictly monotone increasing, such that

1. f i
S(t)R(S) %i f i

T (t′)R(T ) if and only if t ≥ t′,

2. f i
S(0) = 0

for any coalitions S and T in A.

This assumption implies that there exists a unique number αi ∈ R such that αiR(T ) ∼i piR(S).

The function αi : A × A × R → R, αi(T, S, pi), is defined to take this unique value. The use of

this function is restricted to i ∈ S ⊆ T . The condition S ⊆ T is not a real restriction because

αi(S, T, pi) is the inverse of αi(T, S, pi). We extend the domain of αi by defining αi(T, S, 0) = 1

and αi(T, T, qi) = 1 if T /∈ A. Two properties are αi(S, S, pi) = 1 and αi(T, S, αi(S, U, pi)) =

αi(T,U, pi) for pi ∈ R and S, T, U ∈ A. If αi(T, S, pi) = piαi(T, S, 1) for all T and S then we

say that αi is linear. Then, αi(S, U, 1)αi(T, S, 1) = αi(T,U, 1). If all αi are identical, that is,

αi(T, S, pi) = αj(T, S, pi) for all i, j ∈ N , then we write α?(T, S, pi) instead of αi(T, S, pi). I(S, α)

is the set of all individual rational allocations for coalition S, that is, all allocations p for which

pi ≥ αi(S, {i}, 1) for all i ∈ S. The set undom(S) contains all the allocations for coalition N that

cannot be dominated by coalition S:

undom(S) = {p ∈ RN | 6 ∃q ∈ ∆∗(S) : αi(N,S, qi) > pi for all i ∈ S}.

The core C(N,α) of the game (N,α) consists of the efficient allocations for coalition N that are

not dominated by any coalition S:

C(N,α) = {p ∈ ∆∗(N)|p ∈ undom(S) for all coalitions S}.

Before we can define marginal vectors, the following assumption is needed.
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Assumption 2 ([6]) If T /∈ A for some coalition T then S /∈ A for all S ⊆ T .

Let σ be a bijection of the players in N then σ(i) denotes the player that is at position i. For

three-person games we may write σ = (σ(1), σ(2), σ(3)). Let Sσ
i = {σ(k)|k ≤ i} be the set of

the first i players according to σ. The marginal contribution of the ith player according to the

bijection σ in the game (N,α) is

yσ
σ(i)(α) = 1−

i−1∑
k=1

ασ(k)(Sσ
i , Sσ

k , yσ
σ(k)(α))

with the convention yσ
σ(1)(α) = 1. Now the marginal vector mσ(α) is defined by

mσ
σ(i)(α) = ασ(i)(N,Sσ

i , yσ
σ(i)(α)).

A marginal vector for the subgame (S, α) is denoted by mσ(S, α).

The game (N,α) is superadditive if for all coalitions S, T ⊆ N with S ∩ T = ∅ and for all

allocations p ∈ I(S, α) and q ∈ I(T, α) there exists an allocation r ∈ ∆∗(S ∪ T ) for the joint

coalition such that all players are weakly better off: ri ≥ αi(S ∪ T, S, pi) i ∈ S,

ri ≥ αi(S ∪ T, T, qi) i ∈ T.
(1)

An equivalent condition is∑
i∈S

αi(S ∪ T, S, pi) +
∑
i∈T

αi(S ∪ T, T, qi) ≤ 1. (2)

A game (N,α) is coalitional-merge convex if for all U ⊆ N , for all S ⊂ T ⊆ N \ U , for all

p ∈ I(S, α), for all q ∈ I(T, α) and for all r ∈ I(S ∪ U,α) such that ri ≥ αi(S ∪ U, S, pi) for all

i ∈ S there exists an allocation s ∈ ∆∗(T ∪ U) such that si ≥ αi(T ∪ U, T, qi) for all i ∈ T,

si ≥ αi(T ∪ U, S ∪ U, ri) for all i ∈ U,

or equivalently,∑
i∈T

αi(T ∪ U, T, qi) +
∑
i∈U

αi(T ∪ U, S ∪ U, ri) ≤ 1. (3)

