Styles in Heterogeneous Modelling With
UML

Marius C. Bujorianu and Manuela L. Bujorianu
Formal Methods Group
Faculty of Computer Science - EWI
University of Twente,
Enschede, the Netherlands
email: L.M.Bujorianu@cs.utwente.nl

March 13, 2008

Abstract

Software development is becoming increasingly heterogeneous, and
therefore the formal approaches to heterogeneity are geting very im-
portant but, unacceptable extremely complex. We propose a type
theoretic approach based on the concept of style, as an attempt to
simplify the complex interaction of different formal aspects of system
specification. We use category theory to investigate three major se-
mantic styles - algebraic, coalgebraic and relational - and specification
methodologies like viewpoints and precise metamodeling.

Keywords: relational specification, Z, UTP, UML, fibrations, al-
gebra, coalgebra

1 Introduction

In this work we propose a type theoretic approach to formal heterogeneity
that characterizes the contemporary system development. Our approach is
based on the precise metamodeling [40], which is also known in the field of for-
mal specification as viewpoint specification [10].In the precise metamodeling,



software models are built from different perspectives and their interconnec-
tions can be complex and are formally specified. The metamodeling became
popular especially because model driven architecture approaches based on
the Unified Modeling Language (UML) [37]. In the UML, software mod-
els are described using different diagrammatic languages, usually ‘united ’
using OCL, a formal first order language. The linking formulas are called,
in the UML parlor, constraints. The semantics of the UML metamodeling
is given using UML itself. Because of that, a strong objection against the
UML is the lack of precise semantics and its methods are criticized of missing
the necessary mathematical rigor. The precise metamodeling adds to UML
metamodeling formal semantics. UML formalisation is an important source
of heterogeneity. Almost every important specification notation has been
applied to UML. But different diagrammatic views find specific, convenient
notations, but different.

Traditionally, systems were decomposed according to functionality. In
addition to this, modern approaches favor decompositions according to “as-
pects” or “viewpoints”. Also, these may be interpreted as views of the system
functionality from different participants. Viewpoints mean different perspec-
tives on the same system, aspect oriented specifications written in different
languages by teams having different backgrounds, etc. Of course, for an im-
plementation we need an integration of all these formal descriptions, more
specifically a minimal one, called unification. The only issue that distin-
guishes viewpoint specification from precise metamodeling is the construction
of unification. The increasing importance of the viewpoint model in software
engineering is exemplified by its use in the Open Distributed Processing -
ODP standard [9], OO design methodology, requirement engineering, soft-
ware architecture [27] and reverse engineering.Considering application do-
mains of viewpoint specification one gets richer sources of heterogeneity. In
this work we review approaches to heterogeneity and propose new method-
ologies to strength them. We use categorical type theory and a concept of
style, formalised as frames (see section 3).

The paper is structured as follows. In the next section we treat relational
specification from a categorical perspective. In section 3 we introduce a
type theoretic formalisation of specification languages. Section 4 contains
a treatment of heterogeneity based on categorical type theory. In section 5
we interpret precise metamodeling as viewpoint specification. The partial
conclusions of this formal experiment are sketched in the last section.



This paper is addressed to readers with advanced knowledge of category
theory. All definitions and notations we use hereafter can be found in [5].
The main notions of category theory we use are presented in the Appendix!.

2 Relational specification

2.1 Relations as predicates

A fibration F'ib : E — B (see the Appendix for full definitions) is the cat-
egorical way of qualitative reasoning on the elements of a category using
the elements of another category. In a typed specification language, as Z or
VDM [30], the base category B of a fibration is generated by a set of basic
typed variables V' = {x; : T; | ¢ € 1,n}. The objects of B are all finite
products of V, including the empty product 1, and arrows are the smallest
set of arrows containing all the projections and identity arrows, and closed
under composition and pairing.

Hyperdoctrines® were defined by F.W. Lawvere [17] as a categorical model
of predicate logic. At the hart of the concept lies the observation that univer-
sal and existential quantifications are adjoints to projections. Hyperdoctrines
provide a notion of model for first order and higher order logics -HOL.

Every relational algebra admits a logic formulation. This affirmation is
based on equivalence between bifibrations and hyperdoctrines, stated in the
following result [39] .

Proposition 1 A hyperdoctrine is a bifibration which is BC and F stable.

This result is the categorical foundation of techniques used in Z, the uni-
fied theory of programming (UTP) [45, 33] and other relational specification
logic of moving freely between relational algebras and formal logics.

2.2 Coalgebras

We recall [29] the correspondence between coalgebras and labelled transition
system (Its) (S,—,L) , =C S x L x S when M is SET. Define B[X] =

IThis is included for the reviewers’ convenience and could be omitted for the final
version.

’In the sixties, the term doctrine was used to denote every equational theory over
category of small categories.



P[L x X| = SPP/ x for any set X, that is an endofunctor on SET. The
B—coalgebra associated to lts is (S, ag) with ag : S — B[S], as(s) = {(a,s)
| s % &'}. To any B—coalgebra (S, ag) we can attach an lts (S, —, A) by
defining s % s’ < (a, s') € as(s).

