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Abstract For a class of scalar nonlinear systems with switching input a con-
troller is designed using design theory for linear systems. A stability criterion
is derived that contains all the physical system parameters, allowing a stability
analysis without the need for numerical simulation. The results are motivated
by and applied to a model of a bulk storage room for food products. It is shown
that for this model a controller with excellent robustness and performance prop-
erties can be designed.

1 Introduction

Climate control is an essential part of post-harvest food storage. For main-
taining optimal product quality, the most important control parameters are
temperature, humidity, CO2 concentration and ethylene concentration inside
the storage room. The most common control inputs are ventilation, cooling,
heating, and (de)humidification. The storage room can be ventilated in two
ways: ventilation with outside air, or recirculation inside. Forced ventilation is
done by fans. Cooling and heating is done by outside air ventilation or by a heat
exchanger, and CO2 and ethylene concentrations are controlled by outside air
ventilation. The corresponding mathematical models have complex dynamics
due to the airflow and heat- and moisture exchange. Some control inputs are
of a discrete nature. Forced air ventilation, for example, is usually realized by
a fan that is switched on or off. Generally, standard linear model-based control
design is preferred, since it is a mathematically well-understood and practically
implementable method, but given the nonlinearities due to the switching input,
it is not feasible for this class of systems.
Control strategies that have been developed for storage purposes, are model
predictive control (MPC) and fuzzy control. In [5] and [13], MPC algorithms
were used for the temperature and humidity control of a bulk storage room
with outside air ventilation. Both proposed algorithms are model based and
were tested by simulation studies. In [1] a fuzzy controller was tested on a
mathematical model. In [3] a sensor based control law for a bulk storage room
that was ventilated with outside air was proposed, and in [2] a fuzzy controller
was constructed and tested experimentally. In [10] a fuzzy controller was devel-
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oped for fruit storage, using neural networks, and in [9] a fuzzy controller was
tested experimentally. Further, in [8] a PI controller was designed for CO2 and
O2 concentrations, and was tested experimentally. In general, the advantages of
MPC are that the control algorithm is based on a mathematical model, and that
the applicability extends to extremely complicated models. A major drawback
is that controller dynamics have to be solved by demanding online numerical
computations. Fuzzy controllers are practically easy implementable, but have
no mathematical background, and hence controller performance is hard to guar-
antee.
More general, control design for systems where the switching input is the control
parameter, is done by MPC and fuzzy control, as shown above, and switching
adaptive control. Stabilizing adaptive controllers are designed in [15, 4] for a
large class of nonlinear MIMO systems and for a larger class of MISO systems
in [6], with less restrictive assumptions. Here, the control input is switched
between two functions that depend continuously on the system states.
In this paper, a controller is designed for a class of piecewise linear systems with
switching control inputs. The inputs have fixed values, and are switched at most
once in each discrete time interval, in contrast to for example [15, 4, 6]. This
paper is organized as follows. In section 2 the model is linearized to a system
with the switching moment as input. A controller that dynamically adjusts this
input, is designed using standard design theory for linear systems. In section 3
conditions for stability are derived. The stability region is is a parametric func-
tion of all the system properties, which makes analysis easier. In section 4 the
theoretical results are applied to a model of a bulk storage room for harvested
products. The control input of this model is the air flow induced by the fan,
which is switched on and off on a regular basis. It is shown that the errors that
are induced by the linearization cannot destabilize the system. The performance
loss due to the linearization is visualized by numerical simulation of the original
p.d.e. model, and the approximated piecewise linear system. Both systems are
connected to the controller, and simulated under a heavy input disturbance.
Since the dynamics of both systems are essentially the same, it is concluded
that no essential dynamices are lost, and hence for this model a controller with
excellent properties can be designed.

