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Bug hunting with false negatives revisited

ABSTRACT
Safe data abstractions are widely used for verification purposes. Positive verification results can
be transferred from the abstract to the concrete system. When a property is violated in the
abstract system, one still has to check whether a concrete violation scenario exists. However,
even when the violation scenario is not reproducible in the concrete system (a false negative), it
may still contain information on possible sources of bugs. Here, we propose a bug hunting
framework based on abstract violation scenarios. We first extract a violation pattern from one
abstract violation scenario. The violation pattern represents multiple abstract violation
scenarios, increasing the chance that a corresponding concrete violation exists. Then, we look
for a concrete violation that corresponds to the violation pattern by using constraint solving
techniques. Finally, we define the class of counterexamples that we can handle and argue
correctness of the proposed framework. Our method combines two formal techniques, model
checking and constraint solving. Through an analysis of contracting and precise abstractions,
we are able to integrate overapproximation by abstraction with concrete counterexample
generation.
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1. Introduction
Abstractions [6, 7, 8, 10, 14, 20] are widely used to reduce the state space of complex, distributed,
data-oriented and thus large systems for verification purposes. We focus on abstractions that are used
to check satisfaction rather than the violation of properties. These abstractions are constructed in
such a way that we can transfer positive verification results from the abstract to the concrete model,
but not the negative ones. Counterexamples found on the abstract system may have no counterpart
in the concrete system. We further refer to this kind of counterexamples as false negatives. False
negatives are usually used to refine the abstraction and iteratively call the model checking algorithm
on the refined abstraction [5, 11, 19].

In this paper, we consider false negatives in the context of data abstractions, i.e. abstractions that
substitute actual data values by abstract ones and operations on concrete data by operations on
abstract data, depending on the property being verified. We use the timer abstraction from [9] as
an illustrating example in this paper. This abstraction leaves all values of a discrete timer below k
unchanged and maps all higher values to the abstract value k+. Note that the deterministic time
progress operation tick (decreasing the values of active timers by one), becomes non-deterministic in
the abstract model (see Fig. 1). But this abstraction allows us to only regard the k smallest values
and the constant k+ in order to prove that a property holds for any value n.

Consider a system, where every timer setting set(n) is followed by n tick steps before the timer
is set again, for some constant value n. Being set to a value n > k, the abstract timer can do an
arbitrary number of tick steps, before it reaches value k − 1. From there, it decreases until it expires
at 0.
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Figure 1: Abstracted timer
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Figure 2: Violation pattern approach

We now use this k+ timer abstraction to verify an action-based LTL property 2(a→ 3b) and obtain
the following trace as a counterexample for the abstract system: a.set(k+).tick3.b.(a.set(k+).tick2.d)?.
Note that the timer abstraction affected the parameter of the set action, so that the number of tick
steps following set(k+) is not fixed anymore. This trace obviously is a false negative since it does not
reflect any possible trace of the original system (remember the constant n).

Assuming that the trace a.set(n).tickn.b.(a.set(n).tickn.d)? exists in the original system, the false
negative still contains a clue for finding this concrete counterexample. We can relax the found
abstract counterexample by using the information that the operations on timers are influenced by
the timer abstraction and check whether the concrete system contains a trace matching the pattern
a.any?.b.(a.any?.d)? where any represents any action on timers. We call such a pattern a violation
pattern. Note that any trace matching the violation pattern violates our property of interest. The
pattern contains a cyclic part, and it is more restrictive than the negation of the property. Therefore,
when enumerative model checking is concerned, it is easier to find a trace of the concrete system
satisfying the pattern than one that violates the property.

In this paper, we propose a framework that supports the bug hunting process described in the above
example. In this framework, we apply a combination of abstraction, refinement and constraint solving
techniques to process algebraic specifications. The framework is illustrated in Fig. 2 whereM denotes
the concrete system, Mα stands for an abstraction of M, φ is the property in question and φα is its
abstraction. When checking whether the abstract system satisfies the abstract property, we may obtain
a counterexample having no counterpart in the concrete system (the set (Mα\M) ∩ ¬φ). Given the
counterexample, we relax actions influenced by the data abstraction and construct a violation pattern
that represents a set of traces violating the property and resembling the counterexample. For this to
work, we need an accurate analysis of contracting and precise abstractions [18]. In short, contracting
abstractions abstract a system property in a way, that less traces fulfill this property, while precise
abstractions do not affect fulfilling traces.

To check whether there is a concrete trace matching the violation pattern, we transform the violation
pattern and the specification of the concrete system into a constraint logic program. Subsequently, a
constraint solver is used to find a concrete trace matching the violation pattern, if such a trace exists.

The rest of the paper is organized as follows: In the remainder of this section, we compare our work
with related work. In Section 2, we define the class of systems we are working with. Furthermore, we
define a next-free action-based LTL (ALTL) and extend it by data (eALTL). In Section 3, we work
out abstractions of labeled transition systems and of eALTL properties. In Section 4, we present a
taxonomy of counterexamples, of which we select the false negatives to build up a bug hunting frame-
work and discuss its correctness in Section 5. In Section 6, we give an example for the implementation
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of this framework. Finally, we conclude with Section 7.

Related work
First, we compare our method with the more traditional CEGAR approach (Counter-Example-Guided
Abstraction Refinement) [5, 19], which has recently been extended to state- and event-based software
by the ComFoRT framework [4]. In both methods, abstractions preserve properties in one direction
only: if the abstract system satisfies the property, so does the concrete system; a counterexample may
however be a real one or a false negative. In the CEGAR method, the abstraction is refined based
on abstract counterexamples, and model checking is iteratively applied to the refined abstractions of
the system. Our method is to generalize false negatives and then to find violations in the concrete
specification, which are similar to the original false negative. Note that in principle both methods can
be combined: given a false negative, one could search for a concrete violation using our method. If it
is found, the CEGAR loop can be terminated early. If no concrete counterexample is found, one can
proceed by refining the abstraction as in the CEGAR approach and iterate the verification process.

For counterexamples that have been produced when model checking the abstract model, it has to
be determined whether they represent real system defects. In [23], the problem of automating this
analysis has been addressed. For this purpose, the authors propose two techniques: model checking on
choice-free paths and abstract counterexample guided concrete simulation. In [22], an approach based
on test generation is proposed for searching for concrete instances of abstract counterexamples. Only
counterexamples for safety properties are addressed by those approaches, i.e. it works only for finite
counterexamples, while we deal with infinite traces. Unlike these approaches, we look for a concrete
trace that does not match a counterexample itself, but a violation pattern that has been generated
from it.

Finally, [17] and [24] are orthogonal to ours, because there model checking methods are proposed
that rely on a refinement of an underapproximation of the system behavior. These methods are aimed
at the falsification of a desired property and apply a refinement when no counterexample is found.
In contrast, we aim at proving the property and, in case we do not succeed, try to find a concrete
counterexample.

2. The Specification Framework
We did our research in the setting of the process-algebraic language µCRL [16]. As graphical notation,
we will use symbolic transition systems (STS s, cf. [26]). A specification S over an alphabet of actions
Act (defined below), is given as the parallel composition Πn

i=1Pi of a finite number of processes. A
process definition P is given by a four-tuple (Var ,Loc,Edg , (`init, ηinit)), where Var denotes a finite
set of variables, and Loc denotes a finite set of locations `, or control states. A mapping of variables
to values is called a valuation; we denote the set of valuations by Val = {η | η : Var → D}. We
assume standard data domains such as N or B. The set Expr denotes the set of expressions, built
from variables and function symbols in the usual way. An expression can be evaluated to a value,
given a valuation for the variables. We write D when leaving the data-domain unspecified and silently
assume all expressions to be well-typed. The initial location and valuation are given by (`init, ηinit).
The set Edg ⊆ Loc ×Act × Loc denotes the set of edges. An edge describes changes of configurations
specified by an action from Act .