A game is individual-merge convex if for all i ∈ N , for all S ⊂ T ⊆ N \ {i}, for all p ∈ I(S, α),

for all q ∈ I(T, α) and for all r ∈ I(S ∪ {i}, α) such that rj ≥ αj(S ∪ {i}, S, pj) for all j ∈ S there

exists an allocation s ∈ ∆∗(T ∪ {i}) such that sj ≥ αj(T ∪ {i}, T, qj) for all j ∈ T,

si ≥ αi(T ∪ {i}, S ∪ {i}, ri) ,
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or equivalently,∑
j∈T

αj(T ∪ {i}, T, qj) + αi(T ∪ {i}, S ∪ {i}, ri) ≤ 1.

Finally, a game is marginal convex if all marginal vectors belong to the core. It was shown in [6]

that a coalitional-merge convex game is individual-merge convex and an individual-merge convex

game is marginal convex.

Theorem 3 ([6]) If I(S, α) = ∅ for some coalition S then the game (N,α) is not marginal convex.

Some useful properties in a special setting.

Lemma 4 If all αi are linear and identical in the game (N,α) then

1.
∑t

i=1 mσ
σ(i)(α) = α?(N,Sσ

t , 1),

2. undom(S) = {p ∈ RN |
∑

i∈S pi ≥ α?(N,S, 1)}.

All proofs can be found in appendix A.

3 Marginal convexity and superadditivity

In this section we show that there is in general no relation between marginal convexity and

superadditivity for cooperative games with random payoffs. This is in contrast to the result

for TU games: a TU game is superadditive if all its marginal vectors belong to the core, that

is, it is convex. Further, we present two classes of games for which marginal convexity implies

superadditivity.

The example below shows that superadditive games need not be marginal convex, as is the

case for TU games.

Example 5 Consider the 3-player game (N,α) in which all the αi are linear and identical such

that

S {i} {1, 2} {1, 3} {2, 3}

αi(N,S, 1) 0 1/5 2/5 7/10

Let S, T ⊆ N with S ∩ T = ∅. The superadditivity condition (1) is satisfied if both S and T are

1-player coalitions. Let S = {1} and T = {2, 3}. Take p1 = 1 ∈ I(S, α), (q2, q3) ∈ I(T, α) and

(r1, r2, r3) = (3/10, 7q2/10, 7q3/10). For player 1 we have

r1 ≥ α1(N, {1}, p1) ⇔ 3/10 ≥ 0
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and for player i ∈ {2, 3}

ri ≥ αi(N, {2, 3}, qi) ⇔ 7qi/10 ≥ 7qi/10

The reader may check that this game is superadditive.

This game is not marginal convex. Take σ = (3, 1, 2). Then yσ
3 = 1, yσ

1 = 1, yσ
2 = 3/5,

and so mσ(α) = (2/5, 3/5, 0). This marginal vector does not belong to the core since it is domi-

nated by coalition {2, 3}, mσ(α) /∈ undom({2, 3}): let q = (10/11, 1/11) then q ∈ ∆∗({2, 3}) and

αi(N, {2, 3}, qi) = 7qi/10 > mσ
i (α) for i = 2, 3.

The following example shows a three-person marginal convex game that is not superadditive.

This is in contrast to the result for TU games, namely, convex TU games are superadditive.

