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Abstract

A new variational (dis)continuous Galerkin finite element method is presented for linear free
surface gravity water wave equations. In this method, the space-time finite element discretiza-
tion is based on a discrete variational formulation analogous to a version of Luke’s variational
principle. The finite element discretization results into a linear algebraic system of equations
with a symmetric and compact stencil. These equations have been solved using the PETSc

package, in which a block sparse matrix storage routine is used to build the matrix and an
efficient conjugate gradient solver to solve the equations. The finite element scheme is verified
against exact solutions: linear free surface waves in a periodic domain and ones generated by a
harmonic wave maker in a rectangular wave basin. We found that the variational scheme has
no dissipation and minimal dispersion errors in the wave propagation, and that the numerical
results obtained are (p+1)-order accurate for a p

th-order polynomial approximation of the wave
field.

Keywords: Finite element methods, Discontinuous Galerkin methods, Free Surface Waves, Vari-
ational Principle.
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1 Introduction

A large class of water wave problems is captured by a model that consists of a potential flow equation
coupled with nonlinear free surface boundary conditions. These equations are obtained from the
Euler equations of fluid motion with the assumptions that the fluid is inviscid and incompressible,
and the velocity field irrotational (see Johnson [8]). This model proves useful in studying many
marine and offshore engineering problems such as the wave induced motion of ships and the control
of wave generation by wave makers in laboratory basins.

The free surface gravity water wave equations are obtained in a succinct way via Luke’s varia-
tional principle [13] or from its dynamical equivalent presented by Miles [18]. The essence of the
variational principle is that the complete problem can be expressed in a single functional. In addi-
tion, the variational formulation is associated with the conservation of energy and phase space, under
suitable boundary conditions. Variational formulations also provide a basis for the construction of
approximate finite element solutions. Such variational finite element methods for free surface waves
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can be found in Bai and Kim [3], Kim and Bai [9] and Kim et al. [10]. Klopman et al. [11] derive
a variational Boussinesq model from Luke’s variational principle; in essence their Boussinesq model
is a vertical discretization thereof. It motivated us to investigate a (dis)continuous Galerkin finite
element method based on a discretization of Luke’s variational principle. Such a discretization aims
to preserve the variational structure and the associated energy and phase-space conservation.

Standard finite element element methods for free surface gravity water waves are relatively new
and can be found in [7, 14, 15, 16, 28, 30, 31]. Another widely used numerical method for free surface
waves is the boundary integral method which started with the work of Longuet-Higgins and Cokelet
[12], and Vinje and Brevig [27]. This method has been applied extensively to two dimensional free
surface waves, see the surveys of Romate [19] and Tsai and Yue [23]. Applications in three dimensions
(3D) using boundary integral methods include [6, 19, 4]. The discontinuous Galerkin (DG) methods
for elliptic problems proposed by Arnold et al. [2] and Brezzi [5] have enabled researchers to model
free surface water waves using a space discontinuous Galerkin method. A space(-time) DG finite
element method for free surface wave problems has been developed in Van der Vegt and Tomar [24].
and Van der Vegt and Xu [26]. However, a conservative DG method for free surface waves based on
its variational formulation appears to be non-existent.

Nonlinear free surface gravity water wave equations are difficult to solve because the solution
to the governing equations depends on the position of the free surface which is not known apriori.
To deal with such difficulties, we choose a space-time approach which is particularly well-suited for
problems with time dependent boundaries (see Van der Vegt and Van der Ven [25], Ambati and
Bokhove [1], Van der Vegt and Xu [26]).

General reasons to employ DG methods are as follows:

(i) the scheme is local in the sense that the solution in each element only depends on its neighboring
elements via the flux through element boundaries and is thus suitable for parallelization; and,

(ii) the scheme is extendable to have hp–adaptivity in which the fluid flow field approximation can
arbitrarily vary per element, known as “p–adaptivity”, and the mesh can be locally refined,
called “h–adaptivity”.

An accurate space-time DG finite element scheme for water waves has potential and is challenging
because

(i) it is less trivial to develop an efficient solution technique for the nonlinear algebraic equations
resulting from the discretization, and

(ii) it is a natural, yet more involved approach to handle the grid deformation due to the nonlinear
free surface evolution.

We therefore first consider the development of a variational space-time (dis)continuous Galerkin finite
element method (DGFEM) for linear free surface gravity water waves based on Luke’s variational
principle.

The linear free surface gravity water wave problem, in essence, consists of two second-order
differential equations for the velocity potential, in which one equation has a second-order spatial
derivative and the other one a second-order time derivative. The discontinuous Galerkin formulation
for an elliptic problem proposed by Brezzi et al. [5] is symmetric and, hence, a discrete variational
formulation could be deduced from it. However, a discontinuous Galerkin variational formulation
for the second-order time derivative is less trivial. We therefore first present a discrete variational
formulation for a harmonic oscillator as a building block. Subsequently, we combine these two
discrete variational formulations to obtain a variational space-time DG method for linear free surface
water waves.

In a variational space-time (dis)continuous Galerkin method, the domain is split into space-time
slabs which are tessellated with space-time finite elements. On these elements, we define local basis
functions to approximate the wave field and also the test functions and variations. The local basis
functions are defined such that the approximation of the wave field is discontinuous in space, but
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continuous in time. This kind of approximation is mainly chosen to satisfy the requirement of zero
variation of the velocity potential at the end points in time.

The space-time variational formulation for our problem is obtained in two steps. In the first
step, we establish a relation between the velocity field and velocity potential through the primal
formulation given in Arnold et al. [2] and Brezzi et al. [5]. In the second step, we introduce a
discrete version variational principle, analogous to the continuum functional for linear free surface
waves. Subsequently, we take variations to obtain the discretization for the linear free surface wave
problem.

The space-time discretization of the discrete variational formulation for linear free surface waves
results into a linear algebraic system of equations. The global matrix of this linear system has a very
compact stencil, i.e., the number of non-zero entries in each row of the matrix only depends on the
number of neighbors of an element. Further, the linear system is symmetric and we can therefore
use an efficient sparse matrix storage routine and an (iterative) sparse linear solver. The need to use
efficient solvers led us to the PETSc package (see [20, 21, 22]) for assembling and solving our linear
system of algebraic equations. The software library of PETSc has a large suite of well-tested sparse
matrix storage routines and (iterative) sparse linear solvers with the extra advantage of paralleliza-
tion options. Hence, we have incorporated the PETSc package in our numerical implementation.
Within PETSc, we have used an efficient block sparse matrix storage routine for assembling the
global matrix and a conjugate-gradient solver with ILU preconditioner for solving the linear system.

We have compared the variational space-time (dis)continuous Galerkin method with the “stan-
dard” space-time discontinuous Galerkin method developed by van der Vegt and Xu [26]. Hence,
we also discuss the space-time discontinuous Galerkin method, which numerical implementation we
extended to three space dimensions. The numerical results from both the variational and standard
space-time (dis)continuous Galerkin methods are compared with two exact solutions: linear har-
monic waves in a periodic domain and linear waves generated in a wave basin. We found for these
three dimensional test cases that both the numerical schemes are second- and third-order accurate
for a linear and quadratic polynomial approximations of the wave field.

The paper unfolds as follows. To start, a time discrete variational formulation is investigated first
for a harmonic oscillator in §4.2. We present a variational formulation for the linear free surface wave
problem and subsequently derive the governing equations in §4.3. Technicalities, the tessellation of
the space-time domain and the required function spaces and trace operators for the space-time finite
element formulations, are defined in §4.4. Next, we present the standard and variational space-time
(dis)continuous Galerkin finite element formulations of the linear free surface wave problem next in
§4.5 and §4.6, respectively. Numerical results of both schemes are compared with exact solutions in
§4.7. Conclusions are drawn in §4.8.

2 Variational discretization for a harmonic oscillator

The dynamics of a harmonic oscillator is contained in the following functional in time:

L(φ, η) :=

∫ T

0

φ∂tηdt−

∫ T

0

1

2
(ω2|φ|2 + η2)dt (1)

with φ(t) the position, η(t) the velocity and ω the constant frequency of the oscillator in the time
interval [0, T ]. Applying the variational principle δL = 0, we obtain:

∫ T

0

(

δφ ∂tη + φ∂t(δη)
)

dt−

∫ T

0

(ω2φ δφ + η δη)dt = 0. (2)

Integrating (2) by parts, while using the end-point conditions δη(0) = δη(T ) = 0, for the variation
δη, and the arbitrariness of the variations; the dynamics of a harmonic oscillator emerge as

∂tη − ω2φ = 0 and ∂tφ+ η = 0; (3)
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initial conditions are φ(t = 0) = φ0 and η(t = 0) = η0.
Combining the governing equations of a harmonic oscillator in (3), we obtain a second-order

equation for φ. The discontinuous Galerkin formulation for such a second-order time derivative
may be different to that of a symmetric second-order spatial derivative following the approach of
Brezzi et al. [5]. The difference mainly arises due to the definition of numerical flux, often a kind
of upwind flux for time derivatives and central flux for spatial derivatives. As a consequence, the
DG formulation for harmonic oscillator is not automatic in symmetric form, and does not stem from
a discrete variational formulation. A discrete variational formulation for the harmonic oscillator is
therefore obtained by choosing a continuous approximation of functions φ and η in time.

To formulate a discrete variational formulation for the harmonic oscillator, we first divide the
time domain into finite time intervals In = [tn−1, tn]. Each time interval In is then related to a fixed
interval Î = ζ ∈ [−1, 1] through the mapping Fn defined as

Fn : Î → In : ζ 7→ t =
1

2

(

tn−1(1 − ζ) + tn(1 + ζ)
)

. (4)

Next, the functions φ and η are approximated as

φh = φnψn + φn−1ψn−1 and ηh = ηnψn + ηn−1ψn−1, (5)

where ψn ◦ Fn = (1 + ζ)/2 and ψn−1 ◦ Fn = (1 − ζ)/2 are the tent functions; and, (φn, ηn) and
(φn−1, ηn−1) are the nodal values of (φh, ηh) at times tn and tn−1, respectively.