2 System approximation and controller design

Our class of systems is nonlinear, scalar SISO systems of the form

dx

dt
= A(u)x + B(u). (1)

Here, x is the system state, u = (u1, u2) the input that attains two discrete
values, and A and B scalar functions. The continuous time is divided into
discrete time intervals with length τf . The control problem is to determine the
duration of both inputs. We assume, without loss of generality, that at the start
of each time interval u = u1. The input is switched from u1 to u2 at time τ ,
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with 0 ≤ τ ≤ τf . This gives the following piecewise linear system

dx

dt
(t) = A(u1)x(t) + B(u1) t ∈ [0, τ), (2)

dx

dt
(t) = A(u2)x(t) + B(u2) t ∈ [τ, τf ), (3)

with x(τ−) = x(τ+). From now on, the notation A(u1) = A1 is used, and
the subscript denotes the relation with the input. Now τ/τf is the fraction of
the time that u = u1. The goal is to design a controller that steers x to the
desired state xopt by adjusting τ each time interval. Although we want to steer
x(t) to xopt, the control action is only based on the state at the beginning of
the interval. Thus in the following sections we design a sequence of switching
times τ ∈ [nτf , (n + 1)τf ], based on x(nτf ) and previous samples, such that
x(nτf ) → xopt for n → ∞. If the sample time τf is small, then this implies that
x(t) − xopt will be small for large t. Hence in practice this gives that the state
is stabilized around xopt.
Throughout this paper, we assume that A1 and A2 are negative , and that
A−1

1 B1 > A−1
2 B2. Since the choice of A1, A2 in (2)–(3) was arbitrary, this

imposes no real restrictions.

2.1 System approximation

In this section, the system is approximated, and a controller is designed using
standard design theory for linear continuous systems. At the interval (0, τf ),
the solution to equation (2) at time τ is

x(τ) = x(0) exp(A1τ) +

∫ τ

0

exp(A1(t − τ))B1dt

= x(0) exp(A1τ) −
(
I − exp(A1τ)

)
A−1

1 B1. (4)

Similarly, the solution to equation (3) becomes

x(τf ) = x(τ) exp(A2(τf − τ)) −
(
I − exp(A2(τf − τ))

)
A−1

2 B2. (5)

In the interval [nτf , (n + 1)τf ] we choose the switching time τn. We denote the
state at time nτf + τn by ξn and the state at the time nτf by xn. So we have

ξn = exp(A1τ
n)xn + (exp(A1τ

n) − 1)A−1
1 B1

xn+1 = exp(A2(τf − τn))ξn + (exp(A2(τf − τn)) − 1)A−1
2 B2, (6)

Combining the equations in (6), we find that

xn+1 = f(xn, τn). (7)

The switching time is chosen such that the system is in the desired state xopt

for all time instances nτf . The following lemma shows that for any xopt ∈
[−A−1

1 B1,−A−1
2 B2] there exists a unique switching time τopt ∈ (0, τf ) such that

xopt = f(xopt, τopt). (8)
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Lemma 2.1. Consider the system (6). Then equation (8) has a solution τopt ∈
[0, τf ] if and only if

−A−1
1 B1 ≤ xopt ≤ −A−1

2 B2. (9)

Furthermore, when (9) holds, then the solution τopt is unique.

Proof. See the appendix.

Since we will not start at xopt and since disturbances may drive x away from
the desired state xopt, we want to design a feedback control law for τn, such
that xn → xopt. For this we linearize system (7) around xopt, τopt, i.e. we set

τn = τopt + τn
var

xn = xopt + xn
var. (10)

The linearized system equals

xn+1
var =

∂f

∂xn
(xopt, τopt)x

n
var +

∂f

∂τn
(xopt, τopt)τ

n
var

= Adx
n
var + Bdτ

n
var. (11)

We have that

Ad = exp(A2(τf − τopt) + A1τopt)

Bd = −A2 exp(A2(τf − τopt))ξ(τopt)

+ exp(A2(τf − τopt))
(
A1 exp(A1τopt)xopt + B1 exp(A1τopt)