Example 6 Consider the game (N,α) with N = {1, 2, 3},

α1(T, S, p1) =



0, |S| = 1,

p1, |S| = |T | > 1,

4p1/5, S = {1, 2}, T = N,

10
√

p1/20, S = {1, 3}, T = N, p ≥ 0,

p1/2, S = {1, 3}, T = N, p < 0.

and

αi(T, S, pi) =



0, |S| = 1,

pi, |S| = |T | > 1,

pi/2, S = {1, i}, T = N,

pi/5, S = {2, 3}, T = N,

for i = 2, 3. The six marginal vectors of this game are listed in the table below

σ (1, 2, 3), (1, 3, 2) (2, 1, 3), (2, 3, 1) (3, 1, 2) (3, 2, 1)

mσ(α) (0, 1/2, 1/2) (4/5, 0, 1/5) ( 10
√

1/20, 1− 10
√

1/20, 0) (4/5, 1/5, 0)

and they all belong to the core

C(N,α) = {p ∈ ∆∗(N)|pi ≥ 0, i ∈ N ; 5p1 + 8p2 ≥ 4; 20(p1)10 + 2p3 ≥ 1; 5p2 + 5p3 ≥ 1}.

Hence, the game is marginal convex. Nevertheless, superadditivity is not satisfied. For this, let

S = {3} and T = {1, 2}. Take p3 = 1 ∈ I({3}, α) and (q1, q2) = (1/8, 7/8) ∈ I({1, 2}, α). Then

α1(N, {1, 2}, q1) + α2(N, {1, 2}, q2) + α3(N, {3}, p3) = 1/
10
√

160 + 7/16 + 0 > 1,

which contradicts (2). We conclude that the game is not superadditive.
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S α1(N,S, 1)

{1} 15/100

{1, 2} 16/100

{1, 3} 16/100

{1, 4} 17/100

{1, 2, 3} 30/100

{1, 2, 4} 30/100

{1, 3, 4} 30/100

S α2(N,S, 1)

{2} 0/100

{1, 2} 16/100

{2, 3} 16/100

{2, 4} 16/100

{1, 2, 3} 35/100

{1, 2, 4} 40/100

{2, 3, 4} 90/100

S α3(N,S, 1)

{3} 0/100

{1, 3} 16/100

{2, 3} 16/100

{3, 4} 17/100

{1, 2, 3} 35/100

{1, 3, 4} 40/100

{2, 3, 4} 40/100

S α4(N,S, 1)

{4} 0/100

{1, 4} 17/100

{2, 4} 16/100

{3, 4} 17/100

{1, 2, 4} 35/100

{1, 3, 4} 40/100

{2, 3, 4} 40/100

Table 1: This table lists the diverse values of αi(N,S, 1) for the game in example 8.

In the example above player 1 has nonlinear preferences. If a three-person game has linear αi then

marginal convexity implies superadditivity.

Theorem 7 A marginal convex game G is superadditive if it is a three-person game with linear

αi.

This result does not hold for games with at least four players.

Example 8 Consider the game (N,α) with four players, N = {1, 2, 3, 4}, and linear αi. The

various values of αi(N,S, 1) are listed in table 1. Numerous calculations show that all 24 marginal

vectors belong to the core of the game.

Next, let S = {1} and T = {2, 3, 4} and consider the allocations p1 = 1 ∈ I(S, α) and

(q2, q3, q4) = (1, 0, 0) ∈ I(T, α). Then S ∪ T = N and

α1(N,S, p1) +
∑
i∈T

αi(N,T, qi) = 15/100 + 90/100 + 0 + 0 > 1,

which contradicts (2). We conclude that this game is marginal convex but not superadditive.

If we impose the restriction that all αi are linear and identical then marginal convex games

with an arbitrary number of players are superadditive.

Theorem 9 A marginal convex game G is superadditive if all αi are linear and identical.