Every binary relation can be substituted equivalently by its functional
representation. This technique can be applied to the ternary relation —C
S x L x S in two different way: by giving a function B : S — P[L X

S| = REL, g or by giving a function p : L — P[S x S| = RELg. The

former function describes a coalgebra. Relations involved are heterogenous
(between L and S). The last way is more interesting. It associates to every
transition label a relation between states. The dynamics of the lts is described
entirely relational. This is the way the dynamic systems are described in Z
as abstract data types. Relations are homogenous (between the state space).
This difference has more impact when considering a structure for the state
space. In former case S and L are objects of the same category, which implies
that the state structure will be lifted to the action space. The only way we
can structure states is then by choosing S to be an object in a category
C. For example, considering C to be Mon the category of monoids, then
the states and actions can be structured by the monoid operator (which
could mean parallel or nondeterministic composition). This specification
style has been used by Montanari et. al. [16] using the term structured
coalgebras. In the last case, transitions form always a category different
from those of states. If we consider the states as objects of a category C
(which means that all states respect a prescribed structure, which can be
formally specified) with pullbacks and mon/epi factorization, then actions
will be relations over C, i.e. members of RELc = SPSC. The impact on
software specification is significant: dynamics is not anymore specified as
graph, specified locally by giving to each node all its successors, as in case
of coalgebra, but generically. A state or a class of states are specified by a
logic description defying a category of models. A transition or a finite set
of transitions are specified by a finite set of relations. There is a transition
if there is a relation whose precondition (i.e. its domain) is valid in that
state. In the following, the last way of describing dynamics will be called
relational abstract state machines (RASMs for short) - see next subsection.
These are the categorical generalisations of abstract data types from Z (ADTs
for short).

We want to construct a similar correspondence for categories M more

4



general than SET. Following the same construction, we define B[X] =
P[L x X], which implies that L € |M]|. This makes sense if M is the category
of schemas (with inclusion providing morphism), as in Z operations and states
are specified using the same schema notation. In order to use M as the

category of models, we define F|L] = REL); ;s and the transition M Lo
ifft M, M’ € F[L]. But, in this case, F' fails to be an endofunctor. A closer
look at definition of B on SET shows that what makes things work in this
case is the fact SET has power objects, and thus the powerset construction
P generates an endofunctor. This suggests a more general technique, namely
to replace SET with a category M with power objects, in which all relations
can be represented as set valued functions. Such categories are the toposes.

Proposition 2 A category with pullbacks and power objects, in which all
relations are representable, is a topos.

In the rest of this paper, the carrier of any coalgebra is supposed to be
an objects of the topos of models MOD.

A p—-coalgebra is a function from a state set ST to the powerset of L x
ST. Using the characterisation (in a topos only) of relations as set valued
functions, we can formulate a relational version of coalgebras. A relational
coalgebra over a set of states ST" with actions from a set L is defined as a
relation from an object ST in a topos to an object L x ST. Thus we can
represent a coalgebra as predicate in the logic of a hyperdoctrine. Using the
coalgebraic semantics of CCS (i.e. of lts’s) [29], we get again hyperdoctrine
representation of operation type.

Proposition 3 If the state type of Z admits an initial algebra, then the state
and operation type of Z admit a final coalgebra.

2.3 Relational refinement

We define the operation name space as a discrete category category L and
the RASM as a tuple A = (S, L,Dg), where S is a category (the state space)
and Dg is a functor (the dynamics) from L to RELg.

In Z ADTs, L =IN x OP* x FIN and OP”* is the free monoid on a

set OP construed as a one-object category. The notation s % o stands
for (s,s") € D[Op], Op € |S|, that is, the states s,s' are related by the
operation Op. Giving a relation p € |RELg| we define its precondition as

5



pre_p = id N pp~t and its postcondition by post_p = id N p~'p. Obviously,

pre_p and post_p can be seen as subobjects in C (for example pre_p C id and
can be identified with the set {c | {c} € |C| A (¢,c) € idN pp~'}). There
is an issue for the situation when a state S € |C| has an empty intersection
with pre_p. In the contract interpretation, there is no transition associated
with the label defined by p. In the behavioral interpretation, the relation p
can define any possible transition.

Given two RASMs (S,L,Ds) and (T,L,Dr), a backward simulation be-
tween them is defined by a relation p : T' - S such that

VOp e Loe (t,s) epnt LY =3 € SOS%S//\(t,,S/) € p.
Therefore, the following formula also takes place
VOp € Lo (s,t) epAt By =3 € Sos%s’/\(s’,t’) € p.

This latter expression admits the following diagrammatic interpretation in
REL:

S LT
Ops| | | Opr
S — T

p

for every operation name Op € L. This amounts to a lax-transformation
p:Ds = Ds : PROG — REL. An immediate consequence is that forward
simulations compose via lax transformations ( by pasting the lax-squares),
hence they are closed under relational composition.

The lifting of fibration of subobjects ¢ : Sub[SET] — SET to relations
gives a functor F, : REL — FRM, the extension of the ordinary logic of
sets. The composite F, o Dg : PROG — FRM yields a new RASM, whose
state space is a frame (of subsets or Sub—predicates). We denote this RASM
PA = (p[S],L,(D§))) on the frame of subsets of S (identifying predicates
on a set with their extents), with

< Op >"={(¢,9)|¢ =< Op > 9}

which restricts to a RASM on the set of formal specifications ®. We have
endowed ® with the structure of a RASM. We now seek to characterise the
satisfaction relation as a forward simulation:



Proposition 4 For a RASM A = (S,L,Dg), the satisfaction relation f=g:
S -+ ® satisfies: VOp € L

s 5 ¢
Ops | 1< Op >~
S ; P

Thus, F: S - ® is a forward simulation.

Given a set S and a sup-lattice U, a relation p : S —» U is called a o-
relation if its transpose p : F' — @S is a sup-lattice homomorphism (where
olfl = {s | (s, f) € p}). Given RASMs (S,L,Ds) and (U,L,Dy), with U a
sup-lattice, a relation p C S x U is called a o-forward simulation if it is both
a o-relation and a forward simulation.