)

−B2 exp(A2(τf − τopt))

= −A2xopt − B2 +

exp(A2(τf − τopt))
(
A1 exp(A1τopt)xopt + B1 exp(A1τopt)

)
. (12)

Since A1 and A2 are negative, and since 0 ≤ τopt ≤ τf , we see that Ad ∈ (0, 1).
We note that any nonlinear MIMO system with switching input can be brought
to the form of (11), and hence enable linear (discrete) control design. However,
we consider scalar systems of the form (1) since they allow a rigorous stability
analysis that results in a stability area that consists of analytical expressions
that contain physical knowledge of the system.

2.2 Controller design

In the appendix we show how by using a standard PI controller on an approxi-
mate continuous time system, a controller can be designed for our discrete time
system. Our PI-based controller in discrete time is

ζn+1 = −
(Ad − 1)2

Bd
xn

var + ζn

τn
var =

Ad − 1

Bd
xn

var + ζn. (13)
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From the second equation in (13) it is clear that (xn
var, ζ

n) converges to zero if
and only if (xn

var, τ
n
var) converges to zero. Using (13) and (11) we have

τn+1
var =

Ad − 1

Bd
(Adx

n
var + Bdτ

n
var) −

(Ad − 1)2

Bd
xn

var + ζn

=
Ad − 1

Bd

(
Adx

n
var − (Ad − 1)xn

var + Bdτ
n
var

)
+ τn

var −
Ad − 1

Bd
xn

var

= (Ad − 1)τn
var + τn

var

= Adτ
n
var. (14)

Thus the closed loop system for xn
var and τn

var is

xn+1
var = Adx

n
var + Bdτ

n
var

τn+1
var = Adτ

n
var. (15)

Since Ad ∈ (0, 1) this is stable. In the following section we investigate the
stability of the controller (13) on the original system.

3 Stability analysis

In this section we prove that the controller (13) stabilizes the original system
(7). The control action on the original system is modified such that realistic
time switches are applied to the original system. The rules are

If τn
var + τopt > τf , then τn = τf

If τn
var + τopt < 0, then τn = 0

If 0 ≥ τn
var + τopt ≤ τf , then τn = τn

var + τopt. (16)

Next we show that if τn is chosen according to these rules, then xn stays
bounded. Later we show that xn → xopt.

Lemma 3.1. Let τn be a sequence in the interval [0, τf ] and let x0 be given.
For any δ > 0 there exists a N such that xN ∈ (−A−1

1 B1 − δ,−A−1
2 B2 + δ) for

n ≥ N . Here xn is the solution of (7).

Proof. See the appendix.

Using the linearized model (11) we can write (7) as

xn+1
var = Adx

n
var + (Bd + ε(xn

var, τ
n
var))τ

n
var. (17)

Here we have used that (7) is linear in x. Similar as in (14), we obtain the
following difference equation for τvar

τn+1
var = (Ad +

Ad − 1

Bd
ε(xn

var, τ
n
var))τ

n
var. (18)
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Here ε is the error induced by linearization. Our closed loop system becomes

xn+1
var = Adx

n
var + (Bd + ε(xn

var, τ
n
var))τ

n
var

τn+1
var = (Ad +

Ad − 1

Bd
ε(xn

var, τ
n
var))τ

n
var. (19)

We know from Lemma 3.1 that (xn
var, τ

n
var) will lie in a bounded set. Using the

second equation of (19), we conclude that if ε is sufficiently small, then τn
var → 0.

Since ε contains higher order terms, and since ε(0, 0) = 0, the condition that ε
is small in a neighbourhood of (0, 0) is not a strong assumption. Concluding,
we have

Theorem 3.2. Consider equation (19). Let Ω = {(xvar, τvar) | xvar + xopt ∈
[−A−1

1 B1,−A−1
2 B2] and τvar + τopt ∈ [0, τf ]}. If

sup
(xvar,τvar)∈Ω

∣∣∣∣Ad +
Ad − 1

Bd
ε(xvar, τvar)

∣∣∣∣ < 1, (20)

then (19) is asymptotically stable.