The discrete functional for the harmonic oscillator, analogous to (1), is taken as

Lh(φh, ηh) :=

∫ tn

tn−1

φh∂tηhdt−

∫ tn

tn−1

1

2
(ω2|φh|

2 + η2
h)dt (6)

for each time interval In. Applying the variational principle δLh = 0 and using the arbitrariness of
variations, the discrete variational formulation for the harmonical oscillator is obtained as follows:
Find a φn and ηn for given φn−1 and ηn−1 such that for all δφ and δη equations

∫ tn

tn−1

(

(∂tηh)δφh − ω2φhδφh

)

dt = 0 and

∫ tn

tn−1

(

φh∂t(δηh) − ηhδηh

)

dt = 0 (7)

are satisfied with the end point conditions δφ(tn) = δφ(tn−1) = δη(tn) = δη(tn−1) = 0.
The variational time finite element discretization is obtained by substituting the approximations

(5) into (7) and by choosing the rather special variations δφh = δηh = ψnψn−1 such that they vanish
at the end points. The result is

ηn − ηn−1

∆t
= ω2

(φn + φn−1

2

)

and
φn − φn−1

∆t
= −

(ηn + ηn−1

2

)

(8)

with ∆t = tn − tn−1. The discretization in (8) corresponds to a mid point scheme which is known
to be energy conserving. Consequently, in Fig. 1, we see that there is no decay in the amplitude of
the numerical solution when compared with the exact solution. However, we observe a dispersion
error which decreases for smaller time steps. Later in this paper, we also use the present time
discretization technique in the variational space-time discontinuous Galerkin finite element method
for linear free surface waves.

3 Linear free surface gravity water waves

In fluid dynamics, the governing equations for free surface gravity water waves are derived from
the incompressible Euler equations of fluid motion (see Johnson [8] or Whitham [29]). These gov-
erning equations can, however, also be derived from Luke’s or Miles’ variational principle [13, 18].
The advantage of using this principle is that the governing equations are obtained from a single
energy functional. Conservation laws are thus directly associated with this variational principle via
Noether’s theorem. A direct discretization of the variational principle is then also advantageous.
We therefore derive the linear free surface gravity water wave equations from a variational principle.
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Figure 1: Comparsion of exact (solid line) and numerical (stars, circles and squares) solutions with
initial conditions φ0 = 0 and η0 = −ω = −2π. The exact solution is φ = sin(ωt) and the numerical
solutions are computed with time steps ∆t = 0.1 (stars), 0.05 (circles) and 0.025 (squares).

3.1 Variational principle for linear water waves
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Figure 2: A sketch of the domain and its boundaries for the linear water wave problem including
the waves generated by a wave maker. The flat mean free surface (top) and the mean wall position
(left) of the wave maker arise as the fixed, reference boundaries after linearization of the nonlinear
free surface and wave maker motions.

Consider an incompressible and inviscid fluid in a domain Ω ⊂ R3 with boundaries ∂Ω̃ =
∂Ω̃S ∪ ∂ΩB ∪ ∂Ω̃L as shown in Fig. 2, where ∂Ω̃S is the free surface, ∂ΩB the rigid bed, and
∂Ω̃L denotes lateral boundaries. Assuming a non-overturning free surface, we parameterize the free
surface as z = η(t, x, y), where η(t, x, y) is a perturbation of the free surface around a mean free
surface located at z = 0 and measured at a height H(x, y) from the rigid bottom surface ∂ΩB.

For free surface gravity water waves, it is justified to assume the flow field to be irrotational.
Hence, u = ∇̄φ such that ∇̄ × u = 0 with ∇̄ = (∂x, ∂y, ∂z)

T , u = (u, v, w) the velocity field, and
u, v and w the components of the velocity in the x, y and z direction, respectively. We assume the
perturbations of the free surface wave height η and the velocity potential φ to be of small amplitude.
After linearization, the mean free surface ∂ΩS instead of actual free surface and solid (vertical) walls
∂ΩL instead of the wave makers emerge as the boundary ∂Ω of the flow domain (see Fig. 2) for the
linearized equations of motion.

To facilitate the variational calculus, we first introduce a horizontal cross section of the flow
domain Ω as Ω̄(z) such that the flow domain Ω is defined by

Ω := {(x, y, z)| 0 < z < −H and (x, y) ∈ Ω̄(z)}. (9)
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Next, we define the kinetic energy EK and potential energy EP of the waves in Ω as

EK :=

∫

Ω

1

2
|∇̄φ|2 dΩ −

∫

∂ΩL

gNφ d(∂Ω) and EP :=

∫

∂ΩS

1

2
gη2 dx dy (10)

with g the gravitational acceleration in the vertical and gN a prescribed normal velocity at the
lateral boundaries. The functional for linear free surface waves then reads

Lf (φ, φs, η) =

∫ T

0

∫

∂ΩS

φs∂tη dx dy dt−

∫ T

0

(EK + EP ) dt (11)

with T the final time, and φs(x, y, t) = φ(x, y, z = 0, t) the velocity potential evaluated at the mean
free surface. The functional Lf (φ, φs, η) for the nonlinear case was originally defined by Luke [13]
and Miles [18].

Finally, the variational formulation for linear free surface waves becomes:

δLf (φ, φs, η) = 0, (12)

where δLf (φ, φs, η) is the variational derivative defined as

δLf (φ, φs, η) := lim
ǫ→0

1

ǫ

(

Lf (φ+ ǫδφ, φs+ǫδφs, η + ǫδη) − Lf (φ, φs, η)
)

(13)

with δφ, δφs and δη arbitrary variations of φ, φs and η, respectively. The variational formulation
(10)–(12) will form the basis to obtain a variational (dis)continuous Galerkin finite element dis-
cretization.

Applying the variational principle (10)–(12) and using the definition of the variational derivative
(13), we obtain
∫ T

0

(

∫

∂ΩS

(

δφs∂tη + φs∂tδη − gηδη
)

dx dy −

∫

Ω

∇̄φ · ∇̄δφ dΩ +

∫

∂ΩL

gNδφ d(∂Ω)
)

dt = 0. (14)

To obtain the governing equations for linear free surface waves from (14), we integrate the second
term by parts in time, use Gauss’ divergence theorem for the third term, and rearrange the emerging
boundary integrals in time using the following end-point conditions on the variation: δη(x, y, 0) =
δη(x, y, T ) = 0. Hence, from (14) we derive

∫ T

0

(

∫

∂ΩS

(

− (∂tφs + gη)δη + (∂tη − ∂zφ)δφs

)

dx dy +

∫

Ω

∇̄2φ δφ dΩ

−

∫

∂ΩL

(ñL · ∇̄φ− gN)δφ d(∂Ω) −

∫

∂ΩB

(ñB · ∇̄φ)δφ d(∂Ω)

)

dt = 0, (15)

where ñL = (±1, 0, 0)T and ñB are the outward unit normal vectors at the boundaries ∂ΩL and
∂ΩB, respectively. Using the arbitrariness of the variations δφ, δφs and δη in (15), the governing
equations for linear free surface gravity water waves emerge as

∇̄2φ = 0 on Ω(t),

∂tη − ∂zφ = 0 and ∂tφs + gη = 0 on ∂ΩS ,

ñL · ∇̄φ = gN on ∂ΩL, and ñB · ∇̄φ = 0 on ∂ΩB. (16)

4 Basis for space-time formulation

4.1 Space-time domain and tessellation

In space-time discontinuous Galerkin methods, we do not distinguish between space and time, and
directly define the space-time flow domain E ∈ R

4 as

E := {x ∈ R
4 : x̄ ∈ Ω, t0 < t < T )} ⊆ R

4 (17)
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with x = (t,x) the space-time coordinates, x̄ = (x, y, z) the spatial coordinates, t0 the initial time, T
the final time and Ω ∈ R

3 the flow domain. The space-time boundary ∂E consists of the hypersurfaces
Ω0 := {x ∈ ∂E : t = t0}, ΩT := {x ∈ ∂E : t = T } and Q := {x ∈ ∂E : t0 < t < T }. The unit outward
space-time normal vector of the space-time domain boundary is defined as n := (nt, n̄) with nt the
temporal component and n̄ the spatial component.

To tessellate the space-time domain E , we first divide the time interval I = [t0, T ] into NT time
intervals with each time interval denoted as In = [tn−1, tn]. Second, at each time level tn, we tes-
sellate the flow domain Ω with Ne shape regular spatial elements Kn

k to form a computational flow
domain Ωh such that Ωh → Ω as h → 0, where h is the radius of the smallest sphere containing all
elements Kn

k with k = 1, . . . , Ne. Finally, in each time interval In, we obtain the space-time tessel-
lation T n

h for the computational space-time domain En
h which consists of the space-time elements

Kn
k obtained by joining the spatial elements Kn−1

k and Kn
k at the successive time intervals tn−1 and

tn. For linear free surface waves, the computational flow domain Ωh is fixed in time and hence the
corresponding spatial elements Kn−1

k and Kn
k of the space-time element Kn

k are identical. Hereafter,
we thus drop the superscript n of the spatial element.

To define function spaces and apply quadrature rules, each spatial element Kk is mapped onto a
reference element K̂ and its mapping FK : K̂ → Kk is defined as

FK : K̂ → Kk : ζ̄ 7→ x̄ :=
∑

j

x̄j χj(ζ̄) (18)

with ζ̄ = (ζ1, ζ2, ζ2) the spatial reference coordinates, x̄ = (x, y, z) the spatial coordinates, x̄j the
nodal coordinates of the spatial element and χj(ζ̄) the standard shape functions of element Kk.

Subsequently, the space-time element Kn
k is mapped to a reference element K̂ and its mapping is

defined as

Gn
K : K̂ → Kn

k : ζ 7→ x :=
(1

2

(

(1 + ζ0)tn + (1 − ζ0)tn−1), FK(ζ̄)
)

(19)

with ζ = (ζ0, ζ̄) the space-time reference coordinates.
In the space-time tessellation T n

h , we further define interior faces Sint, which connect two space-
time elements Kn

l and Kn
r , and boundary faces Sbou which connect space-time elements Kn

l to the
boundary ∂E . The union of all faces in the space-time domain En

h is represented as Γ = Γint ∪ Γbou,
with Γint the union of interior faces and Γbou the union of boundary faces. The union of boundary
faces Γbou := ΓS ∪ ΓB ∪ ΓL further consists of ΓS the union of free surface faces, ΓB the union of
rigid boundary faces, and ΓL the union of lateral boundary faces of the computational space-time
domain En

h which may include the linearized wave maker.