Theorem 5 Given a RASM A = (S,L,Ds), the satisfaction relation =g:
S -+ ® is the largest o-forward simulation between A and (®,L, (Dg))).

Corollary 6 Consider RASMs A and B and a forward simulation p : S - T
between them. If (s,t) € p and t =1 ¢ (for a formula ¢), then s =g ¢.

This means that two states s and ¢ related by a forward simulation are
observationally foward-similar, i.e. any formal specification satisfied by ¢ is
also satisfied by s.

Lemma 7 Given a o-relation p : S - F and a relation R : T - S, the
composite Re p: T - F is a o-relation.

Given RASMs A and B and states s € S and ¢t € T', which are opsimilar:

Voede(tlr¢) = (sls o)

implies that s opsimulates ¢ (i.e. that there is a forward simulation relating
them), the usual approaches impose restrictions on the systems so that the
above condition gives a backward simulation between A and B.



3 Categorical Foundation of Specification Lan-
guages

Category theory was proposed as a natural candidate to deal with heteroge-
neous specifications. The most developed categorical approaches to specifi-
cations are based on the theory of institutions. Conceptually, the institution
notion can be identified exactly with the concept of (model theoretic) logic
framework described in [22]. In this way, the concept of formal specification
language is identified with a model theoretic logic.

In principle, an institution is a model-oriented logic described in the cat-
egorical language. Most of categorical machinery recasts results from (set-
theoretic general logics) and most of newest results are related to the issue of
translating logics (transporting the logical structure). The theory has been
equally adored by some scientific communities and rejected by others. It is
not the purpose of this paper to investigate the promises and the real bene-
fits of the theory of institutions, but to review an existing, largely developed,
approach. Many specification languages have got an institutional formali-
sation. Examples include algebraic specification languages, temporal logics,
coalgebraic logics. Benefits of institutions are collected when considering in-
stitution morphisms, i.e. translations between logics. This theory is very rich
[14], but this might be also an disadvantage from the practitioner point of
view. Heterogeneity issue has generated an exploding amount of research in
the institutional world. The pioneering work of Diaconescu, within the Café-
OBJ project has introduced an abstract rigorous framework for multi-logical
software specifications, based on Grothendieck constructions [5]. The prac-
tical benefits of this approach were clearly evidenced and the whole abstract
machinery was implemented in a concrete rewriting system. Diaconescu’s
approach was continued by an impressive amount of work by Mossakowski
et. al. [35]. The recent developments include views, a categorical concept
for heterogeneous software components.

Now we define a type theoretic formalisation of specification language.
Cerioli and Zucca [13] firstly voiced the need of generalising the institution
concept to accommodate more sophisticated concepts of types.

A spec space (S,C) is a complete join semilattice. Elements of S are
specifications and C models the refinement relation. A spec space morphism
is a map m : S; — Sy such that m(UF') = Um/(F') for each nonempty subset
F of S. Spec spaces and their morphisms form a category S.



In practice, a specification is constructed in terms of some finitary oper-
ations. We model this by asking spec spaces to be co-algebraic.

A cpo (S,C) is called co-algebraic iff for every s € S, s= = {t O s |
t is compact} is directed and s = s=. Colgebraic spec spaces form a full
subcategory aS of S.

A constraint oriented development frame (COD frame for short) (SS, B,U, p, Sem)
consists of

e A subcategory SS of aS
e A fibration [15] U: SS — B
e a posetal hyperfibration p : B’ — PreOrd,,

e a functor Sem : SS — PreOrd,, such that Sem|[Sp] C p[O[Sp]].

Example 8 (Z) Let SS be the category of Z schemas, ordered by inclusion,
and B the category of records of typed variables and constants. Then X :
SS — B defined by S = SV notS (the signature of a schema) is a fibration.

Example 9 (Unified Theories of Programming) The alphabetised rela-
tional calculus s similar to Z schema calculus, except that it is untyped
and rather simpler. An alphabetised predicate (P, Q, ..., true) is an alphabet-
predicate pair, where the predicate’s free variables are all members of the
alphabet. The alphabet is composed of undecorated variables (x,y, z, ...) and
dashed variables (a', V', ...); the former represent initial observations, and the
latter, observations made at a later intermediate or final point. The alphabet
of an alphabetised predicate P is denoted aP and it defines a fibration. It may
be divided into its before-variables (inaP) and its after-variables (outaP). A
homogeneous relation has outaP = inaP’, where inaP’ is the set of vari-
ables obtained by dashing all variable in the alphabet inaP. A condition
(b,c,d, ...,true) has an empty output alphabet. Two distinguished variables
are introduced into the alphabet of relations: okay records the observation
that a program has started; okay' records the observation that the program
has terminated. A design is a pair of predicates P & @), where neither predi-
cate mentions okay or okay'. It is similar to Morgan’s specification statement
w: [P,Q), for an alphabet that contains w and w'. A design has the following
meaning:

(P Q)=(okay N\ P = okay' N\ Q)



where P is the precondition and () is the postcondition. The categorical
semantics of a design is a predicate transformer [36]. The separation of pre-
condition from postcondition allows a specification style where one might use
a more generous precondition than the domain of the specification semantics
(which is a relation as in Z). The logic of designs is given by tripos (and thus
it is higher order).

The intuition behind the definition of COD frames is that the objects of
SS form a class of axiomatic specifications, closed under consequence relation.
The fibration U describes the vocabulary used to build a specification, and
the hyperfibration g describes all possible structures implementing a given
vocabulary. From these structures, the functor Sem selects those that are
precisely the models of a specification.