Let Event be a set of system events (cf. channel names, action names). As actions, we distinguish
(1) the input of an event s together with a local variable to which the received value can be assigned,
(2) the output of an event s together with a value described by an expression, and (3) internal actions,
like assignments. Every action is guarded by a boolean expression g. This guard decides, whether the
action may be executed (when the guard evaluates to true) or not. So we define the set Act to consist
of: g.?s(x), g.!s(e), or g . τ, x := e, resp., and we use ι, ι′ . . . when leaving the action unspecified. For
an edge (`, ι, ˆ̀) ∈ Edg , we write more suggestively `→ι

ˆ̀.
Examples of specifications can be found in Fig. 6 later in this paper. There, the system on the left-

hand side awaits an input in(x), with a variable x that will be instantiated at runtime. Depending
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on the value of x, the system will then output the event out with either the value of x or 0.
Before we define the semantics of our specifications, we introduce the notion of labeled transition

systems and traces.

Definition 1 (Total LTS ). A labeled transition system (LTS) is a quadruple M = (Σ,Lab,∆, σinit)
where Σ is a set of states, Lab is a set of action labels, ∆ ⊆ Σ×Lab×Σ is a labeled transition relation
and σinit ∈ Σ is the initial state. For a total LTS holds: ∀σ ∈ Σ∃σ̂ ∈ Σ : σ →λ σ̂. �

Further we write σ →λ σ
′ for a triple (σ, λ, σ′) ∈ ∆ and refer to it as a λ-step of M. For the rest

of the paper, we assume LTS s to be total.

Definition 2 (Traces). LetM = (Σ,Lab,∆, σinit) be an LTS. An (infinite) trace β ofM is a mapping
β : N\{0} → Lab, such that there is a mapping β′ : N→ Σ and for any i ∈ N : β′[i]→β[i+1] β

′[i+1] ∈ ∆
with β′[0] = σinit. We further refer to the suffix of β starting at β[i] as βi. By [[M]]trace, we denote
the set of all traces in M. �

The step semantics of S is given by an LTS M = (Σ,Lab,∆, σinit). Here, the set of states is
Σ := Loc × Val with the initial state σinit := (`init, ηinit) ∈ Σ. The (possibly infinite) set of labels is
Lab := {s(d) | s ∈ Event, d ∈ D}. Finally, the transitions ∆ ⊆ Σ × Lab × Σ are given as a labeled
transition relation between states. The labels differentiate internal actions and communication steps,
either input or output, which are labeled by an event and a value being transmitted, i.e. τ , ?s(v) or
!s(v), respectively.

Receiving an event s with a communication parameter x, ` →g.?s(x)
ˆ̀∈ Edg , results in updating

the valuation η[x 7→v] according to the parameter of the event and changing current location to ˆ̀. The
possible input values are limited by the guard. Output, ` →g.!s(e)

ˆ̀∈ Edg , is guarded, so sending a
message involves evaluating the guard and the expression according to the current valuation. It leads
to the change of the location of the process from ` to ˆ̀. Assignments, `→g.τ,x:=e

ˆ̀∈ Edg , result in the
change of a location and the update of the valuation η[x7→v], where [[e]]η = v. Assignment transitions
are labeled by the corresponding action label τ . Firing such a transition also involves evaluating the
guard and the expression according to the current valuation.

2.1 ALTL with data (eALTL)
To specify properties of a system, we propose a data extension for action-based Linear Temporal Logic
(ALTL [13]). This logic specifies system properties in terms of events parameterized with data. Here,
we first define action formulae, their satisfaction and then define extended ALTL, eALTL.

Definition 3 (Action Formulae). Let x be a variable from Var , expr be a boolean expression from
Expr , a be an event from Event, then the syntax of an action formula ζ is defined as follows:

ζ ::= > | {a(x) | expr(x)} | ¬ζ | ζ ∧ ζ

�

We will use a(x) as an abbreviation for {a(x) | true} and a(d) as an abbreviation for {a(x) | x = d}.
We do not impose any limitations on the set of boolean expressions.

Definition 4 (Interpretation of an action formula). Let act ∈ Lab and ζ be an action formula, then
the satisfaction of ζ on act is defined as follows:

act |= > always (true)
act |= {a(x) | expr(x)} if there exists some d ∈ D s.t.

act = a(d) and [[expr]][x 7→d] = true
act |= ζ1 ∧ ζ2 if act |= ζ1 and act |= ζ2
act |= ¬ζ if not act |= ζ

�
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Definition 5 (eALTL Formulae). Let ζ be an action formula. The syntax of eALTL formulae is defined
by the following grammar:

φ ::= ζ | ¬φ | φ ∧ φ | φUφ

�

Definition 6 (Semantics of eALTL). Let β be a (infinite) trace, φ, φ1, φ2 be eALTL formulae, ζ be an
action formula then

β |= ζ if β[1] |= ζ
β |= ¬φ if not β |= φ
β |= φ1 ∧ φ2 if β |= φ1 and β |= φ2

β |= φ1Uφ2 if there exists k ∈ N \ {0} such that
for all 0 < i < k : βi |= φ1 and βk |= φ2

�

LetM = (Σ,Lab,∆, σinit) be an LTS . We say thatM |= φ iff β |= φ for all traces β ofM starting
at σinit. We introduce the following shorthand notations: ⊥ for ¬>; 3φ for >Uφ; 2φ for ¬3¬φ;
φ1 ∨ φ2 for ¬(¬φ1 ∧ ¬φ2); φ1 ⇒ φ2 for ¬φ1 ∨ φ2; φ1Rφ2 for ¬(¬φ1U¬φ2). eALTL is suitable to
express a broad range of property patterns like occurrence, bounded response or absence [12]. For
our further work on abstracting properties of systems, we will require that property formulae are in
positive normal form, i.e. all negations are pushed inside, right before action formulae.

3. Abstraction of Systems and Properties
In this section, we present an abstraction mechanism based on homomorphisms as in [6, 18], and
adapted to an action-based setting. Abstracting a system leads to a smaller state space which can
thus be examined easier. However, model checking an abstracted system also requires the abstraction
of the properties that have to be checked. We will first present the abstraction of systems and then
the abstraction of eALTL properties.

3.1 Abstraction of a system
The basis for the abstraction is a homomorphism α = 〈hs, ha〉 defining two abstraction functions
which regard states and actions of an LTS [6, 25]. The function hs : Σ → Σα maps the states of a
concrete system M to abstract states. The function ha : Lab → Labα does the same with the action
labels of M.

Definition 7 (Abstraction Homomorphism). Let abstraction α = 〈hs, ha〉 for automatonM = (Σ,Lab,
∆, σinit) be given. We define α(M) to be (Σα,Labα,∆α, hs(σinit)), where σα →λα σ̂α ∈ ∆α if and
only if σ →λ σ̂ ∈ ∆, for some σ, σ̂ and λ such that hs(σ) = σα, hs(σ̂) = σ̂α, and ha(λ) = λα. �

Definition 8 (Trace Inclusion w.r.t. α). Let α = 〈hs, ha〉 be a homomorphism. Assuming a trace
β ∈ [[M]]trace with a state projection β′, we define βα = ha(β) with ha(β)[i] = ha(β[i]) for all
i ∈ N \ {0}.

We say that M⊆αMα iff for every trace β of M there exists a trace α(β) ∈ [[Mα]]trace. �

It is well known that homomorphic abstractions lead to overapproximations. In particular, the
abstract system covers at least the traces of the concrete system.

Lemma 9. Let M be an LTS with homomorphism α. Then M⊆α α(M). �

Proof. Assume an LTS M = (Σ,Lab,∆, σinit) and an arbitrary trace β ∈ [[M]]trace with its state
projection β′. This means that ∀i ∈ N : β′[i]→β[i+1] β

′[i+ 1] ∈ ∆.
Let us now define an automaton α(M) = (Σα,Labα,∆α, σαinit) and an abstract trace βα = α(β)

following Def. 8. We now have to prove, that βα ∈ [[α(M)]]trace:
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Figure 3: Abstraction requirement for LTS s

1. In a first step, we have to prove, that βα′ = hs(σinit). Traces always start in the initial state
of their LTS , so we can safely claim that β′[0] = σinit. We have defined βα in a way, that
∀i ∈ N : βα′ = hs(β[i]). For i = 0, this automatically means that βα′[0] = hs(β′[0]) = hs(σinit).