4 Application to food storage

In this section, the controller design and the stability analysis from the previ-
ous section are applied to a model of a bulk storage room for harvested food
products.

4.1 The model

In this subsection the (approximated) model that was derived and validated in
[12], is described. The storage room model is divided into two parts, namely
the shaft and the bulk, see Figure 1. The resulting model equations are

V
∂T0(t)

∂t
= −Φα(Φ)

(
Ta(L, t) − Tc(t)

)
+ ΦTa(L, t) − ΦT0(t) (21)

∂Ta(x, t)

∂t
= −v

∂Ta(x, t)

∂x
+ M4(Tp(x, t) − Ta(x, t)) (22)

∂Tp(R, x, t)

∂t
= ApTp(R, x, t) + BpTa(x, t) (23)

Ta(0, t) = T0(t). (24)

This will be further referred to as the nominal system. The control input is
the air flux Φ(t) that is generated by the fan, and this switches between Φ1

and Φ2. Equation (21) describes the temperature dynamics inside the shaft.
V is the volume of the shaft, Ta(L, t) the air temperature at the top of the
bulk, Tc(t) the temperature of the cooling element inside the heat exchanger,
ρa the air density, ca the heat capacity of air. The dimensionless function α
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Figure 1: Schematic representation of a bulk storage room.

denotes the effectiveness of the cooling device: α = 1 implies that the incoming
air Tin(t) is totally cooled down (or heated up) to Tc(t), while α = 0 implies
that the incoming air is not cooled at all. Here, α is assumed to be constant.
Equation (22) describes the temperature dynamics of the air inside the bulk.
The two r.h.s. terms in equation (22) denote the convection of heat and the
heat exchange between product surface and air, respectively. Here, x denotes

the height in the bulk, that varies from 0 to L. Further, M4 =
h(v)Aps

γρaca
, with γ

the bulk porosity, and Aps the product surface area per bulk volume. The heat
transfer coefficient h(v) depends on v via the implicit relation (see [14])

Nu = (0.5Re1/2 + 0.2Re2/3)Pr1/3 (25)

for 10 < Re < 104, with Nu, Re and Pr the Nusselt, Reynolds and Prandtl
number, see section 6. The average velocity inside the bulk is v = Φ

Af γ , with Af

the area of the bulk floor. Equation (23) describes the temperature dynamics of
the product skin (which represents the product temperature) at height x inside
the bulk. The expressions for Ap and Bp are listed in the appendix. Parameters
a and Bi are respectively the heat production of the products and the Biot
number. The model predictions were found to be accurate when compared to
experimental results. System (21)–(24) was approximated by using timescale
decomposition and transfer function approximation to

dTp(L, t)

dt
= A(Φ(t))Tp(L, t) + B(Φ(t)), (26)

with Tp(L, t) the product temperature at the top of the bulk. The expressions
for A and B are given in the appendix. The values of the physical parameters
are listed in Table 1. In Table 2 the corresponding numerical values of the key
parameters are listed.
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α 0.4 Af 5 m
R 3.25 10−2 m V 10 m3

Φ1 1 m3/s Φ2 0.001 m3/s
λp 0.55 J/s m K ρp 1014 kg/m3

a 3.1 10−5 J/s kg K Aps 49 m2

γ 0.39 cp 3.6 103 J/kg K
Tc 275 K ca 2 103 J/kg K
L 4 m

Table 1: Physical parameters of a bulk storage room with potatoes. Specific
data were taken from [5, 14, 11].

A1 −2 10−5 1/s A2 −2 10−8 1/s
B1 6.6 10−3 K/s B2 8.1 10−6 K/s
Ad 1.0 − 3 10−4 Bd −1.2 10−4 K/s
τf 600 s τopt 12.2 s

Tp,opt 280 K

Table 2: Numerical key parameter values.

