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Preface 
 
 
Welcome to the second Twente Data Management Workshop. The topic of this second 
edition is Uncertainty in Databases. This topic has gained more and more attention these 
last years. This is clearly visible by the increasing number of workshops on, or related to 
this topic.  
 
We are grateful that Dan Suciu from the university of Washington accepted our invitation 
to give the keynote speech. We also wish to thank the members of the Program 
Committee for reviewing the submitted papers. The Program Committee consists of eight 
people from four different countries and five different institutions. 
 
We received eight submissions by 17 authors from 7 different countries. One paper was 
reviewed twice, the other seven papers where reviewed three times. We accepted six 
papers, resulting in an acceptance rate of 75%. 
 
We would like to thank the CTIT for sponsoring the workshop and in particular Anja 
Annink for helping with the proceedings. We would also like to thank SIKS for 
sponsoring the participation of SIKS PhD-Students.  
 
Finally, we hope that this workshop will contribute to the research and cooperation on 
Uncertainty in Databases. 
 
 
   To an inspiring workshop! 
 
 
 
Enschede, May 22nd 2006 
 
Ander de Keijzer and Maurice van Keulen 
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Managing Imprecisions with Probabilistic
Databases

Dan Suciu
University of Washington

This talk describes research done at the University of Washington on the
SQL query evaluation problem on probabilistic databases. The motivation
comes from managing imprecisions in data: fuzzy object matching, informa-
tion extracted from text, constraint violations. There are three dimensions
to the query evaluation problem: the probabilistic data model, the com-
plexity of the SQL queries, and whether output probabilities are exact or
approximated.

In the simplest probabilistic data model every tuple t is an independent
probabilistic event, whose probability p represents the probability that t be-
longs to the database. For example, in information extraction every fact
(tuple t) extracted from the text has a probability p of being correct, and
for any two tuples t, t′ their probabilities are independent. Single block SQL
queries without duplicate elimination can be evaluated simply by multiply-
ing probabilities during join operations. But when duplicate elimination or
other forms of aggregations are present, then the story is more complex. For
some queries we can find a query plan such that independence still holds at
each projection/duplicate-elimination operator, and thus evaluate the query
efficiently. But other queries are #P-hard, and it is unlikely that they can
be evaluated efficiently, and there is a simple criterion to distinguish between
these two kinds of queries.

Moving to a slightly more complex data model, we consider the case when
tuples are either independent or exclusive (disjoint). For example, in fuzzy
object matching an object ‘‘Washington U.’’ in one database matches both
‘‘University of Washington’’ with probability 0.4 and ‘‘Washington

University in St. Louis’’ with probability 0.3 in a second database.
This can be represented by two tuples t, t′ with probabilities 0.4 and 0.3,
which are exclusive events. Here, too, there is a crisp separation of queries
that can be evaluated efficiently and those that are #P-hard.

Finally, we considered a slightly different query semantics: rank the
query’s answers by their probabilities, and return only the top k answers.
Thus, the exact output probabilities are not important, only their ranking,
and only for the top k answers. This is justified in applications of imprecise
data, where probabilities have little semantics and only the top answers are
meaningful. We have found that a combination of Monte Carlo simulation
with in-engine SQL query evaluation scales both with the data size and the
query complexity.
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About Generalized Yes/No Queries in the
Possibilistic and Probabilistic Database Contexts

Patrick Bosc
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7KLV� SDSHU� LV� FRQFHUQHG� ZLWK� WKH� KDQGOLQJ� RI� LPSUHFLVH
LQIRUPDWLRQ� LQ� UHODWLRQDO� GDWDEDVHV�� 7KH� QHHG� IRU� GHDOLQJ� ZLWK
LPSUHFLVH�GDWD� LV�PRUH�DQG�PRUH�DFNQRZOHGJHG� LQ�RUGHU� WR� FRSH
ZLWK� UHDO� GDWD�� HYHQ� LI� FRPPHUFLDO� V\VWHPV� DUH�PRVW� RI� WKH� WLPH
XQDEOH� WR�PDQDJH� WKHP��+HUH�� WKH� SRVVLELOLVWLF� DQG� SUREDELOLVWLF
VHWWLQJV�DUH�FRQVLGHUHG��,Q�WKHVH�IUDPHZRUNV��DQ\�LPSUHFLVH�SLHFH
RI� LQIRUPDWLRQ� LV� PRGHOHG� DV� D� GLVWULEXWLRQ� LQWHQGHG� IRU
FRQVWUDLQLQJ�WKH�PRUH�RU�OHVV�DFFHSWDEOH�YDOXHV��6XFK�DQ�LPSUHFLVH
GDWDEDVH� KDV� D� QDWXUDO� LQWHUSUHWDWLRQ� LQ� WHUPV� RI� D� VHW� RI� UHJXODU
GDWDEDVHV�ZKLFK� SURYLGHV� WKH� EDVLF� JDWHZD\� WR� LQWHUSUHW� TXHULHV�
+RZHYHU�� LI� WKLV� DSSURDFK� LV� VRXQG� LW� LV� QRW� UHDOLVWLF� DQG� LW� LV
QHFHVVDU\� WR� FRQVLGHU� UHVWULFWHG� TXHULHV� IRU� ZKLFK� D� FDOFXOXV
JURXQGHG� RQ� WKH� SRVVLELOLVWLF� �RU� SUREDELOLVWLF�� GDWDEDVH�� L�H��
ZKHUH� WKH� RSHUDWRUV� ZRUN� GLUHFWO\� RQ� LPSUHFLVH� UHODWLRQV�� LV
IHDVLEOH��([WHQGHG�\HV�QR�TXHULHV�DUH�GHDOW�ZLWK�KHUH�� L�H���\HV�QR
TXHULHV� LQ� WKH�SUHVHQFH�RI� LPSUHFLVH�GDWD��7KHLU� JHQHUDO� IRUP� LV�
³WR� ZKDW� H[WHQW� LV� LW� SRVVLEOH� DQG� FHUWDLQ� WKDW� WKH� DQVZHU� WR� 4
IXOILOOV� SURSHUW\�3´��ZKHUH�4� LV� DQ� DOJHEUDLF� UHODWLRQDO� TXHU\��$
VWUDWHJ\�IRU�SURFHVVLQJ�VXFK�TXHULHV�HIILFLHQWO\�LV�SURSRVHG�XQGHU
VRPH�DVVXPSWLRQV�DV�WR�WKH�RSHUDWRUV�DSSHDULQJ�LQ�4��7KH�LPSDFW
RI� WKH�PRGHO�RI�XQFHUWDLQW\� �SRVVLELOLVWLF�RU�SUREDELOLVWLF��RQ� WKH
FRPSOH[LW\�RI�WKH�HYDOXDWLRQ�LV�JLYHQ�D�VSHFLDO�DWWHQWLRQ�

��� ,1752'8&7,21
7KH� QHHG� IRU� LPSHUIHFW� GDWD� KDV� EHHQ� UHFRJQL]HG� IRU� D�ZKLOH� LQ
PDQ\�DUHDV��HYHQ�LI�DYDLODEOH�WRROV�DUH�QRW�DOZD\V�DEOH�WR�GHDO�ZLWK
LPSUHFLVLRQ�XQFHUWDLQW\� DQG� FRPPHUFLDO� GDWDEDVH� PDQDJHPHQW
V\VWHPV� LOOXVWUDWH� WKH� JDS� EHWZHHQ� QHHGV� DQG� SURGXFWV�� ,Q� WKH
GDWDEDVH� GRPDLQ�� LPSHUIHFW� LQIRUPDWLRQ� FDQ� DSSHDU� LQ� GLYHUVH
VLWXDWLRQV� VXFK� DV� GDWD� ZDUHKRXVHV�� IRUHFDVWV�� DUFKLYHV� �ZKHUH
VRPH�LQIRUPDWLRQ�KDV�EHHQ�ORVW�RU�GDPDJHG�DQG�FDQ�RQO\�EH�SDUWO\
UHFRYHUHG���V\VWHPV�PDQDJLQJ�LQIRUPDWLRQ�LVVXHG�IURP�DXWRPDWHG
UHFRJQLWLRQ� PHFKDQLVPV� �ZKHUH�� VRPHWLPHV�� VHYHUDO� FDQGLGDWH
REMHFWV�UHPDLQ��

'LIIHUHQW� IRUPDOLVPV� FDQ� EH� XVHG� WR� UHSUHVHQW� LPSUHFLVH
LQIRUPDWLRQ��VHH�IRU�LQVWDQFH�>�@���EXW�ZKDWHYHU�WKLV�FKRLFH��LQ�WKLV
FRQWH[W�TXHU\LQJ�WXUQV�RXW�WR�EH�PXFK�PRUH�FRPSOLFDWHG�LQ�WHUPV
RI�FRPSOH[LW\��,QGHHG��DQ�LPSUHFLVH�LQIRUPDWLRQ�LV�UHSUHVHQWHG�DV
D� �SRVVLEO\� LQILQLWH�� VHW� RI� DFFHSWDEOH� FDQGLGDWHV� DQG� WKHQ� D
GDWDEDVH� ZLWK� LPSUHFLVH� LQIRUPDWLRQ� FDQ� EH� VHHQ� DV� D� VHW� RI
UHJXODU�GDWDEDVHV��FDOOHG�ZRUOGV��DVVRFLDWHG�ZLWK�D�FKRLFH�IRU�HDFK
DWWULEXWH�YDOXH��7KHQ��D�QDWXUDO�ZD\�RI�SURFHVVLQJ�D�TXHU\��ZKLFK
LV�VHPDQWLFDOO\�IRXQGHG��LV�WR�HYDOXDWH�LW�DJDLQVW�HDFK�ZRUOG��6XFK
DQ�DSSURDFK�LV�LQWUDFWDEOH�LQ�FDVH�RI�DQ�LQILQLWH�QXPEHU�RI�ZRUOGV�
EXW�DOVR�EHFDXVH�HYHQ�ZKHQ�LW� LV� ILQLWH�� LW� LV�JHQHUDOO\�KXJH��7KLV
VWDWH� RI� IDFW� OHDGV� WR� FRQVLGHU� RQO\� VSHFLILF� IDPLOLHV� RI� TXHULHV
ZKLFK�FDQ�EH�SURFHVVHG�LQ�D��FRPSDFW��IDVKLRQ��ZKLOH�GHOLYHULQJ�D
UHVXOW�HTXLYDOHQW�WR�WKH�RQH�GHILQHG�LQ�WHUPV�RI�ZRUOGV�
,Q� WKLV� SDSHU�� ZH� DUH� LQWHUHVWHG� LQ� D� W\SH� RI� TXHULHV� NQRZQ� DV
�\HV�QR�� TXHULHV�� ZKRVH� JHQHUDO� IRUP� �LQ� D� UHJXODU� GDWDEDVH
FRQWH[W��LV�

³LV�LW�WUXH�WKDW�WKH�DQVZHU�WR�4�IXOILOOV�FRQGLWLRQ�&"´
ZKHUH� 4� LV� D� UHODWLRQDO� DOJHEUDLF� TXHU\�� $Q� H[DPSOH� LV
³PHPEHUVKLS�EDVHG�TXHULHV´��ZKRVH�IRUP�LV��³LV�LW�WUXH�WKDW�WXSOH�W
EHORQJV� WR� WKH� DQVZHU� WR�4´��ZKHUH� W� LV� D� WXSOH� VSHFLILHG� E\� WKH
XVHU��,Q�WKH�UHJXODU�FDVH��L�H���ZKHQ�GDWD�DUH�SUHFLVH���VXFK�TXHULHV
DUH�RI� LQWHUHVW�EHFDXVH� WKH\�ILW�XVHUV¶�QHHGV�ZKHQ�WKH�TXHVWLRQ� LV
DERXW�WKH�H[LVWHQFH�RI�D�JLYHQ�IDFW��RU�W\SH�RI�IDFW��
7KH� H[WHQVLRQ� WR� VXFK�TXHULHV�ZKHQ�QXOO� YDOXHV� �LQ� WKH� VHQVH� RI
XQNQRZQ��DUH�SUHVHQW�LQ�WKH�GDWDEDVH��KDV�EHHQ�FRQVLGHUHG�LQ�>�@�
,Q�WKLV�FDVH��WKH�DQVZHU�WR�D�\HV�QR�TXHU\�EHFRPHV�XQFHUWDLQ��IRU
LQVWDQFH�� LQ� WKH� FDVH� RI� D� PHPEHUVKLS�EDVHG� TXHU\�� LW� FDQ� EH
HLWKHU�
• \HV�� L�H��� LW� LV�FHUWDLQ� WKDW� WXSOH� W�EHORQJV� WR� WKH� UHVXOW�RI�4�

ZKDWHYHU�WKH�DFWXDO�YDOXH�WDNHQ�E\�DWWULEXWHV�ZKRVH�YDOXH� LV
NQRZQ�DV�QXOO�

• QR��L�H���LW�LV�FHUWDLQ�WKDW�WXSOH�W�GRHV�QRW�EHORQJ�WR�WKH�UHVXOW
RI� 4�� DQG� WKHUH� LV� DFWXDOO\� QR� FKRLFH� ZKLFK� DOORZV� WKH
FRQVWUXFWLRQ�RI�W�

• PD\EH�� � L�H��� LW� LV� SRVVLEOH� WKDW� WXSOH� W� DSSHDUV�RU�QRW� LQ� WKH
DQVZHU� WR� 4� GHSHQGLQJ� RQ� WKH� FKRLFH� PDGH� IRU� DWWULEXWHV
ZKRVH�YDOXH�LV�QXOO�

,Q�RWKHU�ZRUGV��WKH�DQVZHU�WR�D�\HV�QR�TXHU\�FDOOV�RQ�WKH�QRWLRQV
RI�SRVVLEOH�DQG�FHUWDLQ�DQVZHUV��UHJDUGOHVV�RI�SRVVLELOLW\� WKHRU\��
7KH�DQVZHUV�\HV�DQG�QR�UHTXLUH�WKDW�LW�LV�FHUWDLQ�WKDW�W�LV�RU�LV�QRW

TDM'06, the second Twente Data Management Workshop on
Uncertainty in Databases
© 2006 Database Group, University of Twente
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SUHVHQW� LQ� WKH� DQVZHU� WR� 4�� ZKLOH� PD\EH� UHOLHV� RQO\� RQ� WKH
SRVVLELOLW\� IRU� W� WR� EHORQJ� WR� WKLV� DQVZHU�� L�H��� LQ� �DW� OHDVW�� RQH
ZRUOG�DVVRFLDWHG�ZLWK�WKH�LPSUHFLVH�GDWDEDVH�
+RZHYHU�� QXOO� �XQNQRZQ�� YDOXHV� FRUUHVSRQG� WR� WKH� FRPSOHWH
DEVHQFH� RI� NQRZOHGJH� DV� WR� WKH� VRPHZKDW� DFFHSWDEOH� YDOXHV
ZKLFK� LV� D� OLPLW� FDVH�� XVHIXO� IURP�D� WHFKQLFDO�SRLQW� RI� YLHZ�� EXW
SHUKDSV�VHOGRP�DQG�WKHQ�XQUHDOLVWLF�LQ�SUDFWLFH��)RUWXQDWHO\��VXFK
QXOOV� FDQ� EH� UHILQHG� LQ� WHUPV� RI� UHJXODU� VXEVHWV� �RU�VHWV� RU
LQWHUYDOV�� RU� ZHLJKWHG� VHWV� �SUREDELOLW\� RU� SRVVLELOLW\
GLVWULEXWLRQV���,Q�WKH�UHVW�RI�WKH�SDSHU��ZH�ILUVW�FRQVLGHU�SRVVLELOLW\
WKHRU\� IRU� WKH� UHSUHVHQWDWLRQ� RI� LPSUHFLVH� GDWD�� EHIRUH� VWXG\LQJ
ZKDW�FKDQJHV�ZKHQ�SUREDELOLW\�WKHRU\�LV�XVHG�LQVWHDG��3RVVLELOLW\
WKHRU\� SURYLGHV� DQ� RUGLQDO� IUDPHZRUN� IRU� WKH� PDQDJHPHQW� RI
XQFHUWDLQW\� DEOH� WR�GHDO�ZLWK� OLQJXLVWLF� GHVFULSWLRQV� RI� LPSUHFLVH
GDWD��,Q�DGGLWLRQ��WKH�YDOXHV�DSSHDULQJ�LQ�WKLV�IUDPHZRUN�KDYH�QR
FRQQHFWLRQ� ZLWK� IUHTXHQF\� RI� HYHQWV� DV� LW� LV� WKH� FDVH� ZLWK
SUREDELOLW\�WKHRU\��,Q�WKH�IUDPHZRUN�RI�SRVVLELOLVWLF�GDWDEDVHV��WKH
JHQHUDO�IRUPDW�RI�\HV�QR�TXHULHV�EHFRPHV�

³WR�ZKDW�H[WHQW�LV�LW�SRVVLEOH�DQG�FHUWDLQ�WKDW�WKH�DQVZHU�WR
4�IXOILOOV�FRQGLWLRQ�&�"´

ZKHUH�4� LV�D� UHODWLRQDO�DOJHEUDLF�TXHU\� �ZH�ZLOO� VHH� LQ�VHFWLRQ��
WKDW�VRPH�FRQVWUDLQWV�H[LVW�DV�WR�WKH�RSHUDWRUV�WKDW�FDQ�EH�SUHVHQW
LQ�4���2I�FRXUVH��LQ�D�SUREDELOLVWLF�VHWWLQJ��WKH�DQVZHU�RI�D�\HV�QR
TXHU\� LV� FKDUDFWHUL]HG� E\� D� VLQJOH� GHJUHH�� ZKLFK� H[SUHVVHV� WKH
SUREDELOLW\�WKDW�WKH�DQVZHU�WR�4�IXOILOOV�WKH�VSHFLILHG�FRQGLWLRQ�&�
7KH�VWUXFWXUH�RI�WKH�SDSHU�LV�WKH�IROORZLQJ��6RPH�EDVLF�QRWLRQV�RQ
SRVVLELOLW\� WKHRU\� DUH� UHFDOOHG� LQ� VHFWLRQ� ��� ZKHUH� SRVVLELOLVWLF
UHODWLRQDO�GDWDEDVHV�DUH� LQWURGXFHG�DV�ZHOO�� ,Q� WKDW� VDPH� VHFWLRQ�
ZH� DOVR� GHVFULEH� WKH� SULQFLSOHV� IRU� SURFHVVLQJ� VRPH� DOJHEUDLF
TXHULHV� LQ� D� �FRPSDFW�� ZD\� �L�H��� DSSO\LQJ� GLUHFWO\� WR� WKH
SRVVLELOLVWLF� GDWDEDVH�� ZLWKRXW� PDNLQJ� WKH� ZRUOGV� H[SOLFLW��� ,Q
SDUWLFXODU�� WKH� FRQFHSW� RI� D� VWURQJ� UHSUHVHQWDWLRQ� V\VWHP� DQG� LWV
FKDUDFWHULVWLF� SURSHUW\� HQVXULQJ� WKH� FRUUHFWQHVV� RI� D� �FRPSDFW�
FDOFXOXV� LV�SRLQWHG�RXW��7KHQ�� LQ� VHFWLRQ���� WKH� IDPLO\�RI�TXHULHV
FRQVLGHUHG� LQ� WKH� SDSHU�� QDPHO\� JHQHUDOL]HG� \HV�QR� TXHULHV�� LV
SUHVHQWHG�� 6HYHUDO� W\SHV� RI� VXFK� TXHULHV� DUH� LGHQWLILHG� DQG� WKH
DOJRULWKPV� WKDW� SHUPLW� WR� REWDLQ� WKH� WZR� GHVLUHG� GHJUHHV
�SRVVLELOLW\�DQG�QHFHVVLW\��DUH�RXWOLQHG�IRU�HDFK�RI� WKHVH� W\SHV�RI
TXHULHV�� 6HFWLRQ� �� VWXGLHV� ZKDW� ZRXOG� EH� WKH� LPSDFW� RQ� WKH
DOJRULWKPV�SHUIRUPDQFHV�LI� WKH�SUREDELOLVWLF�PRGHO�RI�XQFHUWDLQW\
ZDV� XVHG� LQVWHDG� RI� WKH� SRVVLELOLVWLF� RQH�� )LQDOO\�� VHFWLRQ� �� LV
GHGLFDWHG�WR�VRPH�FRQFOXVLRQV�RQ�WKH�UHVXOWV�DFKLHYHG�DV�ZHOO�DV
WR�VRPH�OLQHV�RI�IXWXUH�UHVHDUFK�

��� $�3266,%,/,67,&�'$7$%$6(�02'(/
���� 3RVVLELOLW\�WKHRU\��VRPH�UHPLQGHUV
3RVVLELOLW\� WKHRU\� >�@� SURYLGHV� DQ� RUGLQDO� PRGHO� IRU� XQFHUWDLQW\
ZKHUH� LPSUHFLVLRQ� LV� UHSUHVHQWHG� E\� PHDQV� RI� D� SUHIHUHQFH
UHODWLRQ�HQFRGHG�E\�D�WRWDO�RUGHU�RYHU�WKH�SRVVLEOH�VLWXDWLRQV��7KLV
IUDPHZRUN� LV� VWURQJO\� OLQNHG� WR� IX]]\� VHWV� VLQFH� WKH� LGHD� LV� WR
FRQVWUDLQ�WKH�YDOXHV�WKDW�FDQ�EH�WDNHQ�E\�D�YDULDEOH��E\�PHDQV�RI�D
QRUPDOL]HG� IX]]\� VHW�� $� SRVVLELOLW\� GLVWULEXWLRQ� LV� D� PDSSLQJ� π
IURP�D�JLYHQ�GRPDLQ�LQWR�WKH�XQLW�LQWHUYDO�>����@�DQG�π�D��JLYHV�WKH
SRVVLELOLW\�GHJUHH�DVVRFLDWHG�ZLWK�WKH�IDFW�WKDW�WKH�DFWXDO�YDOXH�RI
WKH�YDULDEOH�LV�D��7KH�QRUPDOL]DWLRQ�FRQGLWLRQ�LPSRVHV�WKDW�DW�OHDVW
RQH� YDOXH� �D � �� LV� FRPSOHWHO\� SRVVLEOH�� L�H��� π�D � ��  � ��� 7KLV
IRUPDOLVP� LV� SDUWLFXODUO\� VXLWHG� WR� WKH� H[SUHVVLRQ� RI� VXEMHFWLYH

XQFHUWDLQWLHV�GHVFULEHG�E\�PHDQV�RI� OLQJXLVWLF� WHUPV�VXFK�DV�ELJ�
\RXQJ��UDWKHU�VPDOO��HWF��:KHQ� WKH�GRPDLQ� LV� ILQLWH��D�SRVVLELOLW\
GLVWULEXWLRQ� LV� GHQRWHG� E\�� ^π � �D � � �� «� �� π � �D � `� ZKHUH� D � � LV� D
FDQGLGDWH� YDOXH� DQG� π � � LV� LWV� SRVVLELOLW\� GHJUHH�� 7KLV� DSSURDFK
SURYLGHV� D�XQLILHG� IUDPHZRUN� IRU� UHSUHVHQWLQJ� SUHFLVH� YDOXHV�� DV
ZHOO� DV� LPSUHFLVH�RQHV� �UHJXODU� VHWV�� RU� YDJXH� RQHV� �IX]]\� VHWV��
DQG�YDULRXV�QXOO� YDOXH� VLWXDWLRQV� �VHH� >�@� IRU�PRUH� GHWDLOV���$Q\
HYHQW�(�GHILQHG�RQ�WKH�SRZHUVHW�RI�;��WKH�VHW�RI�DOO�WKH�HOHPHQWDU\
HYHQWV�� LV� FKDUDFWHUL]HG� E\� WZR�PHDVXUHV�Π� DQG�1�� 7KH� D[LRPV
UHODWHG�WR�WKH�PHDVXUH�RI�SRVVLELOLW\�Π�DUH�WKH�IROORZLQJ�

Π�;�� ����ZKLFK�UHTXLUHV�WKH�QRUPDOL]DWLRQ�FRQGLWLRQ��
Π�∅�� ���
Π�(��∪�(��� �PD[�Π�(����Π�(��� ��������

DQG�WKH�PHDVXUH�RI�SRVVLELOLW\�RI�WKH�HYHQW�(�LV�GHULYHG�IURP�WKH
SRVVLELOLW\�GLVWULEXWLRQ� DVVRFLDWHG�ZLWK� WKH� FRQFHUQHG� YDULDEOH� LQ
WKH�IROORZLQJ�ZD\�

Π�(�� �PD[ � ∈ � �π�[��
7KH�SRVVLELOLW\�RI�WKH�FRQMXQFWLRQ�RI�WZR�HYHQWV�LV�JLYHQ�E\�

Π�(��∩�(���≤�PLQ�Π�(����Π�(����
EXW�LI�(��DQG�(��DUH�QRQ�LQWHUDFWLYH�HYHQWV�

Π�(��∩�(��� �PLQ�Π�(����Π�(���� ��������
7KH�RQO\�UHODWLRQVKLS�EHWZHHQ� WKH�SRVVLELOLW\�RI�( � � �WKH�RSSRVLWH
HYHQW�RI�(��DQG�WKDW�RI�(�LV�

PD[�Π�(���Π�( � )) = 1,

ZKLFK� HQWDLOV� WKDW� LI Π�(��  � ��� QRWKLQJ� FDQ� EH� VDLG� IRU�Π�( � ),
ZKLFK� FDQ� UDQJH� IURP� �� WR� ��� ,Q� RUGHU� WR� KDYH� D� EHWWHU
FKDUDFWHUL]DWLRQ� RI� WKH� HYHQW� (�� WKH� PHDVXUH� RI� FHUWDLQW\� �RU
QHFHVVLW\��1�KDV�EHHQ�DOVR�LQWURGXFHG�

1�(�� ���±�Π�( � �� ��������
,Q�RWKHU�ZRUGV��WKH�OHVV�SRVVLEOH�( � ��WKH�PRUH�FHUWDLQ�(��'XH�WR�WKH
GXDOLW\�EHWZHHQ�WKHVH�WZR�PHDVXUHV��WKH�IROORZLQJ�IRUPXODV�KROG
LQ�WKH�JHQHUDO�FDVH�

1�(��∩�(��� �PLQ�1�(����1�(���
1�(��∪�(���≥�PD[�1�(����1�(����

,Q�DGGLWLRQ��LI�(��DQG�(��DUH�WZR�QRQ�LQWHUDFWLYH�HYHQWV�
1�(��∪�(��� �PD[�1�(����1�(���� ��������

$V�IDU�DV�UHJXODU��L�H���QRQ�IX]]\��HYHQWV�DUH�FRQFHUQHG��LW�FDQ�EH
SURYHQ�WKDW�

Π�(������⇒�1�(�� ��� ��������
7KHQ�� WKHVH� WZR� PHDVXUHV� SURYLGH� D� WRWDO� RUGHU� RYHU� WKH� VHW� RI
HYHQWV�ZKLFK�FDQ�EH�RUGHUHG�DFFRUGLQJ�WR�Π�IRU�WKRVH�ZKR�DUH�QRW
DW�DOO�FHUWDLQ�DQG�DFFRUGLQJ� WR�1� IRU� WKRVH�ZKLFK� DUH� FRPSOHWHO\
SRVVLEOH�

���� 3RVVLELOLVWLF�GDWDEDVHV�DQG�ZRUOGV
,Q� FRQWUDVW� WR� D� UHJXODU� GDWDEDVH�� D� SRVVLELOLVWLF� GDWDEDVH�'�PD\
KDYH�VRPH�DWWULEXWHV�ZKLFK�WDNH�LPSUHFLVH�YDOXHV��,Q�VXFK�D�FDVH�
D�SRVVLELOLW\�GLVWULEXWLRQ�LV�XVHG�WR�UHSUHVHQW�DOO� WKH�PRUH�RU� OHVV
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DFFHSWDEOH� FDQGLGDWHV� IRU� WKH� DWWULEXWH� YDOXH�� ,Q� WKH� UHVW� RI� WKLV
SDSHU��RQO\�ILQLWH�SRVVLELOLW\�GLVWULEXWLRQV�DUH�WDNHQ�LQWR�DFFRXQW�
7KH�ILUVW�YHUVLRQ�RI�D�SRVVLELOLVWLF�GDWDEDVH�PRGHO�ZDV�LQWURGXFHG
E\� 3UDGH� LQ� WKH�PLG� ��V� >�@�� )URP� D� VHPDQWLF� SRLQW� RI� YLHZ�� D
SRVVLELOLVWLF� GDWDEDVH� '� FDQ� EH� LQWHUSUHWHG� DV� D� VHW� RI� XVXDO
GDWDEDVHV��DOVR�FDOOHG�ZRUOGV���GHQRWHG�E\�UHS�'���HDFK�RI�ZKLFK
EHLQJ� PRUH� RU� OHVV� SRVVLEOH� �RQH� RI� WKHP� LV� VXSSRVHG� WR
FRUUHVSRQG� WR� WKH� DFWXDO� VWDWH� RI� WKH� XQLYHUVH� PRGHOHG��� $Q\
ZRUOG� : � � LV� REWDLQHG� E\� FKRRVLQJ� D� FDQGLGDWH� YDOXH� LQ� HDFK
SRVVLELOLW\�GLVWULEXWLRQ�DSSHDULQJ�LQ�'�DQG�LWV�GHJUHH�RI�SRVVLELOLW\
LV� WKH� PLQLPXP� RI� WKRVH� RI� WKH� FDQGLGDWHV� WDNHQ� �DFFRUGLQJ� WR
IRUPXOD���VLQFH�FKRLFHV�DUH�DVVXPHG�WR�EH�LQGHSHQGHQW��
([DPSOH����/HW�XV�FRQVLGHU�WKH�SRVVLELOLVWLF�GDWDEDVH�'�LQYROYLQJ
WZR�UHODWLRQV��LP�DQG�SO�ZKRVH�UHVSHFWLYH�VFKHPDV�DUH�,0��L��DS�
GDWH�� SODFH�� DQG� 3/�DS�� OJ��PVS��� 5HODWLRQ� LP� GHVFULEHV� VDWHOOLWH
LPDJHV�RI�DLUSODQHV�DQG�HDFK�LPDJH�� LGHQWLILHG�E\�D�QXPEHU� ��L��
WDNHQ�RQ�D�FHUWDLQ�ORFDWLRQ��SODFH��D�JLYHQ�GD\��GDWH��LV�VXSSRVHG
WR�LQFOXGH�D�VLQJOH�DLUSODQH�ZKRVH� W\SH�DS� LV�SRVVLEO\� LOO�NQRZQ�
GXH� WR� WKH� LPSUHFLVLRQ� LQ� WKH� UHFRJQLWLRQ� SURFHVV�� 5HODWLRQ� SO
JLYHV� WKH� OHQJWK� �OJ�� DQG�PD[LPDO� VSHHG� �PVS�� RI� HDFK� DLUSODQH
DQG�LV�D�UHJXODU��SUHFLVH��UHODWLRQ��:LWK�WKH�H[WHQVLRQ�RI�LP�

LP �L DS GDWH SODFH
L � D � ^��G � �������G � ` F �
L � ^��D � �������D � ` G� F 	

IRXU�ZRUOGV�FDQ�EH�GUDZQ��VLQFH�WKHUH�DUH�WZR�FDQGLGDWHV�IRU�GDWH
�UHVS�� DS�� LQ� WKH� ILUVW� �UHVS�� VHFRQG�� WXSOH� RI� LP�� (DFK� RI� WKHVH
ZRUOGV� LQYROYHV� UHODWLRQ�SO�ZKLFK� LV�SUHFLVH� DQG� RQH� RI� WKH� IRXU
UHJXODU�UHODWLRQV�LVVXHG�IURP�WKH�SRVVLELOLVWLF�UHODWLRQ�LP�♦