4.2 Function spaces

To define the space-time discontinuous Galerkin formulation, we introduce the finite element function
spaces Vh and Σh, associated with the space-time tessellation T n

h , which are defined as

Vh := {vh ∈ L2(En
h ) : vh ◦G

n
K ∈ Pp(K̂), ∀Kn

k ∈ T n
h },

Σh := {τh ∈ L2(En
h ) : τh ◦G

n
K ∈ [Pp(K̂)]3, ∀Kn

k ∈ T n
h } (20)

with L2(En
h ) the space of Lebesgue square integrable functions on En

h and Pp (space-time) polynomials
of order p. We also introduce the function space Wh associated with the space-time free surface ΓS

which is defined as

Wh := {vh ∈ L2(ΓS) : vh ◦GK ∈ Pp(Ŝ), ∀S ⊂ ΓS}, (21)

with Ŝ a face of K̂ and L2(ΓS) the space of Lebesgue square integrable functions on the space-time
free surface boundary ΓS .
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For the space-time discontinuous Galerkin formulation, we approximate flow fields (u, φ, η) as

φh =

np
∑

j=1

φ̂k,jψk,j , uh =

np
∑

j=1

ûk,jψk,j and ηh =

nq
∑

j=1

η̂k,jϕk,j , (22)

with φh ∈ Vh, uh ∈ Σh and ηh ∈ Wh the approximated wave fields; (φ̂k,j , ûk,j , η̂k,j) the expansion

coefficients; ψk,j ◦G
n
K ∈ Pp(K̂) and ϕk,j ◦G

n
K ∈ Pp(Ŝ) the polynomial basis functions; and, np and

nq the number of basis functions in the space-time elements and at the space-time free surface,
respectively.

To define the space-time variational formulation, we introduce the finite element function spaces
V̄h and Σ̄h associated with the computational space domain Ωh which are defined as

V̄h := {v̄h ∈ L2(Ωh) : v̄h ◦ FK ∈ Pp(K̂)},

Σ̄h := {τ̄h ∈ L2(Ωh) : τ̄h ◦ FK ∈ [Pp(K̂)]3}, (23)

where L2(Ωh) is the space of Lebesgue square integrable functions on Ωh and Pp the (space) poly-
nomials of order p. We also introduce the function space W̄h associated with the free surface ∂ΩS

which is defined as

W̄h := {v̄h ∈ L2(∂ΩS) : v̄h ◦ FK ∈ Pp(Ŝ)} (24)

with Ŝ a face of K̂ and L2(∂ΩS) the space of Lebesgue square integrable functions on the free surface
∂ΩS .

For the space-time variational formulation, we first approximate the flow field (u, φ, η) on the
computational space domain Ωh at time level tn as

φ̄n
h =

np
∑

j=1

φ̂n
k,jψ̄k,j , ūn

h =

np
∑

j=1

ûn
k,jψ̄k,j and η̄n

h =

nq
∑

j=1

η̂n
k,jϕ̄k,j (25)

with φ̄n
h , ū

n
h , η̄

n
h the approximated flow fields; (φ̂n

k,i, û
n
k,i, η̂

n
k,j) the expansion coefficients; ψ̄k,j ◦ FK ∈

Pp(K̂) and ϕ̄k,j ◦ F
n
K ∈ Pp(Ŝ) the polynomial basis functions; and, np and nq the number of basis

functions in the spatial element and at the free surface, respectively.
Second, we define the polynomial basis functions in time ψn−1 and ψn as follows

ψn−1 :=
1

2
(1 − ζ0)tn−1 and ψn :=

1

2
(1 + ζ0)tn. (26)

Finally, we obtain the approximation of the wave field on each space-time element Kn
k as

(φh,uh, ηh) = (φ̄n
h , ū

n
h , η̄

n
h )ψn + (φ̄n−1

h , ūn−1
h , η̄n−1

h )ψn−1 (27)

with φ̄h ∈ V̄h, ūh ∈ Σ̄h and η̄h ∈ W̄h and the restriction that the approximation is continuous in time
but discontinuous in space.

4.3 Traces

To define and manipulate the numerical fluxes in the discontinuous Galerkin formulation, we define
the traces of functions v ∈ Vh and vector functions q ∈ Σh on the element boundary ∂Kn

k taken from
inside of the element Kn

k as

vh|∂Kn
k

:= v− = lim
ǫ↓0

v(x − ǫnK) and qh|∂Kn
k

:= q− := lim
ǫ↓0

q(x − ǫnK) (28)

with nK the unit outward normal vector of the element boundary ∂Kn
k . For convenience, we also

denote the traces v− and q− on ∂Kn
k as vk and qk, respectively. Now, we define the following trace

operators:
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Average The averages {{v}} of a scalar function v ∈ Vh and {{q}} of a vector function q ∈ Σh on a
face S ∈ Γ are defined as

{{v}} :=
1

2
(vl + vr), {{q}} :=

1

2
(ql + qr) ∀S ∈ Γint; and

{{v}} := vl, {{q}} := ql ∀S ∈ Γbou

(29)

with vl and vr the traces of the scalar function vh, and ql and qr the traces of the vector function qh

taken from the inside of the elements Kn
l and Kn

r connected at the face S.

Jump The jumps [[v]] of a scalar function v ∈ Vh and [[q]] of a vector function q ∈ Σh on a face
S ∈ Γ are defined as

[[v]] := vln̄
l
K + vrn̄

r
K, [[q]] := ql · n̄

l
K + qr · n̄

r
K ∀S ∈ Γint; and

[[v]] := vln̄
l
K [[q]] := ql · n̄

l
K ∀S ∈ Γbou

(30)

with n̄l
K and n̄r

K the spatial part of the unit space-time normal vectors nl
K = (nl

t, n̄
l
K) and nr

K =
(nr

t, n̄
r
K) of the elements Kn

l and Kn
r , respectively, at the face S. Note that n̄l

K = −n̄r
K.

Now the following relation holds between jumps and averages:

∑

K

∫

∂Kn
k

v−(n̄K · q−) d(∂K) =

∫

Γ

[[v]] · {{q}} dS +

∫

Γint

{{v}}[[q]] dS. (31)

Further, we can deduce the following properties of trace operators:

[[f ± g]] = [[f ]] ± [[g]], {{f ± g}} = {{f}} ± {{g}},

{{{{f}}}} = {{f}} and [[{{f}}]] = 0 (32)

with f, g ∈ Vh or Σh.

4.4 Global and local lifting operators

For the standard space-time discontinuous Galerkin formulation, we need to define the global lifting
operator R : (L2(Γ))3 → Σh as

∫

En
h

R(p) · τ dK :=

∫

Γ

p · {{τ}} dS (33)

and the local lifting operator RS : (L2(S))3 → Σh as

∫

En
h

RS(p) · τ dK :=

∫

S

p · {{τ}} dS. (34)

Since Γ =
⋃

S is the union of all faces S, we can relate the global and local lifting operators as

∫

En
h

R(p) · τ dK =
∑

S

∫

S

p · {{τ}} dS =
∑

S

∫

En
h

RS(p) · τ dK. (35)

The global and local lifting operator R(p) and RS(p) can be further split per space-time element
Kn

k as

∫

En
h

R(p) · τ dK =
∑

K

∫

Kn
k

Rk(p) · τk dK and

∫

En
h

RS(p) · τ dK =
∑

K

∫

Kn
k

RS,k(p) · τk dK (36)

with Rk(p) the global lifting operator, RS,k(p) the local lifting operator and τk the test function
per space-time element Kn

k . Now using the arbitrariness of the test functions τ , we can find that
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the local lifting operator of a face S is non-zero only w.r.t the elements Kn
l and Kn

r connected to it
because using (36) in (34), we get

∫

Kn
l

RS,l(p) · τl dK +

∫

Kn
r

RS,r(p) · τr dK =
1

2

∫

S

p · τl dS +
1

2

∫

S

p · τr dS. (37)

Moreover, we obtain the local lifting operators per space-time element Kn
k from (37) as

∫

Kn
k

RS,k(p) · τk =

∫

S

1

2
p · τk dS with S ⊆ ∂Kn

k . (38)

The global and local lifting operators can be further related per space-time element Kn
k using

(36) and (37) in (35) as

∑

K

∫

Kn
k

Rk(p) · τk dK =
∑

S

∫

En
h

RS(p) · τ dK

=
∑

S

(

∫

Kn
l

RS,l(p) · τl dK +

∫

Kn
r

RS,r(p) · τr dK
)

=
∑

K

∫

Kn
k

(

∑

S⊂∂Kn
k

RS,k(p)
)

· τk dK, (39)

and thus

Rk(p) =
∑

S⊂∂Kn
k

RS,k(p). (40)

4.5 Primal relation

To obtain the standard space-time DG formulation and the variational space-time DG formulation,
we establish a relation between the approximations of velocity field uh and the velocity potential φh

using the primal formulation introduced by Arnold et al. [2] and Brezzi et al. [5]. For the primal
formulation, we use the product rule

∇̄ · (vq) = ∇̄v · q + v(∇̄ · q), (41)

with v ∈ Vh and q ∈ Σh, and the divergence theorem in space-time:
∫

Kn
k

∇̄ · (vq) dK =

∫

Kn
k

∇ · (0, vq) dK =

∫

∂Kn
k

n̄K · (v−q−) d(∂K) (42)

with ∇ := (∂t, ∂x, ∂y, ∂z)
T .

To obtain the primal formulation, we discretize the auxiliary equation u = ∇̄φ in (16) by mul-
tiplying it with arbitrary test functions τh ∈ Σh and introducing the approximations of the velocity
and potential field uh ∈ Σh and φh ∈ Vh, respectively. Next, we integrate by parts over each space-
time element Kn

k using (41), Gauss’ divergence theorem in space-time and relation (31). We obtain
after summation over all elements

∫

En
h

uh · τh dK = −

∫

En
h

φh(∇̄ · τh) dK +

∫

Γ

[[φ̂]] · {{τ}} dS +

∫

Γint

{{φ̂}}[[τ ]] dS. (43)

In (43), we have introduced a numerical flux for the velocity potential φ̂ = φ̂(φl, φr) to take into

account the multivalued traces φl and φr on each face S ∈ Γ. The numerical flux φ̂ for elliptic
problems (as suggested in Brezzi et al. [5]) is taken

φ̂ := {{φh}} on S ∈ Γint and φ̂ := φh on S ∈ Γbou. (44)
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To obtain a primal relation between the velocity and potential field, we integrate (43) again by
parts to get

∫

En
h

uh · τhdK =

∫

En
h

∇̄φh · τhdK +

∫

Γ

[[φ̂ − φh]] · {{τ}}dS +

∫

Γint

{{φ̂− φh}}[[τ ]]dS. (45)

Now, we introduce the definition of global lifting operator (33) in (45), and use (44) to find
∫

En
h

uh · τh dK =

∫

En
h

(

∇̄φh + R([[φ̂ − φh]])
)

· τh dK. (46)

As test functions τh are arbitrary, the primal relation between uh and φh becomes

uh = ∇̄φh + R([[φ̂ − φh]]). (47)

5 Standard space-time discontinuous Galerkin method

5.1 Weak formulation

The weak formulation of the velocity potential describing the free surface waves is obtained by
multiplying the continuity equation ∇̄ · u = 0 with arbitrary test functions v ∈ Vh, introducing the
approximated velocity field uh ∈ Σh, integrating by parts and applying Gauss’ divergence theorem
(42) in space-time. Summing up over all elements and using relation (31), we obtain

∫

En
h

uh · ∇̄v dK =

∫

Γ

û · [[v]] dS. (48)

In the weak formulation (48), we have introduced a numerical flux û for the velocity field as

û · n̄ :=



















{{uh}} · n̄ on Γint,

gN on ΓL,

0 on ΓB,

uh · n̄ on ΓS .