2. For an arbitrary i ∈ N, we have β′[i]→β[i+1] β
′[i+1] ∈ ∆. By Def. 7, we have hs(β′[i])→ha(β[i+1])

hs(β′[i+ 1]) ∈ ∆α. So for any i ∈ N, we have βα′[i]→βα[i+1] β
α′[i+ 1] ∈ ∆α.

From the above, we may conclude, that for an arbitrary trace β ∈ [[M]]trace there exists a trace
α(β) ∈ [[α(M)]]trace and that thus M⊆α α(M).

It is often more convenient to apply abstractions directly on a system specification S than on its
transition system M. Such an abstraction on the level of S is well-developed within the Abstract
Interpretation framework [7, 8, 10]. Abstract Interpretation imposes a requirement on the relation
between the concrete specification S and its abstract interpretation Sα. This takes the form of a safety
requirement on the relation between data and operations of the concrete system and their abstract
counterparts (we skip the details). Each value of the concrete domainD is related by a data abstraction
function hd to a value from the abstract domain Dα. For every operation (function) f on the concrete
data domain, an abstract function fα is defined, which overapproximates f . For reasons of simplicity,
we assume f to be a unary operation. Furthermore, we apply only data abstraction. This means that
the names of actions in a system are not affected by the abstraction, i.e. ha(a(d)) = a(hd(d)) such
that two actions a(x) and b(y) cannot be mapped to the same abstract action.

However, applying abstractions directly on a system’s specification S rather than on its LTS leads to
a loss of precision. Let Sα be the abstract interpretation of S, and letMα andM be their underlying
LTS s. It is well known that Mα is only an overapproximation of α(M), with α(M) denoting the
abstraction of M on the level of LTS s here (cf. [6]). In particular, we will still have trace inclusion
up to α: M⊆α α(M) ⊆αMα.

3.2 Abstraction of eALTL formulae
The abstraction of eALTL formulae is based on the notions of contracting and precise abstractions as
it has been introduced in [18]. In a contracting abstraction, a property φα holds for a trace βα iff
the property φ holds for all concrete traces β with βα = α(β). Note that for soundness of abstract
model checking, we need contracting abstractions. This does, however, not imply that all properties
that hold for the original system, must also hold in the abstract system (see Fig. 4, ellipse vs. hatched
square). In precise abstractions, this cannot happen.

Definition 10 (Contracting and Precise Abstraction). Let φ be a property over an alphabet Lab. Its
abstraction φα is

– contracting iff: ∀β ∈ Lab? : α(β) |= φα ⇒ β |= φ.
– precise iff: ∀β ∈ Lab? : α(β) |= φα ⇔ β |= φ.

�
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Figure 4: Contracting Abstraction

In the following, we will define an abstraction of eALTL formulae that is guaranteed to be contract-
ing. We assume that all formulae are in positive normal form.

Definition 11 (Abstraction of Action Formulae). Action formulae as defined in Def. 3 are abstracted
as follows:

α(>) := >
α({a(x) | expr(x)}) := {a(xα) | ∀x : hd(x) = xα → expr(x))}

α(¬{a(x) | expr(x)}) :=
∨
b 6=a

{b(xα)} ∨ {a(xα) | ∀x : hd(x) = xα → ¬expr(x)}

α(ζ1 ∧ ζ2) := α(ζ1) ∧ α(ζ2)

�

The abstraction of eALTL formulae is more straightforward, since we do not have to regard negations
on this level.

Definition 12 (Abstraction of eALTL Formulae). eALTL formulae as defined in Def. 5 are abstracted
as follows:

α(φ1 ∧ φ2) := α(φ1) ∧ α(φ2)
α(φ1Uφ2) := α(φ1)Uα(φ2)

�

Lemma 13. The abstraction of action formulae defined in Def. 11 is a contracting abstraction. �

Proof. We have to prove that ∀p(q) ∈ Lab : α(p(q)) |= ζα ⇒ p(q) |= ζ for an arbitrary property ζ.
We prove this by induction over ζ for an arbitrary single action p(q) for some p ∈ Act and q ∈ D. We
consider three cases for the basic step and one (Case 4) for the inductive step. The enumeration of
cases is geared to the order of abstraction rules in Def. 11.

Case 1. α(p(q)) |= > ⇒ p(q) |= >: In this case, the right side trivially holds.

Case 2. α(p(q)) |= α({a(x) | expr(x)})⇒ p(q) |= {a(x) | expr(x)}:

Assume: α(p(q)) |= α({a(x) | expr(x)})
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The abstraction of p(q) holds under the abstraction of ζ, if and only if the abstraction of p(q) is
an element of the set, which is spanned by the abstraction of ζ:

α(p(q)) ∈ {a(xα) | ∀x : hd(x) = xα → expr(x)}

On the level of specifications, the abstraction of p(q) is defined as α(p(q)) = p(hd(q)), since we
are using data abstraction:

p(hd(q)) ∈ {a(xα) | ∀x : hd(x) = xα → expr(x)}

At this point, we have to reflect, when p(hd(q)) can actually be an element of the given set.
This is the case, iff a = p and

∀x : hd(x) = hd(q)→ expr(x)

So the expression expr(x) must hold for all possible x for which hd(x) = hd(q), thus it also holds
for x = q. From that, we can conclude:

p(q) ∈ {a(x) | expr(x)}

From this, we can derive following Def. 4, that for a = p and x = q:

p(q) |= {a(x) | expr(x)}

Case 3. α(p(q)) |= α(¬{a(x) | expr(x)})⇒ p(q) |= ¬{a(x) | expr(x)}:

Assume: α(p(q)) |= α(¬{a(x) | expr(x)})

The abstraction of p(q) holds under the abstraction of ¬ζ, if and only if the abstraction of p(q)
is an element of the set, which is spanned by the abstraction of ¬ζ:

α(p(q)) ∈
⋃
b(x)

{α(b(x)) | b 6= a} ∪ {a(xα) | ∀x : hd(x) = xα → ¬expr(x)}

This means, that α(p(q)) must be in one of the two sets. The distinction is made by checking,
whether the action name p matches a from the property, or not. Since p(q) is either in the first
or in the second of the two sets, it holds that that

p(q) ∈
⋃
b(x)

{b(x) | b 6= a} ∪ {a(x) | ¬expr(x)}

This is the complementary set of {a(x) | expr(x)}, so that we can conclude:

p(q) |= ¬{a(x) | expr(x)}

We will regard the two resulting cases separately:

a) p 6= a: Obviously

p(q) ∈
⋃
b(x)

{b(x) | b 6= a}

and so

p(q) |= ¬{a(x) | expr(x)}.
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b) p = a: In this case, we regard the second set:

p(hd(q)) ∈ {a(xα) | ∀x : hd(x) = xα → ¬expr(x)}

Analogously to case 2, this is achieved in case p(hd(q)) = a(xα), i.e. a = p and

∀x : hd(x) = hd(q)→ ¬expr(x).

If the expression expr(x) does not hold for all values of x, it will surely also not hold for
x = q so that we can conclude:

p(q) ∈ {a(x) | ¬expr(x)},

so that

p(q) |= ¬{a(x) | expr(x)}.

Case 4. α(p(q)) |= α(ζ1 ∧ ζ2)⇒ p(q) |= ζ1 ∧ ζ2:

This is the inductive step. Assume, that α(p(q)) |= α(ζ1∧ζ2). Then, according to the definition,
α(p(q)) |= α(ζ1) ∧ α(ζ2) holds, from which we can derive, that α(p(q)) |= α(ζ1) and α(p(q)) |=
α(ζ2). By the induction hypothesis, we can conclude that then p(q) |= ζ1 and p(q) |= ζ2 and
thus p(q) |= ζ1 ∧ ζ2.

Lemma 14. The abstraction of eALTL formulae in positive normal form defined in Def. 12 is con-
tracting. �

Proof. We have to prove that ∀β ∈ Lab? : α(β) |= φα ⇒ β |= φ for an arbitrary property φ. We
do this by induction over φ. We consider traces of one or more steps. Thus, we consider inductive
steps as an extension of the previous proof. The enumeration of the cases is geared to the order of
abstraction rules in Def. 12.

Case 1. φ is an action formula. This case has been proven for Lemma 13.