���� 7KH�H[WHQGHG�PRGHO
$V�PHQWLRQHG� EHIRUH�� D� FDOFXOXV� EDVHG� RQ� WKH� SURFHVVLQJ� RI� WKH
TXHU\�4�DJDLQVW�ZRUOGV� LV� LQWUDFWDEOH�DQG�D�FRPSDFW�DSSURDFK� WR
WKH� FDOFXOXV� RI� WKH� DQVZHU� WR� 4� PXVW� EH� IRXQG� RXW�� ,W� LV� WKHQ
QHFHVVDU\� WR�EH�SURYLGHG�ZLWK�ERWK� D�GDWD�PRGHO� DQG�RSHUDWLRQV
ZKLFK�KDYH�JRRG�SURSHUWLHV��L��WKH�GDWD�PRGHO�PXVW�EH�FORVHG�IRU
WKH� FRQVLGHUHG�RSHUDWLRQV�� DQG� LL�� LW�PXVW� EH� SRVVLEOH� WR� SURFHVV
DQ\� TXHU\� LQ� D� FRPSDFW� ZD\�� ,Q� DGGLWLRQ�� LWV� UHVXOW� PXVW� EH� D
FRPSDFW� UHSUHVHQWDWLRQ� RI� WKH� UHVXOWV� REWDLQHG� LI� WKH� TXHU\�ZHUH
DSSOLHG�WR�DOO�WKH�ZRUOGV�GUDZQ�IURP�WKH�SRVVLELOLVWLF�GDWDEDVH�'�
L�H��� UHS�4F�'���  � 4�UHS�'��� ZKHUH� UHS�'�� GHQRWHV� WKH� VHW� RI
ZRUOGV�DVVRFLDWHG�ZLWK�'�DQG�4F�VWDQGV�IRU�WKH�TXHU\�REWDLQHG�E\
UHSODFLQJ� WKH� RSHUDWRUV� RI� 4� E\� WKHLU� FRPSDFW� YHUVLRQV�� 7KLV
SURSHUW\� FKDUDFWHUL]HV� GDWD� PRGHOV� FDOOHG� VWURQJ� UHSUHVHQWDWLRQ
V\VWHPV�� $� GDWD� PRGHO� FRPSO\LQJ� ZLWK� WKLV� SURSHUW\� LV� EULHIO\
GHVFULEHG�KHUHDIWHU��VHH�>�@�IRU�PRUH�GHWDLOV��
%HFDXVH� VRPH� RSHUDWLRQV� �H�J�� VHOHFWLRQ�� ILOWHU� FDQGLGDWH� YDOXHV�
WKHUH� LV� D� QHHG� DW� WKH� FRPSDFW� OHYHO� IRU� H[SUHVVLQJ� WKDW� VRPH
WXSOHV� FDQ� KDYH� QR� UHSUHVHQWDWLYH� LQ� VRPH� ZRUOGV�� $� VLPSOH
VROXWLRQ�LV� WR� LQWURGXFH�D�QHZ�DWWULEXWH��GHQRWHG�E\�1��YDOXHG�LQ
>��� �@��� 7KH� YDOXH� RI� 1� DVVRFLDWHG� ZLWK� D� WXSOH� W� H[SUHVVHV� WKH
FHUWDLQW\�RI� WKH�SUHVHQFH�RI�D�UHSUHVHQWDWLYH�RI� W� LQ�DQ\�ZRUOG��$
WXSOH�LV�GHQRWHG�E\�D�SDLU�1�W�ZKHUH�1�HTXDOV���IRU�WXSOHV�RI�LQLWLDO
SRVVLELOLVWLF�UHODWLRQV�DV�ZHOO�DV�ZKHQ�QR�FDQGLGDWH�YDOXH�KDV�EHHQ
GLVFDUGHG�

([DPSOH� ��� /HW� XV� FRQVLGHU� WKH� IROORZLQJ� H[WHQVLRQ� RI� WKH
SRVVLELOLVWLF�UHODWLRQ�LP�

LP �L DS GDWH SODFH
L � %���� G � F �
L 	 $75��� G � F 	
L � ^��%����������$75���` G 	 F �
L � ^��%���������%����` G 	 F 	

7KH� VHOHFWLRQ� EDVHG� RQ� WKH� FRQGLWLRQ� ³DS�  � %����´� OHDGV� WR
GLVFDUG�WKH�FDQGLGDWHV�ZKLFK�DUH�GLIIHUHQW�IURP�WKLV�GHVLUHG�YDOXH�
7KDQNV� WR� WKH� LQWURGXFWLRQ� RI� DWWULEXWH� 1�� WKH� UHVXOW� RI� WKH
VHOHFWLRQ�LV�

UHV �L DS GDWH SODFH 1
L � %���� G � F � �
L � %���� G 	 F � ���
L � %���� G 	 F 	 �

,Q�WKH�VHFRQG�WXSOH�1�LV�HTXDO�WR������L�H����PLQXV� WKH�SRVVLELOLW\
GHJUHH� DWWDFKHG� WR� WKH� PRVW� SRVVLEOH� DOWHUQDWLYH� WKDW� KDV� EHHQ
GLVFDUGHG�
7KLV�UHVXOWLQJ�UHODWLRQ�KDV�IRXU�LQWHUSUHWDWLRQV��ZRUOGV���LQFOXGLQJ
WKDW�PDGH�RI�WKH�VLQJOH�WXSOH��L � ��%������G � ��F � !�ZKRVH�GHJUHH�RI
SRVVLELOLW\�LV��PLQ������±��������±���� �����♦
$QRWKHU�DVSHFW�RI�WKH�PRGHO�FRQFHUQV�WKH�IDFW�WKDW�RQH�VRPHWLPHV
KDV� WR� H[SUHVV� GHSHQGHQFLHV� EHWZHHQ� FDQGLGDWH� YDOXHV� FRPLQJ
IURP�GLIIHUHQW�DWWULEXWHV�LQ�D�VDPH�WXSOH��7KLV�PDNHV� LW�QHFHVVDU\
WR� UHSUHVHQW� DWWULEXWH� YDOXHV� GHILQHG� DV� SRVVLELOLW\� GLVWULEXWLRQV
RYHU� VHYHUDO� GRPDLQV�� ZKLFK� LV� IHDVLEOH� LQ� WKH� UHODWLRQDO
IUDPHZRUN� WKDQNV� WR� WKH� FRQFHSW� RI� D� QHVWHG� UHODWLRQ�� ,Q� VXFK
UHODWLRQV��H[FOXVLYH�FDQGLGDWHV�DUH�UHSUHVHQWHG�DV�ZHLJKWHG�WXSOHV�
7KHUHIRUH�� OHYHO�RQH� UHODWLRQV� NHHS� WKHLU� FRQMXQFWLYH� PHDQLQJ�
ZKHUHDV�QHVWHG�UHODWLRQV�KDYH�D�GLVMXQFWLYH�LQWHUSUHWDWLRQ�
([DPSOH� ��� /HW� XV� FRQVLGHU� WKH� IROORZLQJ� LQWHUPHGLDWH� UHODWLRQ
LQW�U�LQYROYLQJ�WKH�QHVWHG�DWWULEXWH�;�GDWH��SODFH��

LQW�U �L DS ;
GDWH�������������������������������SODFH

1

L � %���� ^���G � ��F � !��������G � ��F 	 !��
�����G � ��F 	 !`

�

L � %���� �G � ��F 	 ! ���
L � %���� ^�����G � ��F 	 !` �

7KLV� UHODWLRQ� LV� DVVRFLDWHG� ZLWK� ��� ZRUOGV� VLQFH� WKH� ILUVW� WXSOH
DGPLWV� �� LQWHUSUHWDWLRQV�� WKH� VHFRQG� DQG� WKLUG� RQHV� KDYH� �
LQWHUSUHWDWLRQV�DPRQJ�ZKLFK����QR�UHSUHVHQWDWLYH��♦

���� 7KH�RSHUDWRUV
,Q� RUGHU� WR� PHHW� WKH� REMHFWLYH� RI� D� FRPSDFW� SURFHVVLQJ� RI
DOJHEUDLF� TXHULHV�� WKH� RSHUDWRUV�PXVW� EH� DGDSWHG� VR� DV� WR� DFFHSW
SRVVLELOLVWLF�UHODWLRQV��DV�GHILQHG�LQ�WKH�SUHYLRXV�VHFWLRQ��ERWK�DV
LQSXWV�DQG�RXWSXWV��,W�WXUQV�RXW�WKDW�WKH�RQO\�RSHUDWLRQV�VXFK�WKDW
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DQ� LQSXW� WXSOH� SDUWLFLSDWHV� LQ� WKH� SURGXFWLRQ� RI� DW� PRVW� RQH
HOHPHQW�RI�WKH�UHVXOW��FDQ�EH�H[SHFWHG�WR�DGPLW�D�FRPSDFW�YHUVLRQ
�VHH�>����@���$V�D�FRQVHTXHQFH��WKH�LQWHUVHFWLRQ��WKH�GLIIHUHQFH�DQG
WKH� &DUWHVLDQ� SURGXFW� �WKHQ� WKH� MRLQ� LQ� WKH� JHQHUDO� FDVH�� DUH
GLVFDUGHG� DQG� WKH� IRXU� DFFHSWDEOH� RSHUDWRUV� DUH� QRZ� GHDOW� ZLWK�
&RQVLGHULQJ�WKH�VSHFLILF�REMHFWLYH�RI�WKLV�SDSHU��ZH�ZLOO�QRW�JLYH�D
GHWDLOHG�SUHVHQWDWLRQ�RI�WKHVH�RSHUDWRUV��ZKRVH�GHILQLWLRQV�FDQ�EH
IRXQG�LQ�>����@���:H�OLPLW�RXUVHOYHV�WR�D�EULHI�LQWURGXFWLRQ�DQG�WKH
EHKDYLRU�RI�WKH�RSHUDWRUV�LV�WKHQ�LOOXVWUDWHG�E\�DQ�H[DPSOH�
7KH� VHOHFWLRQ� UHPRYHV� WKH� XQVDWLVIDFWRU\� FDQGLGDWH� YDOXHV� �DQG
SRVVLEO\� WXSOHV�� DQG� XSGDWHV� WKH� YDOXH� 1� RI� HDFK� UHWDLQHG� WXSOH
�FI��H[DPSOH����
7KH� RULJLQDOLW\� RI� WKH� SURMHFWLRQ� LQ� WKLV� FRQWH[W� LV� WZRIROG�� L�� LW
GRHV� QRW� UHPRYH� GXSOLFDWHV� DQG� LL�� LW� XSGDWHV� WKH� SRVVLELOLW\
GHJUHHV� DWWDFKHG� WR� WKH� UHPDLQLQJ� YDOXHV� DFFRUGLQJ� WR� WKH
SRVVLELOLW\� GLVWULEXWLRQV� WKDW� ZHUH� SUHVHQW� LQ� WKH� VXSSUHVVHG
DWWULEXWHV�
$OWKRXJK� WKHUH� LV�QR�KRSH� IRU�GHILQLQJ�D�FRPSDFW�YHUVLRQ�RI� WKH
MRLQ� �GXH� WR� WKH� FRQVWUDLQW� H[SUHVVHG� DERYH��� LW� WXUQV� RXW� WKDW� D
VSHFLILF�MRLQ��QDPHO\�WKH�IN�MRLQ��LV�DFFHSWDEOH��7KH�IN�MRLQ�DOORZV
IRU� WKH� FRPSRVLWLRQ� RI� D� SRVVLELOLVWLF� UHODWLRQ� U� RI� VFKHPD�5�:�
=��� ZKHUH� :� DQG� =� PD\� WDNH� LPSUHFLVH� YDOXHV�� DQG� D� UHJXODU
UHODWLRQ�V�RI�VFKHPD�6�:��<��ZKHUH�WKH�IXQFWLRQDO�GHSHQGHQF\�:
�<�KROGV��6R��:�LV�WKH�NH\�RI�V�DQG�WKHQ�D�IRUHLJQ�NH\�RI�U��7KH

IN�MRLQ�FRQVLVWV�LQ�FRPSOHWLQJ�WXSOHV�RI�U�E\�DGGLQJ�WKH� LPDJH�RI
WKH�:�FRPSRQHQW��%\�GHILQLWLRQ��WKLV�OHDGV�WR�D�UHVXOWLQJ�UHODWLRQ
LQYROYLQJ�WKH�QHVWHG�UHODWLRQ�;�:��<���ZKLFK��FRQQHFWV��WKH�SDLUV
RI� FDQGLGDWHV� RYHU� :� DQG� <�� 7KH� GHJUHH� RI� SRVVLELOLW\� RI� DQ\
VWUXFWXUHG� FDQGLGDWH� YDOXH� LV� WKDW� DWWDFKHG� WR� WKH� YDOXH� WKDW� KDV
EHHQ�FRPSOHWHG��6LPLODUO\� WR� WKH�VHOHFWLRQ��1� LV�XSGDWHG� WR�NHHS
WUDFN� RI� WKH� PRVW� SRVVLEOH� FDQGLGDWH� YDOXH� IRU� ZKLFK� QR� PDWFK
RFFXUUHG�
/DVWO\��WKH�XQLRQ�RI� WZR�UHODWLRQV�ZKRVH�VFKHPDV�DUH�FRPSDWLEOH
NHHSV� DOO� WKH� WXSOHV� LVVXHG� IURP� WKH� WZR� LQSXW� UHODWLRQV� ZLWKRXW
DQ\�GXSOLFDWH�UHPRYDO�
([DPSOH����7KLV� H[DPSOH� LV� LQWHQGHG� IRU� LOOXVWUDWLQJ� WKH� RYHUDOO
IXQFWLRQLQJ� RI� WKH� SURFHGXUH� GHVLJQHG� IRU� DQVZHULQJ� DOJHEUDLF
TXHULHV� DGGUHVVHG� WR� SRVVLELOLVWLF� GDWDEDVHV�� /HW� XV� FRQVLGHU� WKH
SRVVLELOLVWLF� GDWDEDVH� FRPSRVHG� RI� WKH� UHODWLRQV� LP��,0��
LP��,0��DQG�SO�3/��ZKHUH�,0�DQG�3/�DUH�WKH�VFKHPDV�LQWURGXFHG
LQ� H[DPSOH� ��� 7KH� WZR� UHODWLRQV� LP�� DQG� LP�� DUH� DVVXPHG� WR
FRQWDLQ� LPDJHV� RI� DLUSODQHV� WDNHQ� E\� WZR� GLVWLQFW� VRXUFHV� �H�J��
VDWHOOLWHV���/HW�XV�FRQVLGHU� WKH�TXHU\� ORRNLQJ� IRU� WKH�H[LVWHQFH�RI
LPDJHV�RI� DLUSODQHV�ZKRVH�PD[LPDO� VSHHG� LV�RYHU�����NP�K� DQG
WDNHQ�E\�HLWKHU�RI�WKH�WZR�VDWHOOLWHV�DW�D�GDWH�GLIIHUHQW�IURP�G � �DQG
G � ��ZKLFK�FRUUHVSRQGV�WR�WKH�DOJHEUDLF�TXHU\�4�
IN�MRLQ�XQLRQ�VHOHFW�LP���GDWH�∉�^G � ��G � `���VHOHFW�LP���GDWH�∉�^G � �
G � `����VHOHFW�SO��PVS�!�������^DS`��^DS`��
:LWK�WKH�IROORZLQJ�H[WHQVLRQV�

SO DS OJ PVS
D � �� ����
D 	 �� ���
D � �� ���
D � �� ����
D 
 �� ����

LP� �L DS GDWH SODFH 1
L � D � ^��G � �������G � ` F � �
L 	 ^��D 	 �������D � ` G � F 	 �

LP� �L DS GDWH SODFH 1
L � ^��D � �����D 
 ` ^����G � �����G � ` F � �

ZH�REWDLQ�WKH�UHVXOWLQJ�UHODWLRQ�UHV�KHUHDIWHU�

UHV �L ;
DS��������������OJ�����������PVS

GDWH SODFH 1

L 	 �����D � ����������! G � F 	 �
L � ^���D � ����������!������D 
 �

��������!`
G � F � ���

��� *(1(5$/,=('�<(6�12�48(5,(6
���� ,QWURGXFWLRQ
,Q� WKLV� SDSHU�� ZH� FRQVLGHU� WKH� IROORZLQJ� W\SHV� RI� JHQHUDOL]HG
\HV�QR�TXHULHV��EXW�WKLV�W\SRORJ\�LV�FOHDUO\�QRW�H[KDXVWLYH��
• YDFXLW\�EDVHG� \HV�QR� TXHULHV�� WR� ZKDW� H[WHQW� LV� LW� SRVVLEOH

DQG�FHUWDLQ�WKDW�WKH�DQVZHU�WR�4�LV�QRQ�HPSW\"
• PHPEHUVKLS�EDVHG� \HV�QR� TXHULHV�� WR� ZKDW� H[WHQW� LV� LW

SRVVLEOH�DQG�FHUWDLQ�WKDW�WXSOH�W�EHORQJV�WR�WKH�DQVZHU�WR�4"
• FDUGLQDOLW\�EDVHG�\HV�QR�TXHULHV��WR�ZKDW�H[WHQW�LV�LW�SRVVLEOH

DQG� FHUWDLQ� WKDW� WKH� DQVZHU� WR� 4� FRQWDLQV� DW� OHDVW� �UHVS�� DW
PRVW��H[DFWO\��N�LWHPV"

• LQFOXVLRQ�EDVHG�\HV�QR�TXHULHV�� WR�ZKDW� H[WHQW� LV� LW� SRVVLEOH
DQG�FHUWDLQ�WKDW�WKH�DQVZHU�WR�4�FRQWDLQV�WKH�VHW�RI�WXSOHV�^W � �
�����W � `"

)RU� HDFK� RI� WKHVH� TXHULHV�� WKH� SURFHVVLQJ� REH\V� WKH� IROORZLQJ
WKUHH�VWHS�VFKHPH�
• SUH�SURFHVVLQJ� LQ� RUGHU� WR� HOLPLQDWH� WKH� XQQHFHVVDU\

DWWULEXWHV� �DQG�� IRU� PHPEHUVKLS�EDVHG� TXHULHV�� WR� UHPRYH
IURP�WKH�RSHUDQG�UHODWLRQV�WKH�WXSOHV�WKDW�FDQQRW�JHQHUDWH�WKH
WDUJHW�WXSOH��

• HYDOXDWLRQ� RI�4��ZKLFK� \LHOGV� D� UHVXOWLQJ� SRVVLELOLVWLF� WDEOH
UHV�RI�VFKHPD��$ � �������$ � ��

• SRVW�SURFHVVLQJ�DLPLQJ�DW�FRPSXWLQJ�WKH�ILQDO�SRVVLELOLW\�DQG
FHUWDLQW\�GHJUHHV�Π�DQG�1�

,Q� WKH� IROORZLQJ��ZH�RQO\� IRFXV�RQ� WKH�SRVW�SURFHVVLQJ�SDUW� �ODVW
VWHS���&RQFHUQLQJ�WKH�HYDOXDWLRQ�RI�4��WKH�UHDGHU�FDQ�UHIHU�WR�>�@�
:H�ZLOO�VHH�LQ�WKH�QH[W�VXEVHFWLRQ�WKDW�WKH�IRXU�SUHYLRXV�W\SHV�RI
TXHULHV�FDQ�EH�FOXVWHUHG�LQWR� WZR�FDWHJRULHV�� WKRVH�ZKLFK�UHTXLUH
RQO\�D�VHTXHQWLDO�VFDQ�RI�WKH�UHVXOW�RI�4��YDFXLW\�DQG�PHPEHUVKLS�
EDVHG� TXHULHV�� GHQRWHG� E\� W\SH� ���� DQG� WKRVH� IRU� ZKLFK� LW� LV
QHFHVVDU\�WR�XVH�D�³WULDO�DQG�HUURU´�W\SH�RI�DOJRULWKP��FDUGLQDOLW\
DQG�LQFOXVLRQ�EDVHG�TXHULHV��GHQRWHG�E\� W\SH����� ,Q�DQ\�FDVH�� OHW
XV�QRWLFH�WKDW�IRUPXOD���DOORZV�WR�UHGXFH�WKH�FRPSXWDWLRQ�HIIRUW�LQ
FHUWDLQ�VLWXDWLRQV��,I�WKH�SRVVLELOLW\�GHJUHH�LV�FRPSXWHG�ILUVW�DQG�LI
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LW� LV� VWULFWO\� OHVV� WKDQ���� WKHQ� WKHUH� LV�QR�QHHG� IRU� FRPSXWLQJ� WKH
QHFHVVLW\�GHJUHH�VLQFH�RQH�NQRZV�WKDW�LW�HTXDOV�]HUR��5HFLSURFDOO\�
LI� WKH� QHFHVVLW\� GHJUHH� LV� FRPSXWHG� ILUVW� DQG� LV� VWULFWO\� SRVLWLYH�
WKHQ�RQH�NQRZV�WKDW�Π�HTXDOV���

���� 3ULQFLSOHV�RI�WKH�DOJRULWKPV
������ 9DFXLW\�EDVHG�\HV�QR�TXHULHV
7KH� GHJUHHV� RI� SRVVLELOLW\� DQG� QHFHVVLW\�� ZKLFK� FRQVWLWXWH� WKH
DQVZHU�WR�WKH�\HV�QR�TXHU\��FDQ�EH�GHGXFHG�IURP�UHODWLRQ�UHV� WKH
IROORZLQJ�ZD\�
• LI� UHV� LV�HPSW\�� WKHQ� WKH�SRVVLELOLW\�GHJUHH�HTXDOV����'XH� WR

IRUPXOD����1�DOVR�HTXDOV����,Q�RWKHU�ZRUGV��LW�LV�FHUWDLQ� WKDW
WKH�DQVZHU�WR�4�LV�HPSW\�

• LI� UHV� FRQWDLQV� DW� OHDVW� RQH� WXSOH� ZKRVH� 1�YDOXH� LV� VWULFWO\
SRVLWLYH��WKH�GHJUHH�DVVHVVLQJ�WKH�QHFHVVLW\�WKDW�WKH�DQVZHU�WR
4�LV�QRQ�HPSW\�LV�JLYHQ�E\��PD[ � ∈ 
 � � �1�W���,QGHHG��WKH�HYHQW
XQGHU�FRQVLGHUDWLRQ�LV�(� ��WKH�ILUVW�WXSOH�RI�UHV�H[LVWV�RU�«
RU� WKH� ODVW� WXSOH� RI� UHV� H[LVWV��� $FFRUGLQJ� WR� SRVVLELOLW\
WKHRU\��WKH�QHFHVVLW\�RI�(�LV�WKH�PD[LPXP�RI�WKH�QHFHVVLW\�RI
HDFK�RI�WKH�QRQ�LQWHUDFWLYH�HOHPHQWDU\�HYHQWV��WKH�M � � �WXSOH�RI
UHV� H[LVWV�� �FI�� IRUPXOD� ���� 7KH� FRQWUDSRVLWLRQ� RI� IRUPXOD� �
�1�!���⇒  Π� ����DOORZV�WR�VWDWH�WKDW�WKH�SRVVLELOLW\�GHJUHH�RI
(� LV� ��� ,Q� RWKHU� ZRUGV�� LW� LV� FRPSOHWHO\� SRVVLEOH� WKDW� WKH
DQVZHU� WR� 4� LV� QRQ�HPSW\� �DQG� LW� PD\� EH� FHUWDLQ� LQ� WKH
VSHFLDO�FDVH�ZKHUH�1�LWVHOI�LV����

• LI��IRU�HYHU\�WXSOH�W � �RI�UHODWLRQ�UHV��WKH�1�YDOXH�HTXDOV����WKH
FHUWDLQW\� RI� WKH� HYHQW� ³WKH� DQVZHU� WR�4� LV� QRQ�HPSW\´� LV� �
DQG� LWV� SRVVLELOLW\� LV� JLYHQ� E\�� PD[ � ∈ 
 � � � π�W�� DFFRUGLQJ� WR
IRUPXOD���

7KH�DOJRULWKP�IRU�WKH�FDOFXOXV�RI�WKH�GHJUHHV�LV�JLYHQ�KHUHDIWHU�
,QSXW��UHODWLRQ�UHV�ZKRVH�JHQHULF�WXSOH�LV�
X� �QF��^$ � >�@�������$ � >N � @`������^$ � >�@�������$ � >N � @`!�ZKHUH�$ � >M@�LV
D�SDLU��SRVVLELOLW\�GHJUHH��SL���FDQGLGDWH�YDOXH��YDO�!�
2XWSXW�� GHJUHHV� RI� SRVVLELOLW\� SRVV� DQG� QHFHVVLW\� QHF� WKDW� WKH
DQVZHU�WR�4�LV�QRQ�HPSW\�
%RG\�RI�WKH�DOJRULWKP�

lp ← false; poss ← 1; nec ← 0;
while not end(res) do
read next tuple u of res;
lp ← true;
poss-u ← 1;
for j from 1 to n do

pi ← 0;
for q from 1 to u.k

j
 do

pi ← max(pi, u.A
j
[q].pi)

enddo;
poss-u ← min(poss-u, pi)

enddo;
if u.nc > 0 then

nec ← max(nec, u.nc);
poss ← 1

else poss ← max(poss, poss-u) endif;
enddo;
if not lp then poss ←0; nec ← 0 endif.

&OHDUO\�� WKLV� DOJRULWKP� KDV� D� FRPSOH[LW\� ZKLFK� LV� OLQHDU� ZLWK
UHVSHFW�WR�WKH�QXPEHU�RI�WXSOHV�RI�WKH�LQSXW�UHODWLRQ�UHV��7KHQ��WKH
SHUIRUPDQFHV� RI� WKH� RYHUDOO� WUHDWPHQW� RI� D� JHQHUDOL]HG� \HV�QR
TXHU\�LV�QRW�VLJQLILFDQWO\�LQFUHDVHG�E\�WKLV�DGGLWLRQDO�VWHS�
������ 0HPEHUVKLS�EDVHG�\HV�QR�TXHULHV
2QH�PD\� REVHUYH� WKDW�� LQ� WKH� FRQWH[W� RI� D� UHJXODU� GDWDEDVH�� WKH
LQLWLDO�PHPEHUVKLS�EDVHG�\HV�QR�TXHU\�

³LV�LW�WUXH�WKDW�WXSOH�W�EHORQJV�WR�WKH�DQVZHU�WR�4"´
FDQ�EH�WUDQVIRUPHG�LQWR�WKH�YDFXLW\�EDVHG�\HV�QR�TXHU\�

³LV�WKH�UHVXOW�RI�TXHU\�4
�QRQ�HPSW\"´
ZKHUH� 4
� LV� GHULYHG� IURP� 4� E\� DGGLQJ� VHOHFWLRQ� FRQGLWLRQV
FRUUHVSRQGLQJ�WR�WKH�YDOXHV�RI�W�� ��D � ��«��D � !��RQ�WKH�XQGHUO\LQJ
DWWULEXWHV�$ � ��«��$ � �� L�H���$ � � �D � �DQG�«�DQG�$ � � �D � ��� IROORZHG
E\�D�SURMHFWLRQ�RQWR�WKH�DWWULEXWHV�$ � �������$ � ��7KH�LQWHUHVW�IRU�VXFK
D�WUDQVIRUPDWLRQ�LV�WZRIROG��
• VHOHFWLRQV�DUH�SHUIRUPHG�DQG�WKHQ�WKH�SHUIRUPDQFHV�FDQ�RQO\

EH�LPSURYHG�VLQFH�WKH�VL]H�RI�LQWHUPHGLDWH�UHODWLRQV�GHFUHDVH�
• WKH� ILQDO� GHFLVLRQ� �\HV� RU� QR�� LV� HDVLHU� WR� PDNH�� VLQFH� WKH

UHVXOW�LV�HLWKHU�HPSW\�DQG�WKH�DQVZHU�LV�QR��RU�QRW��LW�FRQWDLQV
RQH�RU�VHYHUDO�RFFXUUHQFHV�RI�W��EXW�WKLV�GRHV�QRW�PDWWHU��DQG
WKH�DQVZHU�LV�\HV�

,W�KDV�EHHQ�SURYHQ�LQ�>�@�WKDW�VXFK�D�WUDQVIRUPDWLRQ�LV�DOVR�YDOLG�LQ
DQ�LPSUHFLVH�GDWDEDVH�IUDPHZRUN�LQDVPXFK�DV�WKH�PRGHO�XVHG�LV�D
VWURQJ� UHSUHVHQWDWLRQ� V\VWHP� �ZKLFK� LV� WKH� FDVH� KHUH��� /HW� XV
QRWLFH� WKDW� QHVWHG� UHODWLRQV� PD\� EH� LQGXFHG� E\� WKH� YDULRXV
LQWHUPHGLDWH�RSHUDWLRQV�SUHFHGLQJ� WKH� ILQDO� SURMHFWLRQ��+RZHYHU�
LW�LV�FHUWDLQ�WKDW�DQ\�WXSOH�UHVXOWLQJ�IURP�4
��ZKDWHYHU�WKH�VFKHPD
RI� WKH� LQSXW� UHODWLRQ� RI� WKH� ILQDO� SURMHFWLRQ�� LV� RQO\�PDGH� RI� WKH
YDOXHV� D � � WR� D � �� 7KLV� REVHUYDWLRQ� LPSOLHV� WKDW� LW� LV� SRVVLEOH� WR
SURGXFH�D�ILQDO�UHODWLRQ�ZKRVH�VFKHPD�LV��$ � ��«���$ � ��ZLWKRXW�DQ\
QHVWHG� UHODWLRQ�� 7KH� DOJRULWKP� DLPLQJ� DW� FRPSXWLQJ� WKH� ILQDO
SRVVLELOLW\�DQG�QHFHVVLW\�GHJUHHV�LV�D�VWUDLJKWIRUZDUG�DGDSWDWLRQ�RI
WKDW�SUHVHQWHG�LQ�WKH�SUHYLRXV�VHFWLRQ��FI��>�@�IRU�PRUH�GHWDLO�
������ &DUGLQDOLW\�EDVHG�\HV�QR�TXHULHV
7KH� SRVW�SURFHVVLQJ� RI� WKH� FRPSDFW� UHVXOW� RI� 4� HQWDLOV
GHWHUPLQLQJ�WKH�SRVVLELOLW\�DWWDFKHG�WR�ZRUOGV�LQYROYLQJ�D�FHUWDLQ
QXPEHU�RI�HOHPHQWV� LQ�RUGHU� WR� FRPSXWH� WKH�GHJUHHV�Π�1�RI� WKH
HYHQW��WR�ZKDW�H[WHQW�LV�LW�SRVVLEOH�DQG�FHUWDLQ�WKDW�WKH�DQVZHU�WR
4�FRQWDLQV�DW�OHDVW��DW�PRVW��H[DFWO\��«��N�GLVWLQFW�HOHPHQWV"���,Q
IDFW�� LI�ZH� DUH� DEOH� WR� FRPSXWH� WKH� SRVVLELOLW\� LQ� HDFK� FDVH� �³DW
OHDVW´�� ³DW� PRVW´�� ³H[DFWO\´�� «��� ZH� FDQ� DOVR� FRPSXWH� WKH
QHFHVVLW\�� ,QGHHG�� WKH�QHFHVVLW\� WKDW� WKH� DQVZHU� WR�4� FRQWDLQV� DW
OHDVW� �UHVSHFWLYHO\� DW� PRVW�� N� GLVWLQFW� HOHPHQWV� LV� �� ±� WKH
SRVVLELOLW\� WKDW� WKH� DQVZHU� WR� 4� FRQWDLQV� OHVV� WKDQ� �UHVSHFWLYHO\
PRUH� WKDQ�� N� GLVWLQFW� HOHPHQWV��0RUHRYHU�� WKH� QHFHVVLW\� WKDW� WKH
DQVZHU� WR�4� FRQWDLQV� H[DFWO\� N� GLVWLQFW� HOHPHQWV� LV� ��PLQXV� WKH
SRVVLELOLW\�WKDW�WKH�DQVZHU�WR�4�FRQWDLQV�OHVV�WKDQ�RU�PRUH�WKDQ�N
GLVWLQFW�HOHPHQWV�
7KH�SUREOHP� LV� WKDW� VRPH� WXSOHV�RI� WKH� UHVXOWLQJ� UHODWLRQ� UHV� FDQ
SURGXFH� UHSUHVHQWDWLYHV�ZKLFK� DUH� LQGHHG�GXSOLFDWHV�� �$FFRUGLQJ
WR� WKH� FDVH� FRQVLGHUHG� �³DW� OHDVW´�� ³DW� PRVW´� RU� ³H[DFWO\´��
GXSOLFDWHV� GR� QRW� KDYH� WKH� VDPH� LPSDFW�� ,W� WXUQV� RXW� WKDW�� LQ� DOO
FDVHV��WKH�SURFHGXUH�DWWDFKHG�WR�WKH�SRVW�SURFHVVLQJ�PXVW�UHO\�RQ�D
³WULDO� DQG� HUURU´� WHFKQLTXH�� /HW� XV� LOOXVWUDWH� WKLV� WKURXJK� WZR
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H[DPSOHV��RQH�IRU�WKH�FDVH��DW�OHDVW���WKHQ�DQRWKHU�IRU�WKH�FDVH�³DW
PRVW´��
([DPSOH� ��� /HW� XV� FRQVLGHU� WKH� IROORZLQJ� UHODWLRQ� UHV� ZKLFK� LV
DVVXPHG� WR� EH� WKH� UHVXOW� RI� WKH� FRPSDFW� SURFHVVLQJ� RI� � DQ
DOJHEUDLF�TXHU\�4�

UHV $ % 1
^��D � �������D 	 ` E ���

D � E �

7KH�GHJUHH�RI�SRVVLELOLW\�WKDW�WKH�DQVZHU�WR�4�FRQWDLQV�DW� OHDVW��
GLIIHUHQW� WXSOHV� FDQQRW� EH� REWDLQHG� E\� WDNLQJ� WKH� PRVW� SRVVLEOH
UHSUHVHQWDWLYH�RI� WKH� WZR� WXSOHV�RI� UHV�EHFDXVH� WKH\� DUH� LGHQWLFDO
��D � ��E!���7KHUHIRUH��WKH�UHSUHVHQWDWLYHV�ZKLFK�DUH�GXSOLFDWHV�PXVW
EH�LGHQWLILHG�LQ�RUGHU�WR�FRPSXWH�WKH�H[DFW�FDUGLQDOLW\�♦
([DPSOH� ��� /HW� XV� FRQVLGHU� WKH� IROORZLQJ� UHODWLRQ� UHV� ZKLFK� LV
DVVXPHG�WR�EH�WKH�UHVXOW�RI�WKH�FRPSDFW�SURFHVVLQJ�RI�DQ�DOJHEUDLF
TXHU\�4�

UHV $ % 1
D 	 ^����E � ���������E 	 ` �
D 	 E � �

^����D 	 ���������D � ` E � ���
^������D � ���������D 
 ` ^������E � ` �

DQG�WKH�FDUGLQDOLW\�EDVHG�TXHU\��³WR�ZKDW�H[WHQW�LV�LW�SRVVLEOH�WKDW
WKH�DQVZHU�WR�4�KDV�DW�PRVW���HOHPHQW"´�
2QH� PD\� WKLQN� WKDW� WKH� SRVVLELOLW\� GHJUHH� GHOLYHUHG� WR� WKH� XVHU
ZRXOG�EH���EHFDXVH�HDFK�ZRUOG�FRQWDLQV�DW� OHDVW�D� UHSUHVHQWDWLYH
RI� WKH� �� WXSOHV� ZLWK� 1�  � ��� %XW� LQ� IDFW�� WKHUH� PD\� EH� VRPH
GXSOLFDWHV�DPRQJ�WKHVH���WXSOHV��LW�LV�LQGHHG�WKH�FDVH�KHUH���WKDW�LV
ZK\�WKH�SURFHGXUH�DWWDFKHG�WR�WKH�SRVW�SURFHVVLQJ�PXVW�UHO\�RQ�D
³WULDO�DQG�HUURU´�WHFKQLTXH��7KH�TXHVWLRQ�LV�ZKHWKHU�WKH�SURFHGXUH
VKRXOG� RQO\� FRQFHUQ� WKH� WXSOHV� ZLWK� 1�  � �� RU� DOO� WKH� WXSOHV
VRPHZKDW� FHUWDLQ�� 7KH� ZRUOG� PDGH� RQO\� RI� WKH� PRVW� SRVVLEOH
UHSUHVHQWDWLYHV� RI� WKH� ILUVW� WZR� WXSOHV� KDV� WKH� SRVVLELOLW\� GHJUHH
PLQ���������±��������±���� �����ZKLOH� WKH�RQH�FRQWDLQLQJ�DOVR� WKH
EHVW� UHSUHVHQWDWLYH� RI� WKH� WKLUG� WXSOH� �ZKLFK� LV� �D 	 �� E � ��� KDV� WKH
SRVVLELOLW\� GHJUHH� PLQ���� ��� ��� �� ±� ���  � ��� 7KLV� ODWWHU� ZRUOG
FRQWDLQV�RQH�WXSOH�EHFDXVH�WKH�WKUHH�UHSUHVHQWDWLYHV�DUH�GXSOLFDWHV
DQG� LW� LV� PRUH� SRVVLEOH� WKDQ� WKH� ILUVW� RQH�� 7KH� �WULDO� DQG� HUURU�
SURFHGXUH� VKRXOG� WKHUHIRUH� FRQVLGHU� DOO� WKH� WXSOHV� VRPHZKDW
FHUWDLQ�♦
7KH� DOJRULWKP� SURSRVHG� KHUHDIWHU� DLPV� DW� FRPSXWLQJ� WKH
SRVVLELOLW\�GHJUHH�π�RI�WKH�PRVW�VDWLVIDFWRU\�ZRUOG�ZLWK�UHVSHFW�WR
WKH� GHVLUHG� FDUGLQDOLW\�� 6XFK� DQ� DOJRULWKP� FDOFXODWHV� D� VHULHV� RI
YHFWRUV� 9�  � �[ � �� [ 	 �� «�� [ � �� �Q� EHLQJ� WKH� QXPEHU� RI� WXSOHV� LQ
UHODWLRQ�UHV��ZKHUH�HDFK�FRPSRQHQW�[ � � WDNHV� LWV�YDOXHV� LQ�D� ILQLWH
VHW� ( � �� 8OWLPDWHO\�� LW� GHOLYHUV� WKH� EHVW� �LQ� WHUPV� RI� SRVVLELOLW\
GHJUHH��YHFWRU�9�
$� VROXWLRQ� LV� D� YHFWRU� 9�ZKLFK� UHSUHVHQWV� D� ZRUOG� �D� FDQGLGDWH
UHJXODU�UHODWLRQ�IRU�WKH�SRVVLELOLVWLF�UHODWLRQ�UHV�UHVXOWLQJ�IURP�WKH
FRPSDFW�HYDOXDWLRQ�RI�4���,WV�GLPHQVLRQ�LV�WKH�QXPEHU�Q�RI�WXSOHV
LQ�UHODWLRQ�UHV��7KH�FRPSRQHQWV�RI�YHFWRU�9�DUH�SUHFLVH�WXSOHV��WKH
L � � � SRVLWLRQ� RI� 9� LV� WKH� UHSUHVHQWDWLYH� WXSOH� SURGXFHG� E\� WKH� L � �
WXSOH�RI�UHODWLRQ�UHV���6RPH�SRVLWLRQV�RI�9�PD\�EH�HPSW\��ZKLFK

RFFXUV�ZKHQ� WKH� YDOXH�1� LQ� UHODWLRQ� UHV� LV� GLIIHUHQW� IURP� �� �WKH
FRUUHVSRQGLQJ�WXSOH�PD\�KDYH�QR�UHSUHVHQWDWLYH�LQ�D�JLYHQ�ZRUOG��
7KH�DOJRULWKP�LV�WKH�IROORZLQJ�

procedure OptimalSolution (i integer)
  begin
    compute E

i
;

    for x
j
 in E

i
 do

      if satisfactory(x
j
) then

        memorize(x
j
);

        if solutionFound then
          if better then keepSol endif
        else if stillPossible then
          optimalSolution(i + 1) endif
        endif;
        undo(x

j
);

      endif;
    endfor;
end;

7KH�GLIIHUHQW�FRPSRQHQWV�RI� WKLV�DOJRULWKP�ZKHQ�WKH�FRPSDUDWRU
LV�³DW�OHDVW´�DUH�
( � �� OLVW� RI� WKH� SUHFLVH� WXSOHV� FRUUHVSRQGLQJ� WR� WKH� SRVVLEOH
UHSUHVHQWDWLYHV�RI�WKH�L � � �WXSOH�IURP�UHV��LQFOXGLQJ���LI�1�<����
3 � ��OLVW�RI�WKH�UHVSHFWLYH�SRVVLELOLW\�GHJUHHV�π� �RI�HDFK�[� �LQ�( � ��LW�LV
HTXDO�WR���±�1�LI�[� �LV����
9�� UHSUHVHQWV�D�ZRUOG�RI� UHV� �D� UHJXODU� UHODWLRQ� WKDW� LV�D�SRVVLEOH
DQVZHU�WR�4��
3RV��YHFWRU�RI�WKH�VDPH�GLPHQVLRQ�DV�9��LW�FRQWDLQV�WKH�SRVVLELOLW\
GHJUHHV�RI�WKH�WXSOHV�RI�9��WKH�SRVVLELOLW\�GHJUHH�DVVRFLDWHG�WR�9
EHLQJ�WKH�PLQLPXP�RYHU�3RV��
&DUG��WKH�FDUGLQDOLW\�RI�YHFWRU�9��L�H���WKH�QXPEHU�RI�WXSOHV�LQ�9
GLIIHUHQW�IURP����
%HVW3��WKH�SRVVLELOLW\�GHJUHH�RI�WKH�PRVW�SRVVLEOH�ZRUOG�IRXQG�VR
IDU�
VDWLVIDFWRU\�[� ���π� �!�%HVWΠ��LW�LV�SRVVLEOH�IRU�WKH�FXUUHQW�VROXWLRQ
WR�EH�EHWWHU�WKDQ�WKH�EHVW�RQH�DOUHDG\�IRXQG�RQO\�LI�WKH�SRVVLELOLW\
RI� WKH� FXUUHQW� FDQGLGDWH� WXSOH� LV� RYHU� %HVWΠ�� VLQFH� WKH� RYHUDOO
SRVVLELOLW\� GHJUHH� RI� D� ZRUOG� LV� FRPSXWHG� E\� PHDQV� RI� D
PLQLPXP��FI��NHHS6RO�EHORZ��
PHPRUL]H�[� ��
9>L@�←�[� �
3RV>L@�←�π� �
E�←��[� �≠���DQG�WKH�VDPH�WXSOH�ZDV�QRW�DOUHDG\�LQ�9��
LI�E�WKHQ�&DUG�←�&DUG�����
VROXWLRQ)RXQG���L� �Q��DQG�&DUG�≥�N�
EHWWHU��PLQ� ��� ��� � ����� �3RV>T@�!�%HVWΠ�
NHHS6RO��%HVWΠ� �PLQ� ��� ��� � ����� �3RV>T@�
VWLOO3RVVLEOH��&DUG��� �Q�±� L��≥�N� �WKHUH� LV�QR�KRSH� WR�FRQVWUXFW�D
VROXWLRQ�FRQWDLQLQJ�DW�OHDVW�N�WXSOHV�IURP�WKH�FXUUHQW�YHFWRU� LI� LWV
FDUGLQDOLW\� LV�QRW� DW� OHDVW� HTXDO� WR�N�PLQXV� WKH� QXPEHU� RI� WXSOHV
WKDW�FDQ�VWLOO�EH�FKRVHQ��
XQGR�[� ���3RV>L@�←����LI�E�WKHQ�&DUG�←�&DUG�±���
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7KLV� DOJRULWKP� FDQ� EH� HDVLO\� DGDSWHG� WR� WKH� FDVH� ZKHUH� DQRWKHU
FRPSDUDWRU�WKDQ�³DW�OHDVW´�LV�XVHG��E\�PRGLI\LQJ�WKH�FRPSRQHQWV
VROXWLRQ)RXQG�DQG�VWLOO3RVVLEOH��7KH�QHFHVVLW\�GHJUHH�ZKLFK�LV�WKH
DQVZHU�WR�WKH�TXHU\�³WR�ZKDW�H[WHQW�LV�LW�FHUWDLQ�WKDW�WKH�DQVZHU�WR
4�KDV�DW�OHDVW��UHVS��DW�PRVW��H[DFWO\��«��N�GLVWLQFW�HOHPHQWV"´�LV��
PLQXV�WKH�SRVVLELOLW\�GHJUHH�REWDLQHG�E\�WKH�DOJRULWKP�DERYH�IRU
WKH�TXHU\��WR�ZKDW�H[WHQW� LV� LW�SRVVLEOH� WKDW� WKH� DQVZHU� WR�4�KDV
OHVV� WKDQ� �UHVS��PRUH� WKDQ�� OHVV� WKDQ�RU�PRUH� WKDQ��«��N�GLVWLQFW
HOHPHQWV"��
5HPDUNV�� ,Q� RUGHU� WR� UHGXFH� WKH� QXPEHU� RI� WKH� ZRUOGV� WR� EH
FRPSXWHG�� VRPH� LPSURYHPHQWV� FDQ� EH� EURXJKW� WR� WKH� DOJRULWKP
DERYH�
��� :KHQ�%HVWΠ�LV�HTXDO�WR���WKH�SURFHVVLQJ�FDQ�EH�VWRSSHG�
��� 7KH� VHWV� ( � � FDQ� EH� UDQNHG� LQ� GHFUHDVLQJ� RUGHU� RQ� WKH

SRVVLELOLW\�GHJUHHV�� ,Q� WKDW�FDVH��RQFH� �DQ�XQVDWLVIDFWRU\�[� � LV
IRXQG�� WKH� ORRS� FDQ� EH� VWRSSHG� �EHFDXVH� WKH� IROORZLQJ� [�
YDOXHV�ZRXOG�EH�XQVDWLVIDFWRU\�WRR��

��� ,Q�WKH�FDVHV�³DW�OHDVW�N �́DQG�³H[DFWO\�N �́�RQH�FDQ�WDNH�DGYDQWDJH
RI� WKH�QXPEHU�Q�RI� WXSOHV� LQ� UHODWLRQ� UHV��)RU� LQVWDQFH�� LI� WKH
XVHU�ZDQWV���UHVSRQVHV��N� ����ZKLOH�WKH�UHODWLRQ�UHV�FRQWDLQV
RQO\���WXSOHV��WKH�UHVXOW�LV�REYLRXVO\���

��� )RU�WKH�FDVH�³DW�PRVW�N �́�WKH�DOJRULWKP�FDQ�EH�HYDOXDWHG�RQO\�RQ�WKH
WXSOHV�VRPHZKDW�FHUWDLQ��/HW�W�EH�DQ�LPSUHFLVH�WXSOH�ZKRVH�QHFHVVLW\
GHJUHH�LV����LI�ZH�DGG�D�UHSUHVHQWDWLYH�RI�W�WR�WKH�FXUUHQW�VROXWLRQ��WKH
SRVVLELOLW\� GHJUHH� DVVRFLDWHG� WR� WKH� VROXWLRQ� FDQ� RQO\� GHFUHDVH� �RU
VWD\�WKH�VDPH���6LQFH�WKH�FULWHULRQ�LV�RI�WKH�IRUP�³DW�PRVW�N �́�LW�LV�WKXV
D� EHWWHU� LGHD� QRW� WR� WDNH� D� UHSUHVHQWDWLYH� RI� W�� WKLV� FKRLFH� EHLQJ
SRVVLEOH�DW�GHJUHH����)XUWKHUPRUH��LI�UHODWLRQ�UHV�FRQWDLQV�DW�PRVW�N
WXSOHV� ZLWK� 1� >� ��� WKH� SURFHGXUH� EDVHG� RQ� D� ³WULDO� DQG� HUURU´
WHFKQLTXH�LV�QRW�QHHGHG�DQ\�PRUH�DQG�WKH�UHVXOW�LV�Π� ����EHFDXVH�WKH
SRVVLELOLW\�GLVWULEXWLRQV�DUH�QRUPDOL]HG�IRU�WXSOHV�VRPHZKDW�FHUWDLQ��

������ ,QFOXVLRQ�EDVHG�\HV�QR�TXHULHV
,QFOXVLRQ�EDVHG� TXHULHV� DUH� VLPLODU� WR� FDUGLQDOLW\�EDVHG� TXHULHV
ZKHUH� WKH� FRQGLWLRQ�RQ� WKH� FDUGLQDOLW\� LV� ³HTXDOV�N´�� H[FHSW� WKDW
RQH�KDV� WR�GHDO�ZLWK�DQ�DGGLWLRQDO�FRQVWUDLQW�DERXW� WKH�YDOXHV�RI
WKH�N�WXSOHV��VLQFH�ZH�KDYH�D�VSHFLILHG�VHW�RI�WDUJHW�WXSOHV���$V�WR
WKH�SRVVLELOLW\�GHJUHH��WKH�FRPSXWDWLRQ�FDQ�EH�PDGH�WKDQNV�WR�DQ
DGDSWDWLRQ�RI� WKH�SUHFHGLQJ� DOJRULWKP��7KH� HOHPHQWV� WKDW� FKDQJH
DUH��PHPRUL]H�[� ���VROXWLRQ)RXQG��DQG�XQGR�[� ��
PHPRUL]H�[� ��
���9>L@� �[� ��3RV>L@� �π� �
���LI�[� � �W � �WKHQ
������%>�@� �WUXH������%�LV�D�YHFWRU�RI�%RROHDQV�RI�VL]H�N
������E� �[� �ZDV�QRW�DOUHDG\�SUHVHQW�LQ�9�
������LI�E�WKHQ�1EWXSOH� �1EWXSOH�����
���HQGLI�
��������
���LI�[� � �W � �WKHQ
������%>N@� �WUXH�
������E� �[� �ZDV�QRW�DOUHDG\�SUHVHQW�LQ�9�
������LI�E�WKHQ�1EWXSOH� �1EWXSOH�����
���HQGLI�
ZKHUH�1EWXSOH�GHQRWHV�WKH�QXPEHU�RI�WDUJHW�WXSOHV�DOUHDG\�IRXQG�
VROXWLRQ)RXQG�
�����L� �Q��DQG��%>�@�DQG�«�DQG�%>N@���

WKH� WXSOHV� RI� UHODWLRQ� UHV� KDYH� EHHQ� DOO� H[DPLQHG�� DQG� DOO� WKH
WDUJHW�WXSOHV�EHORQJ�WR�WKLV�VROXWLRQ��Q�GHQRWHV�WKH�FDUGLQDOLW\�RI

���UHODWLRQ�UHV��
XQGR�[� ��
���LI�LW�H[LVWV�T�VXFK�WKDW�[� � �W � WKHQ
������E� �[� �LV�QRW�SUHVHQW�VHYHUDO�WLPHV�LQ�9�
������LI�E�WKHQ�1EWXSOH� �1EWXSOH�±����%>T@� �IDOVH
������HQGLI�
���HQGLI�
$V� WR� WKH�QHFHVVLW\�GHJUHH�1�^W � ��«�� W � `�⊆� UHV�4����DFFRUGLQJ� WR
WKH�D[LRPV�RI�SRVVLELOLW\�WKHRU\��LW�LV�HTXDO�WR�
1�W � �∈�UHV�4��DQG�«�DQG�W � �∈�UHV�4��

 ���−�Π�W � �∉�UHV�4��RU�«�RU�W � �∉�UHV�4��
 ���−�PD[�Π�W � �∉�UHV�4����«��Π�W � �∉UHV�4���
 ���−�PD[��−�1�W � �∈�UHV�4����«����−�1�W � �∈�UHV�4����

7KXV�� WKH� FRPSXWDWLRQ� RI� WKH� QHFHVVLW\� GHJUHH� RI� WKH� LQFOXVLRQ�
EDVHG� TXHU\� DPRXQWV� WR� UXQQLQJ� N� WLPHV� WKH� DOJRULWKP� IRU
PHPEHUVKLS�EDVHG� TXHULHV� �FI�� VHFWLRQ� �������� ZLWK� D� GLIIHUHQW
WDUJHW� WXSOH� HDFK� WLPH�� /HW� XV� QRWLFH� WKDW�� FRQVLGHULQJ� WKDW� WKLV
FRPSXWDWLRQ�KDV�D�OLQHDU�FRPSOH[LW\�LQ�WHUPV�RI�WKH�FDUGLQDOLW\�RI
UHV��DQ� LQWHUHVWLQJ�VROXWLRQ�LV� WR�FRPSXWH�1� ILUVW��EHFDXVH� LI�1� LV
VWULFWO\� SRVLWLYH�� WKHQ� RQH� FDQ� FRQFOXGH� WKDW�Π� HTXDOV� ��ZLWKRXW
UXQQLQJ�WKH�WULDO�DQG�HUURU�SURFHGXUH�
������ $ERXW�WKH�FRPSOH[LW\�RI�W\SH���\HV�QR�TXHULHV
7KH�DOJRULWKPV�FRPSXWLQJ�Π�IRU�FDUGLQDOLW\�EDVHG�DQG�LQFOXVLRQ�
EDVHG� TXHULHV� LQFOXGH� WZR� SUXQLQJ� FRQGLWLRQV�� RQH� EDVHG� RQ� WKH
RSWLPDOLW\� RI� WKH� VROXWLRQ� �VDWLVIDFWRU\�[� ���� WKH� RWKHU� RQ� WKH
FDUGLQDOLW\�RI�WKH�FXUUHQW�ZRUOG�XQGHU�FRQVWUXFWLRQ��VWLOO3RVVLEOH��
&OHDUO\�� WKH� ILUVW� FRQGLWLRQ� ZLOO� EH� YHU\� HIIHFWLYH� �L�H�� ZLOO� FXW
PDQ\� EUDQFKHV�� LI� D� KLJKO\� SRVVLEOH� VDWLVIDFWRU\� ZRUOG� LV
HQFRXQWHUHG�HDUO\��,I�LW�LV�QRW�WKH�FDVH��WKH�H[WUHPH�VLWXDWLRQ�EHLQJ
WKDW� WKH� ILQDO� SRVVLELOLW\� GHJUHH� HTXDOV� ]HUR��� RQO\� WKH� VHFRQG
SUXQLQJ� FRQGLWLRQ� FDQ� KDYH� DQ� HIIHFW� DQG� UHGXFH� WKH� QXPEHU� RI
EUDQFKHV� WR� H[SORUH� �WKXV� DYRLGLQJ� WR� FRQVWUXFW� DOO� WKH� SRVVLEOH
ZRUOGV�RI�UHODWLRQ�UHV���/HW�XV�QRWLFH��KRZHYHU��WKDW�WKH�QXPEHU�RI
ZRUOGV�DWWDFKHG�WR�UHV�LV�PXFK�VPDOOHU�WKDQ�WKH�QXPEHU�RI�ZRUOGV
DWWDFKHG� WR� WKH� LQLWLDO�SRVVLELOLVWLF�GDWDEDVH��GXH� WR� WKH� UHGXFWLRQ
REWDLQHG� E\� PHDQV� RI� WKH� FRPSDFW� HYDOXDWLRQ� RI� TXHU\� 4�
$Q\ZD\��LQ�FHUWDLQ�FDVHV��ZKHQ�WKH�FDUGLQDOLW\�RI�UHV�LV�WRR�ODUJH��
GXH�WR�WKH�FRPELQDWRULDO�QDWXUH�RI�WKH�DOJRULWKPV��HYHQ�ZKHQ�ERWK
SUXQLQJ�FRQGLWLRQV�FDQ�EH�XVHG�WRJHWKHU��WKH�FRPSOH[LW\�ZLOO�VWLOO
EH� WRR� KLJK� WR� UHDFK� DFFHSWDEOH� SHUIRUPDQFHV�� 7KHUHIRUH�� LW� LV
LPSRUWDQW� WR� HQYLVDJH� VRPH� ZD\V� WR� RYHUFRPH� WKLV� SUREOHP�
&RQFHUQLQJ� WKH� FRPSXWDWLRQ� RI� Π�� DQ� LGHD� FRXOG� FRQVLVW� LQ
FDOFXODWLQJ�RQO\� DQ� DSSUR[LPDWH� DQVZHU�� L�H��� DQ� XQGHUHVWLPDWLRQ
RI�WKH�DFWXDO�YDOXH�RI�Π��7KLV�FRXOG�EH�GRQH�E\�PHDQV�RI�D�JUHHG\
DOJRULWKP� VFDQQLQJ� UHODWLRQ� UHV� VHTXHQWLDOO\�� ,Q� WKH� FDVH� RI
LQFOXVLRQ�EDVHG�TXHULHV��IRU�LQVWDQFH��WKLV�DOJRULWKP�FRXOG�FKRRVH�
IRU�HDFK�LPSUHFLVH�WXSOH�RI�UHV��WKH�PRVW�SRVVLEOH�FDQGLGDWH�ZKLFK
LV�HTXDO�WR�D�WDUJHW�WXSOH�QRW�IRXQG�\HW��WKH�VFDQ�FRXOG�EH�PDGH�LQ
ERWK�GLUHFWLRQV��ERWWRP�XS�DQG�WRS�GRZQ��LQ�RUGHU�WR�LPSURYH�WKH
TXDOLW\�RI�WKH�HVWLPDWLRQ���$V�D�PDWWHU�RI�IDFW��HYHQ�ZKHQ�UHODWLRQ
UHV�KDV�D�³UHDVRQDEOH´�VL]H��VXFK�D�JUHHG\�DOJRULWKP�FRXOG�DOVR�EH
XVHG� DV� D� SUHSURFHVVLQJ� VWHS� LQ� RUGHU� WR� REWDLQ� ±� LQ� D� QRQ�
H[SHQVLYH� ZD\� ±� D�Π�YDOXH� WKDW� FRXOG� EH� XVHG� WR� LQLWLDOL]H� WKH

9



YDULDEOH�%HVWΠ�EHIRUH�UXQQLQJ�WKH�WULDO�DQG�HUURU�SURFHGXUH��VR�DV
WR� PDNH� WKH� ILUVW� SUXQLQJ� FRQGLWLRQ� �L�H��� WKDW� EDVHG� RQ� WKH
RSWLPDOLW\�RI�WKH�VROXWLRQ��PRUH�HIIHFWLYH�

��� 352%$%,/,67,&�'$7$%$6(6�$1'
*(1(5$/,=('�<(6�12�48(5,(6

���� 3URFHVVLQJ�WKH�$OJHEUDLF�4XHU\
&RQFHUQLQJ�WKH�GDWDEDVH�PRGHO��LW�KDV�EHHQ�VKRZQ�LQ�>�@�WKDW�WKH
PRGHO� GHVFULEHG� LQ� VHFWLRQ� ���� FRQVWLWXWHV� DOVR� D� VWURQJ
UHSUHVHQWDWLRQ� V\VWHP� LQ� D�SUREDELOLVWLF� IUDPHZRUN�� IRU� WKH� VDPH
VHW� RI� DOJHEUDLF� RSHUDWRUV� �VHOHFWLRQ�� SURMHFWLRQ�� IN�MRLQ� DQG
XQLRQ���7KH�RQO\�GLIIHUHQFH�ZLWK� WKH�SRVVLELOLVWLF�FDVH� LV� WKDW�ZH
GR� QRW� QHHG� DQ� H[WUD� DWWULEXWH� 1� LQ� RUGHU� WR� KDYH� DYDLODEOH� WKH
SUREDELOLW\�IRU�DQ�LPSUHFLVH�WXSOH�WR�KDYH�D�UHSUHVHQWDWLYH� LQ�DQ\
ZRUOG�� ,QGHHG�� LQ� WKH� SUREDELOLVWLF� FDVH�� ZH� NQRZ� WKDW� VRPH
FDQGLGDWHV�KDYH�EHHQ�GLVFDUGHG�IURP�D�GLVWULEXWLRQ�ZKHQ�WKH�VXP
RI�WKH�GHJUHHV�LQ�WKLV�GLVWULEXWLRQ�LV�OHVV�WKDQ����,Q�WKH�FDVH�ZKHUH
D�VLQJOH�GLVWULEXWLRQ�LV�FRQVLGHUHG��WKH�SUREDELOLW\�DWWDFKHG�WR�WKH
VLWXDWLRQ�ZKHUH�WKH�WXSOH�KDV�QR�UHSUHVHQWDWLYH�LV�HTXDO�WR���PLQXV
WKH�VXP�RI�WKH�GHJUHHV�DWWDFKHG�WR�WKH�UHPDLQLQJ�HOHPHQWV��6LQFH
WKH�NQRZOHGJH�QHFHVVDU\�WR�WKLV�FDOFXOXV�LV�DYDLODEOH�LQ�WKH�WXSOH�
WKHUH�LV�QR�QHHG�WR�H[SOLFLWO\�VWRUH�WKH�GHJUHH�LWVHOI�LQ�WKH�UHODWLRQ�
$V� WR� WKH� SURFHVVLQJ� RI� WKH� DOJHEUDLF� TXHU\� XQGHUO\LQJ� D
JHQHUDOL]HG� \HV�QR� TXHU\�� LW� GLIIHUV� RQO\� VOLJKWO\� IURP� WKH
SRVVLELOLVWLF�FDVH��%DVLFDOO\��ZKDW�FKDQJHV�LV�WKDW�LQ�WKH�GHILQLWLRQV
RI�WKH�RSHUDWRUV��WKH�PLQLPXP�LV�UHSODFHG�E\�WKH�SURGXFW��DQG�WKH
PD[LPXP�E\�WKH�VXP�
���� $ERXW�WKH�3RVW�3URFHVVLQJ
&RQFHUQLQJ�WKH�ILUVW�JURXS�RI�JHQHUDOL]HG�\HV�QR�TXHULHV��YDFXLW\
DQG� PHPEHUVKLS�EDVHG��� WKH� SRVW�SURFHVVLQJ� VWHS� LV� D� VLPSOH
DGDSWDWLRQ� RI� WKDW� GHVFULEHG� LQ� VHFWLRQ� ����� ,Q� WKH� YDFXLW\�EDVHG
FDVH�� IRU� LQVWDQFH�� WKH�SUREDELOLW\�SURE� WKDW� WKH� UHVXOWLQJ� UHODWLRQ
UHV� LV�QRQ�HPSW\�HTXDOV���PLQXV� WKH�SUREDELOLW\� WKDW� LW� LV�HPSW\�
L�H���WKDW�HYHU\�RI�LWV�WXSOHV�KDV�QR�UHSUHVHQWDWLYH�

empty ← 1;
while not end(res) do
read next tuple u of res;
nonrep-u ← 1;
for j from 1 to n do

rep ← 0;
for q from 1 to u.k

j
 do

rep ← rep + u.A
i
[q].pr

enddo;
nonrep-u ← nonrep-u * (1 – rep)

enddo;
empty ← empty * nonrep-u;

enddo;
prob ← 1 – empty;

&RQFHUQLQJ� WKH� VHFRQG� JURXS� RI� TXHULHV� �FDUGLQDOLW\� DQG
LQFOXVLRQ�EDVHG��� WKH� PDLQ� TXHVWLRQ� FRQFHUQV� WKH� SUXQLQJ
FRQGLWLRQV��GR�WKH\�VWLOO�KROG�RU�QRW"�7KH�FRQGLWLRQ�WKDW�FRQFHUQV
RSWLPDOLW\�VWLOO�KROGV�LQ�WKH�SUREDELOLVWLF�FDVH��WKH�SUREDELOLWLHV�DUH
DJJUHJDWHG�E\�PHDQV�RI�D�SURGXFW�LQVWHDG�RI�D�PLQLPXP�DQG�LW�LV
VWLOO� SRVVLEOH� WR� GLVFDUG� D� FXUUHQW� VROXWLRQ� ZKHQ� LWV� FXUUHQW
SUREDELOLW\� GHJUHH� LV� DOUHDG\� EHORZ� WKH� GHJUHH� RI� WKH� RSWLPDO
VROXWLRQ�IRXQG�VR�IDU��7KH�VHFRQG�SUXQLQJ�FRQGLWLRQ�FRQFHUQV�WKH
FDUGLQDOLW\�RI�WKH�FXUUHQW�VROXWLRQ��$JDLQ��WKLV�FRQGLWLRQ�VWLOO�KROGV

VLQFH� LW� LV� FRPSOHWHO\� LQGHSHQGHQW�RI� WKH�GHJUHHV� �DQG� WKHUHIRUH�
RI�WKHLU�VHPDQWLFV���7KXV��WKH�RQO\�FKDQJH�FRQFHUQV�WKH�ZD\�WKH�GHJUHHV
WKHPVHOYHV�DUH�FRPSXWHG�

��� &21&/86,21
,Q� WKLV� SDSHU�� ZH� KDYH� FRQVLGHUHG� D� VSHFLILF� W\SH� RI� TXHULHV�
QDPHO\� JHQHUDOL]HG� \HV�QR� TXHULHV�� DGGUHVVHG� WR� LPSUHFLVH
GDWDEDVHV�� )LUVW�� ZH� KDYH� UHFDOOHG� WKH�PDLQ� FKDUDFWHULVWLFV� RI� DQ
LPSUHFLVH�GDWDEDVH�PRGHO�HQDEOLQJ�WR�SURFHVV�DOJHEUDLF�TXHULHV�LQ
D� ³FRPSDFW´� ZD\�� XQGHU� D� FRQVWUDLQW� FRQFHUQLQJ� WKH� DOJHEUDLF
RSHUDWRUV� WKDW� DUH� DXWKRUL]HG� �VHOHFWLRQ�� SURMHFWLRQ�� IN�MRLQ� DQG
XQLRQ��� &RQFHUQLQJ� \HV�QR� TXHULHV�� WKH� PDLQ� UHVXOWV� DUH� WKDW�
L��GHSHQGLQJ� RQ� WKH� W\SH� RI� FRQGLWLRQ� LQYROYHG�� WKH� SURFHVVLQJ
PD\�EH�EDVHG�HLWKHU�RQ�D�VHTXHQWLDO�VFDQ�RI�WKH�UHVXOWLQJ�UHODWLRQ
RU� RQ� D� WULDO� DQG� HUURU� DOJRULWKP�� ,Q� WKH� ODWWHU� FDVH�� ZH� KDYH
SRLQWHG� RXW� VRPH� SUXQLQJ� FRQGLWLRQV� WKDW� FDQ� OLPLW� WKH
FRPELQDWRULDO� JURZWK�� EXW� REYLRXVO\�� LW�PD\� QRW� EH� VXIILFLHQW� WR
UHDFK� DFFHSWDEOH� SHUIRUPDQFHV� LQ� FHUWDLQ� FDVHV�� 7KHQ� D� VROXWLRQ
FRXOG� EH� WR� XVH� D� JUHHG\� DOJRULWKP� LQ� RUGHU� WR� REWDLQ� DQ
DSSUR[LPDWLRQ�RI�WKH�GHJUHHV��LL��WKDW�WKH�PRGHO�RI�XQFHUWDLQW\�KDV
D� YHU\� OLPLWHG� LPSDFW� RQ� WKH� SURFHVVLQJ� RI� JHQHUDOL]HG� \HV�QR
TXHULHV��$V� WR� IXWXUH�ZRUNV�� LW� LV� REYLRXVO\� GHVLUDEOH� WR� SHUIRUP
VRPH� H[SHULPHQWDWLRQV� LQ� RUGHU� WR� DVVHVV� LQ� D�PRUH� SUHFLVH�ZD\
WKH�HIILFLHQF\�RI�WKH�DSSURDFK�SURSRVHG�KHUH�

��� 5()(5(1&(6
>�@� $ELWHERXO��6���.DQHOODNLV��3���DQG�*UDKQH��*��2Q�WKH

UHSUHVHQWDWLRQ�DQG�TXHU\LQJ�RI�VHWV�RI�SRVVLEOH�ZRUOGV�
7KHRUHWLFDO�&RPSXWHU�6FLHQFH��YRO��������������������

>�@� %RVF��3���DQG�3LYHUW��2��7RZDUGV�DQ�$OJHEUDLF�4XHU\
/DQJXDJH�IRU�3RVVLELOLVWLF�'DWDEDVHV��3URF��RI�WKH���WK
&RQIHUHQFH�RQ�)X]]\�6\VWHPV��)8==�,(((¶��������������±
����

>�@� %RVF��3���DQG�3LYHUW��2��2Q�D�VWURQJ�UHSUHVHQWDWLRQ�V\VWHP�IRU
LPSUHFLVH�UHODWLRQDO�GDWDEDVHV����WK�,QWHUQDWLRQDO
&RQIHUHQFH�RQ�,QIRUPDWLRQ�3URFHVVLQJ�DQG�0DQDJHPHQW�RI
8QFHUWDLQW\�LQ�.QRZOHGJH�%DVHG�6\VWHPV��,308
����
3HUXJLD��,WDO\��-XO\������SS������������������

>�@� %RVF��3���DQG�3LYHUW��2��$ERXW�3URMHFWLRQ�VHOHFWLRQ�MRLQ
4XHULHV�$GGUHVVHG�WR�3RVVLELOLVWLF�5HODWLRQDO�'DWDEDVHV�
,(((�7UDQVDFWLRQV�RQ�)X]]\�6\VWHPV���������������±����

>�@� %RVF��3���DQG�3LYHUW��2��$ERXW�<HV�QR�4XHULHV�DJDLQVW
3RVVLELOLVWLF�'DWDEDVHV��,QWHUQDWLRQDO�-RXUQDO�RI�,QWHOOLJHQW
6\VWHPV��WR�DSSHDU�

>�@� %RVF��3���DQG�3UDGH��+��$Q�LQWURGXFWLRQ�WR�WKH�IX]]\�VHW�DQG
SRVVLELOLW\�WKHRU\�EDVHG�WUHDWPHQW�RI�IOH[LEOH�TXHULHV�DQG
XQFHUWDLQ�RU�LPSUHFLVH�GDWDEDVHV��LQ��8QFHUWDLQW\
0DQDJHPHQW�LQ�,QIRUPDWLRQ�6\VWHPV��$��0RWUR�DQG�3��6PHWV
�(GV���.OXZHU�$FDGHPLF�3XEOLVKHUV��SS����������������

>�@� ,PLHOLQVNL��7���DQG�/LSVNL��:��,QFRPSOHWH�LQIRUPDWLRQ�LQ
UHODWLRQDO�GDWDEDVHV��-RXUQDO�RI�WKH�$&0��YRO����������������
����

>�@� 3UDGH��+��/LSVNL
V�DSSURDFK�WR�LQFRPSOHWH�LQIRUPDWLRQ�GDWD
EDVHV�UHVWDWHG�DQG�JHQHUDOL]HG�LQ�WKH�VHWWLQJ�RI�=DGHK
V
SRVVLELOLW\�WKHRU\��,QIRUPDWLRQ�6\VWHPV��YRO�����������������

>�@� =DGHK��/�$��)X]]\�VHWV�DV�D�EDVLV�IRU�D�WKHRU\�RI�SRVVLELOLW\�
)X]]\�6HWV�DQG�6\VWHPV��YRO����������������

10



Structured Queries for Semistructured Probabilistic Data

Alex Dekhtyar
�

Department of Computer
Science

University of Kentucky
Lexington, KY, USA

dekhtyar@cs.uky.edu

Krol Kevin Mathias �

Department of Computer
Science

University of Kentucky
Lexington, KY, USA

kevin9@uky.edu

Praveen Gutti
Department of Computer

Science
University of Kentucky

Lexington, KY, USA

praveengutti@uky.edu

ABSTRACT
We present SPOQL, a structured query language for Semistruc-
tured Probabilistic Object (SPO) model [4]. The original query
language—SP-Algebra [4], has traditional limitations like terse func-
tional notation and unfamiliarity to application programmers. SPOQL
alleviates these problems by providing familiar SQL-like declara-
tive syntax. We show that parsing SPOQL queries is a more in-
volving task than parsing SQL queries. We also present an eager
evaluation algorithm for SPOQL queries.