(49)

Now, we eliminate the velocity field uh from (48) using the primal relation (47) and by coupling the
kinematic free surface boundary condition in (16) through the numerical flux (49) as

û · n̄ = uh · n̄ = ∂zφh = ∂tηh. (50)

The weak formulation (48) now becomes
∫

En
h

∇̄φh · ∇̄v dK+

∫

En
h

R([[φ̂ − φh]]) · ∇̄v dK =

∫

Γint

{{∇̄φh}} · [[v]] dS+

∫

Γint

{{R([[φ̂− φh]])}} · [[v]] dS +

∫

ΓL

gNv dS +

∫

ΓS

(∂tηh)v dS. (51)

For the space-time DG discretization, it is advantageous to expand and simplify the global lifting
operator on the L.H.S. of (51) using (33) and (44) as

∫

En
h

R([[φ̂ − φh]]) · ∇̄v dK = −

∫

Γint

[[φh]] · {{∇̄v}}dS. (52)

Also, the global lifting operator on the R.H.S. of (51) is approximated as

{{R([[φh]])}} =
1

2

(

∑

S⊂∂Kn
l

RS,l([[φh]]) +
∑

S⊂∂Kn
l

RS,r([[φh]])

)
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K K

Figure 3: Sparsity of the global matrix w.r.t element K when using the global lifting operator R([[φ]])
(left) and the approximate global lifting operator nSRS([[φ]]) (right).

≈ nS

(

RS,l([[φh]]) + RS,r([[φh]])
)

= nSRS([[φh]]) (53)

with nS the number of faces of a space-time element. The approximation of the global lifting
operator in (53) improves the sparsity of the global matrix resulting from the discretization of (51)
as depicted in Fig. 3. Substituting (52) and (53) in (51), we obtain the simplified weak formulation

∫

En
h

∇̄φh · ∇̄v dK =

∫

Γint

[[φh]] · {{∇̄v}} dS +

∫

Γint

{{∇̄φh}} · [[v]] dS−

∫

Γint

nS RS([[φh]]) · [[v]]dS +

∫

ΓN

gNvdS +

∫

ΓS

∂tηhdS. (54)

Now it remains to relate the free surface height to the velocity potential using the dynamic free
surface boundary condition. Multiplying the dynamic free surface boundary condition in (16) with
arbitrary test functions wh ∈ Wh, introducing the approximations ηh and φh, and integrating over
each face S of the free surface ΓS , we obtain

∫

ΓS

(∂tφh + gηh)whdS = 0. (55)

The weak formulations (54) and (55) in the space-time slab En
h are, however, not coupled to the

previous space-time slab En−1
h .

To couple the space-time slabs, the last contribution in (54) is integrated by parts twice in time
on each face S ∈ ΓS of the free surface boundary, and after summing up over all free surfaces we
obtain

∫

ΓS

(∂tη)vhdS =

∫

ΓS

(∂tη)vhdS −
∑

S∈ΓS

∫

∂S

nS,t(η̂ − η−)v−d(∂S), (56)

in which nS,t is the temporal component of the outward unit normal vector nS of the free surface
boundary edge ∂S w.r.t. the free surface S ∈ ΓS , η̂ is the numerical flux in time for the wave height
η, and η− = limǫ→0 ηh(t− ǫnS,t). We also treat the time derivatives on φ in (55) similarly, to obtain

∫

ΓS

(∂tφ)whdS =

∫

ΓS

(∂tφ)whdS −
∑

S∈ΓS

∫

∂S

nS,t(φ̂− φ−)w−d(∂S) (57)
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with φ̂ the numerical flux in time for the velocity potential φ. The numerical fluxes η̂ and φ̂ are
defined as

φ̂ :=

{

φ+ on ∂S(t−n−1),

φ− on ∂S\∂S(t−n−1),
and η̂ :=

{

η+ on ∂S(t−n−1),

η− on ∂S\∂S(t−n−1).
(58)

Finally, we introduce the bilinear form Bh : Vh × Vh 7→ R as

Bh(φh, v) :=

∫

En
h

∇̄φh · ∇̄v dK −

∫

Γint

[[φ]] · {{∇̄v}} dS −

∫

Γint

{{∇̄φh}} · [[v]] dS

+

∫

Γint

nS

(

RS([[φ]]) · [[v]]
)

dS, (59)

the linear form Lh : Vh 7→ R as

Lh(v) :=

∫

ΓN

gNv dS, (60)

and substitute (56), (57) and (58) into (54) and (55). Hence, we can state the space-time discontin-
uous Galerkin weak formulation for linear free surface water waves as follows:
Find a φh ∈ Vh and ηh ∈ Wh such that for all vh ∈ Vh and wh ∈Wh

Bh(φh, vh) −
(

∂tηh, vh

)

ΓS

−
(

η− − η+, v−
)

ΓS(t−
n−1

)
= Lh(vh)

(

∂tφh, wh

)

ΓS

+
(

gηh, wh

)

ΓS

+
(

φ− − φ+, w−
)

ΓS(t−
n−1

)
= 0 (61)

is satisfied with ΓS(t−n−1) =
⋃

∂S(t−n−1) and (u, v)ΓS
:=
∫

ΓS
u v dS.

5.2 Space-time discontinuous Galerkin discretization

To obtain the space-time DG discretization, we first discretize the local lifting operator RS,k([[φ]])
per space-time element Kn

k . This is done by expanding the local lifting operator RS,k([[φ]]) as

(RS,k([[φ]]))k =

np
∑

j=1

R̂S,k
k,j ψk,j (62)

and choosing the test function τh in (38) as ψk,i, to get

np
∑

j=1

R̂S,k
k,j

∫

Kn
k

ψk,jψk,i dK =
1

2

np
∑

j=1

(

φ̂l,j

∫

S

nl
kψl,jψk,i dS + φ̂r,j

∫

S

nr
kψr,jψk,i dS

)

, (63)

for each face S ∈ Γint ∩ ∂Kn
k , where the ψk,j ’s are the basis functions and R̂S,k

k,j ’s the expansion
coefficients for each component of RS,k([[φ]])k with k = 1, 2, 3.

The space-time finite element discretization is obtained by substituting the polynomial expan-
sions for the velocity potential φh, the free surface height ηh and the local lifting operator RS,k([[φ]])
in space-time discontinuous Galerkin weak formulation (61), and choosing the test functions vh and
wh as ψk,i and ϕi, respectively. The resulting space-time finite element discretization for (61) is
given in (100), (101) and (102), presented in Appendix A.1. Subsequently, we obtain a linear system

of algebraic equations by eliminating R̂S,k
k,j and η̂n

l,j , using the relations (63) and (102) into (100) and
(101), and combining them.

With the help of the notation (103) introduced in Appendix A.1, the expansion coefficients of
local lifting operator RS,k for each face S can be expressed in terms of the expansion coefficients of
the velocity potential φh, using (63), as

R̂S,k
k =

1

2
(AK,k)−1

(

DS,lk
k φ̂l +DS,rk

k φ̂r

)

. (64)
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Similarly, we can relate the expansion coefficients η̂n
l and φ̂n

l , using (102), as

η̂n
l = −[(HS)−1]nq×nq

(

[GS ]nq×np
φ̂n

l − [FS,φ]nq×1

)

. (65)

Substituting (100) and (101) in the first equation of the (61), rearranging some terms, and eliminating

η̂n and R̂S,k
k using the algebraic relations (64) and (65), we finally obtain the following linear algebraic

system

LΦn = X (66)

with L the global matrix, Φn the unknown expansion coefficients of velocity potential and X the
right hand side. The global matrix L in (66) is defined as

L :=
∑

K

Bkk +
∑

S∈ΓS

[ḠS ]np×nq
[(HS)−1]nq×nq

[GS ]nq×np

∑

S∈Γint

−
1

2

(

C ll,S + (C ll,S)T +
nS

4
M ll

ij −
1

2

(

C lr,S + (Crl,S)T +
nS

4
M lr

ij

−
1

2

(

Crl,S + (C lr,S)T +
nS

4
M rl

ij −
1

2

(

Crr,S + (Crr,S)T +
nS

4
M rr

ij , (67)

and the right hand side of (66) as

X =
∑

S∈ΓL

ES,l +
∑

S∈ΓS

(−FS,η + [ḠS ]np×nq
[(HS)−1]nq×nq

[FS,φ]nq×1); (68)

for definitions of these new matrices on the respective right hand sides, see Appendix A.1. Given
φ̂n−1 and η̂n−1, we can construct the linear system LΦn = X and solve for Φn. Subsequently, we
obtain η̂n using (65).

6 Space-time variational (dis)continuous Galerkin method

6.1 Variational formulation

For the discrete variational formulation of linear free surface waves, we introduce the horizontal cross
section of the computational flow domain Ωh as Ω̄h(z). Now, we define the total discrete kinetic
energy EKh

and the total discrete potential energy EPh
in each space-time slab En

h as

EKh
=

∫

En
h

1

2
|uh|

2 dK −

∫

ΓL

gNφh dS and EPh
=

∫

ΓS

1

2
gη2

h dS, (69)

where
∫

En
h

dK =

∫ tn

tn−1

∫ 0

−H

∫

Ω̄h

dxdydzdt and

∫

ΓS

dS =

∫ tn

tn−1

∫

Ω̄h(z=0)

dxdydt.