Case 2. α(β) |= α(φ1 ∧ φ2)⇒ β |= φ1 ∧ φ2:

Assume, that α(β) |= α(φ1∧φ2). Then, according to the definition, α(β) |= α(φ1)∧α(φ2) holds,
from which we can derive, that α(β) |= α(φ1) and α(β) |= α(φ2). By the induction hypothesis,
we can conclude that then β |= φ1 and β |= φ2 and thus β |= φ1 ∧ φ2.

Case 3. α(β) |= α(φ1Uφ2)⇒ β |= φ1Uφ2:

Assume, that α(β) |= α(φ1Uφ2). Then, following Def. 12, α(β) |= α(φ1)Uα(φ2). This means,
that there exists a k ∈ N \ {0} such that for all 0 < i < k : α(β)i |= α(φ1) and α(β)k |= α(φ2).

The abstraction of traces as defined in Def. 8 does not affect the indices of steps in a trace. This
means, that when we follow the induction hypothesis, we can assume, that α(β)[i] = α(β[i]) for
some i ∈ N \ {0} and thus α(β)i = α(βi). Hence, for all 0 < i < k : βi |= φ1 and βk |= φ2. From
that, we can immediately derive that β |= φ1Uφ2.

In order to have precise abstractions, we need a restriction on the homomorphism α = 〈hs, ha〉.
We define that α is consistent with φ, iff for all action formulae ζ occuring in φ, {ha(act)|act |=
ζ} ∩ [[¬α(ζ)]] = ∅, i.e. the hatched square and the ellipse in Figure 4 coincide.

Lemma 15. If α is consistent with φ and φ is in positive normal form, then α(φ) is precise. �
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Figure 5: Classification of counterexamples

Proof. We have to prove by induction on the eALTL formula φ that(
∀ζ ∈ φ : {ha(p(q)) | p(q) |= ζ} ∩ [[¬α(ζ)]] = ∅︸ ︷︷ ︸

consistency

)
⇒
(
∀β ∈ Lab? : βα |= α(φ)⇔ β |= φ︸ ︷︷ ︸

precision

)
Case 1. We begin with the case that φ is an action formula ζ and that β = p(q). We assume, that α

is consistent with φ, i.e. with ζ. We have to show that α(p(q)) |= ζα ⇔ p(q) |= ζ. We distinguish
two cases:

a) α(p(q)) |= ζα ⇒ p(q) |= ζ: This case follows directly from Lemma 13.

b) α(p(q)) |= ζα ⇐ p(q) |= ζ: Let us assume, that p(q) |= ζ ∧ α(p(q)) 6|= ζα. In this case,
due to the first conjunct ha(p(q)) ∈ {ha(p(q)) | p(q) |= ζ} and due to the second one
ha(p(q)) ∈ [[¬α(ζ)]]. The intersection of both sets is thus not equal, what contradicts our
assumption and proves the hypothesis correct.

Case 2. α(β) |= α(φ1 ∧ φ2)⇐ β |= φ1 ∧ φ2: Assume that β |= φ1 ∧ φ2. This means, that β |= φ1 as
well as β |= φ2 hold. Following the induction hypothesis, we can claim that α(β) |= α(φ1) and
α(β) |= α(φ2) and thus α(β) |= α(φ1 ∧ φ2) holds.

Case 3. α(β) |= α(φ1Uφ2)⇐ β |= φ1Uφ2: Assume that β |= φ1Uφ2. This means, that ∃k ∈ N \ {0}
such that ∀i, 0 < i < k : βi |= φ1 and βk |= φ2 hold. Following the induction hypothesis and
since ∀i ∈ N \ {0} : α(β)[i] = α(β[i]), we can claim that ∃k ∈ N \ {0} such that ∀i, 0 < i < k :
α(β)i |= α(φ1) and α(β)k |= α(φ2) and thus α(β) |= α(φ1Uφ2) holds.

4. Classification of Counterexamples
We can now explain model checking by abstraction for eALTL formulae. Let a specification S (with
an underlying LTS M) and an eALTL property φ be given. Let us investigate whether a contracting
abstraction α suffices for our needs. We compute α(φ) and Sα, generate its underlying LTS Mα

and use a model checking algorithm to check Mα |= φα. If this holds, we can derive by our previous
results, that alsoM |= φ, without ever generatingM. If it does not hold, we obtain a counterexample.
Here we provide a classification of abstract counterexamples and demonstrate their relationship with
contracting and precise abstractions of eALTL formulae.

Given a concrete systemM, its abstractionMα, a property φ and its abstraction φα, we differentiate
between three classes of abstract counterexamples (see Fig. 5). Given a counterexample χα, we refer
to a concrete trace χ ∈ [[M]]trace such that χα = α(χ) as a concrete counterpart of χα. The first class
(see counterexample 1 in Fig. 5) consists of the counterexamples having no concrete counterparts in
the concrete system. These counterexamples are referred to as false negatives.

The second class (see counterexample 2 in Fig. 5) consists of counterexamples having (at least
one) concrete counterpart satisfying the original property. We further refer to this class as spurious
counterexamples.
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Figure 6: Concrete and Abstracted Specifications from Example 17

The third class (see counterexample 3 in Fig. 5) consists of the counterexamples having at least one
counterpart in the concrete system; moreover all concrete counterparts violate the concrete property.
Counterexamples from this class are referred to as ideal counterexamples.

Definition 16. Let χα be a counterexample obtained by verifying an abstraction φα of a property φ on
the abstraction Mα of a system M w.r.t. the homomorphism h. We distinguish the following three
cases:

1. We call χα a false negative, if there is no χ ∈ [[M]]trace such that χα = α(χ).

2. We call χα a spurious counterexample if there exists χ ∈ [[M]]trace such that χα = α(χ) and
χ |= φ.

3. Otherwise, we call χα an ideal counterexample.

�

Contracting abstractions may lead to spurious counterexamples as illustrated below.

Example 17. Let S in Fig. 6 be the specification of a concrete system. We abstract Z into Zα =
{a, b, c, d} where a stands for the numbers from (−∞,−3); b stands for the numbers from [−3, 0]; c
stands for the numbers from (0, 3]; and d stands for the numbers from (3,+∞). By applying this
abstraction to S we obtain Sα (see Fig. 6).

Consider the property φ = 3({out(x) | (x ≥ 2)}). We compute the contracting abstraction of φ as
follows:

φ = 3({out(x) | (x ≥ 2)})
φα = 3({out(xα) | ∀x : hd(x) = xα → (x ≥ 2)})

= 3(out(d))

Verifying φα on Sα we may obtain the trace in(c).out(c) as a counterexample, because it is a trace
in Sα, but does not satisfy φ. However, the concrete trace in(2).out(2) corresponding to the abstract
counterexample satisfies 3(out(x) ∧ (x ≥ 2)). Hence, ¬φα is not precise enough.

Such spurious counterexamples are problematic for tracking real bugs. Therefore, we will use
precise abstractions, in order to avoid spurious counterexamples. A contracting abstraction can be
made precise, by fitting the abstraction to the predicates in the specification and the formula:

Example 18. Let S in Fig. 7 be the specification of a concrete system. We abstract Z into Zα =
{a, b, c, d} where the interpretation of a and b remains the same as in Example 17 while c represents
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Figure 7: Concrete and Abstracted Specifications from Example 18

the numbers from the interval (0, 2) and d represents those from [2,+∞). By applying this abstraction
to S we obtain Sα (see Fig. 7).

Consider again the property φ = 3({out(x) | (x ≥ 2)}) and its abstraction φα = 3(out(d)).
Verifying φα on Sα we may obtain the following counterexamples: in(a).out(b), in(b).out(b), and
in(c).out(b). In this example it is straightforward to see that any concretization of these traces is a
counterexample for φ. So in this case, the abstraction is precise.

5. Bug Hunting with False Negatives
Counterexamples that are false negatives still have a value for detecting bugs in specifications. By
relaxing them, i.e. making them even more abstract, false negatives cover a larger part of the system,
which can contain bugs. In this manner, they can serve as a starting point for bug hunting.

In this section, we provide an overview of our framework for bug hunting with false negatives. This
process comprises the following steps:

1. Specify a requirement as a formula φ of eALTL.

2. Choose and apply a data abstraction, which is consistent with φ, to the specification of the
concrete system and to the concrete property.