Categories and Subject Descriptors
H.2.3 [Information Systems]: DatabasesLanguages

General Terms
Languages, Algorithms

Keywords
probabilistic databases, query langauges

1. INTRODUCTION
With the emergence of new applications of database technolo-

gies to dynamic environments in the past couple of years, manage-
ment of uncertain information has again attracted the attention of
database researchers. Replacing early, relational models for stor-
age and processing of probabilistic data [12, 2, 6, 1] new, object-
oriented [11, 8] and semistructured models [10, 14, 4, 20] have
been proposed.

The need for special approach(es) to management of probabilis-
tic data comes from two key observations. First, probabilities stored
in the databases must be manipulated (combined, marginalized,
conditionalized) in accordance with the laws of probability the-
ory. Second, probabilities are often associated with objects that
have more complex structure than relational tables. The latter ob-
servation suggests the use of object-oriented or semistructured ap-
proaches, while the former suggests that standard notions of queries

�
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have to be revised in order to admit correct manipulation of proba-
bilities.

In [4, 20] Dekhtyar et al. have introduced a framework for man-
agement of probabilistic data called Semistructured Probabilistic
Objects (SPOs). SPOs are designed to store, as objects, probabil-
ity distributions of discrete random variables with finite domains
together with non-stochastic (context, situation-specific) informa-
tion. The design of SPOs allows to store in the same Semistruc-
tured Probabilistic relation (SP-relation) an arbitrary collection of
such probability distributions: different SPOs in the relation can
have completely different structure and content.

To query SP-relations, Dekhtyar et al. introduced Semistructured
Probabilistic Algebra (SP-Algebra), a query algebra defining the
semantics of traditional relational algebra operations, such as selec-
tion, projection and join. In addition, SP-Algebra contains an op-
eration of conditionalization (conditioning) used to construct con-
ditional probability distributions. In [20], Zhao et al. report on the
implementation of Semistructured Probabilistic DBMS, SPDBMS.
Built on top of an RDBMS, it provides a level of abstraction, hiding
from the users the details of storage of SPOs in relational databases.
Client applications use SP-Algebra queries to access the informa-
tion stored in SPDBMS.

In its current stage, SPDBMS is used by a number of client appli-
cations [3, 21] developed for a research project devoted to planning
in the presence of uncertain information[13].
This paper describes the newest component of SPDBMS, Semistruc-
tured Probabilistic Object Query Language (SPOQL) – an SQL-
like declarative language for queries over SPO data. SPOQL is de-
signed to replace SP-Algebra as the interface of choice for commu-
nication with the SPDBMS server. While SP-Algebra allows us to
study various properties of SPOs in a rigorous manner, it is incon-
venient to use as the end-user (or client) query language. SPOQL
provides convenient declarative syntax for queries and represents
complex queries over SPO data in a straightforward manner.

In Section 2 we give a brief overview of the SPO model and SP-
Algebra. Section 3 then introduces SPOQL. We discuss the syntax
of the language, and describe how SPOQL queries are translated
into SP-Algebra expressions for further processing within SPDBMS.

2. SEMISTRUCTURED PROBABILISTIC OB-
JECTS

2.1 Motivating Example
Semistructured Probabilistic Object model provides straightfor-

ward and convenient means of storing probability distributions of
discrete random variables as single objects. Early work on uncer-
tainty in databases added probabilities to relational tuples, but also
attempted to treat groups of tuples within the same relation as a
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probability distribution [2, 6]. A more sophisticated approach [1]
abandoned first normal form in probabilistic relations, and stored
an entire probability distribution as part of a single tuple. Still, the
probabilistic database model of [1] was relational, which, in partic-
ular, meant that only similarly structured probability distributions
could be stored in the same relation.

The original motivation for the SPO model came from the work
of one of the authors on building Bayesian models for complex
domains[5, 13]. Bayesian networks [15] are graphical represen-
tations of conditional dependencies (and independencies) between
various (discrete) random variables (with finite domains). Tradi-
tional Bayesian network applications yield relatively small (as far
as databases are concerned) models, with relatively few probability
tables to be stored and manipulated. However, some of the emerg-
ing applications present a case for proper data management strate-
gies, as illustrated on the following example, borrowed from [13].

At present, our research group is working on modelling advising
in the Welfare-to-Work (WtW) system using Bayesian networks [3,
13]. In a nutshell, WtW is a government program that provides cer-
tain benefits (food stamps, health insurance, daycare, stipend) to its
clients1 in exchange for their participation in services and activi-
ties designed to improve the clients’ employability. A WtW case
manager is assigned to work with each client, provide advice and
monitor progress. Case managers base their advice to clients on the
estimates of the clients’ likely success in specific activities. Such
estimates are based on client characteristics (such as literacy level,
work preparedness, and time-management skills); the case man-
agers knowledge about available services (such as mental-health
care and job-training classes) and regulations; the client’s current
record with the program; and the case manager’s experience with
this and other clients.

We model client performance in specific activities as random
variables conditionally dependent on various client characteristics
listed above. In addition, going through an activity and succeeding
(or failing) in it also has a stochastic effect on client characteristics
themselves.

In addition to random variables influencing the probability of
success in a specific activity, there are numerous non-stochastic
factors as well. For example, such characteristics of the client as
age,and number of children are not stochastic, but may clearly af-
fect the client’s ability to succeed in volunteer work, GED study or
any of other possible activities. In addition, activities themselves
may possess non-stochastic characteristics, such as location and/or
name of the provider/facility, time of day the activity is offered,
etc. As a result of the presence of this non-stochastic information,
often referred to as “meta-data” or “context”, multiple CPTs get
associated with each random variable.

The Bayesian network inference/planning software, on the other
hand, does not need to work with all CPTs at the same time. Based
on the currently available information about an individual client,
that software would need to select appropriate CPTs from the avail-
able collection. The latter calls for careful approach to storage
and manipulation of CPTs and other probability distributions. SPO
model and SP-Algebra, described below, answer that challenge.

2.2 SPO model and SP-Algebra
In this section we define SPOs — Semistructured Probabilistic

Objects — a flexible data structure to represent probability distri-
butions, and SP-Algebra, an algebra of atomic query operations on
SPOs. An SPO

�
[20] is a tuple

���������
	��
�����������
, where

1In practice, welfare-to-work clients are unemployed single par-
ents.

�
: S1

work-type: nursing
city: Lexington
VOP P
success 0.75
failure 0.25
A = high G = high
S = high WR = low
C = high

(a)

�
: S2

city: Lexington
WR P
high 0.8
low 0.2
WH = good

(b)

�
: S3

S P
high 0.7
low 0.3
WH = good

(c)

�
: ��������� ���! 
�
"�#$� %!&(' �*),+

work-type: nursing
city: Lexington
VOP P
success 0.75
A = high G = high
S = high WR = low
C = high

(d)

�
: -/. �*)

city: Lexington
VOP P
success 0.75
failure 0.25
A = high

(e)

�
:
�102�3�54768�:9

city: Lexington
WR S P
high high 0.56
low high 0.14
high low 0.24
low low 0.06
WH = good

(f)

�
: ;=<?>/@=ACBEDFAG' �10H+

city: Lexington
S P
high 0.7
low 0.3
WH = good
WR = high

(g)

Figure 1: Probability distributions for the random variables
in the activity “Volunteer Placement (VOP)”, where projection
condition I is J
K/L
M J$NOLQP2RSJ
KUTGM V .

W � is a relational tuple over some semistructured schema overX
, the universe of context attributes.

�
refers to the context

of
�

.

W 	Y�[ZC\^],� M$MFM �!\�_a`cbed
is a set of random variables that

participate in
�

, where
d

is the universe of random variables
and

	ef�3g
.

W �ih THj�kl' 	2+nmGoqp r^�C)$s
is the probability table of

�
. Note

that
�

need not be complete.

W �t�tZ 'Ou ]C�Qvw]
+
� MFMCMF'Ou�x �!v x +
` , where
Z u ]C� MFM$M � u�x `y�{z|bd

, and
v B b THjak}'Ou B + , )�~ N ~ K , such that

	��Sz���g
.
�

refers to the conditional of
�

.

W � , called the path expression, is an expression of SP-Algebra.

Informally, SPOs store probability distributions as follows. The
actual distribution is described by the participating random vari-
ables and probability table parts of the object. Its path tells us
how this object has been constructed. Atomic (single unique iden-
tifier) paths indicate that the object has been directly inserted into
the DBMS whereas complex paths indicate which database objects
participated in its creation and what SP-Algebra operations have
been applied to obtain it. Context part of the SPO stores the non-
stochastic information related to the distribution, while the condi-
tional part, stores conditioning information.

A collection
Z��:]C� MFMFM ���U�G` of SPOs is called an SP-relation.
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EXAMPLE 1. We use SPOs to represent the probability distri-
butions associated with the model described in Section 2.1. Figure
1 contains some of the distributions stored for the random vari-
ables associated with activity “Volunteer Placement (VOP)”. The
SPO in Figure 1(a), for example, represents the probability distri-
bution of client’s performance in volunteer placement related to
nursing for a client who resides in the city of Lexington, is highly
skilled and goal-oriented, has high confidence and aptitude, but
low work-readiness. In this SPO, VOP is the participating random
variable representing client performance in the volunteer place-
ment activity. Its domain has two values, success and failure and
their respective probabilities are given in the probability table part
of the SPO. The context of the SPO is formed by two name-value
pairs, specifying the type of work (nursing) and the city of client’s
residence (Lexington). Finally, the conditional part of the SPO con-
tains information about client’s aptitude (A), skills level (S), goals
(G), confidence (C) and work-readiness (WR). The path expression
identifying this SPO, S1 indicates that it had been inserted into the
database as-is.

Similarly, we can take a look at a slightly more complex SPO
in Figure 1(f). This SPO represents the joint probability distribu-
tion of two random variables, Work Readiness (WR) and Skills (S),
for a client who resides in Lexington and has good work history.
WR and S are the two participating random variables. Each has
a binary domain (high, low), and the probability table for all four
possible combinations is included in the SPO. The context for the
SPO is city:Lexington, and the conditional contains a single con-
ditioning statement, specifying the the client’s work history is good
(WH=good). The path of this SPO is S2

6
S3, an SP-Algebra ex-

pression (see below) indicating that this SPO had been constructed
out of SPOs with path IDs S2 and S3 using the SP-algebra opera-
tion of cartesian product, described later in this section.

In the remainder of this section we describe the SP-Algebra,
query algebra for the SPO model. It includes the definitions of stan-
dard relational operations of selection, projection, cartesian product
and join. It also includes the conditionalization operation (see also
[6]), specific to the probabilistic databases. In this paper, we have
extended the original SP-Algebra to include the mix operation. We
have also defined join conditions that can be applied to the SP-
Algebra operations of cartesian product, join, and mix. The formal
definitions of the mix operation and join conditions are provided in
this paper. For the formal definitions of the remaining SP-Algebra
operations, please refer to [20].

In the definitions for Atomic projection list, Atomic selection
conditions, and Atomic conditionalization expression; var, cnt,
cnd, and tbl are the notations used to represent random variable,
context, conditional and probability table parts of an SPO ob-
ject. Each of the above notational elements can be referenced by
[ ���^k�� .]var, [ ��� k�� .]cnt, [ ��� k�� .]cnd, and [ ��� k�� .]tbl respec-
tively. The optional parameter ��� k�� represents the name of the
SP-relation.

Atomic projection list is defined as:� hEh �
varlist � cntlist � cndlist

varlist
hEh �

“var” M � K�� k�� � ' � “var” M � K�� k�� �!+
	 , where K��^k���� d
cntlist

hEh �
“cnt” M � K�� k�� � ' � “cnt” M � K�� k�� �!+ 	 , where K�� k���� X

cndlist
hEh �

“cnd” M � K�� k�� � ' � “cnd” M � K�� k�� �!+ 	 , where K��^k���� d

Atomic selection conditions are described in Table 1.
Atomic conditionalization expression is defined as:
“var”.

� K�� k�� � = Value, where K��^k���� d
“var”.

� K�� k�� � � Value(, Value
+ 	

, where K�� k���� d

Type Expression Explanation

Context “cnt”.
� K
� k�� �$������� constant K�� k���� X

condition “cnt”.
� K
� k�� � � � ���

: =,
~y���y�f� ���y���

Variable “var”.
� K
� k�� � � 	 K
� k�� - variable

condition name, where
K�� k���� d

Conditional “cnd”.
� K
� k�� � = Value, K
� k�� - variable

condition “cnd”.
� K�� k�� � � � name, where

“cnd”.
� K�� k�� � � Value(, Value

+
	 K�� k���� d
Table “tbl”.

� K�� k�� � = Value
���

: =,
~y���y�

condition “tbl”.“prob” Op RValue
f� ���y���

RValue � [0,1]

Table 1: Atomic selection conditions

Selection condition is inductively defined as:
Base: Atomic selection condition is a selection condition.
Induction: Let J ] and J�� be selection conditions. Then, the fol-
lowing are selection conditions: J ]�� J�� , J ] RwJ�� , �1J ] .
Join condition is defined as:� ��� k�� � .“cnt”.

� K�� k�� �5�����/��� ��� k�� � .“cnt”.
� K�� k�� � where,

��� k�� - name of sp-relation, K��^k���� X , and���
: =,

~y���y� f� ���y���
.

SP-Algebra expressions are inductively defined as:
Base: Let

�
be a name of an SP-relation.

�
�
is an SP-Algebra ex-

pression.
Induction: Let � ] and � � be SP-Algebra expressions. Let J be a
selection condition (SC), I be a projection list (PL), T be a condi-
tionalization expression (CE) and � be a join condition (JC). The
SP-Algebra expressions are described in Table 2.

Type SP-Algebra expression

selection � ��'�� ]�+
projection - . '�� ]�+
conditionalization ;�! '�� ]�+
cartesian product(CP) � ] 6 � �
CP with join condition � ] 6 D �"�
join � ]�# �"� , � ]%$ �"�
join with join condition � ]�# D �"� , � ]�$ D �"�
mix � ]�& �"�
mix with join condition � ]�& D �"�

Table 2: SP-Algebra expressions

Selection( � �,' �5+ ) operation finds SPOs in an SP-relation that sat-
isfy a particular selection condition. The selection operations on
context, participating variables or conditionals do not alter the con-
tent of the selected objects (SPOs). When the selection operations
are either on probabilities or the probability table, the SPO returned
retains the same context, participating variables and conditional in-
formation, but will only include probability table rows that match
the selection condition. Figure 1(d) shows an SPO that answers the
query �('*),+ � -�. /0)�"�#$� %!&(' ��+ , where

�
=
Za�*)�`

. In English this query is
expressed as follows: “Find all probability distributions in which
there is an outcome with probability equal to or greater than 0.75
and select those outcomes.”
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Projection( -U.^' �5+ ) is the operation of simplifying SPOs. The
projection operations on context and conditionals are similar to the
traditional relational algebra projection: either a context attribute
or a conditional is removed from an SPO object, which does not
change otherwise. The projection operation on the set of partici-
pating random variables corresponds to removing the other random
variables from consideration in a joint probability distribution. The
result of this operation is a new marginal probability distribution
that is stored in the probability table component of the resulting
SPO. Figure 1(e) provides an SPO that gives result of projecting
out all conditionals except those related to client’s Aptitude, and
the work-type context attribute from the SPO

��)
(Figure 1(a)), ex-

pressed as -���� '�� ��� ' � 'O- ����� � ��' �*),+!+ . Note slight deviation from tradi-
tional relational algebra notation: the inner expression - �	�
� � ��' ��)C+
returns an SPO which has the same context, participating variables
and probability table as

�*)
, projecting out only conditional parts

— if a component is omitted in the projection list altogether, it is
kept intact.

Conditionalization ( ;�! ' �5+ ) is the operation of conditioning the
joint probability distribution. First, it removes from the probability
table of the SPO all rows that do not match the condition. Then
the variable column (given in the condition) is removed from the
table. The remaining rows are coalesced (if needed) in the same
manner as in the projection operation and the probability values
are normalized. Finally, the condition is added to the set of con-
ditionals of the resulting SPO. Figure 1(g) shows the probability
distribution of client skills (S) given that the client has high work-
readiness (WR) and good work history (WH), obtained from

�10
(Figure 1(f)): ; var.WR @ high ' �10H+ .

Cartesian product (
6

) and join (
#

,
$

) construct a joint proba-
bility distribution from the input SPOs. The difference is that join
is applicable to the SPOs that have common participating random
variables whereas cartesian product is applicable to SPOs with dis-
joint lists of participating variables. Two SPOs are cp-compatible,
if their participating variables are disjoint, and their conditionals
coincide. When the sets of participating variables are not disjoint,
but their conditionals coincide, the two SPOs are join-compatible.
Figure 1(f) provides an SPO representing the joint distribution (Skills
and Work-readiness) created from their respective SPOs in Figure
1(c) and Figure 1(b).

Mix(
&

) operation also constructs a joint probability distribution
from the input SPOs.

When two SP-relations
�

and
���

are provided as input, they will
have join-compatible SPOs , cp-compatible SPOs and neither join-
nor cp-compatible SPOs. The mix operation is the union of the join
and the cartesian product

�
and

�
�
.

Let
���|��� �
	5�!� �
� � � �

and
� � �|��� � ��	 � �
� � �
� � ��� � �

are two cp-
compatible or join-compatible SPOs. Then, the result of their mix
operation, denoted

� & � �
, is defined as follows 2:� & ���

= ' � 68���O+�� ' � # ����+
Cartesian product, join, mix with join conditions extend the

combination operations of SP-Algebra to incorporate joining based
on relationships between context attributes in the SPOs being joined.
In addition to the conditions that are applicable to SPOs that par-
ticipate in cartesian product, join and mix operations, their context
elements should satisfy the join condition. Elements that do not

2In [20] two join operations are defined - left join (
#

) and right
joint (

$
). The participating variables in the result of join include

exactly one copy of common variables; left/right joins differ by
whether they are conditioned from second or first SPO. Technically,
we need to introduce two mix operations, one for left and one for
right joins. For simplicity, we consider only one operation in this
paper.

satisfy the join condition are not combined together. For example,
in Figure 1, SPOs

��4
and

�:9
are cp-compatible but cannot be com-

bined under the join condition ‘
��4 M J$K�L$M J
N L�P � �:9 M J
K/L
M J$NOLQP ’(since�:9

does not contain context element ‘city’).

2.3 SP-Algebra equivalences
In [19], in preparation for query optimization for SP-Algebra,

Zhao has proved SP-Algebra equivalences shown in Table 3. In ad-
dition, we have established the equivalences in Table 4 that involve
the join and cartesian product operators.

Equivalence Condition

� ��� ��� '�� ]�+�� � ��'O� ��� '�� ]�+!+ J and J � are SCs.
� � 'O� � � '�� ] +!+�� � � � 'O� � '�� ] +!+ J and J � are SCs.
- .��^. � '�� ] +�� -/. 'O- . � '�� ] +!+ I and I � are PLs.
-/. 'O- . � '�� ] +!+�� - . � 'O-�. '�� ] +!+ I and I � are PLs.
; ! � ! � '�� ] +�� ;�!^'O; ! � '�� ] +!+ T and T � are CEs.
;�! 'O; ! � '�� ] +!+�� ; ! � 'O;�!^'�� ] +!+ T and T � are CEs.
� ] 6 �"� � � � 6 � ] � ] and �"� are cp-compatible.
'�� ] 6 � � +�6 ��� � � ]�6 '�� � 6 ��� + � ] , � � , ��� are cp-compatible.

Table 3: Query Equivalences for SP-Algebra operations.

Equivalence Condition

� ] # '�� � 6 ��� +�� '�� ] # � � +�6 ��� � ] , � � are join compatible and
�"� , � � are cp-compatible.

� ] $ '�� � 6 � � +�� '�� ]�$ �"� +�6 � � � ] , �"� are join compatible and
� � , ��� are cp-compatible.

� ]�6 '�� � # ��� +�� '�� ] 6 � � + # ��� � ] , � � are cp-compatible and
�"� , � � are join compatible.

� ] 6 '�� � $ � � +�� '�� ] 6 �"� + $ � � � ] , �"� are cp-compatible and
� � , ��� are join compatible.

� ] # � � � � � $ � ] � ] and � � are join-compatible
P(
v8���

)* P( � � � ) = P(
v � � )*

P(
� � � ), where

v8���
are

variables from � ] and
�*� �

are variables from � � .
Table 4: Query Equivalences for SP-Algebra operations.

No less important than the equivalences that hold are those that
do not. In particular, we note that projection, conditionalization and
cartesian product/join/mix operations change the probability distri-
bution stored in the probability table of the resulting SPO. Thus,
selections on probabilities cannot be, in general, commuted with
other operations. For example, the result of SP-Algebra expression-�� � �
� <?> 'O��������� ���! 
�! �#$� &a' �10 +!+ is not the same as
��������� �,�! ��! �#$� &a'O- � � �
� <?> ' �10 +!+ as shown in Figure 2. This fact has
significant effect on the query translation mechanism from SPOQL
to SP-Algebra, presented in the next section.

2.4 Implementation
SPDBMS is implemented on top of an RDBMS in Java. Figure

3 depicts the overall architecture of the system [20]. The SPDBMS
application server processes query requests like standard database
management instructions and SPOQL queries from a variety of
client applications.

The application server provides a JDBC-like API, through which
client applications can send standard database management instruc-
tions, such as CREATE DATABASE, DROP DATABASE, CRE-
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�
: -�. 'O� � ' �10 +!+

city: Lexington
WR P
high 0.24
low 0.2
WH = good

�
: �(��'O-�. ' �:0 +!+

city: Lexington
WR P
low 0.2
WH = good

Figure 2: SPOs resulting from two SP-Algebra expressions,
where selection condition is J h L�����M ��� j�� � r M � and projection
condition is I h \ � � M �
	 and

�:0
is given in Figure 1(f).

ATE SP-RELATION, DROP SP-RELATION, INSERT INTO SP-
RELATION, DELETE FROM SP-RELATION, as well as SP-Algebra
queries to the server. Our SPOQL implementation has been inte-
grated into the architecture shown in Figure 3.

Figure 3: The overall architecture of SPDBMS.

3. SPOQL
Since its deployment, SPDBMS has been used as a back end for

a number of programs designed to build and manipulate Bayesian
networks. One of the lessons learned during this time was that SP-
Algebra syntax was not the most convenient way for programmers,
unfamiliar with the internals of SPDBMS to express queries. To
alleviate this problem we have investigated replacing SP-Algebra
with declarative syntax that would look familiar to programmers
with some SQL experience. SPOQL, thus was born.

3.1 Syntax of SPOQL
The basic form of an SPOQL query is as follows:

SELECT <selectlist>
FROM <fromlist>
[WHERE <condition>]
[CONDITIONAL <conditionlist>]

Intuitively, a SPOQL query corresponds to an SP-Algbra ex-
pression involving selections, projections, conditionalizations, and
combining operations (mix, cartesian products, join). Every SPOQL

query returns an SP-relation (collection of SPOs).

Every SPOQL query must have a SELECT clause, which spec-
ifies the variables (context, conditional, random) of an SP-relation
to be retained in the result, and a FROM clause, which specifies the
list of participating SP-relations along with combining operations.
The optional WHERE clause specifies selection conditions on the
SP-relations mentioned in the FROM clause and join conditions
on the combining operations mentioned in the FROM clause. The
optional CONDITIONAL clause specifies the conditionalization
expressions on the SP-relations mentioned in the FROM clause.

Thus, the ����� �,J�L���N
�$L is a sequence of random variables, context
variables, and conditionals that are involved in the projection op-
eration. Every element of the ����� �CJ
L�� N��$L addresses an SP-relation
from the I � jak���N
�$L . * is used in the absence of the projection op-
eration when the entire object has to be returned.

The I � j�k�� N��$L is a sequence of SP-relations separated by combin-
ing operations “TIMES”, “JOIN” and “,”. The “,” stands for the
mix operator, “TIMES” for cartesian product and “JOIN” for the
join (left join is the default). An SP-relation in the I � jak���N
�$L can
also be an SPOQL query. This provides for nesting in an SPOQL
queries. In addition, parentheses can be used to specify associativ-
ity of combination operations, and SP-relation aliases, similar to
SQL’s table aliases are allowed.

The J
jaK/THNOLQN j�K is a sequence of selection and join conditions sepa-
rated by the keyword “AND”. Every selection condition addresses
an SP-relation from the I � j�k���N
�$L . Likewise every join condition
addresses a combining operation from the I � jak���N
�FL based on the
SP-relations provided by it.

The J$j�K/THNOLQN jaK���N
�$L is a sequence of conditionalization expressions
separated by the keyword “AND”. Every conditionalization expres-
sion addresses an SP-relation/alias from the I � jak���N
�$L .
3.2 SPOQL Semantics By Example

Let us consider a few simple SPOQL queries. SPOs in Figure
1(d), Figure 1(e), Figure 1(f) and Figure 1(g) can be obtained3 using
the following SPOQL queries.

1. SELECT * FROM S1
WHERE S1.tbl.VOP = ’success’
AND S1.tbl.prob > 0.7

2. SELECT S1.cnt.city, S1.cnd.A FROM S1

3. SELECT * FROM S2 JOIN S3

4. SELECT * FROM S4
CONDITIONAL S4.var.WR=’high’

Each of the above queries represents a single SP-Algebra oper-
ation. More complex SPOQL queries can represent multiple SP-
Algebra operations. Let us consider an SPOQL query � :

SELECT * FROM S2, S3
WHERE S2.tbl.WR = ’high’ AND
S3.tbl.prob < 0.7

3 ��) , ��4 and
�:9

in Figure 1 are ids of individual SPOs, not SP-
relations, however, without loss of generality, we assume here that�*)

,
��4

and
�:9

are also names of singleton SP-relations that contain
the respective SPOs.

15



This query raises a number of questions concerning its SP-Algebra
translation. We can see that it involves one mix operation and two
selection operations, but in what order should these operations be
performed? In case of classical relational algebra, selection and
cartesian product/join operations commute and the exact order of
operations produced by SQL query parsers is not very relevant, as
the query tree/execution plan will be finalized at the query opti-
mization stage. In SP-Algebra, however, selections on probabilities
and join/mix/product operations do not commute, and therefore, we
need to declare that intent of the query upfront, and make certain
that the SPOQL query parser interprets it correctly. In the case of
query � , our choice is to translate it using the � � 'QM + & � �� 'QM + structure
or using the � � 'QM & M + structure. We note that selection conditions
in � specify precisely the SP-relations on which they have to be
performed, thus making � '*) + � ���$@ ��� � � ��� ' ��4a+ & �('*),+ � -�. /0)  �#$� %(' �:9 + (see
also Figure 4) i.e., the former structure, the natural choice.

This example suggests that we must be more careful in our trans-
lation of SPOQL queries into SP-Algebra, than SQL query parsers
translating into relational algebra. It becomes important for us to
define a precedence list for the SP-Algebra operations in order to
achieve consistent query evaluation. Consistent with our reasoning
in the previous example, we use the following order of precedence
for every SP-relation belonging to the I � j�k�� N��$L :

1. conditionalization operation using J$j�K/THN L�N jaK���N
�$L ;
2. selection operation using selection conditions from J$j�K/THN L�N jaK ;

3. projection operation using ����� �CJ
L�� N��$L ;
4. join/times/mix operation using combining operations from
I � jak���N
�FL and join conditions from J
jaK/THNOLQN j�K .

⊗

σtbl.WR = high

S2

σtbl.prob > 0.7

S3

Figure 4: The query tree for SPOQL query � .

To illustrate the effect of this decision, we show the SPOQL
query representing � '*),+ � ���$@ � � � � � � � '*),+ � -�. / )  G#$� % ' ��4 & �:9 + 4:

SELECT * FROM S2, S3
WHERE tbl.WR=’high’ AND tbl.prob < 0.7

There are other translation issues that need to be handled. Nest-
ing and aliasing is allowed in SPOQL query to provide flexibility
or override the precedence order. To ensure proper query transla-
tion/evaluation, we define a separate scope for each level of nesting
within an SPOQL query, and enforce a scoping rule that does not
permit any elements from the ����� �CJ
L���N
�FL , J
jaK/THNOLQN j�K , and J$j�K/THN L�N jaK���N
�$L
to address SP-relations from the I � jak���N
�FL not belonging to the
same query level.
4var, cnt, cnd, and tbl without ���^k�� of SP-relation, refer to the
SP-relation resulting from the usage of combining operations on
individual SP-relations from the I � j�k���N
�$L .

The next issue to consider relates to the order in which SP-relations
from the I � jak���N
�FL are combined. In the absence of join conditions,
this does not matter, and the traditional left-to-right evaluation can
be performed. However, as the following example illustrates, join
conditions require special handling.

Let
� � ,

���
, and

�	�
represent the SP-relations that describe the

distribution for the client’s characteristics - Aptitude, Goals, and
Confidence respectively. We are interested in knowing the joint dis-
tribution of these client characteristics in the year 1999 for Goals,
and similar age groups for Aptitude and Confidence. A straightfor-
ward way to express it in SPOQL is the query � �

below:

SELECT * FROM S5 TIMES S6 TIMES S7
WHERE S6.cnt.year = 1999 AND
S5.cnt.age-group = S7.cnt.age-group

X

S5 S6 S7

cnt.year = 1999

X

X

(a)

(S−temp)

S−temp.cnt.age−group
= S7.cnt.age−group

σ

S5 S7

X

(b)

S5.cnt.age−group
= S7.cnt.age−group

S6

cnt.year = 1999
σ

Figure 5: The query trees for SPOQL query � �
based on only

left-to-right evaluation (a) and left-to-right evaluation with join
condition(s) priority (b).