In (69), we directly introduce the relation uh = ∇̄φh +R([[φ̂−φh]]) obtained from the primal relation
(47). The use of the global lifting operator, however, does not result into a discretization with a
compact stencil. We therefore redefine the first term of the kinetic energy in (69) using local lifting
operators as

EKh
=

∫

En
h

1

2nS

(

∑

S⊂∂Kn
k

(

∇̄φh + nSRS,k([[φ̂− φh]])
)2
)

dK −

∫

ΓL

gNφhdS (70)

with nS the number of faces of each space-time element Kn
k . The discrete kinetic energy (70) is

further expanded as

EKh
=

∫

En
h

1

2
|∇̄φh|

2 dK +

∫

En
h

∑

S⊂∂Kn
k

(

∇̄φh · RS,k([[φ̂− φh]]) dK +
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∫

En
h

nS

2

∑

S⊂∂Kn
k

|RS,k([[φ̂− φh]])|
2 dK −

∫

ΓL

gNφh dS, (71)

where
∫

ΓL
dS =

∫ tn

tn−1

∫

∂ΩL
dldzdt with l the horizontal coordinate of the boundary ∂ΩL. Finally,

we define the discrete functional for linear free surfaces as

Lh(φh, φh,s, ηh) =

∫

ΓS

φh,s(∂tηh) dS − (EKh
+ EPh

). (72)

The discrete variational formulation for the linear free surface waves is now

δLh(φh, φh,s, ηh) = 0, (73)

where φh,s = φh(t, x, y, z = 0) is the approximated velocity potential evaluated at the mean free
surface and δLh is the variational derivative defined as

δLh = lim
ǫ→0

1

ǫ

(

Lh(φh + ǫδφh, φh,s + ǫδφh,s, ηh + ǫδηh) − Lh((φh, φh,s, ηh)
)

(74)

with δφh, δφh,s and δηh the arbitrary variations.
Evaluating variational principle (73), using (74) and the relation

RS,k([[φ̂ − φh + ǫ(δφ̂− δφh)]]) = RS,k([[φ̂ − φh]]) + ǫRS,k([[δφ̂ − δφh]]), (75)

we find
∫

ΓS

(

φh,s∂t(δηh) − gηhδηh + (∂tηh)δφh,s

)

dS −

∫

En
h

∇̄φh · ∇̄(δφh) dK

−

∫

En
h

∑

S⊂∂Kn
k

(

∇̄φh · RS,k([[δφ̂ − δφh]]) + ∇̄(δφh) · RS,k([[φ̂− φh]])
)

dK

−

∫

En
h

∑

S⊂∂Kn
k

nS

(

RS,k([[φ̂ − φh]]) · RS,k([[δφ̂ − δφh]])
)

dK +

∫

ΓL

gNδφh dS = 0. (76)

From a computational point of view, the local lifting operators are easier to compute on the
faces of an element rather than on the element itself. So, we first rearrange the sum over elements
in (76) into a sum over faces and use the fact that the local lifting operators are only non-zero in
the elements connected to the face S, to obtain

∫

ΓS

(

φh,s∂t(δηh) − gηhδηh + (∂tηh)δφh,s

)

dS +

∫

ΓL

gNδφh dS −

∫

En
h

∇̄φh · ∇̄(δφh) dK

−
∑

S∈Γint

(

∫

Kn
l

(

∇̄φh · RS,l([[δφ̂ − δφh]]) + ∇̄(δφh) · RS,l([[φ̂− φh]])
)

dK

+

∫

Kn
r

(

∇̄φh · RS,r([[δφ̂ − δφh]]) + ∇̄(δφh) · RS,r([[φ̂− φh]])
)

dK
)

−
∑

S∈Γint

(

∫

Kn
l

nS

(

RS,l([[φ̂− φh]]) · RS,l([[δφ̂ − δφh]])
)

dK

+

∫

Kn
r

nS

(

RS,r([[φ̂ − φh]]) · RS,r([[δφ̂ − δφh]])
)

dK
)

−
∑

S∈Γbou

∫

Kn
l

(

∇̄φh · RS,l([[δφ̂− δφh]]) + ∇̄(δφh) · RS,l([[φ̂− φh]])
)

dK

−
∑

S∈Γbou

∫

Kn
l

nS

(

RS,l([[φ̂− φh]]) · RS,l([[δφ̂ − δφh]])
)

dK = 0. (77)
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In (77), we define the numerical flux on the variations δφh as

δφ̂ := {{δφh}} on S ∈ Γint and δφ̂ := δφh on S ∈ Γbou, (78)

which follows from the definition of the numerical flux for φh in (44). By using the definitions (44)
and (78), and the properties in (32), we can deduce the following relations

[[φ̂ − φh]] = −[[φh]] on S ∈ Γint, [[φ̂− φh]] = 0 on S ∈ Γbou,

[[δφ̂ − δφh]] = −[[δφh]] on S ∈ Γint and [[δφ̂− δφh]] = 0 on S ∈ Γbou. (79)

We now simplify (77) using (79) to obtain
∫

ΓS

(

φh,s∂t(δηh) − gηhδηh + (∂tηh)δφh,s

)

dS +

∫

ΓL

gNδφh dS −

∫

En
h

∇̄φh · ∇̄(δφh) dK

+
∑

S∈Γint

(

∫

Kn
l

(

∇̄φh · RS,l([[δφh]]) + ∇̄(δφh) · RS,l([[φh]])
)

dK

+

∫

Kn
r

(

∇̄φh · RS,r([[δφh]]) + ∇̄(δφh) · RS,r([[φh]])
)

dK
)

−
∑

S∈Γint

(

∫

Kn
l

nS

(

RS,l([[φh]]) · RS,l([[δφh]])
)

dK +

∫

Kn
r

nS

(

RS,r([[φh]]) · RS,r([[δφh]])
)

dK
)

= 0. (80)

Finally, using definitions (29) and (34) and the arbitrariness of variations, we obtain the discrete
variational formulation of the linear free surface waves as
Find a φ̄n

h ∈ V̄h and η̄n
h ∈ W̄h such that for all δφ̄n

h ∈ V̄h and δη̄n
h ∈ W̄h, equations

∫

En
h

∇̄φh · ∇̄(δφh) dK −
∑

S∈Γint

∫

S

(

{{∇̄φh}} · [[δφh]] + {{∇̄(δφh)}} · [[φh]]−

nS{{RS([[φh]])}} · [[δφh]]
)

dS −

∫

ΓL

gNδφh dS −

∫

ΓS

(∂tηh)δφh,s dS = 0 (81)

and
∫

ΓS

(

φh,s∂t(δηh) − gηhδηh

)

dS = 0 (82)

are satisfied with end point conditions δφh(tn−1) = δηh(tn−1) = δφh(tn) = δηh(tn) = 0, where the
approximations φh and ηh are defined as in (27). To satisfy these end point conditions on the
variations, we define the expansions of variations

δφh = ψnψn−1δφ̄n
h and δη̄h = ψnψn−1δη̄n

h (83)

such that they vanish at tn and tn−1 but are non-zero within the space-time element. These are
coupled with the previous space-time domain En−1

h by imposing the continuity in time. While
the variables are a piecewise continuous linear approximation in time between the two time levels,
the variations are forced to be zero at the end points and are thus defined differently. The basis
and test functions are therefore unequal. For the harmonic oscillator, such a choice of continuous
approximation for variables and vanishing test functions at the end points in each time interval led
to the energy-conserving modified mid-point scheme, derived in §2.

6.2 Variational finite element discretization

To obtain the variational finite element discretization, we first have to discretize the local lifting
operators RS,k([[φh]]) per space-time element Kn

k . Using a similar approximation as given in (27) for
φh, the local lifting operator RS,k([[φh]]) is expanded as

RS,k([[φh]]) = R̄n
S,k([[φh]])ψ

n + R̄n−1
S,k ([[φh]])ψ

n−1. (84)

16



with R̄n
S,k([[φh]]) the local lifting operator on the spatial element Kn

k . Thereafter, we define the

expansion of the local lifting operator R̄n
S,k([[φh]]) akin to (62) as

(R̄n
S,k([[φh]]))k =

np
∑

j=1

R̂S,kn
k,j ψ̄k,j (85)

with R̂S,kn
k,j the expansion coefficients for each component of R̄n

S,k([[φh]])k with k = 1, 2, 3. The

discretization of the local lifting operator R̄n
S,k([[φh]]) arises from (38) as

np
∑

j=1

R̂S,kn
k,j

∫

Kn
k

ψ̄k,jψ̄k,i dK =
1

2

np
∑

j=1

(

φ̂n
l,j

∫

S

n̄l
kψ̄l,jψ̄k,i dS + φ̂n

r,j

∫

S

n̄r
kψ̄r,jψ̄k,i dS

)

(86)

for S ∈ Γint ∩ ∂K
n
k with ψ̄k,j the basis function.

The space-time variational finite element discretization can now be obtained by substituting the
polynomial expansion for the velocity potential φh, the free surface height ηh and the local lifting
operator RS,k([[φ]]) in the variational formulation (81) and (82), and using the arbitrariness of the
variations δφ̄n

h , δφ̄s,h and δη̄h. The variations δφh are varied as ψnψn−1ψ̄k,i for i = 1, . . . , np, and
δηh as ψnψn−1ϕ̄l,i for i = 1, . . . , nq such that they vanish at tn and tn−1. Further, to simplify the
finite element discretization we use the fact that the basis functions ψn and ψn−1 are independent
of space, the basis functions ψ̄k,i and ϕ̄l,i are independent of time, and the spatial element Kk does
not deform in time to get the following simplifications:

∂tψ̄k,i = 0, ∂tϕ̄l,i = 0, ∇̄ψn = 0 and ∇̄ψn−1 = 0. (87)

The resulting finite element discretization for the variational formulation (81) and (82) are given in
(104) and (105), which are presented in the Appendix A.2. Subsequently, we obtain a linear system

of algebraic equations by eliminating R̂S,kn
k,j η̂n

l,j using the relations (86) and (105) into (104).
With the help of the notations (106) introduced in Appendix A.2, the expansion coefficients of

local lifting opertor Rn
S,k for each face S can be expressed in terms of the expansion coefficients of

the velocity potential φn
h using (85) as

R̂S,kn
k =

1

2
(AK,k)−1

(

D̂S,lk
k φ̂n

l + D̂S,rk
k φ̂n

r

)

. (88)

Similarly, we can relate the expansion coefficients η̂n
l and φ̂n

l using (105) with (106) as

η̂n
l = (HS)−1

(

LSφ̂n
l + L̄Sφ̂n−1

l − H̄S η̂n−1
l ). (89)

Eliminating η̂n, R̂S,kn
k and R̂

S,k(n−1)
k from (104) using (89) and (88), we obtain the following linear

algebraic system

LΦn = X (90)

with L the global matrix, Φn the unknown expansion coefficients of the velocity potential, and X
the right hand side. The global matrix L is defined as