The most obvious example of posetal hyperfibration is the powerset func-
tor, essential in modelling the Z type system in [11]. Many important exam-
ples from type theory can be found in [17].

Most algebraic specification and model oriented languages, as Z and
VDM, are instances of COD frames.

The contravariance of the hyperfibration p means that in the refinement
process one gets less models by adding more formulas to specification. Adding
one more formula to a specification means a new constraint on the system
to be developed.

OCL constitutes an important motivation for generalizing institutions to
COD frames. OCL has a rich collection of types, and some of them are very
complex, as model types. The full categorical formalisation of OCL as a COD
frame will be given in a forthcoming paper. The first steps were started in
7, 11].

A meta-model development frame (MMD frame for short) (SS, B,U, p, Sem, MOD)
has a similar definition as COD frame. The difference is that the hyperdoc-
trine component is nonposetal, pseudofunctorial and defined on the dual
category of vocabularies: p : B — MOD, where MOD is some subcategory
of CAT, usually the category of Cartesian closed categories.

An important example of MMD frames is the (higher order) categorical
logics of 1ts and their many variants. An Its P is a diagram

6
Ep?TPZZSPHl (1)
0 L

in B. The operations A, 6 and o assign to each transitions respectively a
label, a source and a target; the constant ¢ is the initial state. A morphism

10



¢ : P — (@ of labelled transition systems is a natural transformation between
diagrams as (1)

) L

Xp T}TP = Sp N\
o

Yol T, | Sy | 1
s

Sy 2 To = So S
o

L

So ¢ is in fact a triple of functions (¥¢,T ¢,% ¢). The latter two form a graph
morphism, preserving the initial state and the labelling - in the sense that
it takes an a-labelled transition to a “¢(a)-labelled one. With morphisms
like this, the labelled transition systems form a category LTS. It is fibred
by the functor yrs : LTS — B, which projects each labelled transition
system to the corresponding alphabet. Yyrg is a regular fibration [39]. There
is a regular fibration LTS™ — B, spanned by reachable labelled transition
systems, where each state can be reached from the initial state. The inclusion
LTS™ — LTS has a right adjoint, i.e. reachable labelled transition systems
span a coreflexive subcategory of labelled transition systems. The fibred
subcategory 7 of synchronization trees is coreflective in all of them and
supports the full higher order predicate logic. A fibration of asynchronous
transition systems is described in [44].

The covariance of the hyperfibration g means that in the refinement
process one gets less models by eliminating formulas from specification. Adding
one more formula to a specification means a new building rule for the models
of the system to be developed. In an MMD frame the models of specifica-
tions are not specified directly, but rules to build them are described instead.
This style is specific to meta-modeling. The most prominent examples of this
style are UML, the structured operational semantics, grammars and graph
transformation systems.

4 Herogeneity via structuring categories

A structuring category St[Sp] for a specification Sp can be thought of as a
category (with some specific properties) which, in some sense, is the smallest
such category in which Sp can be modelled soundly.

11



A COD frame is called C-structured if there is a category C (called the
structuring category) with pushouts and with a faithful functor C — CAT
such that :

e There are functors U : C — SS and F' : SS — C with F' left adjoint
to U.

e The functor Sem : SS?? — PreOrd, is naturally isomorphic to the
functor

ss* 7 cor 7S preOrd,

where the functor _/C sends an object ¢ € |C]| to the slice category ¢/C.
Examples

e the equational logic, where C is the category of categories with product;
e the ADT logic, where C is the category of elementary toposes [11];

e the logic of VDM, where C is the category of partial map categories
[40];

e the logic of the typed lambda calculus, where C is the category of Carte-
sian closed categories;

e the logic of the polymorphic lambda calculus, where C is the category
of relatively Cartesian closed categories;

e the Girard’s linear logic, where C is Seely’s category of linear categories.

e the logic of Martin-Lof type theory with equality types, where C is the
category of locally Cartesian closed categories;

e the logic of Martin-Lof type theory without equality types, where C is
either Cartmell’s category of contextual categories.

We say that two specifications are equivalent (relation denoted by using
= symbol) if their structuring categories are equivalent.

Every structuring category gives rise to a specification in that logic, and
this process is mutually inverse to that of constructing a structuring category
for a given specification.

In this paper, we make this correspondence more precise for equational
logic, which is at the heart of the most specification languages.

12



Proposition 10 For any category C with finite products, we can associate
a particular equational specification Sp|C| = (Sig, Eqns). Moreover, there is
a canonical model of Sp[C] in C.

The equational specification Sp[C]| allows one to reason about the cate-
gory C thought of as the category of sets and functions.

Proposition 11 For every equational specification Sp we have Sp = Sp[St[Sp]

This statement is extremely useful because it establishes that the cate-
gories with finite products provide a representation of the notion of equational
specification, which is syntax independent.

The benefits of the type theoretic approach can be used to define speci-
fication language translation. For example, the translation Tra : Sp; — Spo
of equational specifications can be given as a finite product preserving func-
tor Tr : St[Sp1] — St[Sps]. Using functor equivalence, this amount gives
a functorial model T' : Sp; — St[Spy]. In order to extend this idea to full
specification languages, categories of COD frames need to be defined. Using
functors that relate categories of partial maps with triposes [40], one can get
a categorical syntax free interpretation of the practical translation methods
between Z and VDM proposed in [30].

5 Precise Metamodeling using Category The-
ory. Viewpoints

The formal metamodeling is a precise technique for the definition of multiple-
view languages like UML [37].