If left-to-right evaluation of the I � jak���N
�$L is used, the result-
ing query tree for � �

is the one in Figure 5(a). The actual ex-
pression we wanted to represent with � �

is shown in Figure 5(b).
In it,

� � and
�
�

are combined first, because of the join condition
present in the query. Thus, we must ensure that the SPOQL query
parser/translator, will override the default order of combining SP-
relations in the I � j�k���N
�$L for � �

and similar queries. Informally,
we can verbalize this idea as materialize the combinations of SP-
relations under join conditions first.

We note, that we can also explicitly override the order combining
SP-relations by using parentheses in the I � j�k���N
�$L . The following
query is equivalent to � �

:

SELECT * FROM S6 TIMES (S5 TIMES S7) WHERE
S6.cnt.year = 1999 AND
S5.cnt.age-group = S7.cnt.age-group

The query tree for this explicit ordering query is the same as
in Figure 5(b). But there is a small issue of identifying identical
pairs of SP-relations in both the orderings. We resolve this issue
by applying any join conditions that refer to the same explicit or-
dering pair of SP-relations. As a result, duplicate pairs are elim-
inated. Thus, the SPOQL evaluation algorithm implicitly builds a
tree structure by applying the precedence rule and then determining
the order of join, cartesian or mix operations with the SP-relations
as the leaves.

The algorithm that evaluates an SPOQL query is shown in Fig-
ure 6. The input to the evaluation algorithm is the SPOQL query �
and its output is the query tree describing the SP-Algebra expres-
sion, that represents the (operational) semantics of � . In this algo-
rithm, Build-path() is the function that builds a conditionalization-
selection-projection subtree for each SP-relation/SP-relation alias.
Build-subtree() is the function that produces a query subtree for a

16



Evaluate(SPOQL query � )

1. Validate � to check for scoping consistency and non duplicate SP-
relations in the �������	��

��� .
2. if valid, then next step, else “Semantic error”.
3. Extract ����������
���� , ������������
�������
���� , ����������

��� , ������ !��

��� from � .
4. Let �������	��

��� = "$# ]�%�&�&�&�% #('!)
5. for 
 = 1 to * do+ B = Build-subtree ",# B % ������������
�������

��� % ����������

��� % ������ -��

���.)
6.
+

=
+ ]

for 
 = 2 to * do+
= Combine " + % + B )

7. return Build-path " + % ������������
�������

��� % ���/������
���� % ������ !��

���.)
Build-subtree "������/�	#10�� % ������������
�������

��� % ����������

��� % ������ !��

���.)
1. if ��������#10�� is a SPOQL query,

return Evaluate "������/�	#10��2)
2. else

if �����/�	#10�� is an SP-relation,
return Build-path "���������#10�� % �/�/�3�/����
,������

��� % ����������

��� % ������ !��

���.)
else
Let ��������#10�� = ",# ]54 �6# � )87:9-���+ ]

= Build-subtree ",# ] % �/����������
��/����

��� % �������-��

��� % �����; !��

���.)+ � = Build-subtree ",# � % �/����������
��/����

��� % �������-��

��� % �����; !��

���.)+
=
4 ��" + ] % + � )

if 7�9��	� == “” return
+

else return Build-path " + % ������������
�������
���� % ����������

��� % ������ -��
����.)
Build-path "���������#10�� % ������������
�������

��� % ����������

��� % ������ !��

���.)
1. Perform conditionalization operation on ���������/0�� using ���/������
���� .
2. Perform selection operation on resultant �����/�	��0�� using������������
�������
���� .
3. Perform projection operation on resultant ���������/0�� using ������ !��

��� .
4. return resultant SP-relation tree

+ �
.

Figure 6: Algorithm for translating SPOQL queries into SP-
Algebra expressions.

single I � j�k�� N��$L entry (either an SP-relation, or an nested SPOQL
query, or a nested join/product/mix expression).

Let us look at an example to understand the working of the Eval-
uate algorithm. Consider an SPOQL query � � �

of the form:

SELECT S7.cnt.age-group FROM
S5 TIMES S6 TIMES S7 TIMES S8 WHERE
S6.cnt.year = 1999 AND
S5.cnt.age-group = S7.cnt.age-group AND
S5.cnt.age-group =’19-20’AND
S6.cnt.year = S8.cnt.year

given as input to the algorithm. Here,
� � ,

���
,
�
�

, and
�=<

repre-
sent the SP-relations that describe the distribution for the welfare-
to-work client’s characteristics - Aptitude, Goals, Confidence, and
Work-history respectively.

The SP-Algebra query tree constructed by the algorithm is shown
in Figure 7. The SPOQL query is evaluated for its syntactic and
semantic validity. According to the build-path algorithm, the se-
lection operation on context is performed on SP-relations

���
and� � resulting in SP-relations

��� �
and

� � � respectively. The projec-
tion operation on context is performed on SP-relation

�	�
result-

ing in SP-relation
�
� �

. According to the build-subtree algorithm,
SP-relations

� � � and
�
� �

are combined by applying the respective
join condition to the cartesian product resulting in SP-relation

� � � � .
Similarly SP-relations

��� �
and

�><
are combined resulting in SP-

relation
�
� � �

. The resulting SP-relation
� � � �

is the cartesian product
of SP-relations

� � � � and
��� � �

.

(S5’)

X

X

S5’.cnt.age−group
= S7’.cnt.age−group X

σcnt.year = 1999

S6

S6’.cnt.year
= S8.cnt.year

S8

(S5’’)

(S6’)

(S6’’)

(S’’’)

π

S7

(S7’)
cnt.age−group

σ

S5

cnt.age−group = ’19−20’

Figure 7: The query tree for SPOQL query � � �
.

3.3 SPOQL Implementation
At present, SPOQL is incorporated into the SPDBMS architec-

ture (see Figure 3) by means of the implementation of the trans-
lation algorithm described in Figure 6. This algorithm translates
SPOQL queries into equivalent SP-Algebra queries that are parsed
by the original parser. In addition, to support full functionality of
SPOQL as described in this paper, we have added the implemen-
tations of the mix operation and of the mix/cartesian product/join
with join conditions operations to the SP-Algebra implementation
within SPDBMS. New performance tests are currently underway,
and future work on the SPDBMS includes a cost-based query opti-
mizer.

4. RELATED WORK
There has been considerable research done in management of

probabilistic data. The early relational models, used for storage and
processing of probabilistic data [12, 2, 6, 1] have been replaced by
the object-oriented [11, 8] and semistructured models [10, 14, 4,
20]. The work of Cavallo and Pittarelli [2] extended the relational
model to represent uncertainty due to ambiguity using the well-
known probability calculus. A probability measure is assigned to
every tuple in a relation. The probability measure indicates the
joint probability of all the attribute values in a tuple. Barbara et al.
[1] proposed an extension of the relational model using probabil-
ity theory by adopting a non-lNF probabilistic data model. They
redefined the project, select, and join operations using semantics
of probability theory. They also introduced a new set of operators
to illustrate the various possibilities. Dey and Sarkar [6] provided
a probabilistic database framework with relations abiding by first
normal form (1NF). The probability measures, assigned to tuples,
represented the joint probability distribution of all the non-key at-
tributes in the relation. They provided a closed form query algebra
and introduced the conditionalization operation in the context of a
probabilistic model. They also proposed a non-procedural proba-
bilistic query language called PSQL [7] as an extension of the SQL
language. Lakshmanan et al. [12] proposed axioms characteriz-
ing reasonable probabilistic conjunction and disjunction strategies.
They first implemented a relational probabilistic database system
called ProbView. Ross et al. [18] extended the framework of Prob-
View to perform aggregate computations over probabilistic data.
Cheng et al. [16] provided an uncertainty model, as an extension
to the relational model, for handling constantly evolving sensor
data. Each tuple in their database is similar to the framework in
[6] where probability is attached to a tuple. But instead of having
a point probability, they associate an entire distribution. Each tuple
in their database is analogous to a non-conditional SPO object in
our model. Conditional and joint probabilities are not represented
in their framework. The U-DBMS [17] is an implementation of
their uncertainty framework.
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The work on SPDBMS [20] combines and extends the ideas5

contained in these papers and applies them to an SPO model. The
data stored in the SPDBMS does not conform to a rigid schema.

There are two approaches to semistructured probabilistic data
management that are closely related to SPDBMS: the ProTDB [14]
and the PXml [10] frameworks [20]. Nierman, et al. [14] ex-
tended the XML data model by associating a probability to each
element with the modification of regular non-probabilistic DTDs.
In ProTDB, independent probabilities are attached to each individ-
ual child of an object. The probabilities in an ancestor-descendant
chain are related probabilistically, resulting in conditional probabil-
ities in the document. Some drawbacks of ProTDB are overcome
by the PXml framework proposed by Hung, Getoor and Subrahma-
nian [10]. PXml supports arbitrary distributions over sets of chil-
dren and allows arbitrary acyclic dependency models. They also
proved that for any query in their model there is a mapping to an
equivalent query in the bayesian network. They also proposed a
probabilistic interval XML data model, PIXml [9]. But the PXml
and PIXml models do not provide a convenient way to represent
joint probability distributions.

5. CONCLUSIONS
The SPO model for management of uncertain data in databases

provides flexible means for storing and manipulating large collec-
tions of probability distributions. The original query language,
SP-Algebra, incorporates all major database operations, and in-
troduces some operations, such as conditionalization, specific to
probabilistic database management. The traditional limitations of
SP-Algebra — the functional syntax, and unfamiliarity to applica-
tion programmers, have been alleviated by SPOQL, the structured
query language for the SPO model, which provides familiar SQL-
like declarative syntax that is easier for the programmers to use.
At the same time, as we have shown in this paper, parsing SPOQL
queries is a more involved task than parsing SQL queries, due to the
fact that important query equivalences do not hold in SP-Algebra,
making some potential invariant query translations incompatible.
In this paper we have discussed our approach to parsing SPOQL
queries, that can be characterized as eager evaluation — all oper-
ations are applied (in the defined order of precedence) as soon as
they can be executed. The new SPDBMS server is in the process of
replacing the old one and applications using SPDBMS as the back
end for storage of probabilistic data are developed for the Welfare-
to-Work modelling project described in part in Section 2.1.

Our ongoing and future work on SPO model is two-fold. First,
we are working on a cost-based query optimizer for SPDBMS.
The second, current version of SPDBMS had been implemented
by special-purpose shredding of XML representing SPOs into rela-
tional tables and translating SP-Algebra operations into sequences
of SQL statements. We plan on building a new version of SPDBMS
on top of a native XML DBMS translating SP-Algebra into XQuery.
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Abstract. A notation for probabilities is pro-
posed that differs from the traditional, conven-
tional notation by making explicit the domains
and bound variables involved. The notation bor-
rows from the Z notation, and lends itself well to
calculational manipulations, with a smooth tran-
sition back and forth to set and predicate nota-
tion.

1. INTRODUCTION
The notation commonly used in applied probability theory
suffers from two drawbacks: the domain of discourse is left
implicit, and consequently in predicates the argument is left
implicit. To say it in a crude way, the formulas have no
meaning without a little verbal story along with them. As
a consequence, it is hard to do machine assisted formal cal-
culations (as striven for in, for example, transformational
programming [1, 11, 2, 3, 4, 8, 7, 12, 10, 11]); it is simply
too hard to feed the machine with the little verbal stories
that define the semantics of various sub-expressions. This
note presents a possible improvement.

The proposal is not meant to replace existing notation; the
current notation has proved its functioning over the years.
Rather, the new notation may be beneficial in an educa-
tional setting, and every now and then it may help to express
one’s ideas in a clear and precise way as a stepping-stone to
achieve a convenient conventional formulation.

We shall define the notation in the coming two sections,
and then illustrate the notation in a series of examples. The
examples have the spirit of “theory” (formal calculations
to derive some well-known and easy theorems of probabil-
ity theory) and “application” (showing expressability in the
field of information retrieval, coin tossing, and event spaces).
We conclude with an appendix about the history of the prob-
ability notation.

2. THE NOTATION
The proposal is fully in the style of the Z notation [15], a
notation designed for large scale formal specifications, sup-
ported by a range of tools [5] (syntax checker, type checker,
pretty printer, proof checker, theorem prover). Below we
give a list of some notations available in Z — with in the last
line the proposed notation for probabilities. The list alone
already clearly shows the systematic approach in the choice
of the notation; in the subsequent paragraphs we shall show
the advantage of this systematic notation in formal manip-
ulations. In the list and the sequel, we shall use letter D for
arbitrary declarations, letters P ,Q for arbitrary predicates,
and letter E for arbitrary expressions. We do not elabo-
rate the syntax of these categories, but instead leave them
to the imagination of the reader. The symbols | and • are
no operator symbols, and have no meaning by themselves;
they merely separate the three parts (namely D ,P ,E , and
D ,P ,Q respectively).

Here is the list, followed by a discussion of each line:

notation semantics
{D | P • E} the set, for D satisfying P , of values E

(λD | P • E) the fct that maps D satifying P to E
(µD | P • E) the unique E where D satisfies P
(∀D | P • Q) for all D satisfying P , Q holds
(∃D | P • Q) there exists D satisfying P such that Q
(PD | P • Q) the probability for D satisfying P that Q

concrete example value
{x , y :

�
| 2y = x < 5 • x+10} = {10, 12, 14}

(λ x , y :
�
| 2y = x < 5 • x+10) =

{(0, 0) 7→10, (2, 1) 7→12, (4, 2)7→14}
(µ x , y :

�
| 0 < 2y = x < 4 • x+10) = 12

(∀ x , y :
�
| 2y = x < 5 • x+10 < 13) = false

(∃ x , y :
�
| 2y = x < 5 • x+10 < 13) = true

(Px , y :
�
| 2y = x < 5 • x+10 < 13) = 0.66666...

In the sequel we shall not use (and therefore not explain) the
λ-form and the µ-form; they are given here only to demon-
strate the variety of forms involving a ‘D | P • ...’-part.

The form {D | P • E} denotes a set; the values of expression
E constitute the members of the set, where the variables in
E range over their domains as specified in declaration D —
but only as far as predicate P is true. A more traditional no-
tation for the example set is “{x+10 | x , y∈

�
∧ 2y=x<5}”,

in which, alas, the declaration ‘x , y∈
�
’ is syntactically in-

distinguishable from the constraining predicate ‘2y=x<5’.
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The form (∀D | P • Q) is the familiar universal quantifi-
cation; it denotes the claim that for all conglomerates of
variables described by D and satisfying constraint P , pred-
icate Q holds true. The form (∃D | P • Q) is its dual: the
existential quantification.

The form (PD | P • Q) is the proposed notation for prob-
abilities; it denotes the probability that an arbitrary con-
glomerate of variables drawn from D satisfies predicate Q ,
given that the variables already satisfy P . We shall elabo-
rate upon this notation later.

In all forms, when P is true, it may be omitted — together
with the preceding symbol |. Also, in the set notation, when
E is exactly the conglomerate of variables declared by D , it
may be omitted together with the preceding symbol •. Thus
{x , y :

�
| 2y=x<5} stands for {x , y :

�
| 2y=x<5 • (x , y)},

which equals {(1, 0), (2, 1), (4, 2)}. This abbreviation could
also be done for the λ-form and µ-form, but it is not cus-
tomary to do so. Similarly, it is not customary to omit ‘• Q ’
when Q is true, but there is no formal objection to it. It is
customary to omit outer parentheses when no confusion can
result.

3. FORMAL MANIPULATIONS
Several laws hold for forms involving ‘D | P • ...’. These
laws facilitate formal manipulations. Not only is it easy for
humans to apply those rules, but also a machine can easily
support them since all ingredients are available in the nota-
tion — there is no need for an informal verbal explanations
along with the formulas. By way of illustration we give only
a few of these laws. Each line is discussed below:

(∃D | P • Q) = (∃D • P ∧ Q)

(∀D | P • Q) = (∀D • P ⇒ Q)

¬ (∃D • P) = (∀D • ¬ P)

¬ (∀D • P) = (∃D • ¬ P)

¬ (∃D | P • Q) = (∀D | P • ¬ Q)

¬ (∀D | P • Q) = (∃D | P • ¬ Q)

{D | (∃D ′ | P ′ • Q ′) ∧ P • E} =

{D ; D ′ | P ′ ∧ Q ′ ∧ P • E}

D | (∃D ′ | P ′ • Q ′) ∧ . . . =

D ; D ′ | P ′ ∧ Q ′ ∧ . . . (Shunting)

The first two lines show how to eliminate the “constraint” P ,
and obtain a more traditional form having no constraint
part. Note that the elimination gives rise to a conjunction
in case of existential quantification, and to an implication in
case of a universal quantification.

Remark. Newcomers to the field of predicate logic often
erroneously write ‘∀D • P ∧ Q ’ (similarly to their correct
use of the form ∃D • P ∧ Q) when they actually mean
∀D • P ⇒ Q . The reason is that they view P as a con-
straint upon the the domain of discourse D , and therefore
treat P the same way in both quantifications. However,
that is not possible with the two-part traditional notation
‘D • ...’ in contrast to the three-part Z notation ‘D | P • ...’.
Thus the three-part notation ‘D | P • ...’ is practically ap-
pealing.

The next two lines show, as a refresher, the familiar duality
between universal and existential quantification. No surprise
here.

The fifth and sixth line show the beauty of the ‘D | P • ...’
notation: the duality between universal and existential quan-
tification holds even in the presence of a constraint P . In
view of the elimination given in the first two lines, this might
come as a surprise! In practice, it is often the case that in
‘(∃D • P ∧ Q)’ and ‘(∀D • P ⇒ Q)’ the parts P play the
role of an additional constraint on the domain of interest D .
By making that role explicit, and writing (∃D | P • Q) and
(∀D | P • Q), respectively, we see that the duality respects
those roles!

The one-but-last line shows one example of the interactions
between various forms that involve a ‘D | P • ...’; it assumes
that the variables declared in D ′ do not occur free in P
and ... . Thanks to the consistency of the Z-notation the
declaration part D ′ of the existential quantification can be
taken over into the declaration part of a set notation —
without any change. Apart from this syntactic convenience,
the line is also semantically interesting; we urge the reader to
check (and understand) the equation. In fact, the rewriting
is valid not only in a set context, but also in an arbitrary
context:

D | (∃D ′ | P ′ • Q ′) ∧ . . .
=

D ; D ′ | P ′ ∧ Q ′ ∧ . . . (Shunting)

We will apply the rule in a P context, thus showing the
smooth transition between probability and set/predicate no-
tation. There are some more such laws about the interaction
between the D-part and P-part; e.g.:

x : S | x∈T ∧ . . . = x : S∩T | . . .

Much more can be said about the Z notation, but this is not
the place to do so. The interested reader may consult the
Z literature [5] and Dijkstra [6] who has been a co-initiator
of the three-part ‘D | P • ...’ notation.

4. EXAMPLE: CALCULATIONS
Recall our proposed notation for probabilities:

(PD | P • Q)

It denotes the probability that Q holds for a random draw
fromD that satisfies P . The traditional notation is P(Q | P),
thus leaving the domain implicit and making it impossible
to refer in P and Q to the variables declared in D . Unfortu-
nately, the places of P and Q are reversed between the new
and the traditional notation. Fortunately, the condition P
immediately follows the vertical bar |.

In the current paragraph we do some calculations with this
notation without referring to concrete examples; in the fol-
lowing paragraphs we’ll actually use the notation for con-
crete examples.

When all sets involved are finite, and the probability dis-
tributions are uniform, we may take a frequentist view of
probability, and put:

(P D | P • Q) =
#{D | P ∧ Q}

#{D | P}
(Freq)
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Having done so, we are able to derive several theorems that
are commonly taken as axioms about P. We are the first
to admit that these theorems are worthless when the above
equation is false (because the probability distribution is not
uniform) or doesn’t make sense (because the sets are infi-
nite); in that case we can still take the formulas below as
axioms. However, we are mainly interested in the proofs,
because these show how our proposed notation nicely inter-
acts with the set and predicate notation. Here is a theorem
that we shall use later on:

Let Pi ,Qi be predicates that do not use variables from Dj ,
for j 6= i . Then:

(PD1; D2 | P1 ∧ P2 • Q1 ∧ Q2)
=

(PD1 | P1 • Q1)× (PD2 | P2 • Q2) (Independence)

Proof (using × for both number and cross product):

(PD1; D2 | P1 ∧ P2 • Q1 ∧ Q2)

= Freq

#{D1; D2 | P1 ∧ P2 ∧ Q1 ∧ Q2}
#{D1; D2 | P1 ∧ P2}

= set calc.; premise

#({D1 | P1 ∧ Q1} × {D2 | P2 ∧ Q2})
#({D1 | P1} × {D2 | P2})

= set calc.
(#{D1 | P1 ∧ Q1} ×#{D2 | P2 ∧ Q2})

(#{D1 | P1} ×#{D2 | P2})

= nbr calc.
(#{D1 | P1 ∧ Q1}

#{D1 | P1})
×

(#{D2 | P2 ∧ Q2}
#{D2 | P2})

= Freq

(PD1 | P1 • Q1)× (PD2 | P2 • Q2)

Many more properties can be proved in this algebraic way:
decomposing the expression and composing it in another
way while preserving the semantics — and in this case there
is also a smooth switch between probability and set notation.

Since they are used in the sequel, we mention two further
laws but leave the simple algebraic proofs to the industrious
reader:

(PD | P • Q1 ∨ Q2) (Distribution)
=

(PD | P • Q1) + (PD | P • Q2)− (PD | P • Q1 ∧ Q2)
=

(PD | P • Q1) + (PD | P • Q2), if ∀D |P•¬ (Q1∧Q2)

And the divide and conquer law:

(∀D • P1 6= P2) ⇒ (Divide&Conquer)

(PD • Q) =

(PD • P1)(PD | P1 • Q) + (PD • P2)(PD | P2 • Q)

Note that P1 6= P2 means that P1,P2 are each others nega-
tion, that is, it is equivalent to (P1 ∨ P2) ∧ ¬ (P1 ∧ P2),
also known as exclusive-or.

5. EXAMPLE: INFORMATION RETRIEVAL
We set out to reformulate part of Section 2.3.3 of Hiemstra’s
PhD thesis[9] in our style and notation. We shall also make
a comparison between our and his notation.

The scene is information retrieval. Here is a rough introduc-
tion. A set Doc of documents is given, and a user is in need
for some relevant documents. The user poses a query to the
system (a query is simply a set of query terms), and it is the
systems task to rank the documents in order of increasing
probability of being relevant (and then show the top-ranked
documents to the user). The documents that contain the
same query terms should be ranked the same. We bypass
the problem of the way in which the set of relevant docu-
ments can be made known to the system.

With this introduction in mind, the following is our formal-
ization. First, a setDoc of documents is postulated. Next, in
order to avoid defining the internal structure of documents
and queries, we postulate for each query q an equivalence
relation ≈q on Doc, with the following interpretation:

d ≈q d ′

=
“d contains the same query terms of q as d ′ does”

Now, the ranking function rnkq,R related to a query q and a
set R ⊆ Doc of “relevant” documents, is defined as follows:

rnkq,R(d0) = (Pd : Doc | d ≈q d0 • d ∈ R)

In words: document d0 is ranked with the probability that
an arbitrary document with the same terms as d0, happens
to be relevant. (Much more can be said about the alterna-
tives and variations for rnk , but this note is not the place
to do so.)

Comparison with Hiemstra’s formulation.
Hiemstra [9] formulates the ranking value as follows (the
main ingredient of equation (2.8) in [9, page 19], see also [9,
equation (2.10)]):

P(L=1 | D1, · · · ,Dn)

This is all the accompanying explanation:

• The domain of discourse is a set of documents; no
further formalization is given. A document may be
indexed with a query term, meaning that the query
term occurs in the document. The query under con-
sideration is supposed to have n query terms.

• Citing from page 19, line 10 from the bottom:
Let L be the random variable “document is relevant”
with a binary sample space {0,1}, 1 indicating rele-
vance and 0 non-relevance.

• Citing again, line 8 from the bottom:
Let Dk (1 ≤ k ≤ n) be a random variable indicating
“document belongs to the subset indexed with the k -th
query term” with a binary sample space {0, 1}.

• Rephrasing line 6 from the bottom:
A document satisfying a particular state of D1, . . . ,Dn

is assigned the value given above (with the same state).

Although it is perfectly possible to do numeric calculations
with such a probability notation, it is hard to take the ingre-
dients of this expression and use them in set or predicate no-
tation: the conventions and semantics of phrases like ‘L = 1’
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and ‘Dk ’ are just too far away from the conventions and se-
mantics of set and predicate notation. Probability theory
and set theory use quite different languages, here, whereas
in our opinion that is not at all necessary.

6. RELAXED NOTATION
There is no objection against abbreviations in order to make
the notation more compact. For example, when the discus-
sion is about documents from the set Doc for pages and
pages, then we may convene to omit the indication ‘: Doc’
from the declaration part, thus writing:

(Pd | d ≈q d0 • d ∈ R)

Going one step further, we may define D(d) ⇔ d≈qd0 and
L(d)⇔ d∈R, and then write:

(Pd | D(d) • L(d))

As another convention we might now suppress the bound
variable and abbreviate this to:

(P | D • L)

This comes close to Hiemstra’s notation P(L= 1 | D1,...,n).
The point is that the semantics is still given by an expression
of the form (PD | P • Q), and if the need arises we can
fall back to that form. Even with the above abbreviations
we do not really leave the conventions of set and predicate
notation.

7. EXAMPLE: TOSSING
The probability that head and tail turn up together with one
throw of two fair coins is 0.5. To formalize the claim, let C
be a set consisting of just two distinct symbols H and T ,
that is, C = {H ,T}; letters C , H , and T are mnemonic for
coin, head and tail. The claim then reads:

(Px , y : C • {x , y} = {H ,T}) = 1/2

Proof. Fairness means that the probability distribution is
uniform:

(Px : C • x=H ) = (Px : C • x=T ) = 1/2 (Fairness)

Now:

(Px , y : C • {x , y} = {H ,T})
=

(Px , y : C • (x=H ∧ y=T ) ∨ (x=T ∧ y=H ))

= distribution

(Px , y : C • x=H ∧ y=T )+(Px , y : C • x=T ∧ y=H )

= Independence

(Px : C • x=H )×(Py : C • y=T ) +

(Px : C • x=T )×(Py : C • y=H )

= fairness
1

2
× 1

2
+ 1

2
× 1

2=
1/2

Unfair coins can be dealt with analogously; simply give a
different probability distribution.

8. EXAMPLE: EVENT SPACES
The problems and solutions discussed by Robertson [14]
form yet another confirmation that our notation works well.
Robertson essentially proposes to distinguish the various
event spaces E that play a role, and to indicate them some-
how in the notation P(X | Y ), say as PE(X | Y ). Here we
cite the case described by Robertson (the table on the right
is ours):

Example: we have stars
S, and planets T . Stars
either have (X=1) or do
not have (X=0) magnetic
fields. Planets either have
(Y=1) or do not have
(Y=0) magnetic fields.

The universe:
star X planet Y

s1 1 t11 1
t12 0

s2 0 t21 0

Star s2 has x2=0; it has one planet t21 with y21=0.
We have a (complete) universe consisting of 2 stars
and 3 planets. Star s1 has x1=1; it has two planets t11
and t12 with y11=1 and y12=0. In this universe, the
following probabilities may be calculated exactly:

P(X=1) = 1

2

P(Y=1 | X=1) = 1

2

P(Y=1 | X=0) = 0

From these we would infer that P(Y=1) = 1

4
; the

inference uses the following law [a generalization of
our Divide&Conquer, but written in conventional no-
tation]:

P(Y ) =
X

X
P(X )P(Y | X ) (Div ’n Conq)

But we have three planets, one of which has a magnetic
field, so actually we have P(Y=1) = 1

3
.

What is the problem here? In short, it is the event
space. The laws of probability are written in terms of a
single event space with a single probability measure on
it; for historical reasons, the standard notation P(. | .)
does not provide for the denotation of the event space.

Robertson proposes to denote the probability for a particu-
lar event space E as PE(. | .). Thus, writing S and T for the
event space of stars and planets, respectively, he rewrites
the calculated probabilities as:

PS(X=1) = 1

2

PT (Y=1 | X=1) = 1

2

PT (Y=1 | X=0) = 0

He even distinguishes some more event spaces: S+, T +, and
ST . Thanks to this notational distinction, it is immediately
clear that the Div ’n Conq law cannot be applied to these
probabilities; they apply to different event spaces, whereas
the equation apparently assumes them to apply to the same
event space.

In our notation, the event space is mentioned in the dec-
laration part D . Writing Z (z ) for “celestial body z has a
magnetic field” (there is no need to invent two names X
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and Y for the same predicate!) and star(t) for “the star of
planet t”, we thus have:

(Ps : S • Z (s)) = 1

2

(Pt : T | Z (star(t)) • Z (t)) = 1

2

(Ps : S; t : T | Z (s) • Z (t)) = 1

3

(Pt : T | ¬ Z (star(t)) • Z (t)) = 0

(Ps : S; t : T | ¬ Z (s) • Z (t)) = 1

3

In our notation the calculation of “P(Y)” goes without er-
ror:

(Pt : T • Z (t))
=

(Pt : T | true • Z (t))
=

(Pt : T | (∃ s : S • Z (s) ∨ ¬ Z (s)) • Z (t))

= (Shunting)

(Pt : T ; s : S | Z (s) ∨ ¬ Z (s) • Z (t))

= (Divide&Conquer)

(Pt : T ; s : S | Z (s) • Z (t))(Pt : T ; s : S • Z (s)) +

(Pt : T ; s : S | ¬ Z (s) • Z (t))(Pt : T ; s : S • ¬ Z (s))

= probabilities given above
1

3
× 1

2
+ 1

3
× 1

2=
1

3

If we want to discuss several probability distributions on the
same space, we need to distinguish them in the notation, say
by an index. Thus we may talk about (P1 D | P • Q) and
(P2 D | P • Q) at the same time, with the same D , P
and Q , while postulating different probability distributions
for P1 and P2.

9. CONCLUSION
We have proposed a notation for probabilities that nicely
interfaces with set and predicate notation, and other forms.
The advantage is ease of understanding (similar aspects are
denoted in the same way, in particular the aspect of free and
bound variables), and ease of manipulations (transformation
to and from set and predicate notation are possible without
any change, and laws that already exists in the context of
sets and predicates can now be applied as well). An impor-
tant advantage of the conventional notation is its brevity.
However, as we have shown, with suitable abbreviations we
achieve the same brevity.
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APPENDIX
A. HISTORY OF THE NOTATION
The following has been taken literally from http://members.

aol.com/jeff570/stat.html [13], a web-page about the ori-
gin of symbols in mathematics.

Apart from the combinatorial symbols very little of the notation
of modern probability dates from before the 20th century.

Probability. Symbols for the probability of an event A on
the pattern of P(A) or Pr(A) are a relatively recent devel-
opment given that probability has been studied for centuries.
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A.N. Kolmogorov’s Grundbegriffe der Wahrscheinlichkeitsrech-

nung (1933) used the symbol P(A). The use of upper-case let-
ters for events was taken from set theory. H. Cramér’s Random
Variables and Probability Distributions (1937), “the first mod-
ern book on probability in English,” used P(A). In the same
year J.V. Uspensky (Introduction to Mathematical Probability)
wrote simply (A). W. Feller’s influential An Introduction to

Probability Theory and its Applications volume 1 (1950) uses
Pr{A} and P{A} in later editions. See also the “Earliest Uses
of Symbols of Set Theory and Logic” page of this website [13].

Conditional probability. Kolmogorov’s (1933) symbol for con-
ditional probability (“die bedingte Wahrscheinlichkeit”) was
PB (A). Cramér (1937) referred to the “relative probability”
and wrote PB (A). Uspensky (1937) used the term “conditional
probability” with the symbol (A,B). The vertical stroke no-
tation Pr{A | B} was made popular by Feller (1950), though
it was used earlier by H. Jeffreys. In his Scientific Inference

(1931) P(p | q) stands for “the probability of the proposition
p on the data q .” Jeffreys mentions that Keynes and Johnson,
earlier Cambridge writers, had used p/q ; Jeffreys himself had
used P(p : q). The symbols p and q came from Whitehead and
Russell’s Principia Mathematica. See also the “Earliest Uses of
Symbols of Set Theory and Logic” page of this website [13].

Random variable. The use of upper and lower case letters to
distinguish a random variable from the value it takes, as in
Pr{X = xj}, became popular around 1950. The convention is
used in Feller’s Introduction to Probability Theory.
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ABSTRACT
To be able to support context-awareness in an Ambient In-
telligent (AmI) environment, one needs a way to model con-
text. Previous research shows that a good way to model con-
text is using Description Logics (DL). Since context data is
often coming from sensors and therefore exhibits uncertain
character, it is essential to take this uncertainty into account
when exploiting and reasoning about context data. In this
paper, we provide an event-based probabilistic method to
model context uncertainty. Each context can be viewed
as a probabilistic event, which can be either a basic or
complex event. We show how to deal with correlations of
events (i.e., inclusion, identicalness, disjunction, and inde-
pendence) which are inherent in context data and investigate
their influences on the context uncertainty.

1. INTRODUCTION
To support an Ambient Intelligent (AmI) environment where
users have ubiquitous access to data anytime and anywhere
in such a way that it is a natural part of the environment,
data management systems need to recognize changes in its
environment and adapt the presented information accord-
ingly to the context of its users. In other words, the data
management systems need to be context-aware [18, 16].