L =
∑

K

Bkk −
∑

S∈ΓS

GS(HS)−1LS
∑

S∈Γint

−
1

2

(

C ll,S + (C ll,S)T
)

+
nS

4
M ll

ij −
1

2

(

C lr,S + (Crl,S)T
)

+
nS

4
M lr

ij

−
1

2

(

Crl,S + (C lr,S)T
)

+
nS

4
M rl

ij −
1

2

(

Crr,S + (Crr,S)T
)

+
nS

4
M rr

ij , (91)

and the right hand side X in (90) as

X = −
∑

K

B̄kkφ̂n−1
k +

∑

S∈ΓL

ES,l
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+
∑

S∈ΓS

GS(HS)−1L̄S φ̂n−1
l +

(

ḠS −GS(HS)−1H̄S
)

η̂n−1
l

+
∑

S∈Γint

(1

2

(

C̄ ll,S + C̄ ll,S)T
)

−
nS

4
M̄ ll

ij

)

φ̂n−1
l +

(1

2

(

C̄ lr,S + (C̄rl,S)T
)

−
nS

4
M̄ lr

ij

)

φ̂n−1
r +

(1

2

(

C̄rl,S + (C̄ lr,S)T
)

−
nS

4
M̄ rl

ij

)

φ̂n−1
l +

(1

2

(

C̄rr,S + (C̄rr,S)T
)

−
nS

4
M̄ rr

ij

)

φ̂n−1
r . (92)

Given φn−1
h and ηn−1

h , we can construct the linear system LΦn = X and solve it for φn
h . Subsequently,

we obtain ηn
h using (89).

6.3 Solving the linear systems (66) and (90)

The global matrix L of the linear algebraic system has size Nenp ×Nenp, where Ne is the number
of elements in the computational domain En

h and np the number of degrees of freedom per element.
It can be divided into Ne × Ne blocks with size np × np. Further, the number of non-zero block
rows in the global matrix L w.r.t each space-time element Kn

k is directly dependent on its immediate
neighbouring elements connected through the boundary of ∂Kn

k . Therefore, the global matrix L is
of block sparse type with a compact stencil. Hence, we use a well-tested software tool kit called
PETSc (see [20, 21, 22]) for building and solving the linear system.

This tool kit PETSc, a ”Portable, Extensible Toolkit for Scientific Computation”, consists of a
number of sparse matrix storage routines and both iterative and direct sparse linear solvers. In
particular, we use a sequential block sparse matrix storage routine for building the global matrix L
and a linear solver based on a biconjugate gradient method with ILU preconditioner for solving the
linear system LΦn = X (see the manual by Satish et al. [20]). For building the matrices, PETSc

offers a preallocated matrix storage routine for which we have to specify the number of non-zero
blocks in each row of the matrix. We have thus observed a tremendous increase of performance.

7 Numerical results

In this section, we present the numerical results obtained using the standard space-time DG and the
variational space-time (dis)continuous Galerkin finite element schemes, and compare the numerical
results with two exact solutions of the linear wave equations. The numerical implementation is done
for the equations in non-dimensional form. We used the following scaling:

(x, y, z) 7→ H (x, y, z), t 7→

√

H

g
t, φ 7→ H

√

gH φ and η 7→ H η. (93)

We compute the L2(Ωh)–norms of the errors in the numerical results for the velocity potential and
free surface height as

‖φ− φh‖L2(Ωh) :=
(

∑

K

∫

Kn
k

(φ− φh)
2 dK

)1/2

and (94)

‖η − ηh‖L2(ΓS(t−n )) :=
(

∑

S∈ΓS

∫

∂S(t−n )

(η − ηh)
2 d(∂S)

)1/2

, (95)

where (φ, η) and (φh, ηh) are the exact and numerical solutions of the velocity potential and free
surface wave height, respectively. The order of accuracy of the numerical scheme can be determined
using

order =
(

ln(Error(1)) − ln(Error(2))
)

/
(

ln(h
(1)
K ) − ln(h

(2)
K )
)

, (96)
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where Error(1) and Error(2) are the errors computed on the meshes with cell measures h
(1)
K and h

(2)
K ,

respectively. For all wave simulations, the computational grid size in the z-direction is chosen such
that it decreases as we move from the free surface at z = 0 down to the bottom topography. This is
in line with the harmonic solution in which the amplitude decreases exponentially going down from
the rest level at z = 0.

7.1 Harmonic waves

The governing equations for the linear free surface waves in (16) satisfy the harmonic wave modes

φ(x, y, z, t) = Al,m cos(kxx+ kyy + ωt) cosh(kz(z +H)) (97)

on Ω = [0, 1]2× [−H, 0], where Al,m is the amplitude; H the mean water depth; kx = 2πl, ky = 2πm,

and kz = ±
√

k2
x + k2

y are the wave numbers; l andm are integers; ω the frequency, and the dispersion

relation is ω2 = kz tanh(kzH). The free surface evolution of the harmonic wave modes is obtained
by using the kinematic free surface boundary condition ∂tφ = gη, as

η(x, y, t) = −Al,mω sin(kxx+ kyy + ωt) cosh(kzH) at z = 0. (98)

In both the space-time DG and space-time variational schemes, we initialize two harmonic modes
with mean water depth H = 1, (l,m) = (1, 1) and (1,−1), and amplitudes A1,1 = 2.32 · 10−4 and
A1,−1 = 1.12 ·10−4. The two modes have a time period T = 2.1078 and travel in diagonally opposite
directions. The projections of the initial condition for the velocity potential and the free surface
wave height are shown in Figs. 4(a) and (b).
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(a) Velocity potential.
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(b) Free surface wave height.

Figure 4: Contour plots of the velocity potential and the free surface wave height at time t = 0 on
an irregular grid of size 32 × 32 × 8.

To test the accuracy of the space-time discontinuous Galerkin and space-time variational schemes,
we simulated these harmonic waves for one time period T on various grids of sizes 8×8×2, 16×16×2,
32 × 32 × 4 and 64 × 64 × 8 with time steps ∆t = T/10, T/20, T/40 and T/80, respectively. We
also compute the errors of the velocity potential and free surface wave height in the L2–norm and
subsequently, determine the order of accuracy, presented in Tables 1 and 2. Both schemes are higher
order accurate. Contour plots of the velocity potential and free surface wave height of the numerical
simulations from both schemes are presented in Figs. 5 and 6. To qualitatively show the dispersion
error and dissipation error of the space-time DG scheme and space-time variational scheme, we have
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simulated the harmonic waves for about 10 time periods. We observe from the Figs. 7(a)-(j) that
amplitude of the waves decays strongly when simulated with the space-time DG scheme whereas it
does not decay with the space-time variational scheme, as expected.

Table 1: L2–errors of the velocity potential and the free surface height at t = T on a regular grid
using (space-time DG scheme).

Grid Velocity potential Free surface height
Nx ×Ny ×Nz h L2–error order L2–error order

8 × 8 × 2 0.785155 9.0079 · 10−04 − 5.2950 · 10−03 −
16 × 16 × 4 0.465848 1.9761 · 10−04 2.85 1.4053 · 10−03 2.54
32 × 32 × 8 0.252864 4.9046 · 10−05 2.29 3.5070 · 10−04 2.27
64 × 64 × 16 0.131652 1.1961 · 10−05 2.17 8.7284 · 10−05 2.13

Table 2: L2–errors of the velocity potential and the free surface height at t = T on a regular grid
(variational space-time DG scheme) with pth–order polynomial approximation.

Grid Cell size Velocity potential Free surface height
Nx ×Ny ×Nz h L2–error order L2–error order

For p = 1
8 × 8 × 2 0.785155 1.8445 · 10−03 − 2.3505 · 10−02 −

16 × 16 × 4 0.465848 6.1255 · 10−04 2.11 8.2809 · 10−03 2.00
32 × 32 × 8 0.252864 1.9072 · 10−04 1.91 2.4410 · 10−03 2.00
64 × 64 × 16 0.131652 4.9538 · 10−05 2.07 6.3329 · 10−04 2.07

For p = 2
8 × 8 × 2 0.785155 1.6963 · 10−03 − 1.0409 · 10−04 −

16 × 16 × 4 0.465848 2.4237 · 10−05 2.79 1.8443 · 10−04 4.25
32 × 32 × 8 0.252864 2.7994 · 10−06 3.53 1.6339 · 10−05 3.97

7.2 Linear waves generated by a wave maker

Consider a wave basin Ω = [0, 1]2 × [−H, 0] with solid walls on all sides except a piston type wave
maker on the side at x = 1. Given the normal velocity of the wave maker as gN = −Akx cos(ωt)
cos(kyy) cosh(kz(z + H)), we derive an exact solution for the velocity potential and free surface
height as

φ(t, x, y, z) = A cos(ωt) cos(kxx) cos(kyy) cosh(kz(z +H)) and

η(t, x, y) = −Aω sin(ωt) cos(kxx) cos(kyy) cosh(kzH) (99)

with A the wave amplitude, H the mean water depth, kx = (2l+ 1)π/2, ky = 2mπ, k2
z = (k2

x + k2
y),

ω the frequency satisfying the dispersion relation ω2 = kz tanh(kzH); and, l and m are integers.
To simulate the waves generated by a wave maker, we initialize the flow field (η, φ) with the

exact solution, prescribe the normal velocity of the wave maker at the boundary x = 1 and take the
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Figure 5: Contour plots of the velocity potential on the mean free surface obtained with the space-
time variational scheme (left) and the space-time DG scheme (right). These results are obtained on
an irregular grid of size 32 × 32 × 8 with time step ∆t = T/40, where T is the time period of the
harmonic waves.
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Figure 6: Contour plots of the free surface wave height obtained with the space-time variational
scheme (left) and the space-time DG scheme (right). These results are obtained on an irregular grid
of size 32 × 32 × 8 with time step ∆t = T/40, where T is the time period of the harmonic waves.
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Figure 7: Contour plots of the free surface height obtained using space-time variational scheme (left)
and space-time DG scheme (right). These results are obtained on an irregular grid of size 16×16×4
with time step ∆t = T/10, where T is the time period of the harmonic wave. Observe the decay of
wave amplitude for space-time DG schemes.
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slip flow boundary conditions at the remaining solid wall boundaries. We set the parameters H = 1,
l = 0, m = 1 and A = 2.32 · 10−4 and simulate the waves for one time period T = 2π/ω = 2.4763
with time step ∆t = T/10, T/20, T/40 and T/80 for computational grids of size 8×8×2, 16×16×4,
32 × 32 × 8 and 64 × 64 × 16. The simulations were again performed with both the space-time DG
scheme and space-time variational scheme. The numerical results obtained are compared with the
exact solutions and the errors in the L2–norm are computed to verify the order of accuracy of both
schemes. The errors in the L2–norm and the orders of accuracy are presented in Tables 3–6 for both
the velocity potential and the free surface height. The free surface waves generated by a wave maker
are shown in Figs. 8(a)-(j) and 9(a)-(j) simulated with the space-time DG scheme and space-time
variational scheme, respectively. Again, we verified that both schemes obtain higher-order accuracy.