In [25] the metamodeling is defined as the use of different models to clar-
ify different important aspects of the system, but it has to be taken into
consideration that these models are dependent on each other and are seman-
tically overlapping. Therefore it is necessary to state how these models are
related. The different views on a system have to be semantically compati-
ble and there are several constraints between them. In [10], viewpoints are
defined in similar terms.

In UML parlor the concept of model corresponds to our term of viewpoint.
Viewpoint specification offers specific challenges to computer science, like
the consideration of multiple development techniques, expressing formally

13



correspondences (i.e. interconnections, overlapping) between specifications
and the construction of unifications (all concepts defined in this section).

Reflection [32] means the capability of a formal language to represent
its own semantics. Reflection is a key characteristics of MOF [37]. UML
state machines can be formalized in an institutionalized logic language, and
constraints on their behavior can be imposed. This approach is closely re-
lated to what in formal methods is called shallow embedding of operational
semantics: both, the language and its semantics, are formalized into logic
(denotationally defined language). This situation is opposite to the deep em-
bedding, where the semantics is embedded in the semantics of the formalizing
language.

There are several well-established viewpoint specification techniques. We
use the methodology presented in [10,9]. Correspondences are defined as
relations, and viewpoint integration is defined in Z, based on a relational
semantics.

By using category theory, we can treat abstract data type viewpoints in
a proper manner. We can characterize unifications using limits and colim-
its (pushouts). Correspondences can be expressed as spans. Consistency
conditions can be formulated using categorical logic [17].

Viewpoints are just formula in categorical logic. Typical examples are al-
gebraic specifications and data definitions in Z. The unification is constructed
by pushout [11].

A (partial) specification Ref refines (by model containment MC) a viewpoint
Psp and we note this by Ref JPsp if Sem[Ref] C Sem[Psp]

We adopt the view on viewpoints consistency expressed in [10] by “A collec-
tion of viewpoints is consistent if and only if it is possible for at least one
example of an implementation to exist that can conform to all viewpoints.”
The unification Unif[Psp, Psp'] of two viewpoints Psp and Psp’ is defined
as the smallest common refinement [10].

The unification of viewpoint based on MC refinement is constructed by taking
the pushout of the correspondence diagram. This construction is specific to
COD frames [12].

The unification of viewpoint RASMs is constructed by adapting unifica-
tion procedure from Z [10, 11, 7]. The unification StUp of two state spaces
StA and StB, connected by a relation p C StA x StB is given by

StUp = pU (StA\ dom_p) x {Ls} U (StB\ ran_p) x {Lp}

The semantics of every state, let say StA, is enriched with a new symbol,

14



let say 1,4, that is put in correspondence with every element outside the
domain (or range) of the correspondence relation. State unification is char-
acterised categorically in [11] by an extension of the pushout construction,
called relational pushout.

The unification Uy g of transitions A (acting on StA) and B (acting on
StB) is

prev,, = (preaVopreg) and

posty, , = (prea = posta) N\ (preg = postp)
where pre4 (resp. post,) is the precondition (resp. postcondition) of A etc.

Theorem 12 Unification ADT is the least developed refinement of the view-
point ADTs.

Corollary 13 Unification of operations can be constructed as a limit of coal-
gebras.

This corollary and operation unification for RASMs, show that, for MMD
frames, unification is a limit. The frame duality is rediscovered in duality of
unification procedures.

We describe now a quick application of the last theorem to process alge-
bra. Consider CCS coalgebraic semantics as described in [29] together with
the trace refinement..

Proposition 14 The unification of two CCS processes is given by parallel
composition.

Viewpoints are a fundamental vehicle in UML. Every diagram express a
particular view on the system, and viewpoint integration is usually done by
formalizing different UML diagrams in a single, monolithic formalism, like
Object Z. UML was extended with model viewpoints in [7], and package
semantics was formalized in a generic manner using relational data types.

The UML relational formalisation can turn our approach into meta-
modeling framework. For example, the hyperfibration of binary relations
can be represented in UML as in Figurel.

Relational metamodels are expressed using a subset of UML comprising
class diagrams and OCL for writing constraints, which is very similar to the

15



ARelB

| | relation
* (domain }

+ {¢lements fnge
s AB | B

Figure 1: Relations class diagram

language used by MOF [42]. For example, the Figure 1 must be accompanied
by a least an OCL invariant which ensures that, looking up an element from
the domain returns the pairs in the relation, which mentions that element:

context XrelY : : rangeLookup(Y:y) : Set (XY)

post: result = elements->select( p | p.y =y)

A metamodeling illustration is the typical example of containers (see a
more elaborate discussion in [1]).

AContainer | ! AContainerBContainer I | BContainer
aContainer hContainer
I ConNe
1 lscope
| |aRelB
ARelR
relation | ]
confents contents
+1 *domain elements [* rangay/  *
A AB B

=]
=

16



Metamodelling Containers Relationship

6 Conclusions and Future Work

In this paper we have treated the difficult, but important problem of heteroge-
neous use of specification languages. Our approach is founded on categorical
type theory. We are a bit unhappy because we have had to use heavily cat-
egory theory at an advanced level. The limited space of this paper does not
allow us to present a proper category theory background. But the interested
reader could find excellent introductions in the literature [39, 36, 15].