To deliver such a context-aware data management system,
the problem arises of how to capture low-level information
about the environment and interpret it in terms of that ac-
curately reflect human perception of tasks and needs. More-
over, since most context data is acquired from sensor data,
it is easily subject to both systematic and random errors
[7]. Despite systematic errors could be corrected by calibra-
tion techniques, random errors inevitably result in uncer-
tainty. According to [7], sources of such random errors in-
clude: noise from external sources, random hardware noise,
inaccuracies in measurement technique, environmental ef-
fects, and imprecision in computing a derived value from

the underlying measurements. Furthermore, in some cases
uncertainty may even be desirable in order to provide pri-
vacy for individuals. This uncertainty links to the quality
of available context, and negatively influences context-aware
database solutions. To resolve the influence of context un-
certainty, as a �rst step, we need a way to model context
and its uncertainty.

In our previous work [8], we proposed to view context from
two perspectives: user-centric and environmental. Exam-
ples of user-centric contexts are: user’s background (e.g.,
working area, friends, private doctor, etc.), behavior (activ-
ity, intention, etc.), physiological state (temperature, heart
rate, etc.), and emotional state (happy, sad, fear, etc.). En-
vironmental contexts can be physical environment (e.g., lo-
cation, time, humidity, lightness, etc.), social environment
(e.g., traffic jam, surrounding people, etc.), and compu-
tational environment (e.g., surrounding devices, etc.). A
knowledge-based approach for context modeling was further
presented in [17], where we explored a variant of Description
Logics to model both a world model and users’ information
preferences, leading to personalized query answering in an
AmI world.

The aim of this paper is to investigate the uncertainty in-
herent in context and develop an event-based probabilistic
approach to model context uncertainty to support context-
aware data management.

The rest of the paper is organized as follows. Section 2 re-
views our previous knowledge-based context model based on
Description Logics, and outlines the limitation of probabilis-
tic Description Logics in handling context uncertainty. An
event-based probabilistic model is then presented in Section
3 to represent context uncertainty. The influences of event
correlations on context uncertainty are examined in Section
4. We conclude the paper in Section 5.

2. CONTEXT MODELING USING
DESCRIPTION LOGICS

In the literature, there exist several attempts to model con-
text [13, 15], where [13] concludes that ontology based lan-
guages are preferable for context modeling. In [17], we ex-
plored a variant of Description Logics (DL) to model context
for several reasons. First, DL [1] is a (decidable) fragment of
�rst order logic, and is especially suited for knowledge rep-
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resentation. This will bene�t the development of intelligent
data management systems, capable of adaptiveness, learn-
ing, inference, and anticipation, etc., as demanded by the
AmI environment. Second, DL forms the basis of ontologi-
cal languages such as OWL, which has been used to model
context in [5]. Furthermore, there exist many tools for deal-
ing with DL knowledge bases such as reasoners and editors.
Finally, extensive research has been conducted to investi-
gate the relationship between databases and DL, and map
a DL knowledge base into database schemas [3]. In fact,
in a number of situations, DL can be used to express the
information requests upon large amounts of data stored in
existing relational databases [4]. Borgida in [4] presented a
system that converts most inferences made by the knowledge
base management systems into SQL queries, while keeping
an object-centred view and relying on the optimization of
the underlying DBMS to gain efficiency.

2.1 A Brief Review of Description Logics
As known, a DL knowledge base consists of a TBox and
an ABox. The TBox (i.e., the vocabulary) contains asser-
tions about concepts (e.g., Child, Female) and roles (e.g.,
hasRoom, hasActivityType). The ABox contains assertions
about individuals (e.g., ROOM3061). Concepts and roles
can be either atomic or constructed using concept and role
constructors intersection (u), union (t), and complement
(¬) (e.g., Child u Female, hasRoom u hasActivityType). A
concept speci�c constructor is the one-of construct
({a1, .., an

}) which de�nes a concept consisting of a spe-
ci�c set of individuals {a1, .., an

}. The top concept (>)
and bottom concept (⊥) denote respectively all individuals
and no individuals. A role speci�c operator is the role-
inverse which de�nes the inverse of a certain role (e.g.,
roomOf is the inverse of hasRoom, denoted as hasRoom ≡
roomOf−1). Moreover, roles can have full quanti�cation,
existential quanti�cation and number restrictions (e.g., ∀
hasChild.Female denotes the individuals of whose children
are all female, ∃ hasChild.Female denotes the individuals
having a female child, and = 1 hasChild.Female denotes
the individuals having exactly one Female child). A concept
expression contains a set of concepts and/or quanti�ed roles
which are connected via concept and role constructors. The
basic inference on concept expressions in DL is subsumption
C v D, which is to check whether the concept denoted by
D (the subsumer) is more general than the one denoted by
C (the subsumee).

DL can be used to describe a world model (i.e., ontology). A
small ontology example is given in Figure 1, where concepts
are denoted in CamelCase (e.g. FreeTimeActivity) , roles in
lowerCamelCase (e.g. hasRoom), and instances in all capital
letters (e.g. ROOM3061 ).

In our study, we use a DL concept expression to depict a
context C. We assume a function ce which projects a context
C to a DL concept expression.

As an example of a concept expression, consider a con-
text C where Eric is drinking co�ee either in his own room
(room 3061) or in the co�eeroom. In a context-aware sys-
tem/application, this situation could, for example, imply
that Eric is available for a meeting. We can represent this

context via a DL concept expression Q = ce(C) as follows:

Q ≡ {ERIC} u ∃hasActivityType.Relaxing (1)

u ∃hasRoom.{COFFEEROOM, ROOM3061}

One goal of context-aware data management systems is to
determine whether this context is satis�ed or not, that is,
whether there is at least an instance in the knowledge base
which is included in the concept expression Q, (∃a(Q(a))).
When the sensed context data possesses uncertainty, the
goal then becomes to calculate the probability that there
exists at least an instance which is included in the concept
expression Q, (P (∃a(Q(a))) ∈ [0, 1]).

2.2 Limitations of Probabilistic Description
Logics in Addressing Uncertainty

Previous work on probabilistic reasoning in DL (e.g. [12, 11,
10]) mainly focused on de�ning probabilities on domains.
An example of such kind of probability is: “The probability
that a random chosen student is drinking coffee is greater
than 0.3”, or as a probabilistic TBox assertion:

P (DrinkingCo�ee|Student) > 0.3

These assertions state statistical information and usually re-
sult from an experiment or trial. In our research, however,
we are interested in probabilities on assertions coming from
sensors, i.e., the so-called degree of belief. An example of
such a probability is: “The probability that Eric (a particu-
lar student) is drinking coffee is greater than 0.7”; or as a
probabilistic ABox assertion:

P (DrinkingCo�ee(ERIC)) > 0.7

In the latter, we implicitly assume multiple possible worlds
with a probability over these possibilities, properties may
hold in some worlds and not in others, and the probability
of the set of possible worlds in which Eric is drinking co�ee
is greater than 0.7.

In [11], Jaeger combines both probabilities on domains and
degrees of belief by means of cross-entropy minimization,
but does not allow expressing probabilistic knowledge on
role instances. Furthermore, because he took into account
both types of probabilities, his method becomes too complex
for our purpose. A good overview of di�erent approaches on
dealing with uncertainty using DL is given in [2].

3. AN EVENT-BASED PROBABILISTIC
MODEL FOR CONTEXT UNCERTAINTY

Since we are interested in uncertainty of DL concept and role
inclusions and only consider DL ABox assertions which may
contain uncertainty, we explore the probabilistic database
techniques to tackle the probability calculation of concept
and role inclusions.

In the database �eld, there exist two ways for dealing with
uncertainty in the data models, namely, extensional seman-
tics and intentional semantics. The former approach is to
modify the operators of the algebra to compute probabilities.
The problem of this approach is that it ignores most corre-
lations between intermediate results and may give di�erent
results depending on the query plan [6]. These problems
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Person v Thing u = 1 hasRoom.Room ActivityType v Thing

u ∀hasActivityType.ActivityType FreeT imeActivity v ActivityType

u ∀hasFriend.Person Relaxing v FreeT imeActivity

u ∀hasTvInterest.Genre Sporting v FreeT imeActivity

Room v Location Location v Thing

TV Program v Thing u ∃hasGenre.Genre Genre v Thing

hasRoom ≡ roomOf−1 hasTvInterest ≡ tvInterestOf−1

Figure 1: A small ontology example in DL.

are circumvented if intentional semantics are used, which
means keeping track of the events that contribute to a de-
rived fact and determining the probability of the resulting
event expression. This is sometimes considered impracti-
cal since the event expressions can become very large and
calculating the probability from the event expressions is a
NP-complete problem.

In the scope of our study, we regard correlations and con-
straints that exist among concepts and roles highly desir-
able in an AmI environment (e.g., a person can only be at
a single place at one moment). Thus, it is important to
capture and model these correlations without approxima-
tions. Additionally, some e�ective optimization techniques
have already been developed for intentional semantics [9].
For these considerations, we decide to follow the same line
as the intentional semantics. In the following, we �rst re-
examine the notion of probabilistic event developed in [9],
and then describe an event-based probabilistic approach for
representing context uncertainty.

3.1 Interpreting Context using Event Expres-
sions

The basic idea of our context uncertainty model is to view
each context as a probabilistic event, which can be either
basic event or complex event. The event expressions of in-
clusion in an atomic concept ee(D(a)) or role ee(R(a, b)),
as shown in Table 2 correspond a basic event. A combina-
tion of basic events forms a complex event, corresponding
to a DL concept expression where concepts and/or roles are
connected via the DL constructors. The DL special top con-
cept > and bottom concept ⊥ correspond to the special ba-
sic event >

e
(denoting a certain event) and ⊥

e
(denoting an

impossible event), respectively. Each basic event is uniquely
identi�ed by an event identi�er. Let E be the whole set of
basic event identi�ers, including ⊥

e
and >

e
.

We introduce a recursive function ee which maps a a DL
concept expression to an event expression. The de�nition of
the function is pictorially described in Table 1.

Using this function, we can obtain the event expression for
the inclusion of an instance a in the DL concept expression

DL Inclusion event expression
D(a) basic event
R(a, b) basic event
> >

e

⊥ ⊥
e

{b1, . . . , bn
}(a) >

e
, if a ∈ {b1, . . . , bn

}
⊥

e
, otherwise

(¬D)(a) ¬ee(D(a))
(D u E)(a) ee(D(a)) ∧ ee(E(a)))
(D t E)(a) ee(D(a)) ∨ ee(E(a)))
(∃R.D)(a)

∨

b

(ee(R(a, b)) ∧ ee(D(b)))
(∀R.D)(a) ¬(

∨

b

(ee(R(a, b)) ∧ ¬ee(D(b))))

Table 1: Recursive de�nition of function ee, mapping a DL
concept expression to an event expression

Q from equation 1:

ee(Q(a)) =

(a ∈ {ERIC})

∧
∨

b

(ee(hasActivityType(a,b)) ∧ ee(Relaxing(b)))

∧
∨

c

(ee(hasRoom(a, c))

∧ (c ∈ {COFFEEROOM, ROOM3061}))

In this expression we left out the translation of the one-of
construct since it will always result in >

e
or ⊥

e
. We can

immediately see that there is room for optimization, such
as dealing with the boolean result of the one-of-constructs,
which leads to the expression:

∨

b

(ee(hasActivityType(ERIC,b)) ∧ ee(Relaxing(b)))

(2)

∧
∨

c∈{COFFEEROOM,ROOM3061}

(ee(hasRoom(ERIC,c)))

Based on the DL semantics, Table 2 gives a knowledge base
example which complies to the ontology in Figure 1, to-
gether with all the basic event identi�ers and their associ-
ated probabilities. Via the equation 2, we can derive the
following event expression for the DL concept expression in
equation 1.
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Concept Inclusion Basic Event e β(e)
Person(ERIC) >

e
1

Person(PETER) >
e

1
Person(MAARTEN) >

e
1

Relaxing(READING) >
e

1
Relaxing(SLEEPING) >

e
1

Relaxing(DRINKINGCOFFEE) >
e

1
Room(ROOM3061) >

e
1

Room(ROOM4061) >
e

1
Room(COFFEEROOM) >

e
1

(a) Concept inclusion

Role Inclusion Basic Event e β(e)
hasActivityType(ERIC,READING) hAc1 0.3
hasActivityType(MAARTEN,SLEEPING) hAc2 0.7
hasActivityType(ERIC,DRINKINGCOFFEE) hAc3 0.8
hasRoom(ERIC,ROOM3061) hRo1 0.4
hasRoom(ERIC,ROOM4061) hRo2 0.3
hasRoom(ERIC,COFFEEROOM) hRo3 0.3

(b) Role inclusion

Table 2: DL Role and concept inclusions with (basic) event identi�ers and probabilities.

((hAc1 ∧ >
e
) ∨ (hAc3 ∧ >

e
)) ∧ (hRo1 ∨ hRo3)

= (hAc1 ∨ hAc3) ∧ (hRo1 ∨ hRo3) (3)

3.2 Using Probabilistic Events to Represent
Context Uncertainty

In our uncertainty model, only the probabilities of basic
events are given explicitly via a basic event probability as-
signment function β, satisfying the conditions

1. β(⊥
e
) = 0.

2. β(>
e
) = 1.

3. (∀e ∈ (E � {⊥
e
,>

e
})) (0 < β(e) < 1).

From these, probabilities of complex events can be com-
puted. In general, probabilities for event expressions are
given by a general probability assignment function P which
maps an event expression to a value in [0, 1].

The inclusion probability of an individual instance a be-
longing to a concept D is thus given as the P of the event
expression for the inclusion, i.e., P (D(a)) = P (ee(D(a))).

According to Table 2, if we assume independence among all
the tuples (that is, P (e1 ∨ e2) = P (e1) + P (e2) � P (e1) ∗
P (e2) and P (e1 ∧ e2) = P (e1) ∗P (e2)), we can calculate the
probability of the event expression 3:

P ((hAc1 ∨ hAc3) ∧ (hRo1 ∨ hRo3))

= (0.3 + 0.8 � 0.3 ∗ 0.8) ∗ (0.4 + 0.3 � (0.4 ∗ 0.3))

= 0.4988

This is the uncertainty level of the context expression that
“Eric is drinking coffee either in his own room (room 3061)
or in the coffeeroom.” We will discuss the result in case of
non-independence in Section 4.

3.3 Properties of Event Probabilities
We describe the uncertainty of a context (i.e., a DL concept
expression) in terms of the probability of the corresponding
event expression. According to the world model (i.e., on-
tology) in use, the probabilities of DL instance concept/role
inclusions observe the following properties:

C v D =⇒ ∀a(P (ee(C(a))) � P (ee(D(a))))

C ≡ D =⇒ ∀a(P (ee(C(a))) = P (ee(D(a))))

R ≡ S =⇒ ∀a, b(P (ee(R(a, b))) = P (ee(S(a, b))))

R v S =⇒ ∀a, b(P (ee(R(a, b))) � P (ee(S(a, b))))

where C and D are DL concepts, R and S are DL roles, and
a and b are DL concept instances.

When multiple sensors give conflicting context information,
these properties could facilitate the normalization of proba-
bilities. A speci�c case is that when the ontology de�nes a
number restriction for a DL role such as:

Person v = 1 hasRoom.Room

and we know that instance a is a person. This means that
P (ee(Person(a))) = 1 and implies:

P (ee((= 1 hasRoom.Room)(a))) ≥ 1

We interpret this as that for each possible world, instance
a should be in exactly one room, and hence, two events
indicating two di�erent rooms for a will be disjoint. Fur-
thermore, the instance a should be in one room in every
possible world and thus the probabilities of the events of a
being in di�erent rooms should add up to 1.

In principle, our uncertain context model is supported by the
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three pillar functions, that is, function ce (which projects
a context to a DL concept expression), function ee (which
maps a DL concept expression to an event expression); and
P (which associates a probability with an event expression).

4. INFLUENCES OF EVENT CORRELATIONS
ON CONTEXT UNCERTAINTY

Given the fact that many important properties in the do-
main of context-awareness are usually dependent of each
other (e.g. a person can only be at a single location at one
time), it is necessary to take into account the correlations
among basic events. Often these correlations are determined
from statistical analysis which is impractical to do when de-
ploying a context-aware system. However, many useful de-
pendencies for context-awareness can already be acquired
from the ontology using inference. In our current study, we
consider the following four event correlations:

Disjointness when two events by de�nition cannot happen
at the same time. E.g., if someone is at a certain room,
s/he cannot be at another room at the same time.

Inclusion a special kind of positive correlation where in
case one event happens, by de�nition, the other hap-
pens as well. E.g., if someone is at a room, then s/he is
also located in the building which contains this room.

Identicalness when two events by de�nition always hap-
pen together. E.g., one could de�ne that a person is
drinking co�ee, if and only if s/he is in the co�ee room.
In this situation, the event “drinking coffee and “being
in the coffee room are identical.

Independence when the occurrence of one event does not
say anything about the occurrence of the other. E.g.,
the TV interests of a person are (probably) not depen-
dent on the room that s/he is in.

We will take these dependencies into account when calcu-
lating probabilities of events. The �rst three correlations
can be inferred according to the DL ontology. When none
of these three is speci�ed, we assume the independence re-
lationship.

Table 3 illustrates the influence of correlations between two
events (e1 and e2) on probability calculation. It is adapted
from [14].

Correlation Probability
Disjointness P (e1 ∧ e2) = 0
Negatively correlated P (e1 ∧ e2) < P (e1) ∗ P (e2)
Independent P (e1 ∧ e2) = P (e1) ∗ P (e2)
Positively correlated P (e1 ∧ e2) > P (e1) ∗ P (e2)
Identical P (e1 ∧ e2) = P (e1) = P (e2)

Table 3: Event correlation vs. probability adapted from [14]

For practical purposes, we will only consider dependencies
between two events. There could be dependencies among
more events de�ned by the ontology, however this would
mean for each event expression of n events, comparing a
maximum of 1

2
2n combinations instead of the maximum of

X

ei ei+1

Figure 2: Correlation of two disjoint basic events e
i
and e

i+1

and an event expression X.

(

n

2

)

when only considering dependencies between two events.
Furthermore, dependencies among more than two events are
much less likely to have a big influence on the resulting prob-
ability of the event expression.

To derive these correlations from the ontology, we can for
each two events construct two concepts and query the rea-
soner if they are disjunct, identical, or included in each
other. For example, for the events hRo1 and hRo3 as taken
from Table 2b, we could ask the reasoner
if the concepts {ERIC} u ∃hasRoom.{ROOM3061}
and {ERIC}u∃hasRoom.{COFFEEROOM} are disjunct.
This is the case since according to the ontology a person can
only be at one room (Person v = 1 hasRoom.Room) and
we assume that distinct individual names denote distinct ob-
jects (unique naming assumption) which means ROOM3061
is di�erent from COFFEEROOM . Although calculating
these correlations seems impractical for large numbers of in-
stances and events, we expect optimization strategies such
as the pre-calculation of disjunctions or addressing multiple
dependent events at the same time to speed up this process
to make it worthwhile. In this paper, we only show that
proper dependency calculation is possible.

Now that we explained how inclusion, disjunction, and iden-
ticalness can be acquired from the ontology, we have to
look at the influence of these correlations on the calcula-
tion of event probabilities. For this, we rewrite the result-
ing complex event to its equivalent disjunctive normal form.
Disjunctive normal form (DNF) is a disjunction consisting
of one or more conjunctions of one or more literals where
the not operator can only be used as part of a literal (e.g.
(e1 ∧ e2 ∧ e3)∨ (e1 ∧¬e2 ∧ e3)∨ (e1 ∧ e2 ∧¬e3)). We require
each conjunct to contain each basic event exactly once either
in positive or in negative form, which makes them so-called
complete conjuncts [9]. Since all conjuncts are complete,
they will be disjoint and the probability of the complex event
is equal to the sum of probabilities of the di�erent conjuncts.

Since each literal is equal to a basic event or its negation,
we address the dependencies by using rewrite rules on the
probability of the complete conjuncts. These rewrite rules
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X

ei+1
ei

Figure 3: Correlation of two basic events e
i
and e

i+1 (where
e

i
includes e

i+1) and an event expression X.

are straightforward applications of basic probability theory.
For this, we compare each event with all other events in its
conjunct. Let e

i
and e

i+1 be two basic event expressions,
and X can be either a basic or complex event expression. In
case an event e

i
is disjoint from event e

i+1 (see Figure 2),
we apply the following rewrite rules:

P (X ∧ ¬e
i
∧ ¬e

i+1) = P (X) (4)

� (P (X ∧ e
i+1) + P (X ∧ e

i
))

P (X ∧ ¬e
i
∧ e

i+1) = P (X ∧ e
i+1) (5)

P (X ∧ e
i
∧ ¬e

i+1) = P (X ∧ e
i
) (6)

P (X ∧ e
i
∧ e

i+1) = 0 (7)

If event e
i

includes event e
i+1 (see Figure 3) the rewrite

rules are as follows:

P (X ∧ ¬e
i
∧ ¬e

i+1) = P (X ∧ ¬e
i
)

P (X ∧ ¬e
i
∧ e

i+1) = 0

P (X ∧ e
i
∧ ¬e

i+1) = P (X) � P (X ∧ e
i
) + P (X ∧ e

i+1)

P (X ∧ e
i
∧ e

i+1) = P (X ∧ e
i
)

Finally, if the events e
i

and e
i+1 are identical, we rewrite

the probability of the conjunct as follows:

P (X ∧ ¬e
i
∧ ¬e

i+1) = P (X ∧ ¬e
i
)

P (X ∧ ¬e
i
∧ e

i+1) = 0

P (X ∧ e
i
∧ ¬e

i+1) = 0

P (X ∧ e
i
∧ e

i+1) = P (X ∧ e
i
)

We apply these rewrite rules as long as there are correlated
basic events in one of the conjuncts. Since in each step ba-
sic events are removed from the conjuncts, after applying
the above rules, the basic events in each of the conjuncts
will be independent of each other. In this case we can use

techniques for independent events [9] where the probability
of each conjunct is calculated by taking the product of the
probability of the literals contained in the conjunct. The
probability of a literal is equal to the one minus the prob-
ability of its basic event (as given by β) if the basic event
is negated and equal to the probability of the basic event,
otherwise. After obtaining the probabilities of all the con-
juncts, we can sum them up to determine the probability of
the complex event.

As an example, let’s look at the complex event in the previ-
ous section (hAc1 ∨ hAc3) ∧ (hRo1 ∨ hRo3). According to
the ontology of Figure 1 in this expression hRo1 and hRo3
are disjoint and we will consider other events to be indepen-
dent. If we rewrite this expression in DNF using complete
conjuncts, we get:

(hAc1 ∧ hRo3 ∧ hAc3 ∧ hRo1)

∨ (hAc1 ∧ hRo3 ∧ hAc3 ∧ ¬hRo1)

∨ (hAc1 ∧ hRo3 ∧ ¬hAc3 ∧ hRo1)

∨ (hAc1 ∧ hRo3 ∧ ¬hAc3 ∧ ¬hRo1)

∨ (hAc1 ∧ hRo1 ∧ hAc3 ∧ ¬hRo3)

∨ (hAc1 ∧ hRo1 ∧ ¬hAc3 ∧ ¬hRo3)

∨ (hAc3 ∧ hRo1 ∧ ¬hAc1 ∧ hRo3)

∨ (hAc3 ∧ hRo1 ∧ ¬hAc1 ∧ ¬hRo3)

∨ (hAc3 ∧ hRo3 ∧ ¬hAc1 ∧ ¬hRo1)

The probability of this expression will be equal to:

P (hAc1 ∧ hRo3 ∧ hAc3 ∧ hRo1) (8)

+ P (hAc1 ∧ hRo3 ∧ hAc3 ∧ ¬hRo1) (9)

+ P (hAc1 ∧ hRo3 ∧ ¬hAc3 ∧ hRo1) (10)

+ P (hAc1 ∧ hRo3 ∧ ¬hAc3 ∧ ¬hRo1) (11)

+ P (hAc1 ∧ hRo1 ∧ hAc3 ∧ ¬hRo3) (12)

+ P (hAc1 ∧ hRo1 ∧ ¬hAc3 ∧ ¬hRo3) (13)

+ P (hAc3 ∧ hRo1 ∧ ¬hAc1 ∧ hRo3) (14)

+ P (hAc3 ∧ hRo1 ∧ ¬hAc1 ∧ ¬hRo3) (15)

+ P (hAc3 ∧ hRo3 ∧ ¬hAc1 ∧ ¬hRo1) (16)

Conjuncts where we have the disjoint terms hRo1 and hRo3
in positive form evaluate to zero according to equation 7.
This means that the probabilities of term 8, 10, and 14 are
zero, leading to the following equation:
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0

+ P (hAc1 ∧ hRo3 ∧ hAc3 ∧ ¬hRo1)

+ 0

+ P (hAc1 ∧ hRo3 ∧ ¬hAc3 ∧ ¬hRo1)

+ P (hAc1 ∧ hRo1 ∧ hAc3 ∧ ¬hRo3)

+ P (hAc1 ∧ hRo1 ∧ ¬hAc3 ∧ ¬hRo3)

+ 0

+ P (hAc3 ∧ hRo1 ∧ ¬hAc1 ∧ ¬hRo3)

+ P (hAc3 ∧ hRo3 ∧ ¬hAc1 ∧ ¬hRo1)

Furthermore, we can apply equation 5 and 6 to remove from
the conjunctions in which one of the disjoint terms (hRo1
and hRo3) appears in positive form and the other one in
negative form, the negative one:

P (hAc1 ∧ hRo3 ∧ hAc3)

+ P (hAc1 ∧ hRo3 ∧ ¬hAc3)

+ P (hAc3 ∧ hRo3 ∧ ¬hAc1)

+ P (hAc1 ∧ hRo1 ∧ hAc3)

+ P (hAc1 ∧ hRo1 ∧ ¬hAc3)

+ P (hAc3 ∧ hRo1 ∧ ¬hAc1)

In the resulting equation, there are no more ontology-related
correlations between two events. Because we assume inde-
pendence among the rest of the events, we can multiply the
probability of the basic events contained in the probabilities
resulting in the following expression:

0.3 ∗ 0.3 ∗ 0.8

+ 0.3 ∗ 0.3 ∗ (1 � 0.8)

+ 0.8 ∗ 0.3 ∗ (1 � 0.3)

+ 0.3 ∗ 0.4 ∗ 0.8

+ 0.3 ∗ 0.4 ∗ (1 � 0.8)

+ 0.8 ∗ 0.4 ∗ (1 � 0.3)

= 0.602

This result is, as expected, more than the result given in the
previous section, where independence was assumed among
all the basic events.

5. CONCLUDING REMARKS
In this paper we presented an approach for dealing with un-
certainty in context information using event probabilities.
For this we adapted the method from [9] of using inten-
tional semantics for use with Description Logics. This way
of looking at uncertainty gives us the opportunity to cor-
rectly model correlations between events, which are consid-
ered especially important for context information. Further-
more, we showed how these correlations can be modeled in,
and acquired from, a Description Logics ontology. Finally,

we demonstrated how these correlations can lead to rewrite
rules for event expressions to determine the resulting prob-
ability of a complex event.

Our future work will focus on testing the feasibility of the
approach by applying it to realistic data sets and context de-
scriptions, which will include looking at optimization strate-
gies. In addition, we will use the results of this study to
realize context-aware data management systems under the
assumption of uncertain context.
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Abstract. We hypothesize that an extension-
with-conditioning of Dempster-Shafer theory is
suitable for encoding uncertainty and ignorance
in the Relational Model. We present a formal
and well-motivated definition of conditioning, and
show the spirit of the required change in the Re-
lational Model and some results that then follow.
It remains to be investigated whether these re-
sults are satisfactory.

Introduction

1 Ignorance

Ignorance is closely related to uncertainty. Commonly, we
say that a property is uncertain if it is not considered true
or false but, instead, it is assigned a probability of being
true. Now consider a set of exhaustive and mutually dis-
joint properties. Probability theory requires that the prob-
abilities assigned to these properties add up to 1. Ignorance
is the phenomenom that the “probabilities” do not add up
to 1. Formally, one axiom of probability theory is not ful-
filled, and hence we speak of belief instead of probability.
Dempster-Shafer theory gives a proper formalization (sum-
marized in paragraph 8–10), and we shall build upon that
theory (paragraph 11–15).

2 Setting

Our work is an attempt to improve upon Choenni et al. [1, 2]
in the following aspects: a more fundamental approach and
better motivated definition of conditioning, and a better for-
malization of an extension of the Relational Model in order
to deal with ignorance. We borrow the following example
from Choenni [1], and take it to be the leading example.

3 Example: CIA

The ship type department of the CIA has 0.6 evidence that
the type of ship Maria is Frigate, and 0.3 evidence that it
is Tugboat ; for the remaining 0.1 there is ignorance. This is
encoded in the one-row table SHIP below at the left. The

type speed department of the CIA has evidence that 30%
of the frigates has a max speed of 20 knots, and 70% has
30 knots, whereas all tugboats have a 15 knots max speed.
This is encoded in the two-row table DESC ription at the
right:

SHIP
Name Type
Maria Frigate 7→ 0.6

Tugboat 7→ 0.3

* 7→ 0.1

DESC
Type Speed
Frigate 20K 7→ 0.3

30K 7→ 0.7
Tugboat 15K 7→ 1.0

For the purpose of decision making, the US government re-
quests to join the information. Here are two candidate re-
sults that they might get offered:

join candidate 1
Name Type Speed
Maria Frigate 20K 7→ 0.18

Frigate 30K 7→ 0.42
Tugboat 15K 7→ 0.3

* * 7→ 0.1

join candidate 2
Name Type Speed
Maria Frigate 20K 7→ 0.18

Frigate 30K 7→ 0.42
Tugboat * 7→ 0.3

* 20K 7→ 0.03

* 30K 7→ 0.07
Maria Frigate * 7→ 0.6

Tugboat 15K 7→ 0.3

* 15K 7→ 0.1

The one-row table join candidate 1 is obtained by “intuitive
combination”. However, the information in this table is too
weak in the sense that the probability of “the max speed of
Maria is 20K” has an upperbound (when all ignorance goes
to this case) of 0.18 + 0.1 = 0.28, whereas that upperbound
is 0.6×0.3+0.1×0.3 = 0.21 according the original SHIP and
DESC .

The two-row table join candidate 2 is proposed by Choenni
et al. [1]. This information is too strong : The first row of
the table expresses that the probability of “the max speed of
Maria is 20K” has a lowerbound (when all ignorance about
the speed is not in favor of this case) of 0.18 + 0.03 = 0.21,
whereas that lowerbound is only 0.6×0.3 = 0.18 according
to SHIP informally joined with DESC .
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4 Goal, plan

Our goal is to extend the Relational Model and relational
operators (like projection, selection, and in particular the
join) in such a way that we can offer the US government
the right information. Moreover, we should also be able to
relate in a formal way the above candidate joins to “the cor-
rect join” of SHIP and DESC . The next paragraph gives
the outline of the theory that we want to develop, and para-
graph 6 discusses the previous example in the theory that
we envisage.

5 Hypothesis, focus

In order to deal with uncertainty and ignorance, Dempster
has weakened probability theory to what currently is known
as Dempster-Shafer theory. The primary notion is bpa (ba-
sic probability assignment), from which the notions of belief,
plausibility, and ignorance can be defined; and conversely.
Our hypothesis is that an extension of Dempster-Shafer the-
ory provides a solution for the problem how to deal with
uncertainty and ignorance in the Relational Model, and we
want to investigate this hypothesis. The main line, then is
as follows.

In the leading example of paragraph 3, we start out with
bpa’s as attribute values in the table, and observe that all
our attempts for a join lead to a table with a “bpa covering
several attributes”, which we call tupled-bpa, or just t-bpa
for short. It can be shown that this generalization (our gen-
eralization!) of bpa to t-bpa is not essential: t-bpa’s can be
expressed as bpa’s (though at considerable loss of readabil-
ity), and vice versa. Continuing with taking joins of the
resulting table with other tables will lead to tables in which
t-bpa’s cover more and more attributes. Therefore we gen-
eralize the notion of relation right away to one where each
row is a t-bpa.

Moreover, we see that in Choenni’s attempt the failure is
due to the omission of a condition in the bpa: the 0.03 ev-
idence for max speed 20K cannot be given unconditionally,
but is only valid if it is known that the type is Frigate.
Therefore we generalize right away to one where each row
is a “conditioned t-bpa”, or ct-bpa for short; the definition
of “conditioned bpa” (or conditioned t-bpa) is new and is
the focus is this paper. This notion of conditioning differs
entirely from the notion of conditioning brie°y discussed by
Shafer [3], from the notion defined by Choenni [1, 2], and
from the notion of conditioning as known in probability the-
ory.

6 Envisaged solution

Once the conditioning (and tupling) extension to Dempster-
Shafer theory has been developed and, based on this, also a
new Relational Model, we expect to be able to deal formally
with the example in the following way.

To deal with uncertainty and ignorance is quite straightfor-
ward: let each row in each table be a ct-bpa. We call such
relations: ui-relations, where the letters ‘ui’ derive from ‘un-
certainty and ignorance’. For example, we encode the one-
row table SHIP of paragraph 3 as an ui-relation with one

row (that is, one ct-bpa) with the following pretty-print:

SHIP ′

Name Type Name Type

* Frigate | Maria * 7→ 0.6

* Tugboat | Maria * 7→ 0.3

* * | Maria * 7→ 0.1

Fully written out the relation reads as in Figure 1.