4.2 Controller

The controller measures the product temperature at the top of the bulk, Tp(L, t).
The optimal switching time corresponds to Tp(L, t) = Tp,opt. Realistic dis-
turbances in the air temperature T0(t) is caused by open doors, heat leakage
through the walls, etcetera. For mathematical simplicity we assume that the
disturbances in air temperature occur in the vicinity of the heat exchanger, and
that they therefore act on the system as the temperature of the cooling element
Tc. For design purposes, we look at the crossover frequency of the transfer func-
tion from Tc to Tp(L). In [12] it was shown that this transfer function has a
crossover frequency of k = −A∗(Φ). For simplicity, we take the average of k
w.r.t. the switching time, which gives

kav =
τopt

τf
k(Φ1) +

τf − τopt

τf
k(Φ2). (27)

It turns out that this is practically the same crossover frequency as in G. This
means that, from a classic control design point of view, the perturbations act on
the system as depicted in Figure 3. Therefore, the controller design as proposed
in section 2.2 is appropriate for the bulk storage room model.

4.3 Stability

In this section the influence of the linearization error on the stability is investi-
gated. We define the linearization as in (11), with the variable x replaced with
Tp(L). Also, Tp(L) is denoted by Tp for convenience. We recall the system (19)
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with xvar replaced with Tp,var

Tn+1
p,var = AdT

n
p,var + (Ad + ε)τn

var

τn+1
var = (Ad + ε)τn

var. (28)

We have that

ε =
1

2

∂2f

∂Tn
p ∂τn

(Tp,opt, τopt)T
n
p,var +

1

2

∂2f

∂τn∂Tn
p

(Tp,opt, τopt)T
n
p,var

+
1

2

∂2f

∂(τn)2
(Tp,opt, τopt)τ

n
var + h.o.t. (29)

We neglect the higher order terms of ε, which gives

ε =
1

2

(
(A1 − A2)α2 − A2 + A1α2

)
Tn

p,var +

(1

2
(A1 − A2)

(
(A1 − A2)α2Tp,opt −

A2B1

A1
α2 + B1α2

)

−
1

2
A2(

A2B1

A1
− B2) exp(A2(τf − τopt))

)
τn
var, (30)

with α2 = exp(A2(τf − τopt) + A1τopt). Numerical evaluation gives

ε = −2.4 10−5 Tp,var + 7.9 10−8τvar. (31)

We have that Ad = 1 − 3 10−4, and Bd = 6.5 10−3, so the stability criterion
of Theorem 3.2 |Ad + Ad−1

Bd
ε| < 1 becomes |1 − 3 10−4 + 4.6 10−2ε| < 1, which

is fulfilled if |ε| < 64.6. We have that 0 < τvar < 600, according to (16),
and that Tp will converge to the range (−A−1

1 B1 − δ,−A−1
2 B2 + δ) for any δ,

by Lemma 3.1. Since for our case (−A−1
1 B1,−A−1

2 B2) = (275.1, 398.2), we
have that |Tp,var| < 123.1 for any choice of Tp,opt. Altogether, Tp,var and τvar

cannot grow large enough to destabilize the system, and hence the system is
asymptotically stable according to Theorem 3.2.