Inspired by algebra/coalgebra duality we have defined two dual cate-
gorical concepts of specification languages. Instead of using algebraic or
coalgebraic semantics, we have considered refinement as a primary object.
Specifications are sets closed under logical consequence relations and they
are ordered by a refinement relation (the reader familiar with the theory of
institutions could consider inclusion morphisms as a quick example). Se-
mantics is given by a functor from the category of specification to an ordered
category of models. This functor can have covariant or contravariant be-
haviour. Contravariance is specific to a constraint-oriented style. A formula
component of a specification expresses a constraint on the class of models
of the specification. Adding a formula to a specification (i.e. refining it)
yields less models. For example, this is the case refinement is defined for
institutions. The covariance behaviour of the semantics functor means that
restriction of the class of models (i.e. refinement) is achieved by eliminating
syntactic components from the specification. This is the case for specifica-
tion style where models are not described directly, but instead the semantics
consists of rules for constructing the intended models. This is specific to
metamodeling where metadata are specified instead of the intended data.
Other instances of this style include structured operational semantics, gram-
mars and graph transformation systems. We have called this specification
style metamodeling oriented.

The duality constraint-oriented / metamodeling oriented styles mirrors
the algebra / coalgebra duality at a foundation level. The languages with
coalgebraic semantics use a constraint-oriented style. Examples include modal
and temporal logics or varieties of colgebraic specification. The “Coalgebraic
Methods in Computer Science” workshop abounds in papers presenting in-
stitutions for coalgebraic logics. But the categorical duality has been never

17



expressed for specification styles.

The precise metamodeling concept we have used in this paper is that
presented in [42]. This is an early definition of the concept, as it has got
richer interpretations.

Related work. In [6] Baumeister has defined relations as predicates in
logics (formalised as institutions). He defines categories of relations between
categories of models of algebraic specifications. This construction is simi-
lar to our fibrational construction, but comparisons can not be formulated
very succinct. Related categorical approach to coalgebraic refinement are
presented in [38, 34]. How these approaches relate to relational refinement
will be subject of further investigations.

References

[1] D. H. Akehurst, O. Patrascoiu: Tooling Metamodels with Patterns and
OCL. In Proceedings of the Metamodelling for MDA Workshop, York,
November 2003.

[2] M. Anlauf and D. Pavlovic: On Specification Carrying Software, its
Refinement and Composition, in: H. Ehrig, B.J. Kramer and A.FErtas,
eds., Proceedings of IDPT 2002, Society for Design and Process Science,
2002.

[3] M. Anlauf and D. Pavlovic: EPOXI: Evolutionary Programming Over
Ezplicit  Interfaces www.kestrel.edu/home/projects/ dasada/demo-
days-020701.ppt

[4] E. Astesiano, G. Reggio: An Attempt at Analysing the Consistency
Problems in the UML from a Classical Algebraic Viewpoint WADT 02,
Springer LNCS, 2003.

[5] M. Barr, C. Wells, Category Theory for Computing Science Pren-
tice Hall, 1990.

[6] H. Baumeister Relations between Abstract Datatypes modeled as Abstract
Datatypes PhD Thesis, University Saarbrucker, 1998.

[7] E.A. Boiten, M.C. Bujorianu: FEzxploring UML Refinement through Uni-
fication Workshop on Critical Systems Development with UML, <<U
M L>> 2003, San Francisco, California, USA, October 20 - 24, 2003.

18



[8] E.A. Boiten, J. Derrick (eds.): IFM 2004: Integrated Formal Meth-
ods Canterbury, Kent, UK, Springer Verlag, LNCS 2999, 2004.

[9] E.A. Boiten, H. Bowman, J. Derrick, P.F. Linington, M.W.A. Steen
Viewpoint consistency in ODP, Computer Networks 34(3), pp. 503
537, 2000.

[10] H. Bowman, E. A. Boiten, J. Derrick, M. W. A. Steen Strategies for
Consistency Checking Based on Unification Science of Computer Pro-
gramming, 33, pp. 261-298, 1999.

[11] M.C. Bujorianu, E.A. Boiten Towards Correspondence Carrying Speci-
fications, In [41].

[12] M.C. Bujorianu, S. Maharaj, M.L. Bujorianu Towards a Formalization
of Viewpoints Testing. In Rob Hierons and Thierry Jeron eds., Proceed-
ings of Formal Approaches to Testing of Software, pp. 137-151, 2002.

[13] M. Cerioli, E. Zucca Implementation of Derived Programs (Almost) for
Free Recent Trends in Data Type Specification, Springer LNCS 1376,
pp. 141-155, 1998.

[14] M. Cerioli. Relationships between Logical Frameworks, PhD thesis, Uni-
versity of Genova, 1993.

[15] R. Colomb, C.N.G. Dampney, M. Johnson. The use of category-theoretic
fibration as an abstraction mechanism in information systems. Acta In-
formatica, 38 (1), pp. 1-44, 2001.

[16] A. Corradini, R. Heckel, U. Montanari, From SOS Specifications to
Structured Coalgebras: How to Make Bisimulation a Congruence, CMCS
99, ENTCS Vol.19, 1999.

[17] R. Crole Categories for Types Cambridge University Press, 1993.

[18] J. R. B. Cockett “Charitable thoughts” 1996. Draft available from
http://www..cpsc.ucalgary.ca/projects/charity /home.html

[19] J. Davies, C. Crichton: Concurrency and Refinement in the Unified
Modelling Language Formal Aspects of Computing 2003.

19



[20]

[21]

[22]

[30]

J. Derrick, D. Akehurst, and E. Boiten. A framework for UML consis-
tency. In L. Kuzniarz, G. Reggio ea., eds., <<UML>> 2002 Workshop

on Consistency Problems in UML-based Software Development, pages
30-45, 2002.