Each star, ¤, is pronounced “unknown” and stands for the
entire domain of the corresponding attribute: the Name-star
stands for {Maria, . . .}, the Type-star stands for {Frigate,
Tugboat , . . .}, and so on. The meaning of the first line of the
above one-row relation is, roughly: “there is evidence 0.6
for that the type is Frigate on the condition that the ship is
Maria. More precisely, the line means:

There is evidence 0.6 for the property

(Name,Type) ⊆ (unknown, {Frigate})

on the condition that

(Name,Type) ⊆ ({Maria}, unknown)

is true.

Here it is understood that (U ,V ) ⊆ (X ,Y ) means: U⊆X ∧
V⊆Y .

So, the one-row ui-relation SHIP ′ given above encodes that
the ship type department of the CIA has 0.6 evidence that
the type of a ship is Frigate if its name is Maria, and 0.3
evidence that it is Tugboat ; for the remainder there is igno-
rance.

Further, the type speed department of the CIA has evidence
that 30% of the frigates has a max speed of 20 knots, and
70% has 30 knots, whereas all tugboats have a 15 knots max
speed. This is encoded in the two-row ui-relation with the
following pretty-print:

DESC ′ Type Speed Type Speed

* 20K | Frigate * 7→ 0.3

* 30K | Frigate * 7→ 0.7

* 15K | Tugboat * 7→ 1.0

For the purpose of decision making, the US government re-
quests to join the information. Here is what they get:

SHIP ′ ./DESC ′

Name Type Speed Name Type Speed

* Frigate 20K | Maria * * 7→ 0.18

* Frigate 30K | Maria * * 7→ 0.42

* Tugboat * | Maria * * 7→ 0.3

* * 20K | Maria Frigate * 7→ 0.03

* * 30K | Maria Frigate * 7→ 0.07

* Frigate * | Maria * * 7→ 0.6

* Tugboat 15K | Maria * * 7→ 0.3

* * 15K | Maria Tugboat * 7→ 0.1

Note the last two lines of the first row, and the last line of
the second row: these say that the ship type is unknown
but yet the speed is certain to some degree if the type
happens to be frigate or tugboat, respectively. (And if
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{
({Name 7→ *, Type 7→ {Frigate}} | {Name 7→ {Maria}, Type 7→ *}) 7→ 0.6,
({Name 7→ *, Type 7→ {Tugboat}} | {Name 7→ {Maria}, Type 7→ *}) 7→ 0.3,
({Name 7→ *, Type 7→ * } | {Name 7→ {Maria}, Type 7→ *}) 7→ 0.1
}

Figure 1: Fully written-out one-row ui-relation SHIP ′ (see paragraph 6).

the condition is not fulfilled, the evidence supports just
unknown — see paragraph 12.) In order to eliminate this
fine-grained conditioned information and obtain information
that is somewhat easier to understand for the US govern-
ment, we can weaken each row by “condition-restricting it
to {Name}”, that is, replacing all conditions except Name
by unknown, which we will be able to denote formally by
({Name}Jc) * (SHIP ′ ./DESC ′):

Name Type Speed Name Type Speed

* Frigate 20K | Maria * * 7→ 0.18

* Frigate 30K | Maria * * 7→ 0.42

* Tugboat * | Maria * * 7→ 0.3

* * * | Maria * * 7→ 0.03+0.07

* Frigate * | Maria * * 7→ 0.6

* Tugboat 15K | Maria * * 7→ 0.3

* * * | Maria * * 7→ 0.1

Taking the “least upper bound” of the two rows gives the
following one-row ui-relation:

Name Type Speed Name Type Speed

* Frigate 20K | Maria * * 7→ 0.18

* Frigate 30K | Maria * * 7→ 0.42

* Tugboat 15K | Maria * * 7→ 0.3

* * * | Maria * * 7→ 0.1

As observed in paragraph 3 this information is too weak.

Phrased in our concepts, the kind of join that Choenni [1]
(and [2]?) proposes, yields for SHIP ′ and DESC ′ the fol-
lowing ui-relation (again, compare with paragraph 3):

Name Type Speed Name Type Speed

* Frigate 20K | Maria * * 7→ 0.18

* Frigate 30K | Maria * * 7→ 0.42

* Tugboat * | Maria * * 7→ 0.3

* * 20K | Maria * * 7→ 0.03

* * 30K | Maria * * 7→ 0.07

* Frigate * | Maria * * 7→ 0.6

* Tugboat 15K | Maria * * 7→ 0.3

* * 15K | Maria * * 7→ 0.1

As observed in paragraph 3 this information is too strong.

The well-known Dempster-Shafer theory

Although in the running example there are three domains
(Name, Type, and Speed), Dempster-Shafer theory deals
only with one domain. This restriction is without loss of
generality, as discussed in paragraph 15.

7 Notational conventions

We consider functions to be sets of argument-result pairs,
and use the notation x 7→ y as a suggestive synonym for the
pair (x , y). So, the set {a 7→ 3, b 7→ 2, c 7→ 3} is a function
that maps a to 3, maps b to 2, and c to 3. For summation
we use a notation without subscripting:

Σ x , y • expr(x , y) Σ x , y | cond(x , y) • expr(x , y)
= Σx ,y expr(x , y) = Σx ,y s. th. cond(x ,y) expr(x , y)

We do so because in some cases the ‘x , y | cond(x , y)’ part is
just too large to be written as a subscript (see for example
paragraph 13).

In the context of a set D we let P ,Q vary over subsets of D ,
that is, P ,Q :

�
D , and we sometimes write * for D .

8 Basic probability assignment

For the reader not familiar with Dempster-Shafer theory,
we provide an intuition in the appendix paragraph 18. We
build on this intuition later when we generalize the theory
with conditioning.

Let D be a finite set. A basic probability assignment over D ,
abbreviated bpa, is a total function m :

�
D � [0, 1] satisfy-

ing:

m P = 0 whenever P = �
ΣP • m P = 1

The latter equation means that the sum of values m P , for
all subsets P of D , equals 1.

Sometimes, a bpa is called a mass function, hence letter m
for bpa’s. We omit the entries {. . .} 7→ 0 in the presentation
of a bpa. A bpa m induces a belief Bel , a plausibility Pl ,
and an ignorance Ig as total functions of type

�
D � [0, 1]

as follows:

Bel P = ΣP ′ | P ′ ⊆ P • m P ′

Pl P = 1− Bel(D \ P)
Ig P = Pl P − Bel P

A single value d ∈ D may be considered as a bpa, namely
the bpa md that maps every P ⊆ D to zero except P = {d},
that is, md = {{d} 7→ 1}.

9 Example

Department m of the CIA has 0.6 evidence that the type of
a certain ship is Frigate, and 0.3 evidence that it is Tugboat ;
for the remainder there is ignorance. The department is
characterized as follows, as a bpa over {Frigate,Tugboat , . . .}:

m = {{Frigate} 7→ 0.6, {Tugboat} 7→ 0.3, * 7→ 0.1}

Recall that * stands for the full set {Frigate,Tugboat , . . .}.
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10 Combination of bpa’s

Dempster defines a combination ⊕ of bpa’s, now commonly
known as Dempster’s combination rule, or orthogonal sum.
We give the formal definition here, and our intuition in ap-
pendix paragraph 19. We build on this intuition later when
we generalize the theory with conditioning.

Let m1 and m2 be bpa’s over D . If constant κ, defined below,
equals 0, then the combination of m1 and m2 is said not to
exist; if κ differs from 0, then the combination m1 ⊕m2 is a
bpa over D defined as follows:

(m1 ⊕m2)P = 0 if P = � , else:
(m1 ⊕m2)P = (ΣP1,P2 | P1∩P2=P • m1 P1 ×m2 P2)/κ
where
κ = (ΣP1,P2 | P1∩P2 6= � • m1 P1 ×m2 P2)

It is easily checked that whenever m1 ⊕ m2 is defined, it
is a bpa; notice that κ equals “the sum of all m1 ⊕ m2-
results if normalization ‘/κ’ were left out of ⊕’s definition”.
More precisely, κ = “the above (Σ . . .) except that part
‘P1 ∩ P2 = P ’ is extended with ‘for some P 6= � ’. ”

Generalization: Conditioning (and Tupling)

11 Conditioned bpa

Let D be a finite set. A conditioned bpa over D , c-bpa for
short, is a total function m : D ×D � [0, 1] such that:

m (P | Q) = 0 whenever P ∩Q = �
ΣP ,Q • m (P | Q) = 1

Consistent with common practice in probability theory, we
separate the two arguments of a c-bpa with a ‘|’ rather than
a comma, and interpret the second one as the condition and
the first one as the conclusion.

The belief, plausibility, and ignorance induced by m are de-
fined as follows:

Bel (P | Q) = ΣP ′,Q ′ | P ′⊆P ∧ Q ′⊇Q • m (P ′ | Q ′)
Pl (P | Q) = 1− Bel (D \ P | Q)
Ig (P | Q) = Pl (P | Q)− Bel (P | Q)

12 Interpretation

A c-bpa m is interpreted as an agent, having conditioned
evidences. Specifically, the statement m (P | Q) = x is
interpreted as follows:

Agent m has evidence x supporting just P provided
that a proposition fromQ is true; if the condition is not
fulfilled, the evidence supports just D unconditionally.

Due to the exhaustiveness of the set D of propositions, there
cannot be any evidence for P | Q in case P ∩ Q is empty.
The interpretation of the condition plays also an important
role in the combination of two c-bpa’s.

13 Combination of c-bpa’s

Let m1 and m2 be c-bpa’s over D . If constant κ defined be-
low equals 0, then the combination of m1 and m2 is said not
to exist; if κ differs from 0, then the combination m1⊕m2 is

a c-bpa over D defined as follows — with an indispensable(!)
explanation following the de¯nition:

(m1 ⊕m2)(P | Q) = 0 if P ∩Q = � else:
(m1 ⊕m2)(P | Q) =

(Σ P1,Q1,P2,Q2

| P ′
1 ∩ P ′

2 = P ∧ Q ′
1 ∩Q ′

2 = Q
where
P ′

1,Q
′
1 = (if Q1 ⊆ D\P2 then * , *

if P2 ⊆ Q1 6⊆ D\P2 then P1, *
if P2 6⊆ Q1 6⊆ D\P2 then P1,Q1 ),

P ′
2,Q

′
2 = (if Q2 ⊆ D\P1 then * , *

if P1 ⊆ Q2 6⊆ D\P1 then P2, *
if P1 6⊆ Q2 6⊆ D\P1 then P2,Q2 )

• m1 (P1 | Q1)×m2 (P2 | Q2)
) / κ

The first clause is an immediate consequence of the obser-
vation in paragraph 12. We shall now explain the second
clause. Let P ,Q be arbitrary with non-empty intersection.
The summation constraint in between ‘|’ and ‘•’ character-
izes the possible P1 | Q1 and P2 | Q2 that in combination
support just P | Q ; precisely for these P1,Q1,P2,Q2 the
product m1(P1 | Q1) × m2(P2 | Q2) is taken into the sum-
mation for P | Q . We explain the characterization of P1,Q1

only; the characterization of P2,Q2 is similar.

In the general case, the evidence that agents 1 holds
in support for P1 | Q1 will, in combination with the
other agent, support just P1 ∩ ... | Q1 ∩ ... (where the
dots ... stand for the contribution of the other agent):
the intersection in the conclusion is the same one as
for normal bpa’s, and the intersection in the condition
expresses a conjunction of the conditions. However,
for agent 1 there are two circumstances that lead to a
change of its contribution in the combination.

• First, agent 1’s condition Q1 might be inconsistent
with the other agents conclusion P2 (Q1 ∩ P2 = �
or, equivalently, Q1 ⊆ D\P2). The interpretation of
paragraph 12 says: “if the condition is not fulfilled,
the evidence supports just D unconditionally.” So,
agent 1’s evidence supports, in the combination, just
P ′

1 ∩ ... | Q
′
1 ∩ ... where P ′

1,Q
′
1 = *, *. This is covered

by the first branch for P ′
1,Q

′
1.

• Second, agent 1’s condition Q1 might be implied by
the other agents conclusion P2 (P2 ⊆ Q1 or, equiva-
lently, P2 ⊆ Q1 6⊆ D\P2). In the combination, then,
condition Q1 is fulfilled and may be weakened to *. So,
agent 1’s evidence supports, in the combination, just
P ′

1 ∩ ... | Q
′
1 ∩ ... where P ′

1,Q
′
1 = P1, *. This is covered

by the second branch for P ′
1,Q

′
1.

Note. Recall that the condition of m1 requests
the truth of a member in Q1 whereas P2 ⊆ Q1

only asserts some evidence supporting Q1. Yet,
the condition is discarded, by putting Q ′

1 = *.
This is justified since the combination m1 ⊕ m2

doesn’t assert any truth but only some evidence.

• In the remaining (“general”) case, as we have said
above, agent 1’s evidence supports, in the combination,
just P ′

1 ∩ ... | Q
′
1 ∩ ... where P ′

1,Q
′
1 = P1,Q1. This is

covered by the third branch for P ′
1,Q

′
1.
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It remains to define κ; it must make the total sum over
m1 ⊕ m2 equal to one. Hence, κ is defined to be “the sum
of all m1 ⊕m2-results if normalization ‘/κ’ were left out of
⊕’s definition”. Equivalently, take κ = “the above (Σ . . .)
except that part ‘P ′

1 ∩ P ′
2 = P ∧ Q ′

1 ∩ Q ′
2 = Q ’ is extended

with ‘for some P ,Q with P ∩Q 6= � ’. ”

14 Example

Take D to be a set of numbers, partitioned into small and
large, with tiny ⊂ small and huge ⊂ large, and let even,
odd , prime have their conventional meaning. Consider the
following c-bpa’s:

m1 = {(small | *) 7→ 0.4, (huge | prime) 7→ 0.6}
m2 = {(even | large) 7→ 0.3, (odd | tiny) 7→ 0.7}

Then the combination m1 ⊕m2 is computed as follows:

small | * 0.4 small ∩ * | * ∩ * small ∩ odd | * ∩ tiny

huge | prime 0.6 — (see note †) huge ∩ * | prime ∩ *

0.3 0.7

m1

~

w m2 =⇒ even | large odd | tiny

Note †: huge ∩ even | prime ∩ * is discarded since
huge ∩ even ∩ prime ∩ * = �

For the upper-left rectangle of the “square”, note that m1’s
condition * is implied by m2’s conclusion even (that is,

* ⊇ even), so m1’s evidence for small | * is dealt with as
small | * in the combination (the * is discarded and replaced
by *); further, m2’s condition large is inconsistent with m1’s
conclusion small (they have an empty intersection), hence
m2’s evidence for even | large is dealt with in the combina-
tion as * | *. Similarly for the lower-right rectangle. For
the upper-right rectangle, note that m1’s condition * is im-
plied by m2’s conclusion odd (that is, * ⊇ odd), so that m1’s
evidence for small | * is dealt with as small | * in the com-
bination (the * is discarded and replaced by *); and further,
m2’s condition tiny is not implied by m1’s conclusion small
and these two are not inconsistent (tiny ∩ small 6= � ), so
m2’s evidence for odd | tiny is dealt with unchanged in the
combination. For the lower-left rectangle, we have the same
situation as for the upper-right rectangle. However, since
huge ∩ even ∩ prime ∩ * = � (that is, “P ∩Q = � ” — there
are no huge even primes), the evidence for the combined
case huge ∩ even | prime ∩ * must be zero by definition of
the notion of c-bpa. All together:

m1 ⊕m2 = { (small | *) 7→ 0.12/κ,
(small ∩ odd | tiny) 7→ 0.28/κ,
(huge | prime) 7→ 0.42/κ }

where
κ = 0.12 + 0.28 + 0.42

15 Tupling

So far, the formal definitions assume that there is a sin-
gle domain of discourse, D . However, in the CIA-example
there are clearly several distinct domains: Name, Type, and
Speed . In order to deal with such a situation, we need to ex-
tend Dempster-Shafer theory, and our generalization with

conditioning, in such a way that several domains can be
dealt with simultaneously. This is achieved by the notion of
“tupled-bpa” (t-bpa, for short). It is not hard to do so, but
space limitations do not permit us to give the details.

In fact, the notion of t-bpa is super°uous in the sense that
normal bpa’s can already express (although in a rather com-
plicated and unpractical way) what we wish to express with
t-bpa’s. This came for us as a little surprise, because in
general

�
D1 × · · · ×

�
Dn and

�
(D1 × · · · × Dn) are quite

different; the explanation, however, is that the former can
be embedded in the latter. For example, take t-bpa m over
D = (D1,D2) as follows:

m = {. . . , ({a, b, c}, {p, q}) 7→ x , . . .}

This m can be viewed as denoting the following normal bpa
m ′ over D ′ = D1 ×D2:

m ′

= {..., {a, b, c} × {p, q} 7→ x , ...}
= {..., {(a, p), (a, q), (b, p), (b, q), (c, p), (c, q)} 7→ x , ...}

So, m ′ maps a subset P of D1×D2 to 0 except when P
happens to be equal to π1P × π2P , in which case m ′ P = x
iff m(π1P , π2P) = x — where πi is the projection of a set
of tuples to coordinate i , that is, πi P = {(x1, x2) : P • xi}.
Formally, the normal bpa m ′ that represents the t-bpa m,
is defined as follows:

m ′ P = if P = π1 P × π2 P then m (π1 P , π2 P) else 0

The construction is fully general, as can be proved formally.

Similarly for the combination of conditioning and tupling:
ct-bpa. Again, space restrictions do not permit us to give
the details.

Extending the Relational Model
Having generalized Dempster-Shafer theory with condition-
ing and extended it with tupling as well, the formal defini-
tions of the well-known classical Relational Model and our
new one look very similar — even for the join operation.
This is one half of our goal (the other half being the condi-
tion that conditioning expresses indeed what we intuitively
wish to express). We want to show the similarity here, in
particular for the join operation, without intending or at-
tempting to explain the formulas. For the die-hards that
nevertheless do want to understand every detail (which is
not necessary to observe the similarity!), we provide some
missing definitions in the appendix: paragraph 21–23.

16 The classical Relational Model

Let (A,D) be a schema (definition omitted). A relation over
(A,D) is a subset of ΠAD (definition omitted). We let R
vary over relations, and r over members of R. Then we
define:

Projection πBR = {r : R • B � r}
Transformation f * R = {r : R • f r}
Selection σPR = {r : R | r ∈ P} = R ∩ P

Join. For i = 1, 2, let (Ai ,Di) be a schema, and Ri be
a relation over (Ai ,Di) such that the domain assignments
agree on the common attributes: D1 a = D2 a for all a in
A1 ∩A2. Then:

R1 ./ R2 =
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{r1 : R1; r2 : R2 | “function r1 ∪ r2 exists” • r1 ∪ r2}

Recall that functions are sets of argument-result pairs, so
that for functions f and g the union f ∪ g is a well-defined
set; it denotes a function again if f and g agree on their
common arguments. So, since D1 and D2 are assumed to
yield the same results on A1 ∩ A2, the expression D1 ∪ D2

denotes a proper function. If some D1 and D2 have a differ-
ent domain for some common attribute a, then R1 ./ R2 is
not defined. Note that, here, the condition “function r1 ∪ r2
exists” formally means: (∀ a : A1 ∩ A2 • r1 a = r2 a). The
join is a relation over (A1 ∪A2,D1 ∪D2).

17 Relations with uncertainty and ignorance

Let (A,D) be a finite schema. A relation-with-uncertainty-
and-ignorance over (A,D), ui-relation for short, is a set of
ct-bpa’s over (A,D). We let letter R range over ui-relations,
and letter m range over members (being ct-bpa’s) of R. We
define:

Projection πBR = {m : R • B J m}
Transformation f * R = {m : R • f m}
Selection σPR = {m : R | m∈P} = R ∩ P

Join. For i = 1, 2, let (Ai ,Di) be a finite schema, and Ri

be an ui-relation over (Ai ,Di) such that the domain assign-
ments agree on the common attributes: D1 a = D2 a for all a
in A1 ∩ A2. Then the join of R1 and R2, denoted R1 ./ R2,
is the ui-relation over (A1 ∪ A2, D1 ∪D2) that contains for
each pair (m1,m2) in R1×R2 the combination m ′

1⊕m ′
2 pro-

vided it exists (where m ′
1 is the “obvious extension” of m1

to A1 ∪A2, and similarly for m ′
2):

R1 ./ R2 =
{m1 : R1; m2 : R2 | “m

′

1 ⊕m ′

2 exists” • m ′

1 ⊕m ′

2}

Within the above right-hand side, ct-bpa m ′
1 over schema

(A1∪A2,D1∪D2) is constructed out of ct-bpam1 over (A1,D1)
by “extending m1 with * in the entries for all a /∈ A1”. For-
mally, m ′

1 maps (P | Q) to positive x if and only if m1 maps
(A1 � P | A1 � Q) to positive x and for all a ∈ A\A1 we have
P a = Q a = * = D2 a:

m ′

1 (P | Q) = if (∀ a : A\A1 • P a = D2 a = Q a)
then m1 (A1 � P | A1 � Q)
else 0

Similarly for the construction of m ′
2 out of m2.

Note that the above definition of R1./R2 has the same struc-
ture as the definition of the normal join, which we consider
as a necessary condition in order to call our attempt success-
ful (and the attempt by Choenni et al. fails in this respect).
For both joins we find that only some pairs of the Cartesian
product of R1 × R2 will give rise to a row in the result, or
more specifically, when “the combination” of a pair of rows
exists, the pair contributes a row to the result, but when
“the combination” does not exist, the rows are considered
contradictory and the pair does not contribute to the result.
Hence, for both joins, the size of the join R1 ./ R2 may be
smaller than the size of the Cartesian product R1 × R2.

Discussion
Just presenting a set of formal well-formed definitions is in
itself no guarantee that some practical problem has been
solved. We do have the formal definitions, but we are not

yet sure that they give the outcome that one wants to have
in practice. For instance, does the initial relation SHIP
(borrowed from Choenni [1]) make sense (two rows about
Maria), and does our relation SHIP ′ makes sense? Is there
something special about keys, like Maria? We do not know
the final answers yet. We consider our work as an attempt
improve the sketch by Choenni for encoding ignorance in
the relational model.
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APPENDIX

18 Appendix: Interpretation of bpa

Referring to paragraph 8, we interpret the finite D as an ex-
haustive set of distinct propositions about some topic: D is
the frame of discernment. We imagine that there are infal-
lible agents that in some way or another may have obtained
evidence for sets of propositions; more precisely, an agent
m may have for subsets P of D “evidence of amount x sup-
porting just P”, meaning that agent m is certain to degree
x that a proposition in P is true. We denote this fact by:

m P = x

We assume that only the ratio between the various evidences
matter, so that an amount of evidence is expressed as a num-
ber in [0, 1]. Moreover, in order that the agents can compare
and combine their findings, we assume that each agent nor-
malizes his evidences; thanks to the exhaustiveness of D we
can do it in such a way that the sum of all evidences is one:
ΣP • m P = 1. The sum is well-defined thanks to finiteness
of D . Since set D is exhaustive, it is impossible that there is
evidence for the empty set of propositions: m � = 0. Since
the propositions are distinct, different p, p ′ ∈ D denote dif-
ferent propositions, so that there is no need for constraints
that relate m {p} to m {p ′}. Such an agent m, then, is for-
mally characterized by a bpa.

In practice, an agent will have evidences only for some sub-
sets of D . In that case, we stipulate that the agent has
evidence 0 for each missing P 6= D .

Note that an agent may have evidence x supporting just P
and also another evidence supporting just a subset P ′ of P ;
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in this way the agent may differentiate between the individ-
ual propositions of D . The following indi®erence principle is
crucial (for the definition of combination in paragraph 10):

“Evidence x supporting just P” does not distinguish
between the individual propositions in P : it allows for
arbitrarily differentiated evidences for the individual
propositions and subsets of P by some other means.

In particular, m({p1, . . . , pn}) = x does not imply or follow
from m({pi}) =

x
n
for i = 1 . . n; these two assertions will

lead to distinct beliefs (defined below).

Further following the above interpretation, it is natural to
say that for an agent m, the belief in P is the sum of all
evidences supporting parts of P . In addition, the plausi-
bility in P is the “un-belief” in the complement of P , and
ignorance in P is the difference between the plausibility and
belief in P .

Note that the “weakest” set of propositions is D itself, since
evidence for the set D gives no information at all; in par-
ticular, evidence 1 for D (and consequently evidence 0 for
every proper subset of D) signals complete ignorance.

19 Appendix: Intuition of Dempster’s ⊕
Shafer “provides no conclusive a priori argument for Demp-
ster’s rule” but sees that “the rule does seem to re°ect the
pooling of evidence, provided. . . ” [3, page 57]. He explains
the rule by interpreting the definition for m1 ⊕m2 in a ge-
ometrical way as in Figure 2. Here we try to give “a moti-
vated intuition” for Dempster’s combination rule presented
in paragraph 10.

Let D be a frame of discernment. Consider two independent
agents characterized by m1 and m2, respectively. In what
way can the two agents further act as one, combining their
evidences? For this, we make the following observations:

(i) The infallibility and independence of the agents implies
that each agent wants to combine each “piece of evi-
dence” held by the other with all his own evidences,
in such a way that it is done proportionally to his own
evidences.

(ii) The indifference principle implies that for both agents
together the evidences supporting P1 according to agent 1
and supporting P2 according to agent 2 together sup-
port P1 ∩ P2, provided this intersection is nonempty.

Elaborating this, we find the following:

• According to the notion of bpa, the empty set of propo-
sitions is not supported at all.

• According to (i) there exists a constant c1 for agent 1
such that each “piece of evidence” m2 P2 is ‘combined’
with each P into evidence c1 ×m1 P ×m2 P2 that, ac-
cording to (ii), supports P ∩P2, provided this intersec-
tion is nonempty.

• Symmetrically, according to (i) there exists a constant
c2 for agent 2 such that each “piece of evidence” m1 P1

is ‘combined’ with each P into evidence c2 × m1 P1 ×

m2 P that, according to (ii), supports P1∩P , provided
this intersection is nonempty.

For the sake of symmetry we take c1 = c2, and define κ =
1/c1 = 1/c2, and we have established the defining equations
for m1 ⊕m2.

Regarding the value of κ, we notice that in order that the
combination is a bpa, all evidences must sum up to 1, and
therefore κ must be equal to the sum of all summands in
the defining equations for m1 ⊕ m2. It follows that when
κ = 0, no subset P of D is supported by evidence of both
m1 and m2. In that case the two agents cannot agree in
accordance with the principles; the evidences that they hold
are contradictory, and the combination of m1 and m2 simply
does not exist. This concludes my intuition for the definition
of m1 ⊕m2.

Figure 2 geometrically relates various items mentioned above
to each other, and can be used to organize an actual com-
putation of a bpa combination.
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1−dim representation of m2

2−dim representation of m1(+)m2
m

1 
P1

m2 P2

In the 1-dimensional representation of a bpa m, a line of
length 1 is divided into segments; there is a bijection be-
tween sets P and segments, and the length of the segment
for P equals the evidence m P supporting P .

In the 2-dimensional representation of m1 ⊕m2, a square
with area 1 is divided into rectangles; a rectangle repre-
sents some evidence (proportional to the size of its area)
supporting some P . There is however no bijection between
the subsets P and the rectangles: di®erent rectangles may
represent evidences supporting the same P , and some rect-
angles may not represent evidence for an P at all. In par-
ticular, the shaded rectangle has area m1 P1 ×m2 P2, and
(m1 P1 × m2 P2)/κ is considered combined evidence sup-
porting P1 ∩ P2, provided this intersection is nonempty.
In case P1 ∩ P2 = � , then the shaded area is not used
as combined evidence, and therefore the total amount of
evidences in the square may sum up to less than 1.

Figure 2: Geometrical representation of the items

in the definition of m1 ⊕m2
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20 Appendix: Attack and defense

The following criticism on Dempster’s combination⊕ is well-
known. Consider the following two agents in the context of
D = {p1, p2, p3}:

m1 = {{p1} 7→ 0.9999, {p3} 7→ 0.0001}
m2 = {{p2} 7→ 0.9999, {p3} 7→ 0.0001}

So, each agent i believes almost certainly in proposition pi ,
and considers p3 very unplausible. Yet, their combination
gives full certainty to p3, which might be considered counter-
intuitive:

m1 ⊕m2 = {{p3} 7→ 1.0}

The defense is clear: in view of the infallibility of agents,
proposition p3 is the only one that can be true according to
both agents together. Truth of an proposition with very low
but positive plausibility is not inconsistent with an agents
view of the world.

Some formal definitions
We give some of the missing definitions; space limitations
do not permit to give all.

21 Appendix: Schema

A pair (A,D) of a set A and a function D that maps each
a ∈ A to a [finite] set, is called a [¯nite] schema.
Given a schema (A,D), the notion of labeled products ΠAD

and Π
�
AD make sense, as explained in the next paragraph.

22 Appendix: Labeled products

Members of a product D1 × · · · × Dn are called tuples and
denoted (x1, . . . , xn). Unfortunately, for some manipulations
the concepts of product and tuple, with the ellipses “. . .”-
notation, do not work well (for example, the “union” and
“join” are not easy to express). The formulas work out far
more beautiful and manipulatable when we view a tuple
(x1, . . . , xn) as a function x = {1 7→ x1, . . . ,n 7→ xn}, so
that x i = xi . Correspondingly, D is viewed a function D =
{1 7→ D1, . . . ,n 7→ Dn} with D i = Di , and the role of
D1 × . . . × Dn is now taken over by ‘the set of functions x
with x i ∈ D i ’, denoted by Π1..nD . In short, we exploit the
following isomorphism (≈):

(x1, . . . , xn) ≈ {1 7→ x1, . . . , n 7→ xn} = x

D1× · · ·×Dn ≈

„

the set of functions x
with ∀ i : 1..n • x i ∈ Di

«

= Π1..nD

Actually, we can now generalize a bit, and use arbitrary
set A instead of 1 . .n to label the components: the set ΠAD
is a labeled product, and a member of ΠAD is an A-labeled
tuple over D :

ΠAD = the set of all functions x with domain A
satisfying ∀ a : A • x a ∈ D a

Example. Take:

A = {Name, Age, Sex }
D = {Name 7→ Text , Age 7→ Number , Sex 7→ {‘F’, ‘M’}}
r = {Name 7→ ‘Alice’, Age 7→ 13, Sex 7→ ‘F’ }
r ′ = {Name 7→ ‘Bill’, Age 7→ 50, Sex 7→ ‘M’ }

Then, r and r ′ are A-labeled tuples over D , that is, r , r ′ ∈
ΠAD . Imposing an order on A, say A = (Name,Age,Sex ),
and using the conventional tuple notation, these equations
read:

A = (Name, Age, Sex )
D = (Text , Number , {‘F’, ‘M’})
r = (‘Alice’, 13, ‘F’ )
r ′ = (‘Bill’, 50, ‘M’ )

Now r , r ′ ∈ D1 × D2 × D3. The order on A, namely ‘first
Name then Age then Sex ’, is absent in the A-labeled tuples
but essential in the conventional tuple notation. The con-
ventional tuple notation necessitates an order on A (thus
forcing some overspecification), whereas the labeled prod-
ucts and tuples don’t do so.
(End of example.)

Generalizing slightly, we also define labeled products and
tuples that are set-valued (with Pi ⊆ Di):

(P1, . . . ,Pn) ≈ {1 7→ P1, . . . ,n 7→ Pn} = P

�
D1× · · ·×

�
Dn ≈

„

the set of fcts P with
∀ i : 1 . . n • P i ⊆ Di

«

= Π
�
1..nD

So,

Π
�
AD = the set of all functions P with domain A

satisfying ∀ a : A • P a ⊆ D a

23 Appendix: Domain restriction

Let f be a function with domain A; then the domain restric-
tion of f to set B is the function λ a : A∩B • f a, for which
we introduce the abbreviation: B � f .

Let (A,D) be a finite schema, m be a ct-bpa over (A,D),
and B ⊆ A. The restriction of m to B , denoted B J m, is
the ct-bpa over (A,D) obtained from m by changing in each
entry the conditions and conclusions for A\B into *, and si-
multaneously also, if the change has effect on the conditions,
the other conclusions of the entry:

(B J m) (P | Q) = 0 if ¬ (∀ a : A \ B • P a = * = Q a),
else:

(B J m) (P | Q) = ΣP ′,Q ′

| (∀ a : B • Q ′ a = Q a) ∧
if Q ′ = Q

then (∀ a : B • P ′ a = P a)
else P = *̄

• m (P ′ | Q ′)

For example, take A = 1 . . 3 and B = 1 . . 2 and consider,
using the conventional tuple notation:

{(a0, b0, * | a, b, * ) 7→ v ,
(a0, b0, c0 | a, b, * ) 7→ w ,
(a1, b1, c1 | a, b, c ) 7→ x ,
(a2, b2, c2 | a, b, c

′) 7→ y }

This ct-bpa is mapped by BJ to the following ct-bpa:

{(a0, b0, * | a, b, * ) 7→ v + w ,
( * , * , * | a, b, * ) 7→ x + y }
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ABSTRACT
The uncertainty associated to stored information can be put
in direct correspondence to the extent to which these data vi-
olate conditions expressed as semantic integrity constraints.
Thus, imposing and checking such constraints provides a
better control over uncertain data. We present and discuss
a condition which ensures the violation tolerance of methods
for integrity checking. Usually, such methods are supposed
to work correctly only if all constraints are satisfied before
each update. Applied to express and check conditions about
uncertain data, violation tolerance means that stored data
the uncertainty of which violates integrity can be tolerated
while updates can be safely checked for introducing viola-
tions of constraints about uncertainty. We also discuss the
soundness and completeness of violation-tolerant integrity
checking and assert it for several methods.