4.4 Simulation study

In the previous section the stability robustness was analyzed, and in this sec-
tion we analyze the loss of performance due to the linearization. This is done
by connecting controller (36) to the linearized system (32) and to the nominal
system (21)–(24). The differences in Tp(L, t) and τ(t) should give an indication
whether any essential dynamics is discarded. The two controlled systems are
simulated numerically. For the spatial discretisations, a forward Euler step was
used, and the dynamics in time were computed inside the Matlab Simulink en-
vironment using an ode45 Dormand-Prince algorithm. Further, a heavy input
disturbance d was added, such that the system dynamics were clearly visible.
The initial product temperature was set uniform at 285 K, while the optimal
product temperature is 280 K. The input disturbance is d = a sin(ωt), with
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a = 10 s, and ω = 3 10−6 Hz.
The dynamics of τ(t) and Tp(L, t) are shown in Figure 2. For both controlled
systems the dynamics of Tp(L, t) and τ(t) are more or less the same, indicating
that the approximation errors in the approximation steps from (21)–(24) to (32)
do not discard any essential dynamics. Even when initially the product temper-
ature differs considerably from the linearization point of 280 K, the differences
are small. Furthermore, the controller seems to perform quite well under these
large input disturbances. For various frequencies of d similar results were ob-
tained. The differences in system dynamics increase with the amplitude, since
then the linearization error becomes larger.
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Figure 2: Tp(L, t) (upper left) and τ(t) (upper right) of the linearized controlled
system, and Tp(L, t) (bottom left) and τ(t) (bottom right) of the nominal con-
trolled system.

5 Conclusions

We showed that for a large class of nonlinear scalar systems with discrete in-
put, it is possible to make an approximation that allows the design of a linear
controller that controls the switching time of the input. This is done by a
linearization, and the linearization points are the optimal switching time that
corresponds to the optimal state, and the optimal state. Lemmas 2.1 and 3.1
give conditions for the existence of such a linearization point, state its unique-
ness, and guarantee that the state is bounded. Theorem 3.2 gives the condition
for asymptotic stability of the controlled system. The conditions are in analyt-
ical form, which gives a more structural insight into the influence of errors and
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perturbations on the stability.
As an example, a controller was designed and connected to a temperature model
of a bulk storage room. For controller design, the original (or nominal) model
was linearized. It was shown that the stability cannot be jeopardized by the
linearization error. Numerical simulations show that under large input distur-
bances the nominal and the approximated system have similar dynamics in Tp

and τ . This also holds for different physical parameters and disturbance frequen-
cies, indicating that the linearization does not discard any essential dynamics.
Hence a controller with excellent properties can be designed for the bulk storage
room model.
The linearization and the controller design can be applied to any system. How-
ever, for more complex systems, such as higher order systems, the controller
design and the stability analysis do generally not result in parametric expres-
sions, and will therefore be more numerically involved. Nevertheless, a next step
would be the design of a switching input controller for higher order systems, to-
gether with a numerical stability analysis.
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6 Appendix

6.1 Controller design

The following strategy is used. Equation (11) is approximated by a continuous
system, by taking τf → 0. The idea is that the dynamics of x are slow on (0, τf ),

and therefore ∂x
∂t ≈ xn+1

−xn

τf
. We start by rewriting (11) as

xn+1
var − xn

var

τf
= Alinxn

var + Blinτn
var, (32)

with Alin = Ad−1
τf

, and Blin = Bd

τf
. We approximate it by a continuous system,

by taking τf → 0, so (32) becomes

dxvar(t)

dt
= Alinxvar(t) + Blinτvar(t). (33)
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For (33) it is now possible to design a controller by standard linear theory. For
the formulation of design specifications, system (33) is transformed into the
Laplace frequency domain to

x̂var(s) =
Blin

−Alin + s
τ̂var(s)

= G(s)τ̂var(s). (34)

In this section it is assumed for simplicity, that there is only one disturbance, d,
which acts on the input τvar. Figure 3 shows the interconnection of G(s) and
the controller K(s), together with the input disturbance. Various designs are
possible, e.g. LQG or optimal control design. We propose the following design
specifications that are standard for linear SISO systems (see for example [7] for
more details).

• The sensitivity function S = 1
1+K(s)G(s) from d to xvar should be small for

low frequencies, and close to 1 for high frequencies for good performance.

• A very high crossover frequency of S will result in a very fast controller,
with the tradeoff that the performance and stability will be poor.