J. Derrick, E.A. Boiten Refinement in Z and Object-Z: Founda-
tions and Advanced Applications Formal Approaches to Computing
and Information Technology. Springer, May 2001.

H.D. Ebbinghaus Extended Logics: The General framework In J. Bar-
wise, S. Feferman (eds.) Model Theoretic Logics, Springer Perspec-
tives in Mathematical Logic Series, 1985.

R.B. France, J.-M. Bruel, M.M. Larrondo-Petrie: An Integrated Object-
Oriented and Formal Modeling Environment Journal of Object Oriented
Programming, 10(7), pp. 25-34, 1997.

F. D’Souza, A.C. Wills: “Objects, Components and Frameworks with
UML: The Catalysis Approach” Addison-Wesley 1998.

R. Geisler, M. Klar, C. Pons. Dimensions and dichotomy in metamodel-
ing. In Proceedings of the Third BCS-FACS Northern Formal Methods
Workshop. Springer-Verlag, 1998.

J. Goguen and R. Burstall: [Institutions: Abstract Model Theory for
Specification and Programming. Journal of the ACM, 39(1):95-146, 1992.

IEEE Architecture Working Group IEEE P1471/D5.0 Information
Technology -Draft Recommended Practice for Architectural Description,
1999.

ITU Recommendation X.901-904 | ISO/IEC 10746 1-4. Open Distributed
Processing - Reference Model - Parts 1-4, July 1995.

P. Johnstone, J. Power, T. Tsujishita, H. Watanabe, J. Worrell An Azx-
tomatics for Categories of Transition Systems as Coalgebras LICS 98,
IEEE Computer Society Press, 1998.

P.A. Lindsay On transferring VDM verification techniques to Z, In Pro-
ceedings of Formal Methods Europe (FME’94), Springer LNCS, 1994.

20



[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

J. Lilius, I.P. Paltor vUM: a tool for verifying UML models Proceedings
of ASE’99, IEEE Computer Society, pp. 255258, 1999.

A. Lopes, J.L. Fiadeiro Preservation and Reflection in Specification.
AMAST’97, Springer LNCS, pp. 380-394, 1997.

Z. Liu, J. He, X. Li, Y. Chen A relational model for object-oriented
requirement analysis in UML Proc. ICFEM 2003, 2003.

S. Meng, L. Barbosa Refinement of Generic Software Components In
[41]

T. Mossakowski Heterogeneous development graphs and heterogeneous
borrowing. Fossacs’02, Springer LNCS 2303, pp. 326-341, 2002.

D. Naumann Two Categories and Program Structure PhD Thesis, 1992.

Object Management Group (OMG) Unified Modeling Language
(UML®) and Meta-Object Facility (MOF) Specification Documents.
Available at http://www.omg.org/technology/documents/

D. Pavlovic, D.R. Smith: Composition and Refinement of Behavioral
Specifications, Proc. of the 16th International Conference on Automated
Software Engineering, IEEE Computer Society Press, pp. 157-165, 2001.

D. Pavlovic: Maps II: Chasing diagrams in categorical proof theory,
Journal of the IGPL 4(2): 1-36, 1996.

M. Proietti Connections between partial maps categories and tripos
theory In Category Theory and Computer Science, Springer LNCS
283,1987.

C. Ratray, S. Maharaj, C. Shankland (eds.) Algebraic Methodol-
ogy and Software Technology. 10th International Conference
AMAST 2004, Springer Verlag LNCS series, 2004.

G. Reggio. Metamodeling Behavioural Aspects: the Case of the UML
State Machines. In Proc. IDPT 2002. Society for Design and Process
Science, USA, 2002.

21



[43] M. Sun, Aichernig, B., L. S. Barbosa and Z. Naixiao. A coalgebraic
semantic framework for component based development in UML In Proc.
CTCS’04, Elsevier Elect. Notes in Theor. Comp. Sci., 122, pp 229-245,
2004.

[44] G. Winskel, M. Nielsen: Models for Concurrency Handbook of Logic
and the Foundations of Computer Science, vol. 4, pp. 1-148, Oxford
University Press, 1995.

[45] J. Woodcock, A. Cavalcanti A Tutorial Introduction to Designs in Uni-
fied Theories of Programming In [8], pp 40-66, 2004.

7 Appendix

7.1 Elements of Category Theory

Let REL denote the category with sets A, B, C, ... as objects; with relations
p : A < B as morphisms, i.e., triples < A, p, B > where p C A x B. Let
p~!: B < A denote the converse of a relation p. Composition is written
in diagrammatic order, and is denoted by a semicolon. Application of an
functor F' to an argument X is denoted by F[X] or by F.X. The powerset
of A is denoted by p[A].

Let pHa denotes the category of pre-Heyting lattices [5] and FRM de-
notes the category of frames and sup-preserving morphisms between them
(which, being locally ordered, it is a 2-category [36]).

Given a category C with pullbacks, a span < f,g >: B «+— A — C over
C is a formed by three objects A, B,C' € |C| and two arrows (the“legs”)

AL Band A% C.

Many categorical formalisation of relations identify them with spans. This
is very tempting because of the very simple span algebra. Pullbacks provide
the relational composition, swapping around the span’s legs provides the
conversion and so on [5]. We note by SP¢, the category of spans over C
. Moreover, SPggr is isomorphic to the category of multirelations [5]. In
order to construct a category of relations given as spans, we have to restrict
the spans to a quotient structure, which ’eliminates’ multiplicities.