3. Abstract counterexamples for the property are (automatically) determined using model checking.

4. Generalize the false negative further by relaxing actions, which are not directly relevant for our
search. This results in a violation pattern. The relaxing process itself is automatic, only the
counterexample and the set of directly relevant actions have to be given as input to the algorithm
(see Alg. 1).

5. The concrete counterexamples are automatically computed by finding the intersection of the
original system and the violation pattern.

Since the first three steps of the framework can be handled by existing data abstraction and model
checking techniques, our contribution concerns the steps 4 and 5 of the framework.

5.1 Constructing a violation pattern
A counterexample that we obtain in case the property is violated on our abstract model is an infinite
trace of the form βpβ

ω
s where βp is a finite prefix and βωs is a cyclic suffix with a finite cycle base βs.

Although the counterexample χα may have no counterpart in the concrete system, it can contain a
clue about a counterexample present in the concrete system. Therefore we transform a counterexample
χα into a violation pattern V, considering only infinite counterexamples.
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A violation pattern is an LTS that accepts only traces hitting a distinguished cyclic state infinitely
often. The violation pattern accepts only traces which are similar to the counterexample and violate
the abstract property. The actions mentioned in the property are essential for the property violation.
Therefore, we keep at least this information in the violation pattern. In order to support this kind of
properties, we also keep this information in the violation pattern. For actions influenced by abstraction,
the order and the number of actions in a similar trace may differ from those of the counterexample.
We will first illustrate the idea of similarity on a simple example and then generalize it.

Example 19. Let us come back to the example from the introduction. Assume that we model-check
the property 2(a→ 3b) and obtain the abstract counterexample a.set(k+).tick3.b.(a.set(k+).tick2.d)ω

(see Fig. 8). The k+ is in this case an abstraction of a timer: The original value of the timer is preserved
up to k; any value above k is abstracted to the constant value k+. To guarantee that the property is
violated by any trace accepted by the pattern, we keep at least the actions a and b, because they are
mentioned in the property. Since we are searching for similar traces with an infinite cyclic suffix βs,
we may also decide to keep information about some actions of this cycle. Here we also preserve the
action step d in the cycle (see Fig. 9). The actions tick and set(k+) are not mentioned in the property
and are definitely influenced by the timer abstraction. Therefore, we relax these actions, meaning,
we allow these actions to occur an arbitrary number of times in an arbitrary order, however, at least
one of these actions has to appear once (see states 1 and 5 of the violation pattern in Fig. 9 and then
states 2 and 7 for the self-loops). In order to prevent self-loops in the cyclic state (state 4), we insert
a τ -step between respectively states 3 or 7 and the cyclic state. In states 3 and 7, self-loops are in
principle allowed, but this is not applicable to this example. As we will see later, this step is necessary
for the validity of our theory. At this point, it should also be remarked, that τ 6∈ Labkeep.

We refer to the set of action labels that we do not want to relax by Labkeep. This set includes
at least all the labels mentioned in the abstract (and also the concrete) property. In the violation
pattern, we distinguish a cyclic state that corresponds to the first state in the cyclic suffix. The last
action in the cycle base of an infinite counterexample leads to this cyclic state.

Ideally, we would like to relax more actions influenced by data abstraction. These actions can
be found by applying static analysis techniques. The more actions we keep, the more concrete the
counterexample is and the faster we can check whether there is a concrete trace matching the pattern.
By keeping too many actions, however, we might end up with a violation pattern that specifies traces
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having no counterparts in the concrete system.

Definition 20 (Non-relaxed Actions). Given a set A of actions appearing in a property φα. We define
that some set Labkeep of non-relaxed actions in a violation pattern is consistent with φα if and only
if Labkeep ⊇ A. �

Labkeep can optionally contain additional actions, like the last action of a cyclic suffix, or actions
not influenced by the data abstraction, to make the violation pattern more specific.

Definition 21 (Violation Pattern). Given an abstract counterexample χα = βpβ
ω
s and a set Labkeep of

non-relaxed actions, a violation pattern is an extended LTS V = (Σ,Lab,∆, σinit, σcyclic) constructed
by Algorithm 1, where σcyclic is the cyclic state.

The set of traces visiting the cyclic state infinitely often, is further referred to as the set [[V]]trace of
accepted traces. �

Algorithm 1 Build Violation Pattern
Require: χα = βpβ

ω
s ,Labkeep // trace, actions to keep

Ensure: V = (Σ,Lab,∆, σinit, σcyclic) // violation pattern
1: σinit := 0; Σ := {σinit}; // initialization
2: σ := σinit; // current state σ of V
3: for all i = 1..|βpβs| do // for all steps of βpβs
4: if χα[i] 6∈ Labkeep then
5: if σ = σinit ∨ χα[i− 1] ∈ Labkeep then // prev. action in Labkeep: add new state for loop
6: σ̂ := σ + 1;
7: Σ := Σ ∪ {σ̂};
8: fi
9: ∆ := ∆ ∪ {(σ, χα[i], σ̂), (σ̂, χα[i], σ̂)}; // add a relaxed step

10: else // if step to be kept
11: σ̂ := σ + 1; // next state is arbitrary
12: Σ := Σ ∪ {σ̂}; // add the new state
13: ∆ := ∆ ∪ {(σ, χα[i], σ̂)}; // add the step to the next state
14: fi
15: σ := σ̂; // proceed with the next state of V
16: if i = |βp|+ 1 then // assignment of σcyclic

17: σcyclic := σ̂ + 1;
18: ∆ := ∆ ∪ {(σ̂, τ, σcyclic)}; // add the internal step to the cyclic state
19: σ := σcyclic;
20: fi
21: od
22: ∆ := ∆ ∪ {(σ, τ, σcyclic)}; // add the internal step to the cyclic state

Given a counterexample χα = βpβ
ω
s and a set Labkeep of actions to keep, Algorithm 1 constructs

the violation pattern V. The algorithm starts with creating the initial state σinit := 0 of V and
goes through βpβs. When the algorithm encounters an action to relax, it adds a single transition
labeled with this action from the previous to the current state, followed by an equally-labeled self-
loop transition in the current state of V. When it encounters an action to keep, it adds a transition
from the current state to the (new) next state labeled with this action. When the algorithm has
reached the end of the cycle base, a τ -step leads back to the cyclic state. The first state of βs is
assigned to σcyclic.

Next, we show that all traces obtained from the traces of [[V]]trace violate the property φα. Therefore,
we first introduce a function, that projects traces on Labkeep and then prove the according relations
between traces and properties.
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Definition 22 (Projection of Traces on Labkeep). Let M = (Σ,Lab,∆, σinit) be an LTS and β ∈
[[M]]trace be an arbitrary trace. bβcLabkeep is this trace projected on Labkeep by a projection function
pβ : N\{0} → N\{0}, such that

∀i ∈ N : pβ(i+ 1) =

 1 iff i = 0
pβ(i) iff i > 0 ∧ (β[i+ 1] 6∈ Labkeep ∧ β[i] 6∈ Labkeep)
pβ(i) + 1 iff i > 0 ∧ (β[i+ 1] ∈ Labkeep ∨ β[i] ∈ Labkeep)

We furthermore define that ∀pβ(i) ∈ N\{0}

bβcLabkeep [pβ(i)] =
{
β[i] iff β[i] ∈ Labkeep

τ iff β[i] 6∈ Labkeep

with τ 6∈ Lab. �

The function pβ is surjective, i.e. every element of the result set of pβ has at least one preimage.
Since this would not be given for traces β, whose steps from some point on are only outside of Labkeep,
we assume, that in this case infinitely many τ -steps are added to bβcLabkeep in order to preserve the
surjectivity of pβ . In some cases, where it is clear which trace is projected by pβ , we will leave out
the subscript in order to improve readability.

Definition 23 (Invariance of Properties (1)). A property φ is invariant under the projection pβ of β
to Labkeep, iff the following holds: β |= φ⇔ bβcLabkeep |= φ. �

Lemma 24. Any eALTL property φ in positive normal form is invariant under projection pβ of trace
β to Labkeep, provided that Labkeep is consistent with φα. �

Proof. We have to prove inductively on the property φ that βi |= φ ⇔ bβcp(i)Labkeep
|= φ. We have to

distinguish in total seven cases.