1. INTRODUCTION
In general, the expressive power of arbitrary first-order pred-
icate logic sentences, called “integrity constraints”, is needed
in databases to express “semantic” information that goes be-
yond their otherwise comparatively simplistic positive fac-
tual content. In particular, conditions for characterising se-
mantically imperfect data can be expressed by such con-
straints. The idea is that the database is considered to be
free of semantically imperfect data if and only if its given
state satisfies the imposed constraints. Otherwise, if any of
the constraints is violated, i.e., not satisfied, the database is
taken to contain imperfect data.

In this paper, we propose to gain a better control over un-
certain data by expressing semantic properties about them

∗supported by the Spanish grant TIC2003-09420-C02i
†supported by the TONES IST project financed by the Eu-
ropean Union 6th Framework Programme under contract
number FP6-7603

(e.g., conditions that qualify stored data as uncertain) by in-
tegrity constraints. If each such property is satisfied, there
are no uncertain data that would violate the constraints.
Conversely, violation means that the data that are respon-
sible for violation may qualify as uncertain. By capturing
uncertainty properties of data by integrity constraints, it can
be hoped to achieve a double benefit: firstly, to use the ex-
pressive power of the syntax of semantic integrity constraints
also for describing arbitrarily general uncertainty proper-
ties of data; secondly, to make use of established integrity
checking methods in order to efficiently check data also for
uncertainty. Thus, monitoring and controlling stored and
incoming new data and updates with regard to their poten-
tial uncertainty can be enhanced.

In section 2, we first try to gain a better understanding of the
similarities and differences, respectively, between integrity
and the lack of uncertainty, on one hand, and between vio-
lated integrity and uncertainty, on the other. Then, we claim
that, in spite of seemingly severe differences, it is indeed
possible to represent conditions for capturing uncertainty
in the form of integrity constraints, and to check them by
making use of well-known methods for integrity checking.
In the remainder of the paper, we substantiate this claim.
In section 3, we propose a general definition of the violation
tolerance of any given integrity checking method. In section
4, we present and discuss a condition which ensures vio-
lation tolerance. Also, the soundness of violation-tolerant
integrity checking is asserted for several methods. In sec-
tion 5, we define and assert properties of completeness of
violation-tolerant integrity checking. In section 6, we ob-
serve a preponderance of attention paid to satisfaction, and
counter-balance it by highlighting violation of integrity. In
section 7, we address related work and conclude.

2. INTEGRITY AND UNCERTAINTY
In subsection 2.1, we look at similarities, in 2.2 at differences
between integrity and uncertainty. It will turn out that,
regardless of any differences, the representation of conditions
about uncertainty by integrity constraint syntax is possible,
and also their efficient evaluation by well-known integrity
checking methods.

2.1 Integrity and Uncertainty: Similarities
Traditionally, integrity constraints are a means to express
correctness conditions with which all stored data must com-
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ply. Upon each attempt to update data that may cause a vi-
olation of integrity, the constraints imposed on the database
are checked, and the update is committed only if it does
not cause integrity violation. For example, in a civil reg-
istry database containing information about citizens includ-
ing their marital status, entering married(john, mary) will
violate ∀x∀y∀z(married(x, y) ∧ married(x, z) → y 6= z), i.e.,
a constraint forbidding bigamy, if married(john, susan) is
already stored. Also, in the presence of this tuple, the con-
straint ∀x∀y married(x, y)→ person(x, m)∧ person(y, m) for
requiring an entry for each spouse of each married couple,
with marital status attribute set to m(arried) in the person
table of the database will signal violation upon an attempt
to delete the tuple person(susan, m).

Also conditions for characterising database entries as un-
certain can be expressed in the syntax of integrity con-
straints. Uncertain data can be understood to be either
imprecise or incomplete in some sense, or indefinite, or pre-
carious (i.e., unsafe, e.g., a potential security risk), or du-
bious (suspicious), or potentially malign, or have less than
100% (though not 0%) probability of truth or confidence.
For example, uncertain← person(x, null) qualifies each en-
try in the person table as uncertain by a namesake 0-ary
predicate if the marital status of that entry is unknown,
as represented by a null value. Or, ∀x person(x, null) →
person(x, s)∨ person(x, m)∨ person(x, d)∨ person(x, w) says
that each person with unknown marital status is either single
or married or divorced or widowed. Similarly, entries of
persons with birth date before the 20th century can be
characterized as dubious. By amalgamating higher-order
predicates into first-order terms [14], also sentences such as
uncertain ← confidence(table-entry(x, y), z) ∧ z < threshold
may serve as constraints for capturing uncertainty about
entries x in database tables y such that the confidence fac-
tor z of x is below a certain threshold (where threshold is
some possibly parameterisable constant).

Now, it may perhaps be perceived as a bit of a stretch to
also subsume data which violate conventional integrity con-
straints as uncertain, since they are usually considered to be
certainly bad, while uncertain data are not certainly bad.
But at least it seems fair to consider data which violate in-
tegrity as border cases of uncertain data. Be that as it may,
we have seen that it is possible to qualify uncertain data in
the syntax of integrity constraints. Hence, it should also be
possible to check incoming data for violations of constraints
about uncertainty (and, symmetrically, check deletions for
having the effect of making existing data uncertain, such
as deletions of person records which may render the marital
status information of their spouse inconsistent or unknown).

Thus, the satisfaction of each constraint can be seen as
a necessary condition for avoiding uncertainty about the
stored information. Conversely, data that violate integrity
undoubtedly convey some degree of uncertainty. Upon each
attempt to update data that are potentially uncertain since
they may violate integrity, the integrity constraints of the
database should be checked. The update can certainly be
committed if it does not cause integrity violation. Other-
wise, a warning of uncertainty can be issued, and further
action may be taken before or after rejecting or committing
(a possibly modified version of) the update.

The plain evaluation of constraints upon each update may
be unfeasibly expensive, due to their arbitrarily high query
complexity. However, satisfaction or violation of constraints
can be checked by well-known methods (e.g., [21, 5, 17, 22,
10, 4]) that are supposed to work in a significantly more
efficient manner than plain evaluation. Yet, the price to
be paid for this gain of efficiency is possibly as high as to
make such methods useless in practice: in order to ensure
the correctness of their output, each of them assumes that
integrity be satisfied before the update, i.e., that there is
no uncertainty whatsoever about the semantic correctness
of stored data. In practice, this is clearly asking too much,
for two reasons.

Firstly, it is unlikely in general that all semantic proper-
ties of interest are expressed as integrity constraints, so that
integrity satisfaction would be equivalent with an absolute
certainty about the data’s correctness. This ”semantic com-
pleteness” of the integrity constraints, however, is not the
topic of this paper, because it is application-dependent, hard
to quantify and qualify precisely, and thus cannot be ex-
pected in general. As we have already noted, satisfaction of
constraints is a necessary condition for avoiding uncertainty
(or whatever else is captured by the integrity conditions),
but, as we have just seen, it is not a sufficient one.

The second reason why it is unlikely in practice that all in-
tegrity constraints are satisfied in each state is known to
everybody with practical experience in working with large,
real-life databases. For example, integrity checking is usu-
ally turned off for uploading bulk data, and is not always
checked completely afterwards. This likely causes inconsis-
tencies, constraint violations and uncertainty. Another ex-
ample is the cleansing process of data warehousing, which
rarely is in the position to avoid all integrity violations of
data extracted from often inhomogeneous sources. More
examples can be found in update-intensive databases. For
instance, when triggers are used, their firing caused by some
update may in turn cause the firing of badly controlled se-
quences of follow-up triggers that might not care or wait
for successful integrity checks before taking action. Also,
replication mechanisms in distributed databases that enter
streaming data into an information store, or trade off con-
sistency against availability, cannot be expected to always
have sufficient time for exhaustive integrity checks (cf. [1]).

Now, the good news is that, as opposed to to common be-
lief, many well-known approaches to integrity checking can
indeed abandon the assumption that integrity be satisfied
before each update, without sacrificing the certainty of their
results and any of their efficiency. For uncertain data that
violate integrity constraint, this means that integrity check-
ing can tolerate them and leave the task of improving their
integrity status to separate, possibly off-line processes. Such
processes need not run, let alone be completed, before up-
dates checked for integrity satisfaction are committed, as
traditional approaches to integrity checking would require.

Given the categorical stance with which the assumption of
constraint satisfaction before updates is postulated in vir-
tually all approaches to database integrity, the preceding
paragraph may read like a paradox. More such oddities are
addressed in the following subsection, where we are going
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to take a closer look at some differences between violated
integrity and uncertainty.

2.2 Integrity and Uncertainty: Differences
In the previous section, we have proposed to see data that
lack integrity as a border case of uncertain data. However,
there is a significant difference. Data that lack integrity are
not just uncertain, but definitely unwanted, while uncertain
data may or may not have integrity. For example, the in-
tegrity constraint

violated ← emp(x), age(x, y), y < 14

expresses that integrity is violated by underage employment
(because there is a law by which this constraint is enforced),
while the formula

uncertain ← emp(x), age(x, y), y > retirement age

expresses that overage employment data qualify as uncer-
tain, in the sense of dubious (since, though not forbidden, it
may contradict an employer’s general policy that a person
beyond retirement age would remain employed). Another
example is the integrity constraint

violated ← email(x), sent(x, y), received(x, z), y > z

which declares that integrity is violated if the sent-date of
an email item is after its received-date (assuming that both
x and y are normalised wrt the same time zone), and the
formula

uncertain ← email(x, from(y)), suspect(y)

which classifies an email item x received from y as uncer-
tain if the latter qualifies as suspect, although the message
content may unexpectedly be valid and unproblematic. (It
does not matter here how the suspect predicate is defined.)

Due to this semantic difference between data that violate
integrity and data that qualify as uncertain, which has also
been observed in [20], and in spite of the fact that the same
syntax can be used to represent conditions for integrity and
uncertainty, the use of known integrity checking methods for
checking the uncertainty of data may be deemed problem-
atic, if not unfeasible, for the following reason.

Virtually all methods for improving the efficiency of integrity
checking assume that integrity be satisfied before a given up-
date is checked for integrity preservation or violation. That
way, the evaluation of the integrity status can focus on the
relevant part of the data that are actually involved in, or
affected by the update, while ignoring the rest, since it is
known to satisfy integrity. This assumption, however, can-
not be expected to hold for uncertain data, since they may
very well be part of the stored data, i.e., not each stored data
item can be assumed to lack uncertainty whenever some up-
date needs to be checked for uncertainty. Hence, we are
facing again essentially the same problem as addressed al-
ready in the previous section. In the following section, we
are going to see that, surprisingly, the assumption can be
abandoned without further ado.

3. VIOLATION TOLERANCE OF
INTEGRITY CHECKING

Throughout we assume the usual terminological and nota-
tional conventions for relational and deductive databases,
as known from the standard literature. With regard to ap-
proaches to database integrity, we refer to [21, 5, 17, 22,
4] and others as surveyed in [19]. However, the following
definitions are independent of any concrete approach.

Different methods employ different notions of integrity sat-
isfaction and violation, and use different criteria to deter-
mine these properties. In fact, each method, say,M can be
identified with its criteria, which in turn can be formalised
as a function that takes as input a database (i.e., a set of
database facts and rules), an integrity theory (i.e., a finite
set of integrity constraints), and an update (i.e., a bipar-
tite finite set of database clauses to be inserted and deleted,
resp.), and outputs upon termination one of the values in
{satisfied, violated}. For a database D and an update U , let
DU denote the updated database. Thus, the soundness of a
method M can be stated as follows.

Definition 1. (Soundness of integrity checking)
An integrity checking method M is sound if the following
holds, for each database D, each integrity theory IC that is
satisfied in D, and each update U .

(•) IC is satisfied in DU ifM(D, IC, U) = satisfied.

For example, the approach in [21] generates a conjunction
Γ(U, IC) of simplifications of certain instances of those con-
straints in IC that are possibly affected by an update U ,
and asserts that, under the assumption that integrity is sat-
isfied in the old state, integrity remains satisfied in the new
state (i.e., M(D, IC,U) = satisfied, in terms of definition 1)
if and only if Γ(U, IC) evaluates to true in the updated state
DU ; otherwise, integrity is violated. Under the same as-
sumption, the approach in [22] runs an SLDNF-based reso-
lution proof procedure, extended by some forward reasoning
steps by which it is possible to delimit the search space to
be traversed to those parts of the union of database and
integrity constraints that are actually affected by a given
update. The procedure asserts that integrity remains sat-
isfied in DU if the resulting search space is finitely failed;
integrity is violated if the search space contains a refutation
indicating inconsistency. In terms of the definition above,
theM(D, IC,U) of [22] is the result of the traversed search
space with given input from D, IC, U . In a similar manner,
definition 1 can be instantiated for virtually any method of
integrity checking in the literature.

Next, we formally define the notion of violation tolerance.
As indicated above, the intuition of violation tolerance of
an approach M to integrity checking is that the existence
of cases of violated constraints (which may indicate the vio-
lation of a condition on the uncertainty of related data, or,
more generally, the violation of any semantic property as
expressed by some constraint) needs to be tolerated while
M monitors and controls new cases of integrity violation
as introduced by updates. Moreover, the cases of integrity
that had been satisfied before the update are supposed to
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remain satisfied afterwards. So, if the constraints express
properties for preventing uncertainty, then those data that
have not been uncertain should not be turned into uncertain
ones by updates of other data, nor should uncertain data be
introduced by any update. In order to capture this idea
more formally, we first need to make precise what we mean
by “cases”.

Definition 2. (Global variable, Case)

Let W be an integrity constraint.

a) Each variable x in W that is ∀-quantified but not dom-
inated by any ∃ quantifier (i.e., ∃ does not occur left
of the quantifier of x in W ) in the prenex normal form
of W is called a global variable of W . Let global(W)
denote the set of global variables in W .

b) Wσ is called a case of W if σ is a substitution such that
Range(σ)⊆ global(W ) and Image(σ)∩ global(W) = ∅.

Clearly, each variable in a constraint W represented in the
standardised datalog denial form [22] is a global variable of
W . Note that not any substitution whatsoever, but only
substitutions of global variables of a constraint yield valid
cases. Most integrity checking methods focus on certain
cases of integrity constraints. These are simplified forms of
original constraints that are sufficient for determining their
satisfaction or violation upon given updates. In general,
substitutions of non-global variables do not lead to valid
simplifications.

For example, consider the integrity constraint ∃x∀y emp(y)
→ sup(x, y) requiring the existence of an individual x who
is superior of all employees y, in the database of some en-
terprise. Suppose that this constraint is satisfied when the
tuple emp(e) is inserted to the database, recording the hir-
ing of a new employee e. Then, checking the instance ∃x
emp(e) → sup(x, e) may very well evaluate to true while the
original constraint may have become false, even if some new
sup tuples are inserted along with emp(e).

Further note that cases of an integrity constraint need not
be ground, and that also each constraint W itself as well as
each variant of W is a case of W .

With this, soundness of violation tolerance of an approach
M to integrity checking can be defined as follows.

Definition 3. (Violation tolerance)
An integrity checking methodM is violation-tolerant if the
following holds, for each database D, each integrity theory
IC, each finite set IC′ of cases of constraints in IC that is
satisfied in D, and each update U .

(••) IC′ is satisfied in DU ifM(D, IC, U) = satisfied.

Note that, even though there may well be an infinity of
cases of constraints in IC, the finiteness requirement for IC′

entails no loss of generality, as long as satisfaction of a set of
constraints is supposed to be defined by requiring that each
constraint be satisfied, as usual. Moreover, (••) guarantees

satisfaction of any number of cases ifM returns satisfied for
IC as its second argument, which is always finite.

Clearly, for violation-tolerant integrity checking, (••) sug-
gests to use the very same method M as in the traditional
case, where satisfaction of all of IC in D is required. Hence,
with the relaxation of definition 3 that only some cases IC′

but not necessarily all constraints are satisfied before the
update, no loss at all of efficiency is associated, whereas
the gains are immense: with a violation-tolerant method, it
will be possible to continue database operations even in the
presence of (obvious or hidden, known or unknown) cases
of integrity violation (which for better or worse is rather
the rule than the exception in practice), while maintaining
the integrity of all cases which have complied with the con-
straints. WheneverM is employed, no new cases of integrity
violation will be introduced, while existing “bad” cases may
disappear (by intention or even accidentally) by executing
updates which have passed the integrity test of M. So far,
with the strict requirement of integrity satisfaction in the
old state, not the least bit of integrity violation was toler-
able. Hence, the known correctness results of virtually all
approaches to database integrity would remain useless for
the majority of all practical cases, and in particular for con-
straints about uncertainty, unless they can be shown to be
violation-tolerant.

Of course, the preceding observations, as nice as they may
be, would be void if no violation-tolerant method existed.
Fortunately, however, most known approaches to database
integrity that we have looked at so far are indeed violation-
tolerant. A notable exception is the method in [10]. The
following section introduces a sufficient condition by which
it is fairly easy to check and assert violation tolerance.

4. A SUFFICIENT CONDITION FOR
VIOLATION TOLERANCE

For a database D, an integrity theory IC, an update U and
a finite set IC′ of cases of constraints in IC that is satisfied
in D, a straightforward special case of (•) obviously is

(• • •) IC′ is satisfied in DU ifM(D, IC′, U) = satisfied

For a given method M, it is easy to see that its violation
tolerance as expressed by (••) directly follows from (•••) if
the following condition is satisfied for each database D, each
integrity theory IC, each finite set IC′ of cases of constraints
in IC that is satisfied in D, and each update U .

(#) IfM(D, IC,U)=satisfied thenM(D, IC′, U)=satisfied

Hence, with regard to definition 3, we immediately have the
following result, for each sound approach M to integrity
checking.

Theorem 1. M is violation-tolerant if (#) holds.

Proofs to verify (#) for the approaches in [21, 5, 17, 22] are
fairly easy because each of them generates simplified forms
of constraints, such that, roughly speaking, the truth value
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of the simplified form of any case of a constraint W in IC is
implied by the truth value of the simplified form of W itself,
from which (#) follows. The subsequent counter-example of
a method M which is sound according to definition 3 but
not violation-tolerant shows that violation tolerance is not
a matter of course. Methods such as [10, 4] also are not
violation-tolerant, essentially because their optimisations of
simplified constraints involves the elimination of redundan-
cies that are independent of the database. However, when
constraints are given in denial form (which is one of two com-
mon standard forms for representing integrity constraints),
and when the optimisation phase of the method in [4] is ap-
plied separately to each individual constraint in IC instead
of to IC as a whole, that method also is violation-tolerant.

Now, we construct a method M which is not violation-
tolerant. Let M(D, IC, U) be

1. satisfied (resp., violated) if ∃x(p(x)∧x 6= a) is satisfied
(resp., violated) in DU , whenever IC contains ← p(x)
and U precisely consists of inserting p(a).

2. satisfied (resp., violated) if IC is satisfied (resp., vio-
lated) in DU otherwise.

The implementation ofM can recur on any standard method
except for a special treatment of the constraint ← p(x) and
attempted insertions of p(a). Clearly, M is sound in the
sense of definition 1, that is, if IC is satisfied in D then
M(D, IC,U) = satisfied entails the satisfaction of IC in DU .
(We remark that, here, also the converse holds, i.e., that
satisfaction of IC entails M(D, IC,U) = satisfied.) Indeed,
whenever IC holds in D and point 1 applies,M(D, IC, U) =
violated, which correctly indicates that the update violates
integrity; when point 2 applies, the evaluations of IC in
DU and M(D, IC,U) coincide by definition, so soundness
is granted by definition.

Now, let us consider a database D which contains the sole
fact p(b), and IC = {← p(x)}, i.e., integrity is not satisfied
in D. Further, let U be as in point 1 above, and let W ′ =
← p(a) be a case of the constraint in IC which obviously
is satisfied in D. Although M(D, IC,U) = satisfied, W ′ is
satisfied in D but not in DU , i.e., the satisfied case W ′ is not
preserved after the update, even though the corresponding
checking condition given byM is satisfied for IC. Thus,M
is sound according to def. 3 but not violation-tolerant.

To conclude this example, we remark that it can also be
understood as an indication that approaches to integrity
that implement a special case treatment for certain cases
(e.g., cases with lower or higher uncertainty) tend to be less
violation-tolerant (and, in general, more error-prone) than
standard methods.

5. COMPLETENESS OF
VIOLATION TOLERANCE

We note that def. 1 is only a statement about the soundness
ofM. Completeness can be defined by the following version
of the only-if half of (•).

Definition 4. (Completeness of integrity checking)
An integrity checking methodM is complete if the following
holds, for each database D, each integrity theory IC that is
satisfied in D, and each update U .

(◦) If IC is satisfied in DU thenM(D, IC,U) = satisfied.

For range-restricted integrity constraints and several sig-
nificant classes of logic databases including relational ones,
completeness has been shown to hold for the methods in [21,
17, 22, 4] and others in the respective original papers.

In analogy to the complementarity of (•) and (◦), the ques-
tion about the validity of the only-if half of (••) in def. 3
arises. Not surprisingly, the only-if half of (#) is a sufficient
condition for the only-if half of (••), in full analogy to the-
orem 1. More precisely, it is easy to see that, for each each
database D, each integrity theory IC, each finite set IC′ of
cases of constraints in IC that is satisfied in D, each update
U and each integrity checking method M that is complete
for integrity checking (i.e., that satisfies (◦)), the condition

(##) IfM(D, IC′, U)=satisfied thenM(D, IC,U)=satisfied

is sufficient for proving the completeness of violation toler-
ance of M, i.e., to prove

(◦◦) If IC′ is satisfied in DU , thenM(D, IC,U) = satisfied.

However, these formal results, though correct, are of limited
value, since neither (##) nor (◦◦) hold for several of the
most well-known methods, as the following simple example
shows.

Let D consist of the fact q(a) and the rule p(x) ← q(x),
IC = {← p(x)} and U be the insertion of p(a). Then, the
set of correct answers derivable from D would not change
after committing the update, and hence, also all cases of
IC that are satisfied in D remain satisfied in DU . And
indeed, approaches that notice the redundancy of the up-
date, such as the method in [5], will simply stop right away,
signalling integrity preservation for this example. However,
the methods in [22] and [17], as well as several other ones
will signal that U violates integrity (just the same as under
the here not valid assumption that integrity was satisfied
in D). Hence, neither (##) nor (◦◦) holds in general for
several methods. We remark that the cited methods do not
check the redundancy of the update since such additional
checks require additional fact base accesses and may incur
a considerable overhead in general.

Yet, we have the following completeness result.

Theorem 2. (Completeness of violation tolerance)
LetM be a sound and complete method for integrity check-
ing, D a database, IC an integrity theory, U an update and
W ∗ a case of a constraint W in IC such that W ∗ is satisfied
in D. If W ∗ is not satisfied in DU , i.e., if W ∗ is violated
by U , then the following holds.
(a) M(D, {W}, U)=violated,
(b) M(D, IC,U) =violated.
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Part (a) of theorem 2 holds because the violation of W ∗ in
DU entails that, a fortiori, W (and also IC) is violated in
DU , and hence completeness ofM entails thatM(D, W, U)
outputs violated. Part (b) is a direct consequence of part (a)
and the soundness ofM.

To conclude this section, we conjecture that (◦◦) holds for
complete methods M in databases where integrity viola-
tion cannot be corroborated by any update, i.e., where no
case W ∗ of any constraint that is already violated in D can
be violated anew by any update. As an example, consider
relational databases that do not allow duplicate entries of
tuples in any table. Further, only conjunctive queries (defi-
nite datalog denials) be allowed as integrity constraints. For
such databases and integrity theories, the constraints are all
of form ←A1, . . . , An (n > 0), where each Ai is an atom.
Such denials may only be violated by the insertion of some
ground fact A such that A unifies with one of the Ai. Con-
versely, if any update U of ground facts leaves all cases of
constraints that are satisfied in D unviolated in DU , then
no denial can be violated at all (since each violation caused
by U would introduce a violated case that has been satisfied
in D). This intuitive argument remains to be verified by a
more formal proof. In case it turns out to be correct, a gen-
eralization of the conjecture for denials with negation lends
itself for verification, but we leave that to future research.

6. CHECKING VIOLATION
Soundness and completeness of integrity checking (defini-
tions 1 and 4, respectively), as well as the definition of viola-
tion tolerance (definition 3) and the result about soundness
of violation-tolerant integrity checking (theorem 1) are con-
ceived with regard to checking the satisfaction of constraints,
but nothing is explicitly stated wrt violation. This is due to
the prevalent interest of integrity checking in the preserva-
tion of integrity satisfaction, i.e., in the “good” cases, while
the “bad” cases of integrity violation tend to receive less
attention. However, as unwanted as they may be, they de-
serve a comparable amount of attention. To reflect this is
the objective of this section.

For instance, the soundness and completeness of integrity
checking methodsM could in principle be defined in terms
of violation in analogy to (•) and (◦) by the if- (soundness)
and the only-if half (completeness) of condition (⋄) below,
for databases D, integrity theories IC that are satisfied in
D and updates U , as follows.

(⋄) IC is violated in DU iff M(D, IC, U) = violated.

For two-valued definitions of integrity which do not admit
values other than satisfied and violated (e.g., ‘unknown’, ‘un-
defined’, ‘overdefined’ or values for graded integrity), not
satisfied is equivalent to violated and vice-versa. Hence, it
follows by the definitions in sections 3− 5 that conditions
(•) and the if half of (⋄), as well as (◦) and the only-if half
of (⋄), are equivalent.

Similarly, for each set IC′ of cases of constraints in IC that is
satisfied in D, the violation tolerance of an integrity checking
methodM could also be defined via the following condition,
in analogy to ••, as follows.

(⋄⋄) If IC′ is violated in DU thenM(D, IC,U) = violated.

For two-valued definitions of integrity and sound and com-
plete methods for integrity checking that tolerate violation,
it can be easily shown that (••) and (⋄⋄) are equivalent,
since the latter is simply the contraposition of the former.

So far, the results in this section (symmetries and relation-
ships between satisfaction and violation on one hand, and
between soundness and completeness, on the other) may ap-
pear as mere formal exercises without groundbreaking in-
sights. However, for several methods, satisfaction and vio-
lation are not symmetrical issues. For instance, for many
approaches, the termination of checking either the satisfac-
tion or the violation of integrity cannot be guaranteed, while
checking violation or, respectively, satisfaction will always
terminate for large, significant classes of databases, con-
straints and updates. This is due to the semi-decidability
of satisfiability in general. But there is more to the lack of
symmetry between satisfaction and violation, to be looked
at in the remainder of this section, by which the preceding
formal investigations can be justified.

As a side remark, we firstly point out that soundness and
completeness for checking violation of integrity is interest-
ing because most of the approaches cited in this paper, and
many others, do not only signal violation in case any con-
straint is no longer satisfied. Rather, they precisely identify
the cases of constraints that are violated by the update.
Such detail of information about uncertain data is very use-
ful for repairing violations introduced by updates, e.g., in
abductive procedures such as [6].

In general, completeness of integrity checking does not come
for free. For example, several approaches to database in-
tegrity generate simplified conditions that are only sufficient
but not necessary. That is, the satisfaction of such condi-
tions ensures the preservation of integrity by given updates,
but if they are not satisfied, then integrity is not necessarily
violated. Thus, whenever these conditions are not satisfied,
such methods need to perform further checks in order to de-
termine the integrity status of the updated database. Exam-
ples of such approaches that lack completeness of checking
integrity satisfaction (which, due to the analogies between
(•), (◦) and (⋄), can also be understood as a lack of sound-
ness of checking integrity violation) are [10, 16, 11]. Despite
their deficiencies, such methods may provide an advantage.
In many applications, updates that violate integrity are rare.
Therefore, a performance advantage for checking satisfac-
tion which is obtained by a trade-off to the disadvantage
of completeness (i.e., checking violation) may be convenient
for such applications. (By the way, the lack of violation tol-
erance of the method in [10] is independent of its lack of
completeness.)

Our last argument for defending the attention paid to check-
ing constraints for violation is directly related to uncertainty.
In databases with a propensity of containing uncertain in-
formation, the usual prevalence of satisfaction over violation
may easily invert to the necessity of being more attentive to
updates that possibly violate integrity rather than preserve
it. Then, methods such as the aforementioned ones which
only provide sufficient conditions for satisfaction but not
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for violation have a definite disadvantage. As an example,
imagine a database in which email coming in via a central
email server node is stored. Further, imagine that the in-
tegrity constraints are such that they block spam. Because
of high volumes and boost frequencies of incoming mail, not
each spam message can be expected to be trapped since ex-
haustive checks might be unaffordable. Hence, suspicious
email (e.g., with harmful attachments) may be stored and
integrity cannot be expected to be 100% satisfied, since there
may be more spam than correct email which does not violate
integrity. In such settings, a violation-tolerant approach to
integrity is in demand, and particularly one that is sound
for violation. Whenever such a method indicates violation,
the incoming message surely qualifies as spam and thus can
safely be dumped. This behaviour is preferable to that of
a method which would make every effort trying to guaran-
tee satisfaction, i.e., making sure that a message which has
passed the test really is not spam.

7. CONCLUSION
We have shown that it is possible to use integrity constraints
and simplification methods for their evaluation as a means
of expressing and checking conditions that qualify stored
data as uncertain. This is due to two reasons. Firstly, any
kind of semantic information can be expressed by arbitrary
first-order syntax, be it integrity, uncertainty, or whatever
properties that are wanted or unwanted. In general, any
property of interest that needs to be checked and monitored
can be represented in that form. This advantage of the
expressive power of the syntax of integrity constraints is
well-known and only needed to be recalled.

The disadvantage of such arbitrary syntax is that the eval-
uation of formulas expressed in it may be unfeasibly expen-
sive. Since there are known methods with which the evalu-
ation of constraints can be considerably simplified, integrity
constraints in databases (i.e., properties required to hold in
each state) are usually expressed in that syntax, in spite of
its complexity. In the literature, these simplifications have
been believed to be sound only in case the unsimplified forms
are all satisfied before an updated state is checked for pre-
serving satisfaction. Thus, the idea to use the simplification
technology for something like checking uncertainty could not
arise, because it would be unreasonable to assume a com-
plete absence of uncertainty before an update is checked for
satisfying or violating constraints about uncertainty.

However, as conveyed in this paper, many well-established
methods for integrity checking can be used straightforwardly
for also checking other semantically complex properties, such
as constraints about uncertainty, even if the database con-
tains uncertain information that violates these constraints.
So, our findings about violation tolerance embody the sec-
ond reason mentioned above, why it is possibly to use known
technology for integrity checking also for checking conditions
about uncertainty. The result is significant, because, hith-
erto, all approaches to database integrity have required that
no constraint be violated before any update could be checked
efficiently for preserving or violating integrity.

In detail, we have qualified as violation-tolerant those ap-
proaches to database integrity that have the ability to relax

the assumption of full satisfaction of integrity before up-
dates. With such approaches, the presence of uncertain in-
formation is admissible while the invariance of satisfied cases
of imposed constraints about uncertainty can be checked
efficiently. We also have defined and discussed sufficient
conditions for the soundness and completeness of violation-
tolerant methods. Most known methods (with some note-
worthy exceptions) have turned out to be violation-tolerant,
while completeness seems to be achievable only under par-
ticular circumstances.

In general, we believe that the possibility of abandoning
the assumption of complete satisfaction of all constraints
increases the applicability of integrity checking technology
significantly.

To the best of our knowledge, the allegedly fundamental as-
sumption that integrity needs to be satisfied before an up-
date in order to perform correct and efficient integrity check-
ing has never been challenged by other authors. Motro’s
work on “integrity and uncertainty” [20] uses a similar ter-
minology and the related terms “validity” (soundness) and
“completeness”. However, his work is distinctly different
from ours because Motro does not deal with methods for
improving the efficiency of integrity checking, which, for the
work presented in this paper, is key.

Nevertheless, it cannot be overlooked that “inconsistency
tolerance” has recently become an important issue. Still,
most work in this area is concerned with query answering in
inconsistent databases; in this sense, the notions of repair
(cf., e.g., [2]) and consistent query answering are crucial and
yet very different from what this paper suggests.

Several paraconsistent logic approaches have received some
attention in the recent past (cf., e.g., [9]), most of which,
however, abandon classical first-order logic, possibly by re-
sorting to multivalued logic, which we have not considered
in this paper. Last, we note that standard resolution-based
query answering (as in [22] and [15]) is in some sense also
paraconsistent, in that it does not consider irrelevant data-
base clauses for evaluating integrity constraints (considered
as queries) upon an update.

In future work, besides checking whether other, more re-
cent methods also tolerate integrity violation, we intend
to broaden the notion of tolerance such that not only ap-
proaches for integrity checking, but also methods for repair-
ing violations and for view updating can be applied in the
presence of inconsistency and/or uncertainty.
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