4 Individual and coalitional merge convexity

In this section we show that an individual-merge convex game need not be coalitional-merge

convex. An example with linear αi is given below. However, as shown further on, if all αi are

linear and identical then individual-merge convexity implies coalitional-merge convexity.
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S α1(N,S, 1)

{1} 2/100

{1, 2} 26/100

{1, 3} 16/100

{1, 4} 16/100

{1, 2, 3} 40/100

{1, 2, 4} 41/100

{1, 3, 4} 38/100

S α2(N,S, 1)

{2} 2/100

{1, 2} 18/100

{2, 3} 15/100

{2, 4} 12/100

{1, 2, 3} 38/100

{1, 2, 4} 37/100

{2, 3, 4} 34/100

S α3(N,S, 1)

{3} 2/100

{1, 3} 15/100

{2, 3} 15/100

{3, 4} 12/100

{1, 2, 3} 36/100

{1, 3, 4} 58/100

{2, 3, 4} 35/100

S α4(N,S, 1)

{4} 1/100

{1, 4} 15/100

{2, 4} 15/100

{3, 4} 12/100

{1, 2, 4} 35/100

{1, 3, 4} 80/100

{2, 3, 4} 35/100

Table 2: This table lists the diverse values of αi(N,S, 1) for the game in example 10.

Example 10 Consider the game (N,α) with four players, N = {1, 2, 3, 4}, and linear αi. The

various values of αi(N,S, 1) are listed in table 2. Numerous calculations show that this game is

individual-merge convex.

Next, let S = {1}, T = {1, 2} and U = {3, 4}. Consider the allocations p1 = 1 ∈ I(S, α),

(q1, q2) = (8/9, 1/9) ∈ I(T, α) and (r1, r3, r4) = (1/19, 1/29, 1− 1/19− 1/29) ∈ I(S ∪ U,α). Then

r1 ≥ α1(S ∪ U, S, p1), T ∪ U = N and∑
j∈T

αj(N,T, qj) +
∑
i∈U

αi(N,S ∪ U, ri) = 52/225 + 1/50 + 1/50 + (1− 1/19− 1/29)4/5 > 1,

which contradicts (3). We conclude that this game is individual-merge convex but not coalitional-

merge convex.

This example shows that linear αi are not sufficient for individual-merge convex games to imply

coalitional-merge convexity. The next theorem provides a first step to show that linear and

identical αi are sufficient.

Theorem 11 A marginal convex game G is coalitional-merge convex if all αi are linear and

identical.

Since any individual-merge convex game is marginal convex, the result below follows immediately.

Corollary 12 An individual-merge convex game G is coalitional-merge convex if all αi are linear

and identical.
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A Proofs

Proof of Lemma 4.

Let (N,α) be a game with linear and identical αi. The proof of item 1 is by induction. The

statement is correct for t = 1 by definition of marginal vectors. Now assume that the statement

holds for some t ≥ 1. Then

t+1∑
i=1

mσ
σ(i)(α) =

t∑
i=1

mσ
σ(i)(α) + mσ

σ(t+1)(α)

= α?(N,Sσ
t , 1) + yσ

σ(t+1)(α)α?(N,Sσ
t+1, 1)

= α?(N,Sσ
t , 1) + (1−

t∑
k=1

α?(Sσ
t+1, S

σ
k , yσ

σ(k)))α?(N,Sσ
t+1, 1)

= α?(N,Sσ
t , 1) + α?(N,Sσ

t+1, 1)−
t∑

k=1

α?(N,Sσ
k , yσ

σ(k))

= α?(N,Sσ
t , 1) + α?(N,Sσ

t+1, 1)−
t∑

k=1

mσ
σ(k)(α)

= α?(N,Sσ
t+1, 1),

where induction is used in the first and last equality.

Finally,

undom(S) = {p ∈ RN | 6 ∃q ∈ ∆∗(S) : qiα?(N,S, 1) > pi for all i ∈ S}

= {p ∈ RN |
∑
i∈S

pi ≥ α?(N,S, 1)},

which shows item 2. 2

Proof of Theorem 7.

Let G = (N,α) be a marginal convex game with linear αi. Let S, T ⊆ N , S ∩ T = ∅. If

|S| = |T | = 1 then the superadditivity condition holds because of theorem 3.

Without loss of generality assume now that |S| = 1 and |T | = 2, that is, S = {i} and T = {j, k}.