Base Case: Assume, bβcLabkeep [i] = bβcLabkeep [p(i)]. There are four subcases to be considered:

a) β[i] |= > ⇔ bβcLabkeep [p(i)] |= > is trivially true, no matter whether bβcLabkeep [p(i)] = β[i] ∈
Labkeep or bβcLabkeep [p(i)], β[i] 6∈ Labkeep.

b) In order to prove β[i] |= {a(x)|expr(x)} ⇔ bβcLabkeep [p(i)] |= {a(x)|expr(x)}, we have to
distinguish the two cases, whether β[i] ∈ Labkeep or β[i] 6∈ Labkeep. If β[i] ∈ Labkeep, then
bβcLabkeep [p(i)] = β[i] and the above trivially holds. If β[i] 6∈ Labkeep, then bβcLabkeep [p(i)] =
τ 6∈ Labkeep. In this case, β[i] 6|= {a(x)|expr(x)} and nor does bβcLabkeep [p(i)].

c) In order to prove β[i] |= ¬{a(x)|expr(x)} ⇔ bβcLabkeep [p(i)] |= ¬{a(x)|expr(x)}, we again
have to distinguish the two cases, whether β[i] ∈ Labkeep or β[i] 6∈ Labkeep. If β[i] ∈
Labkeep, then bβcLabkeep [p(i)] = β[i] and the above trivially holds. If β[i] 6∈ Labkeep, then
bβcLabkeep [p(i)] = τ 6∈ Labkeep. In this case, tautologically β[i] 6|= {a(x)|expr(x)} ⇔ β[i] |=
¬{a(x)|expr(x)} and, thus bβcLabkeep [p(i)] |= ¬{a(x)|expr(x)}.

d) This case is an inductive step.

β[i] |= ζ1 ∧ ζ2
⇔ β[i] |= ζ1 ∧ β[i] |= ζ2

By induction hypothesis:

⇔ bβcLabkeep [p(i)] |= ζ1 ∧ bβcLabkeep [p(i)] |= ζ2

⇔ bβcLabkeep [p(i)] |= ζ1 ∧ ζ2
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Inductive step for ∧: Assume, that β |= φ1 ∧ φ2. Then:

βi |= φ1 ∧ φ2

⇔ βi |= φ1 ∧ βi |= φ2

By induction hypothesis:

⇔ bβcp(i)Labkeep
|= φ1 ∧ bβcp(i)Labkeep

|= φ2

⇔ bβcp(i)Labkeep
|= φ1 ∧ φ2

Inductive step for U a) Assume, that β |= φ1Uφ2. This means, that there exists a k ∈ N \ {0}
such that for all 0 < i < k : βi |= φ1 and βk |= φ2.

By induction hypothesis, for all 0 < j < p(k) : bβcjLabkeep
|= φ1 and bβcp(k)

Labkeep
|= φ2. From this,

we immediately derive that also bβcLabkeep |= φ1Uφ2.

Inductive step for U b) Assume, that β 6|= φ1Uφ2. This means, that either there exists a k ∈
N \ {0} such that there exists an i, 0 < i < k, such that βi 6|= φ1 and βk |= φ2, or for all
k ∈ N\{0} : βk |= φ2. By induction hypothesis and due to the surjectivity of pβ , we derive that
there thus also exists an pβ(i), 0 < pβ(i) < pβ(k), such that bβcp(i)Labkeep

6|= φ1 and bβcp(k)
Labkeep

|= φ2,

or for all p(k) ∈ N\{0} : bβcp(k)
Labkeep

|= φ2. From this, we can derive that also bβcLabkeep 6|= φ1Uφ2.

Definition 25 (Projection Relation). Two traces β1, β2 are equivalent under projection relation β1 ∼p

β2, iff bβ1cLabkeep = bβ2cLabkeep . �

Definition 26 (Invariance of Properties (2)). A property φ is invariant under projection relation ∼p,
iff the following holds: ∀β1, β2 : β1 ∼p β2 ⇒ (β1 |= φ⇔ β2 |= φ). �

Lemma 27. Any eALTL property in positive normal form is invariant for an arbitrary pair of traces
β1, β2 with β1 ∼p β2. �

Proof. As defined in Definition 25, β1 ∼p β2 ⇔ bβ1cLabkeep = bβ2cLabkeep . As has been proven for
Lemma 24, any eALTL property is invariant under projection pβ from β to bβcLabkeep .

By Lemma 24, β1 |= φ ⇔ bβ1cLabkeep |= φ. Since bβ1cLabkeep = bβ2cLabkeep , we derive that also
bβ1cLabkeep |= φ ⇔ bβ2cLabkeep |= φ. By Lemma 24, this also means that bβ2cLabkeep |= φ ⇔ β2 |= φ.
From this, we conclude, that also β1 |= φ⇔ β2 |= φ.

Lemma 28. For any pair of traces β1, β2 ∈ [[V]]trace holds: β1 ∼p β2. �

Proof. Having in mind the construction of the violation pattern V, it is trivial to prove this lemma.
Every trace β ∈ [[V]]trace consists of steps according to transitions σ →λ σ̂ ∈ ∆ with σ 6= σ̂ or
those accordant to self loops σ →λ σ̂ ∈ ∆. Infinite self loops in the cyclic state are not possible by
construction. Furthermore, by construction of the violation pattern, any self loop in V is preceded by
a step σ →λ σ̂, σ 6= σ̂, with λ 6∈ Labkeep. This means, for any trace β ∈ [[V]]trace, holds:

• ∀i ∈ N \ {0}, β[i] 6∈ Labkeep∃p(i) ∈ N \ {0} : β′[p(i)] = τ

• ∀j ∈ N \ {0}, β[j] ∈ Labkeep∃p(j) ∈ N \ {0} : β′[p(j)] = β[j]

In applying this projection, the trace β′ is the shortest trace through V skipping all self loops.
Modulo actions λ ∈ Lab\Labkeep, by construction there is only one such trace in V. For this reason,
any trace β ∈ [[V]]trace will be projected on β′ and thus the lemma holds.
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ROutput
`→g.!s(e)

ˆ̀∈ Edg

s(state(`,Var), state(ˆ̀,Var), param(e))← g

RInput
`→g.?s(x)

ˆ̀∈ Edg

s(state(`,Var), state(ˆ̀,Var [x7→Y ]), param(Y ))← g

RAssign
`→g.τ,x:=e

ˆ̀∈ Edg

τ(state(`,Var), state(ˆ̀,Var [x 7→e]), param)← g

Table 1: From specification S to rule system RS

Lemma 29. Let Labkeep be consistent with φα, let χα be a counterexample for φα, and V be a violation
pattern generated from χα and Labkeep. Every trace βα ∈ [[V]]trace satisfies: βα 6|= φα. �

Proof. It trivially holds that χα 6|= φ. As we have shown in Lemma 24, any eALTL property is
invariant under the projection pβ of trace β to trace bβcLabkeep . As has been shown in Lemma 28,
for any two traces β1, β2 ∈ V holds: β1 ∼p β2. Furthermore, we have shown in Lemma 27, that any
eALTL property is invariant under the equivalence β1 ∼p β2. From this, we can derive that every
trace βα ∈ [[V]]trace satisfies: βα 6|= φα.

5.2 Looking for a concrete counterexample
After we have constructed the violation pattern V, we check whether there is a concrete counterexample
χ = χpχ

ω
s , such that the corresponding abstract counterexample χα ∈ [[V]]trace.

For infinite counterexamples we need to check that some state of χs corresponds to σcyclic. We em-
ploy constraint solving [21] to find a concrete counterexample, which allows us to check this condition
for infinite (but cyclic) traces, and also for certain infinite and parameterized systems.

To find a concrete trace matching the violation pattern V, we transform the specification of the
concrete system and the violation pattern into a constraint logic program and formulate a query to find
such a trace. This transformation is similar to the one described in [3]. Note that for a concrete system
with an infinite state space, it is possible that the constraint solver will not terminate. Moreover, it
is possible that the only traces that match the violation pattern are spiral traces, not cyclic ones (i.e.
we do have a loop with respect to control locations, but some variable is infinitely growing) and we
will not be able to find them.