When one is looking to construct a relational semantics for specification
languages, the category of relations REL¢ over a relational category C pro-
vides a concept that often can be seen as too strong. We recall that REL¢

22



is obtained from SP¢, the category of spans over a category with pullbacks
C, by considering the quotients of spans with respect of equivalence relations
generated by regular epimorphisms. A problem is that RELgrgy, does not
exist. This means that, if the plant behaviour has a relational description,
we can not distinguish between the plant’s and controller’s actions.

A natural way to generalize REL¢ is to replace equivalence relations.
The natural question is then ”What properties a collection A of arrows must
satisfy such that there is an equivalence relation =4 on objects characterized
as a =4 b. iff a and b are related by a span of A arrows?”. As =4 is
idempotent, A must contain all isomorphisms. As =4 is transitive, A must
be closed to composition. The symmetry of = 4implies that in the following
pullback square

[ ] — [ ]

fl lg

[ ] — [ ]

g € Aimplies f € A.

Let C be a category with pullbacks. A cover system is a collection A of
arrows which contains all isomorphisms and it is closed to composition and
to pullbacks along arbitrary arrows.

Examples (other than regular epimorphisms &) include the isomorphisms,
the retractions and the monics (denoted M).

We denote by SPé, the category of spans over a category with pullbacks
C, factorized by a cover system A.

The category SP/\RAEL is isomorphic with the category of monotonic pred-
icate transformers [36].

A category B is called Cartesian if it has all finite products.

A fibration from the total category E to the base category B is a functor
Fib : E — B for which, for every e € |E| and u : ¢ — Fible] € B, there is a
Cartesian lifting [5] of .

The fibre category RELg(A;, Ay) is the fibre category Ea, x4, while
SRELE(A) corresponds to E4y 4. More concisely, the objects R of RELg
over context (Aj, As) are object of E over A; X Ay in B; a morphism f :
R — S over (u,v) : (A1, A3) — (B1, Bs) is a morphism in E over u X v.
Thus, the substitution functor (u,v)* in RELg corresponds to substitution
functors (u x v)# in E. Moreover, SRELE is a subcategory of RELg via
pullback A of the mono A. In fact the functor A simply expands the con-
text in the base: it sends the relation R € SRELE(A) to the same relation

23



R € SRELg(A, A).

The functor OFib : E — B is an opfibration if OFib° : E°? — B is a
fibration. The Cartesian arrows with respect to OF'ib°P are called opCarte-
sian with respect to OF'ib. The opcartesian lifting of f : A — B at P over
A is written 0{3 : P — fiP. A functor is a bifibration if it is both a fibration
and an opfibration. A morphism of bifibrations must preserve both Cartesian
and opcartesian arrows.

A hyperfibration is a fibrewise Cartesian closed fibration HF'ib: E — B,
such that both H F'ib and H F'ib°? are bifibrations.

A posetal hyperdoctrine is a contravariant functor p : B®? — PreOrd,
where B is Cartesian.. We assume that, for each arrow f € B, the monotone
function p[f] (often denoted f#) preserves sups and has a left adjoint, written
3¢. We also require the following two conditions:

1. Beck—Chevalley condition If the following diagram is a pullback

A —s B
9] "
A’ — B

and ¢ € p[B] then 3, f#[¢]] &~ k¥[3[¢]], where ~ denotes two way refine-
ment.

2. Frobenius reciprocity For each f : A — B € B and ¢ € p[A] and
¢ € p[B] we have 37[ f#[6] A ¢] = ¢ A 3u[¢]

A nonposetal hyperdoctrine is a contravariant functor from a category B
(of ’sets’) to CAT, the category of categories. The category p[A] is meant
to be a category of 'predicates’ over the 'set’” A € B.

7.2 Proofs

Proof of Proposition 3.

Consider a signature endofunctor €2 on SET, required to be be a rela-
tor with initial algebra U. We denote by (_) the catamorphism of U. Every
monotonic endofunctor A on REL (whose initial algebra models the seman-
tics of state specifications in Z) is the extension of a relator Q with that it
agrees on functions. We call the extension A of the signature functor 2 the
state functor.

We define the extension of the state functor A to an operations functor
E by E[[a]] = [Y[A][24];? [Al.p7}[o]| for all [o] : A — Q[A] in Sger.

24



We prove that ¥ [U] is a final coalgebra of = : Sggr, — Srgr, and its
anamorphism (denoted, by an abuse of notation (_) as well) is given by

(o) = [ello o)/ (A 307 7|
for all [o] : A — Q[A] in SreL-
Let C be the target of the initial algebra U : Q[C] — C, and let [¢] :
A — C in SggL. Define g : P.Q[A] — P.Q[C] in SET by [g] = E[¢].
First, observe that

p los7] = o307 (7]
= o A 247 [Ap ]]
= o0; 99[,4] /(A BA),A.p
= (pto)/(A. BA);A.p_l S

Furthermore,

o ' U =p ' U = ;U

Using these results, we can obtain the desired equivalence as follows:

[<]¥ U} = bhﬂkﬂ@
C;V[U] = oTe

= [ ) ]

= [HABMAp

le = ( J(A.24); A~ .g,U<:>

e = (((p >AA9A—W4@

(
¢ = pl((pho) /(A 24)™) 7]
)

It remains to show that p[{((p~'.0)/(A. 9,4))_1>_1] is a monotonic function
on the subset ordering. Since [A].U is an isomorphism (because U is an
isomorphism and functors preserve isomorphisms) we have

pl{((p7"0) /(A 3.)) )] U]

The right-hand side of this equation is the composite of three monotonic
functions.

Proof of Proposition 14.

The proof is an immediate consequence of Example 3.11 from [29].

/
Lo)

25