Take p ∈ I(S, α), that is, pi = 1. According to theorem 3 there exists q ∈ I(T, α). All elements

in I(T, α) are linear combinations of the two extreme values qa = (αj(T, {j}, 1), 1− αj(T, {j}, 1))

and qb = (1− αk(T, {k}, 1), αk(T, {k}, 1)). Substitution of qa in (2) gives

αi(N, {i}, 1) + αj(N, {j}, 1) + (1− αj(T, {j}, 1))αk(N,T, 1)

= αi(N, {i}, 1) + m
(j,k,i)
j (α) + m

(j,k,i)
k (α)

= αi(N, {i}, 1) + 1−m
(j,k,i)
i (α)

≤ 1.
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The inequality follows from m(j,k,i) ∈ undom({i}). Similarly, qb satisfies (2). Therefore, this

inequality holds for all q ∈ I(T, α). We conclude that the game is superadditive. 2

Proof of Theorem 9.

Let (N,α) be a marginal convex game with linear and identical αi. Let S, T ⊆ N , S ∩ T = ∅, and

take the allocations p ∈ I(S, α) and q ∈ I(T, α). Then∑
i∈S

αi(S ∪ T, S, pi) +
∑
i∈T

αi(S ∪ T, T, qi) =
∑
i∈S

piα?(S ∪ T, S, 1) +
∑
i∈T

qiα?(S ∪ T, T, 1)

= α?(S ∪ T, S, 1) + α?(S ∪ T, T, 1).

The subgame (S ∪T, α) is also marginal convex [6, theorem 6]. Then mσ(S ∪T, α) ∈ undom(S)∩

undom(T ). Using item 2 in lemma 4, applied to the subgame (S ∪ T, α),

α?(S ∪ T, S, 1) + α?(S ∪ T, T, 1) ≤
∑
i∈S

mσ
i (S ∪ T, α) +

∑
i∈T

mσ
i (S ∪ T, α) = 1.

We conclude that the game is superadditive. 2

Proof of Theorem 11.

Let (N,α) be a marginal convex game with linear and identical αi. Let U ⊆ N and S ⊂ T ⊆ N \U .

Further, take p ∈ I(S, α), q ∈ I(T, α) and r ∈ I(S ∪ U,α) such that ri ≥ piα?(S ∪ U, S, 1) for all

i ∈ S. Then∑
i∈U

ri = 1−
∑
i∈S

ri ≤ 1−
∑
i∈S

piα?(S ∪ U, S, 1) = 1− α?(S ∪ U, S, 1)

and consequently∑
i∈U

riα?(T ∪ U, S ∪ U, 1)

≤ (1− α?(S ∪ U, S, 1))α?(T ∪ U, S ∪ U, 1)

= α?(T ∪ U, S ∪ U, 1)− α?(T ∪ U, S, 1). (4)

The subgame (T ∪ U,α) is also marginal convex [6, Theorem 6]. Let σ be such that the players

in S go first, followed by the players in T \ S, then those in U and finally the remaining ones in

N \ (T ∪ U). Then

α?(T ∪ U, S ∪ U, 1) ≤
∑

i∈S∪U

mσ
i (T ∪ U,α)

=
∑
i∈S

mσ
i (T ∪ U,α) +

∑
i∈U

mσ
i (T ∪ U,α)

= α?(T ∪ U, S, 1) +
|T∪U |∑
j=1

mσ
σ(j)(T ∪ U,α)−

|T |∑
j=1

mσ
σ(j)(T ∪ U,α)

= α?(T ∪ U, S, 1) + α?(T ∪ U, T ∪ U, 1)− α?(T ∪ U, T, 1)

= α?(T ∪ U, S, 1) + 1− α?(T ∪ U, T, 1),
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where lemma 4, applied to the subgame (T ∪ U,α), is used. Combining this with equation (4)

results in

α?(T ∪ U, T, 1) +
∑
i∈U

riα?(T ∪ U, S ∪ U, 1) ≤ 1,

and so, (3) implies that the game is coalitional-merge convex. 2
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