The transformation of the specification of the concrete system into a rule system RS is defined in
Table 1. Each edge of the specification S is mapped into a rule %← g. In the rule, g is a guard and %
is a user-defined constraint of the form s(state(`,Var),state(ˆ̀, Var

′
),param(Y )). The first parameter

state of the user-defined constraint describes the source states corresponding to the edge in terms of
control locations of a process and valuations of process variables. The second parameter state describes
the destination states in terms of control locations of a process and valuations of process variables.
The third parameter param contains parameters representing input and output values. The constraint
is satisfied iff the guard g is satisfied. This means, that there is a transition (`, η)→g.s(d) (ˆ̀, η̂), if and
if only the rule s(state(`,Var), state(ˆ̀,Var

′
), param(Y )) ← g holds, for some substitution Var = η,

Var
′

= η̂, Y = d that makes guard g become true.
In ROutput, the name of the constraint coincides with the event s. Note that the values of the

process variables Var remain unmodified and the output value is represented by the parameter Y
whose value is given by the expression e. In RInput, the input leads to the substitution of the value
of process variable x by the value of the input parameter Y . In RAssign, an assignment is represented
by substituting the value of the process variable x by the valuation of expression e. These rules have
no local parameters, so the parameter structure is empty.
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(1)
σ →!s(v) σ̂ ∨ σ →?s(v) σ̂ ∨ σ →τ σ̂ σ 6= σcyclic ∧ σ̂ 6= σcyclic

σ(state( ~X), C̄, [s(Y ) | β̄])← s(state( ~X), state( ~X ′), param(Y ))∧
v = α(Y ) ∧ σ̂(state( ~X ′), C̄, β̄)

(2)
σ →τ σ̂ σ 6= σcyclic ∧ σ̂ = σcyclic

σ(state( ~X), C̄, β̄)← σ̂(state( ~X), C̄, β̄)

(3)
σ →!s(v) σ̂ ∨ σ →?s(v) σ̂ ∨ σ →τ σ̂ σ = σcyclic

~X ∈ C̄

σ(state( ~X), C̄, [])← ~X ∈ C̄

(4)
σ →!s(v) σ̂ ∨ σ →?s(v) σ̂ ∨ σ →τ σ̂ σ = σcyclic

~X 6∈ C̄

σ(state( ~X), C̄, [s(Y ) | β̄])← s(state( ~X), state( ~X ′), param(Y ))∧
v = α(Y ) ∧ σ̂(state( ~X ′), [ ~X | C̄], β̄)

Table 2: From violation pattern V to rule system RV

Transformation of the edges of the violation pattern V = (Σ,Lab,∆, σinit, σcyclic) into the rules of
the rule system RV is defined in Table 2. Here, we abbreviate (`,Var) by ~X and (ˆ̀,Var

′
) by ~X ′.

Intuitively, given a step of V, a rule of RV checks whether the concrete system may make this step.
The rules also take into account the information about the cyclic state and the data abstraction.

The rules in Table 2 transform the steps of a violation pattern into rules of the form: %← ξ∧gα∧ν.
% is a user-defined constraint of the form σ(state( ~X), C̄, β̄′) specifying the source state state( ~X) of
the concrete system, and a set C̄ of states, which are possibly on a cycle. This set is accumulatively
constructed, and it contains concrete candidate cyclic states that match with σcyclic in the violation
pattern. The third parameter, β̄′, contains the trace that is visited while examining V starting from
σ̂ and the action visited in the actual step.
ξ is a user-defined constraint of the form s(state( ~X), state( ~X ′), param(Y )) as defined above. It

represents a step on which the concrete system and the violation pattern can potentially synchronize.
The guard gα checks whether the data parameters of the concrete action are a concretization of the

data parameters of the abstract action.
Finally, ν determines whether and how the violation pattern has to be examined further. We will

explain this in more detail shortly. Simplified, ν stops the further examination of V, if we have
reached the cyclic state of V. Otherwise, it decides that the next step in V will be taken and sets the
parameters accordingly.

We will now describe the rules in more detail. Rule 1 of Table 2 transforms steps of the violation
pattern whose actual state σ and target state σ̂ are not the beginning of the cycle base. The step
specified by the constraint s(state( ~X), state( ~X ′), param(Y )) changes the state to σ̂ in the violation
pattern and to state( ~X ′) in the concrete system. That is captured by the constraint σ̂(state( ~X ′), C̄, β̄)
in %. The constraint is satisfied only if both the violation pattern and the concrete system can make the
specified step and the action labeling the step of the concrete system satisfies the constraint v = α(Y ).
When doing the next examination step, C̄ is left unchanged. β̄ is an output parameter, which contains
the trace stub visited from σ̂ to the cycle in the trace under examination. When the recursion ascends
after termination of constraint solving, the actual event s together with a concretization Y of its
parameter v, is added to the examination trace β̄.

Rule 2 transforms the τ -steps ending in the cyclic state σcyclic to an empty step from σ to σ̂. The
rule does not refer to any action steps from S, since this τ -step only appears in the violation pattern;
the system under investigation stays completely silent.

Rule 3 transforms those steps of the violation pattern, which start from a state corresponding to
the beginning of the cycle. If the actual corresponding state in the system is found in C̄, the state
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is cyclic and has already earlier been visited during the examination. In this case, examination ends
successfully. If the state is not yet in C̄, it is potentially cyclic and treated by Rule 4. In this case,
the step is treated like in Rule 1, just that the actual state of the system is added to C̄. Logging
potentially cyclic states and examining the violation pattern further allows us to not only detect
obvious cycles, i.e. cycles in the system which are also immediately visible in the violation pattern.
We can also detect those cycles, where the system spirals before entering a real cycle. In this case,
the system first runs through a cycle with respect to the location, but differing in the data part of the
system state, before finally returning to a previously visited state. In such a case, the cyclic state of
the violation pattern is visited more than once.

The rule system RV , together with the rule system RS , forms the constraint program. In order to
check whether we can find a concrete counterexample matching the violation pattern, we transform
the pair of the initial state of the violation pattern and the initial state of the concrete system into the
query qinit := σinit(state( ~Xinit), [], B) (initial state without any potentially cyclic states and with a yet
uninstantiated variable B for the counterexample trace) and ask a constraint solver, whether it finds
a solution in the constraint program formed by RS and RV . If yes, it provides us a counterexample
as a list of actions and violation pattern states, which has been collected over the examination of V.
If constraint solving does not find a solution, we cannot give a conclusive answer and have to use e.g.
abstraction refinement techniques to find out, whether the property holds on the concrete system.

Lemma 30. For all ~Z ∈ C̄ holds that, if σ(state( ~X), C̄, β) is invoked, then ~Z � ~X. �

Proof. We will prove the lemma by induction over the deduction steps for the query to the rule system.

Base case: This case is given by the initial invocation of qinit := σinit(state( ~Xinit), [], B). In this case,
C̄ = ∅, such that the hypothesis trivially holds for the first step.

Inductive step: For the inductive step, we assume, that ~Z ∈ C̄∧ ~Z � ~X. We now have to distinguish
four cases according to the rules from Table 2:

Case 1: By induction hypothesis, we have a trace ~Z � ~X with ~Z ∈ C̄. A successful invo-
cation of Rule 1 induces, that there is also a step ~X →s(Y )

~X ′, since the invocation of
s(state( ~X), state( ~X ′), param(Y )) succeeds. From this, we can derive that ~Z � ~X → ~X ′

and thus ~Z � ~X ′.

Case 2: This case trivially holds due to our induction hypothesis.

Case 3: This case also trivially holds due to our induction hypothesis with a looping trace
~Z � ~Z.

Case 4: By induction hypothesis, we have a trace ~Z � ~X. For this case, we have to consider
two subcases, namely ~Z ∈ C̄ and ~Z 6∈ C̄ ∧ ~Z ∈ {~Z} ∪ C̄. For the first subcase, the same
holds as for Case 1 of the inductive step in this proof with ~X 6= ~Z. For the second subcase,
we have a step ~Z →s(Y )

~X ′ with ~Z ∈ {~Z}∪ C̄ and construct the further trace by induction.