Table 3: L2–errors of the velocity potential and the free surface height at t = T on regular grids
with the space-time DG scheme. Piston wavemaker case.

Grid Cell size Velocity potential Free surface height
Nx ×Ny ×Nz h L2–error order L2–error order

8 × 8 × 2 0.785155 3.9801 · 10−04 − 5.0199 · 10−03 −
16 × 16 × 4 0.465848 7.4137 · 10−05 3.22 1.5546 · 10−03 1.69
32 × 32 × 8 0.252864 2.0123 · 10−05 2.13 3.9705 · 10−04 1.97
64 × 64 × 16 0.131652 5.3061 · 10−06 2.04 9.8416 · 10−05 2.01

Table 4: L2–errors of the velocity potential and the free surface height at t = T on irregular grids
with the space-time DG scheme. Piston wavemaker case.

Grid size Cell size Velocity potential Free surface height
Nx ×Ny ×Nz h L2–error order L2–error order

8 × 8 × 2 0.795757 3.9649 · 10−04 − 4.9753 · 10−03 −
16 × 16 × 4 0.470324 7.5895 · 10−05 3.14 1.4990 · 10−03 1.73
32 × 32 × 8 0.255019 2.0966 · 10−05 2.10 3.0505 · 10−04 2.30
64 × 64 × 16 0.132687 5.3061 · 10−06 2.08 9.8416 · 10−05 1.63

8 Concluding remarks

A novel space-time variational (dis)continuous Galerkin method has been presented for irrotational
dynamics of linear free surface waves. It is based on a novel numerical discretization of a varia-
tional principle. To achieve such a variational formulation, we derived a discrete functional which
is analogous to that of the continuum case for linear free surface waves. The variational discretiza-
tion preserves the advantageous features of the space-time DG scheme such as the locality of the
discretization. In addition, it ensured the resulting system to be symmetric leading to a speed-up
in the computation, and conservation of energy and phase space.

For comparison, we considered the space-time DG of van der Vegt and Xu [26], extended with
novel numerical tests in three space dimensions. The numerical discretization resulting from this
method consists of linear systems of algebraic equations with a compact stencil. It also allowed
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Table 5: L2–errors of the velocity potential and the free surface height at t = T on regular grids
with a pth–order polynomial approximation (variational space-time DG scheme). Piston wavemaker
case.

Grid Cell size Velocity potential Free surface height
Nx ×Ny ×Nz h L2–error order L2–error order

For p = 1
8 × 8 × 2 0.785155 3.9906 · 10−04 − 8.2652 · 10−03 −

16 × 16 × 4 0.465848 1.0063 · 10−04 2.64 3.4336 · 10−03 1.27
32 × 32 × 8 0.252864 2.1776 · 10−05 2.51 9.7198 · 10−04 1.82
64 × 64 × 16 0.131652 5.4312 · 10−06 2.13 2.4843 · 10−04 1.97

For p = 2
8 × 8 × 2 0.785155 5.9045 · 10−05 − 1.4284 · 10−03 −

16 × 16 × 4 0.465848 9.8501 · 10−06 3.43 3.8402 · 10−05 5.22
32 × 32 × 8 0.252864 1.0729 · 10−06 3.63 3.4868 · 10−06 3.46

Table 6: L2–errors of the velocity potential and the free surface height at t = T on irregular grids
with a pth–order polynomial approximation (variational space-time DG scheme). Piston wavemaker
case.

Grid Cell size Velocity potential Free surface height
Nx ×Ny ×Nz h L2–error order L2–error order

For p = 1
8 × 8 × 2 0.795757 4.0721 · 10−04 − 4.9753 · 10−03 −

16 × 16 × 4 0.470324 1.0595 · 10−04 2.56 1.4990 · 10−03 1.64
32 × 32 × 8 0.255019 2.3249 · 10−05 2.48 3.0505 · 10−04 1.95
64 × 64 × 16 0.132687 5.4312 · 10−06 2.20 9.8416 · 10−05 2.22

For p = 2
8 × 8 × 2 0.795757 6.1241 · 10−05 − 1.1596 · 10−03 −

16 × 16 × 4 0.470324 1.0740 · 10−05 3.31 1.5702 · 10−04 3.80
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Figure 8: Contour plots of the velocity potential φh at the mean free surface (left) and the free
surface height ηh (right) on a regular grid of size 32 × 32 × 8 (Space-time DG scheme). Piston
wavemaker case.
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Figure 9: Contour plots of the velocity potential φh at the mean free surface (left) and the free
surface height ηh (right) on a regular grid of size 32×32×8 (space-time variational scheme). Piston
wavemaker case.

us to use efficient sparse matrix storage routines and iterative linear solvers in the PETSc package.
The PETSc package gave a good performance relative to other methods, such as direct solvers and
locally build and optimized conjugate gradient solvers. We found that preallocation of memory
for the matrix storage rather than a dynamic memory allocation improves the performance of the
package. An extra advantage of PETSc is that the parallelization is a built-in feature.

The numerical results of the space-time DG and variational schemes have been compared with
exact solutions of linear harmonic free surface waves in a periodic domain and linear waves generated
by a wave maker. Both schemes show (p + 1)th–order accurate results for a pth–order polynomial
approximation of the wave field. Further, the space-time variational DG scheme does not show any
decay in the amplitude of the waves whereas the space-time DG scheme shows significant amount
of decay in the wave amplitude. However, the space-time variational DG finite element scheme
shows a larger dispersion error. We recommend, therefore, to extend the space-time variational
(dis)continuous Galerkin scheme to nonlinear free surface waves. And to further investigate the
time discretization in the space-time variational method to improve the dispersion accuracy while
preserving the zero amplitude decay.

A Appendix

A.1 Space-time DG discretization

In this Appendix, we present the space-time finite element discretization of the space-time discon-
tinuous Galerkin weak formulation (61) by substituting the polynomial expansions for the velocity
potential φh, the free surface height ηh and the local lifting operator RS,k([[φ]]) in (61), and choosing
the test functions vh and wh as ψk,i and ϕl,i, respectively.

First, we present the discretization of the bilinear form Bh(φh, v) in (61) is as follows:

Bh(φh, ψi) :=

Ne
∑

k=1

np
∑

j=1

φ̂k,j

∫

Kn
k

∇̄ψk,j · ∇̄ψk,i dK

−
∑

S∈Γint

np
∑

j=1

(1

2
φ̂l,j

∫

S

ψl,j(n̄
l · ∇̄ψl,i + n̄l · ∇̄ψr,i) dS
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+
1

2
φ̂r,j

∫

S

ψr,j(n̄
r · ∇̄ψl,i + n̄r · ∇̄ψr,i) dS

)

−
∑

S∈Γint

np
∑

j=1

(1

2
φ̂l,j

∫

S

(

(n̄l · ∇̄ψl,j)ψl,i + (n̄r · ∇̄ψl,j)ψr,i

)

dS

+
1

2
φ̂r,j

∫

S

(

(n̄l · ∇̄ψr,j)ψl,i + (n̄r · ∇̄ψr,j)ψr,i

)

dS
)

−
∑

S∈Γint

np
∑

j=1

3
∑

k=1

nS

(1

2
R̂S,l

k,j

∫

S

(

nl
kψl,jψl,i + nr

kψl,jψr,i

)

dS

+
1

2
R̂S,r

k,j

∫

S

(

nl
kψr,jψl,i + nr

kψr,jψr,i

)

dS
)

. (100)

Second, the discretization of the linear form and the other free surface terms of the first equation in
(61) is

Lh(ψi) =
∑

S∈ΓL

∫

S

gNψi dS,
(

∂tηh, ψi

)

ΓS
=
∑

S∈ΓS

nq
∑

j=1

η̂n
l,j

∫

S

(∂tϕl,j)ψl,i dS and

(

η− − η+, ψi

)

ΓS(t−
n−1

)
=
∑

S∈ΓS

nq
∑

j=1

(

η̂n
l,j

∫

∂S(t−
n−1

)

ϕl,jψl,i d(∂S) − η̂n−1
r,j

∫

∂S(t−
n−1

)

ϕl,jψl,i d(∂S)
)

.

(101)

Finally, the discretization of the second equation in (61) is given as

∑

S∈ΓS

np
∑

j=1

(

φn
l,j

∫

S

(∂tψl,j)ϕl,i dS + φ̂n
l,j

∫

∂S(t−
n−1

)

ψl,jϕl,i d(∂S)

−φ̂n−1
r,j

∫

∂S(t−
n−1

)

ψr,jϕl,i d(∂S) + η̂n
l,j

∫

S

ϕl,jϕl,i dS

)

= 0. (102)

To obtain and describe the linear system of algebraic equations resulting from (100) to (102), we
introduce and use the following matrix and vector notations:

AK,k
ij :=

∫

Kk

ψk,iψk,jdK, BK,kk
ij :=

∫

Kk

∇̄ψk,i · ∇̄ψk,jdK,

CS,lr
ij :=

∫

S

(n̄l · ∇̄ψl,i)ψr,jdS, DS,lr
k,ij :=

∫

S

nl
kψl,iψr,jdS,

FS,φ
i := φ̂n−1

r,j

∫

∂S(t−
n−1

)

ψr,jϕl,i d(∂S), HS
ij :=

∫

S

ϕl,jϕl,i dS,

FS,η
i := η̂n−1

r,j

∫

∂S(t−
n−1

)

ϕr,jψl,i d(∂S), ES,l
i :=

∫

Sm

gNψl,idS,

GS
ij :=

∫

S

(∂tψl,j)ϕl,i dS +

∫

∂S(t−
n−1

)

ψl,jϕl,i d(∂S),

ḠS
ij :=

∫

S

(∂tϕl,j)ψl,i dS +

∫

∂S(t−
n−1

)