Input disturbances with a higher frequency than the crossover frequency of G
are already attenuated by G. Therefore, a good choice would be that S is small
up to the crossover frequency of G: −Alin. In other words, we have to find K
such that

1

1 + G(s)K(s)
=

s̃

1 + s̃
, (35)

with s̃ = s
−Alin

. In this way, S2 is small for all frequencies, S is small for fre-
quencies up to s = −Alin, and S tends to 1 for high frequencies. Straightforward
calculation gives the PI controller

K(s) =
Alin − s

Blin

Alin
s

⇔ τ̂(s) = (−
A2

lin

Blins
+

Alin

Blin
)x̂var(s). (36)

With the substitution

ζ̂(s) = −
A2

lin

Blins
x̂var(s) (37)

our controller in discrete time becomes

ζn+1 − ζn

τf
= −

A2
lin

Blin
xn

var

τn
var = ζn +

Alin

Blin
xn

var. (38)

Note that the controller is an explicit parametric function of all the system
characteristics. Figure 3 shows the controlled system with input disturbance d
schematically.
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Figure 3: Schematic overview of the controlled system with input disturbance
d.

6.2 Proofs

6.2.1 Proof of lemma 2.1

Using (6) we can write f(x, τ) as

f(x, τ) = f1(τ)x + f2(τ). (39)

Further, it is not hard to see that for τ ∈ [0, τf ] f1(τ) ∈ (0, 1), and

f2(0) = (exp(A2τf ) − 1))A−1
2 B2

f1(τf ) = (exp(A1τf ) − 1))A−1
1 B1. (40)

Solving
xopt = f1(τ)xopt + f2(τ) (41)

for τ ∈ [0, τf ] is possible if and only if

xopt =
f2(τ)

1 − f1(τ)
(42)

is solvable for τ ∈ [0, τf ]. Since the right hand side is a continuous function
of τ , we see that solving (42) is possible if and only if xopt lies in the range of
f2/(1 − f1). We have that

f2(0)

(1 − f1(0))
= −A−1

2 B2

f2(τf )

(1 − f1(τf ))
= −A−1

1 B1. (43)

Thus if xopt lies between these values, then (42) is solvable. If the range of
f2/(1 − f1) for τ ∈ [0, τf ] would be larger, then

f2(τ)

(1 − f1(τ))
= −A−1

2 B2 or

f2(τ)

(1 − f1(τ))
= −A−1

1 B1 (44)
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must be solvable for at least two τ ∈ [0, τf ]. We show that this is not possible.
We do this for the second equation, the first one goes similarly. Using (44) in
(6) gives

ξ = −A−1
1 B1

−A−1
1 B1 = exp(A2(τf − τ))ξn + (exp(A2(τf − τ)) − 1)A−1

2 B2

⇔ A−1
1 B1 = exp(A2(τf − τ))A−1

1 B1 − (exp(A2(τf − τ)) − 1)A−1
2 B2

⇔ A−1
1 B1 = (exp(A2(τf − τ)) − 1)(A−1

1 B1 − A−1
2 B2). (45)

Since A−1
1 B1 6= A−1

2 B2, we must have exp(A2(τf − τ)) − 1 = 0, which gives
τ = τf . Now we will prove the uniqueness of τopt. Assume that τ1 and τ2 are
times such that

xopt = f(xopt, τi) i = 1, 2. (46)

Assume that τ1 < τ2 ≤ τf , and let

ξi = exp(A1τi)xopt + A−1
1 B1(exp(A1τi) − 1) i = 1, 2. (47)