Lemma 31. If the query qinit to the rule system RV holds for some trace β, then β ∈ [[M]]trace,
α(β) ∈ [[V]]trace and β = βpβ

ω
s . �

Proof. We prove the lemma inductively over the derivative steps of the constraint solver on the CLP
R. We have to show that:

∃σM
cyclic ∈ ΣM∃βpβs ∈ [[M]]trace : σinit �βp σ

M
cyclic �βs σ

M
cyclic

Furthermore, we have to show that the abstraction of this trace β is in [[V]]trace.
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Base case: Assume, the query σ(state( ~Xinit), [], β) terminates with trace β = βpβs. Then, we have
at the end of recursion: ~X ∈ C̄. From that, we can derive that (Rule 3 from Table 2):

End of recursion
σ(state( ~X),

C̄︷ ︸︸ ︷
[. . . , ~X, . . .], []) σ →ι σ

′ σ′′ = σcyclic

~X ∈ C̄

In this case, we have, as has been proven for Lemma 30, a trace ~X � ~X with σM
cyclic = ~X.

Since the complete trace βpβs starts in the initial state σinit (by the query), we thus have
σinit �βp σ

M
cyclicβsσ

M
cyclic. Since the remaining empty trace does not contain any steps, it trivially

holds, that its abstraction is in [[V]]trace.

Inductive case: For the inductive case, we have to consider two possible variants of steps, namely
those starting in a potentially cyclic step and those starting in an arbitrary non-cyclic state
(Rules 1 or 4, resp., from Table 2):

Variant 1

σ(state( ~X ′′), C̄, [ι|β̄]) σ′′ →ι σ
′ σ′′ 6= σcyclic

ι(state( ~X ′′), state( ~X ′), param(Y )) ∧ v = α(Y ) ∧ σ( ~X ′, C̄, β̄)

g ∧ v = α(Y ) ∧ σ( ~X ′, C̄, β̄)

Variant 2

σ(state( ~X ′′), C̄, [ι|β̄]) σ′′ →τ ;ι σ
′ σ′′ = σcyclic

ι(state( ~X ′′), state( ~X ′), param(Y )) ∧ v = α(Y ) ∧ σ( ~X ′, [ ~X ′′|C̄], β̄)

g ∧ v = α(Y ) ∧ σ( ~X ′, [ ~X ′′|C̄], β̄)

In case of the τ -step prior to the cyclic state σcyclic in the violation pattern, an invocation to
Rule 2 of the CLP appears. This invocation does not affect the validity of a found solution trace
β for the violation pattern.

In case of an arbitrary step ι, assume, the algorithm successfully terminates for a trace β̄. Then,
the algorithm will also successfully terminate for trace β̄′ = [ι|β̄] with either Variant 1 or Variant
2 holding.

By induction hypothesis, β̄α ∈ [[V]]trace. The event ι has the abstract parameter v = α(Y ),
which is an abstraction of an appropriate concrete action parameter Y . For this reason, also
β̄′α ∈ [[V]]trace.

5.3 Correctness of the Framework
In this section, we argue the correctness of the framework, which has been worked out in the previous
two subsections.

Theorem 32. Let α = 〈hs, ha〉 be an abstraction consistent with eALTL-property φ. Let LTS sM and
Mα be given, such that M ⊆αMα. Furthermore, assume that the counterexample χα ∈ [[Mα]]trace

and χα 6|= φα. Let V be a violation pattern built from χα and a consistent Labkeep by the algorithm
Alg. 1. Let β be a trace for which qinit holds, according to the constraint solving procedure defined in
Subsection 5.2. Then β is a counterexample: β ∈ [[M]]trace and β 6|= φ.

Proof. By Lemma 31, β ∈ [[M]]trace and α(β) ∈ [[V]]trace. By Lemma 29, α(β) 6|= φα. By Lemma 15,
as α is a precise abstraction, we have β 6|= φ.
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6. Implementation
To check the applicability of our framework we performed a number of verification experiments with
µCRL specifications [15]. µCRL is a specification language, which is essentially an extension of the
process algebra ACP with abstract data types and recursive definitions. The µCRL toolset [1, 16]
provides tool support for analysis, abstraction, optimization and state space generation for µCRL
specifications. For constraint solving, we used ECLiPS e Prolog [2].

We took a mutant of the Positive Acknowledgment Retransmission Protocol (PAR) [27] as our
case study. The usual scenario for PAR includes a sender, a receiver, a message channel and an
acknowledgment channel. The sender receives a frame from the upper layer, i.e. from its environment,
sends it to the receiver via the message channel, the receiver delivers the frame to the upper layer
and sends a positive acknowledgment via the acknowledgment channel to the sender. PAR depends
on timers, which we have chosen too low for our experiments.

When the receiver has delivered the message to the upper layer it sends an acknowledgment to the
sender. After the positive acknowledgment is received, the sender becomes ready to send a subsequent
message. The sender handles lost frames by timing out. If the sender times out, it re-sends the message.

We tried to verify that for any setting of the sender timer exceeding some value k, all messages
sent by the upper layer to the sender are eventually received by the upper layer from the receiver. To
prove that the property holds for any setting of the sender timer exceeding k, we applied the timer
abstraction described in Section 1 to the sender timer. The property was not satisfied on the abstract
system (the chosen k was less than the sum of the channel delays) and we obtained a counterexample.

The abstract counterexample was not reproducible on the concrete system, since the number of tick
steps from a setting of the sender timer till its expiration varied along the trace due to the use of the
abstraction. We transformed the counterexample into a violation pattern by relaxing the actions on the
sender timer as influenced by the abstraction. The specification of the system was transformed from
µCRL into a set of Prolog constraint rules, while the violation pattern was immediately formulated
as a set of Prolog rules according to our theory (Def. 20, 21 and Fig. 9). The constraint solver was
then able to find a concrete counterexample for our property.

In our experiment, we encoded the violation pattern directly as a rule system. In order to keep track
of the cyclic states, we do not build up a set C̄, but dynamically add rules to the rule system using
assert/1. Therefore, we introduce a new dynamic rule cyclic state/1. In the rule for the cyclic state
of the violation pattern, we insert instances of this rule using assert(cyclic state(state( ~X))) to mark
the cyclic state before following the transition from that state. For the final state of βpβs, we add two
rules: The first rule checks, whether a state in C̄ was reached by invoking cyclic state(state( ~X)). If
this rule holds, the state was reached, the trace β̄ is printed out and constraint solving terminates. If
this rule fails, the second rule invokes the rule for the cyclic state.

7. Conclusion
We proposed a novel framework for interpreting negative verification results obtained with the help
of data abstractions. Existing approaches to handling abstract counterexamples try to find an exact
counterpart of the counterexample (e.g. [23]). When no concrete counterpart can be found, data
abstraction is considered to be not fine enough and abstraction refinement is applied (e.g. [5]).

In our framework we look for useful information in false negatives, combining model checking and
constraint solving. Given a specification of a system and a property (formulated as an eALTL formula),
we first choose and apply data abstraction to both of them and then verify the abstract property on
the abstract system. If the verification results in a violation of the abstract property and the obtained
counterexample has no counterpart in the concrete system, we transform the counterexample into a
violation pattern, which is further used to guide the search for concrete counterexamples.

The framework allows to handle counterexamples obtained when verifying safety properties, but also
counterexamples for liveness properties. Moreover, the framework can be applied for searching concrete
counterexamples in parameterized and infinite state systems. Success is not always guaranteed – the
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violation pattern can be too strict, concrete counterexamples can have a spiral form (i.e. a loop in
the specification, that does not lead back to a state fully identical to its starting state), or there
could be no counterexample at all since the property just holds on the concrete system. Still, our
approach can help in finding counterexamples in those cases when a data abstraction influences the
order and the number of some actions, e.g. as timer and counter abstractions do. Even though,
we defined the framework for homomorphistic abstractions in this paper, it seems to be possible to
generalize abstraction and refinement on the basis of Galois-connections and so define a framework
for bughunting with false negatives based on abstract interpretation.

The approach to the generation of a violation pattern leaves a certain freedom in the sense that
the set of actions to relax can be more/less restrictive. Tuning the violation pattern or using the
expertise of system developers to pick an appropriate set of actions to relax can be potentially less
costly than repeating the abstraction/refinement cycle immediately. More case studies comparing
both approaches and trying their combinations are still needed.
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