ϕl,jψl,i d(∂S),

M ll :=

3
∑

k=1

(

DS,ll
k (AK,l)−1(DS,ll

k )T +DS,lr
k (AK,r)−1(DS,rl

k )T
)

,

M lr :=

3
∑

k=1

(

DS,ll
k (AK,l)−1(DS,rl

k )T +DS,lr
k (AK,r)−1(DS,rr

k )T
)

,
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M rl :=

3
∑

k=1

(

DS,rl
k (AK,l)−1(DS,ll

k )T +DS,rr
k (AK,r)−1(DS,lr

k )T
)

,

M rr :=

3
∑

k=1

(

DS,rl
k (AK,l)−1(DS,rl

k )T +DS,rr
k (AK,r)−1(DS,rr

k )T
)

. (103)

A.2 Space-time variational discretization

In this Appendix, we present the space-time variational discretization of the variational formulation
(81) and (82) by substituting the polynomial expansion of the velocity potential φh, the free surface
height ηh and the local lifting operator RS,k([[φ]]) (84) into the variational formulation (81) and
(82), and choosing the arbitrariness of the variations δφ̄n

h and δη̄h as ψnψn−1ψ̄k,i and ψnψn−1ϕ̄l,i,
respectively. Now, the space-time variational discretization of the variational formulation (81) using
(87) is as follows:

∑

K

np
∑

j=1

φ̂n
k,j

∫

Kn
k

(ψn
k )2ψn−1

k (∇̄ψ̄k,j · ∇̄ψ̄k,i) dK+

∑

K

np
∑

j=1

φ̂n−1
k,j

∫

Kn
k

ψn
k (ψn−1

k )2(∇̄ψ̄k,j · ∇̄ψ̄k,i) dK

−
∑

S∈Γint

np
∑

j=1

(

1

2
φ̂n

l,j

∫

S

ψn
l ψ̄l,j

(

ψn
l ψ

n−1
l (n̄l · ∇̄ψ̄l,i) + ψn

r ψ
n−1
r (n̄l · ∇̄ψ̄r,i)

)

dS

+
1

2
φ̂n

r,j

∫

S

ψn
r ψ̄r,j

(

ψn
l ψ

n−1
l (n̄r · ∇̄ψ̄l,i) + ψn

r ψ
n−1
r (n̄r · ∇̄ψ̄r,i)

)

dS

)

−
∑

S∈Γint

np
∑

j=1

(

1

2
φ̂n−1

l,j

∫

S

ψn−1
l ψ̄l,j

(

ψn
l ψ

n−1
l (n̄l · ∇̄ψ̄l,i) + ψn

r ψ
n−1
r (n̄l · ∇̄ψ̄r,i)

)

dS

+
1

2
φ̂n−1

r,j

∫

S

ψn−1
r ψ̄r,j

(

ψn
l ψ

n−1
l (n̄r · ∇̄ψ̄l,i) + ψn

r ψ
n−1
r (n̄r · ∇̄ψ̄r,i)

)

dS

)

−
∑

S∈Γint

np
∑

j=1

(

1

2
φ̂n

l,j

∫

S

ψn
l

(

ψn
l ψ

n−1
l (n̄l · ∇̄ψ̄l,j)ψ̄l,i + ψn

r ψ
n−1
r (n̄r · ∇̄ψ̄l,j)ψ̄r,i

)

dS

+
1

2
φ̂n

r,j

∫

S

ψn
r

(

ψn
l ψ

n−1
l (n̄l · ∇̄ψ̄r,j)ψ̄l,i + ψn

r ψ
n−1
r (n̄r · ∇̄ψ̄r,j)ψ̄r,i

)

dS

)

−
∑

S∈Γint

np
∑

j=1

(

1

2
φ̂n−1

l,j

∫

S

ψn−1
l

(

ψn
l ψ

n−1
l (n̄l · ∇̄ψ̄l,j)ψ̄l,i + ψn

r ψ
n−1
r (n̄r · ∇̄ψ̄l,j)ψ̄r,i

)

dS

+
1

2
φ̂n−1

r,j

∫

S

ψn−1
r

(

ψn
l ψ

n−1
l (n̄l · ∇̄ψ̄r,j)ψ̄l,i + ψn

r ψ
n−1
r (n̄r · ∇̄ψ̄r,j)ψ̄r,i

)

dS

)

−
∑

S∈Γint

np
∑

j=1

3
∑

k=1

nS

(

1

2
R̂S,ln

k,j

∫

S

ψn
l

(

ψn
l ψ

n−1
l nl

kψ̄l,jψ̄l,i + ψn
r ψ

n−1
r nr

kψl,jψr,i

)

dS

+
1

2
R̂S,rn

k,j

∫

S

ψn
r

(

ψn
l ψ

n−1
l nl

kψr,jψl,i + ψn
r ψ

n−1
r nr

kψr,jψr,i

)

dS

)

−
∑

S∈Γint

np
∑

j=1

3
∑

k=1

nS

(

1

2
R̂S,ln−1

k,j

∫

S

ψn−1
l

(

ψn
l ψ

n−1
l nl

kψ̄l,jψ̄l,i + ψn
r ψ

n−1
r nr

kψ̄l,jψ̄r,i

)

dS
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+
1

2
R̂S,rn−1

k,j

∫

S

ψn−1
r

(

ψn
l ψ

n−1
l nl

kψ̄r,jψ̄l,i + ψn
r ψ

n−1
r nr

kψ̄r,jψ̄r,i

)

dS

)

−
∑

S∈ΓL

np
∑

j=1

∫

S

gNψ
n
l ψ

n−1
l ψ̄l,i dS −

∑

S∈ΓS

np
∑

j=1

η̂n
l,j

∫

S

ψn
l ψ

n−1
l (∂tψ

n
l,j)ψ̄l,iϕ̄l,j dS

−
∑

S∈ΓS

np
∑

j=1

η̂n−1
l,j

∫

S

ψn
l ψ

n−1
l (∂tψ

n−1
l )ψ̄l,iϕ̄l,j dS = 0. (104)

Next, the discretization of (82) is

∑

S∈ΓS

np
∑

j=1

φ̂n
l,j

∫

S

ψn
l

(

∂t(ψ
n
l ψ

n−1
l )

)

ϕ̄l,iψ̄l,j dS +
∑

S∈ΓS

np
∑

j=1

φ̂n−1
l,j

∫

S

ψn−1
l

(

∂t(ψ
n
l ψ

n−1
l )

)

ϕ̄l,iψ̄l,j dS−

∑

S∈ΓS

np
∑

j=1

gη̂n
l,j

∫

S

(ψn
l )2ψn−1

l ϕ̄l,iψ̄l,j dS
∑

S∈ΓS

np
∑

j=1

gη̂n−1
l,j

∫

S

ψn
l (ψn−1

l )2ϕ̄l,iψ̄l,j dS = 0. (105)

To obtain and describe the linear system of algebraic equations from (104) and (105), we introduce
and use the following matrix and vector notations:

AK,k
ij :=

∫

Kn
k

ψ̄k,iψ̄k,j dK, BK,kk
ij :=

∫

Kn
k

(ψn
k )2ψn−1

k ∇̄ψ̄k,i · ∇̄ψ̄k,j dK,

B̄K,kk
ij :=

∫

Kn
k

(ψn−1
k )2ψn

k ∇̄ψ̄k,i · ∇̄ψ̄k,j dK, CS,lr
ij :=

∫

S

ψn
l ψ

n−1
l ψn

r (n̄l · ∇̄ψl,i)ψr,jdS,

C̄S,lr
ij :=

∫

S

ψn
l ψ

n−1
l ψn−1

r (n̄l · ∇̄ψl,i)ψr,jdS, D̂S,lr
k,ij :=

∫

S

nl
kψ̄l,iψ̄r,jdS,

DS,lr
k,ij :=

∫

S

nl
kψ

n
l ψ

n−1
l ψn

r ψ̄l,iψ̄r,jdS, D̄S,lr
k,ij :=

∫

S

nl
kψ

n
l ψ

n−1
l ψn−1

r ψ̄r,jψ̄l,idS,

GS
ij :=

∫

S

ψn
l ψ

n−1
l (∂tψ

n
l )ψ̄l,iϕ̄l,j dS, ḠS

ij :=

∫

S

ψn
l ψ

n−1
l (∂tψ

n−1
l )ψ̄l,iϕ̄l,j dS,

LS
ij :=

∫

S

ψn
l

(

∂t(ψ
n
l ψ

n−1
l )

)

ϕ̄l,iψ̄l,j dS, L̄S
ij :=

∫

S

ψn−1
l

(

∂t(ψ
n
l ψ

n−1
l )

)

ϕ̄l,iψ̄l,j dS,

HS
ij :=

∫

S

(ψn
l )2ψn−1

l ϕ̄l,iϕ̄l,j dS, H̄S
ij :=

∫

S

(ψn−1
l )2ψn

l ϕ̄l,iϕ̄l,j dS,

ES,l
i :=

∫

Sm

gNψ
n
l ψ

n−1
l ψl,idS,

M ll :=

3
∑

k=1

(

DS,ll
k (AK,l)−1(D̂S,ll

k )T +DS,lr
k (AK,r)−1(D̂S,lr

k )T
)

,

M lr :=

3
∑

k=1

(

DS,ll
k (AK,l)−1(D̂S,rl

k )T +DS,lr
k (AK,r)−1(D̂S,rr

k )T
)

,

M rl :=

3
∑

k=1

(

DS,rl
k (AK,l)−1(D̂S,ll

k )T +DS,rr
k (AK,r)−1(D̂S,lr

k )T
)

,

M rr :=
3
∑

k=1

(

DS,rl
k (AK,l)−1(D̂S,rl

k )T +DS,rr
k (AK,r)−1(D̂S,rr

k )T
)

,

M̄ ll :=
3
∑

k=1

(

D̄S,ll
k (AK,l)−1(D̂S,ll

k )T + D̄S,lr
k (AK,r)−1(D̂S,lr

k )T
)

,
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M̄ lr :=

3
∑

k=1

(

D̄S,ll
k (AK,l)−1(D̂S,rl

k )T + D̄S,lr
k (AK,r)−1(D̂S,rr

k )T
)

,

M̄ rl :=

3
∑

k=1

(

D̄S,rl
k (AK,l)−1(D̂S,ll

k )T + D̄S,rr
k (AK,r)−1(D̂S,lr

k )T
)

,

M̄ rr :=

3
∑

k=1

(

D̄S,rl
k (AK,l)−1(D̂S,rl

k )T + D̄S,rr
k (AK,r)−1(D̂S,rr

k )T
)

. (106)
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