We observe from (6) that

ξi + A−1
1 B1 = exp(A1τi)(xopt + A−1

1 B1) (48)

xopt + A−1
2 B2 = exp(A2(τf − τi))(ξi + A−1

2 B2) (49)

Since A1 < 0, and since τ1 < τ2, we have by (48) and xopt > −A−1
1 B1 that

ξ1 + A−1
1 B1 > ξ2 + A−1

1 B1 (50)

This implies that
ξ2 + A−1

2 B2 > ξ1 + A−1
2 B2. (51)

Now using (49) and the fact that τf − τ1 > τf − τ2 we find

exp(A2(τf − τ2))(ξ2 + A−1
2 B2) > exp(A2(τf − τ1))(ξ1 + A−1

2 B2). (52)

However, both expressions must be equal to xopt. Hence τ1 cannot be unequal
to τ2. �

6.2.2 Proof of lemma 3.1

We want to show that for some N xN ∈ [−A−1
1 B1 − δ,−A−1

2 B2 + δ] for any
δ > 0. Suppose that this does not hold, then xn /∈ [−A−1

1 B1 − δ,−A−1
2 B2 + δ]

for all n. Suppose

x0 < −A−1
1 B1 − δ ⇒ (48) ξ0 < −A−1

1 B1 − δ (53)

which implies that x1 < −A−1
2 B2. Since x1 /∈ [−A−1

1 B1 − δ,−A−1
2 B2 + δ] we

have
x1 < −A−1

1 B1 − δ. (54)

15



Furthermore, x0 < x1. Repeating the above argument gives

x0 < x1 < x2 . . . xn ≤ −A−1
1 B1 − δ. (55)

Hence xn → x∞ ≤ −A−1
1 B1 − δ. Similarly, ξn → ξ∞ ≤ −A−1

1 B1 − δ. From
(48) we conclude that if x and ξ both converge, then so does τ . So τn → τ∞.
Thus we have that (x∞, τ∞) is a fixed point that satisfies x∞ = f(x∞, τ∞) and
x∞ < −A−1

1 B1. Lemma 2.1 implies that x∞ ≥ −A−1
1 B1. �

6.3 Parameters

Φ air flow through shaft (m3/s)
α cooling effectiveness (K)
αth thermal diffusivity of air (1.87 10−5 m2/s)
γ porosity (m3/m3)
λa conduction of air (2.43 10−2 W/m K)
λp conduction of product (W/m K)
ν kinematic viscosity of air (1.35 10−5 m2/s)
ρa air density (1.27 kg/m3)
ρp produce density (kg/m3)
τ switching time (s)
τf length of switching interval (s)
Af floor area of the bulk (m2)
Aps produce surface per bulk volume (m2/m3)
Bi Biot number 2hR

λa

L bulk height (m)

L2 R ∗ γ(1 − γ), char. length (m)
Nu Nusselt number 2hR

λa

Pr Prandtl number ν
αth

R product radius (m)
Re Reynolds number vL2

ν , [14]
Ta air temperature in the bulk (K)
Tc cooling element temperature (K)
Tini initial temperature (K)
Tp produce temperature (K)
V volume of shaft (m3)
a product heat production (J/kg s K)
b product heat production (J/kg s)
ca heat capacity of air (1 103 J/kg K)
cp heat capacity of produce (J/kg K)
h heat transfer coefficient (W/m2K)
v air velocity inside the bulk (m/s)

16



6.4 Expressions

A A∗

B B∗Tc

A∗ ÃpAp

Ap+Ãp

B∗ −
B̃pBp

Ap+Ãp
Tc

Ãp −
A2

p

M5Bp
+

A2
p(1−α)

M5Bp
exp

(
M5

(
Bp+Ap

−Ap

))

B̃p
αA2

p

M5Bp
exp

(
M5

(
Bp+Ap

−Ap

))

Ap − 2M3 cot(M3)−2+Bi
R2

M1
cot2(M3)+

R2

M1
−

M3
M2

cot(M3)

Bp
Bi

R2

M1
cot2(M3)+

R2

M1
−

M3
M2

cot(M3)

M1
λp

ρpcp

M2
a
cp

M3

√
M2/M1R

M4
hAp

γρaca

M5
M4L

v

v Φ
Af
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