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Abstract. Multidimensional codesign is a recently proposed paradigm for integrating
different system dimensions in sensor networks. Examples of such dimensions are logi-
cal and physical mobility, continuous and discrete transitions, deterministic and random
evolutions and features resulting from their interaction, like deterministic and stochas-
tic hybrid behaviours. In this paper, we propose a unifying computational model that
considers multiple dimensions, inspired by the Hilbertian Formal Methods paradigm. We
couple this model with an integration framework based on domain theory. In this frame-
work new dimensions can be incrementally added, and we illustrate this technique by
adding logical mobility to the computational model. The new model has a very promising
modelling power, offering all formal ingredients of a neural network. We further inves-
tigate bisimulation for systems mixing physical and logical mobility. We identify and
solve a compatibility problem between bisimulation relations arising from mobility and
continuous behaviours.
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1 Introduction

Nowadays, anyone can easily observe an explosive development in distributed embedded sys-
tems like sensor networks, gene regulatory networks and other system biology areas. A general
tendency in this development is the integration of very different features, like mobility, ran-
domness, continuity and discrete / continuous mixed behaviors. Formal methods that should
mathematically support this development are still largely focussed on one area or another. In
this paper, we present two formal mechanisms for developing a formal framework, in which
these various features can be investigated altogether. One mechanism consists of a unifying ax-
iomatization of deterministic and stochastic automata, in the spirit of the recently introduced
paradigm called Hilbertian formal methods [10,11]. The second one proposes a generic tech-
nique based on the categorical domain theory for adding new features to an existing model.
This mechanism constitutes a formal approach to a recent development paradigm called multi-
dimensional codesign [16,9]. In the limited space of this paper, we restrict our presentation to
a class of systems that mix continuous evolutions with logical mobility. These systems appear
especially in medical applications of embedded systems, where mathematical models based on
differential equations abound. Concretely, networked systems of genes or sensors are difficult to
investigate formally because the lack of a formal framework to integrate such features.
Continuous behaviors have been investigated formally mostly in the area of hybrid systems.
In most applications, the continuous behaviors are associated with man made technical systems
(like engines, transmission systems, etc.) and their mathematical description consists of rather
very simple differential equations. In the case of embedded systems, the continuous evolutions of



the environment often involve very complex mathematical descriptions. For example, in a meteo
system, a continuous evolution is described by a system containing up to one hundred partial
differential equations. In the case of a cardiac implant, the continuous evolutions are subject
to randomized changes. The main difficulty in developing formal methods for such systems
is given by their very different mathematical foundations. When probabilities are considered,
fundamental system properties are lost, like the uniquely determined system trajectory by an
initial state. The idea of considering two different approaches, one for the deterministic case and
one for the stochastic, is not feasible in practice. The selection of the environment characteristics
that should be considered by the embedded controller is subject to frequent changes. The
interaction between different characteristics is often not entirely mathematically understood
and the initial deterministic model turns into a stochastic one. In the case of two different
formal approaches, the addition of new functionalities would involve a complete redesign and
a replacement of the old controllers. That can be very costly, especially if, for example, the
sensor network has been placed in a geographical position difficult to access (think at a military
application) or if a gene network must be re-created (to obtain accurate biological cultures in
genetics is still a very complex process). The first main contribution of this paper is a unifying
semantic framework, in which both deterministic and stochastic environment behaviors can be
modelled.

The second contribution of this paper focuses on the possibility to introduce logical mobility
in the framework described above. We consider the categorical formalization of the w-calculus
introduced and developed by Glynn Winskel and his co-authors [12]. This formalization relies on
heavy categorical algebra and therefore we discuss only how Winskel’s calculus can be used. In
principle, Winskel’s approach is constructed generically using an abstract model of computation
specified as a category. The subtle point of this construction is that, in this category, a computa-
tional equivalence, described in terms of open maps must exist. When this category consists of
labelled transition systems, as used in process algebra, the computational equivalence becomes
the familiar concept of bisimulation. The mobile processes are then described as presheaves on
this category. The computational equivalence between the mobile processes is then borrowed
from this category via Yoneda embedding. We extend the behaviors of continuous systems with
mobile processes by constructing suitable categories to replace this category. Obviously, there
are many categories of continuous processes in the literature (especially in control theory), but
these can not be used because the computational equivalence by open maps can not be defined.
The main contribution of this paper is to construct a category of models of computation that
unifies deterministic and stochastic evolutions and for which the open maps can be defined and
generate an equivalence relation.

From a mathematical viewpoint, the paper follows two main streams. The first part uses
intensively the general theory of Markov processes to introduce a unifying model of concurrent
embedded systems and its concept of bisimulation. We show that this general concept of bisim-
ulation subsumes the bisimulation of deterministic continuous and hybrid dynamical systems
introduced and investigated by Tabuada e.a [19] using open maps. In the second part, an ap-
proach based on category theory enriches the previous model with first order mobility, such that
the bisimulation relation for mobile processes is compatible with the stochastic bisimulation.

2 A quick tour on continuous processes

In this section we give some background of on Markov processes necessary to understand the
contribution of this paper. As well, we present the class of semi-dynamical systems, which can
be thought of as “Markov processes” that “degenerated” into determinism, or what “Markov



processes” would be if its transition probabilities would be given by some Dirac distribu-
tions!. For studying Markov processes specific parameterization have been developed. When
the process is deterministic these analytical tools characterize the semi-dynamical systems.

2.1 Markov Processes

The stochastic processes we consider here are randomized systems with a continuous state space,
where the “noise” can be measured using transition probability measures. Markov processes
form a subclass of stochastic systems for which, at any stage, future evolutions are conditioned
only by the present state (in other words, they do not depend on the past).

The state space is denoted by X. The basic assumption is that one can reason about state
change using probabilities. Then the state space should be a measurable space. Suppose that
X is a Polish or analytic space. A Polish space is a topological space, which is a homeomorphic
image of complete separable metric space. The continuous image of a Polish space is called an
analytic space. We consider X equipped with its Borel o-algebra B (i.e. the o-algebra generated
by all open sets). We adjoin an extra point A (the cemetery or deadlock point) to X as an
isolated point, Xo = X U {A}. Let B(X ) be the Borel o-algebra of X A.

In the following, we will use intensively the set of all bounded measurable numerical functions
on X denoted by B(X). Mathematically, this set can be thought of as a lattice (with the natural
pointwise order between numerical functions, or as an additive monoid S = (B(X),+,0).
These functions can be thought as abstract states (configurations) of the given system or, some
formulas in an appropriate logic. Moreover, B(X) is also a Banach space with respect to the
sup-norm and the natural pointwise algebraic operations which give its linear structure.

A probability space (§2, F, P) is fixed and all X —valued random variables are defined on
this probability space. The trajectories in the state space are modelled by a family of random
variables (z;) where ¢ denotes the time. The reasoning about state change is carried out by a
family of probabilities P, one for each state x € X. The construction is similar to the coalgebraic
reasoning in the semantics of specification languages: the system behavior is described by given
for each state the possible evolutions. For Markov processes, for each state z, the probability
P,(xz; € A) to reach a given set of state A C X (provided that A is measurable) starting from
x describes the system evolution. We remark two ingredients that make the difference from
the deterministic case: the evolutions are described from an initial state to a set of final set
(nondeterminism) and all we know is a probability to have such trajectories (uncertainty). This
is the sense how a semigroup of operators (which will be defined in the following) is abstracting
a Markov process.

Formally, let M = (2, F, F, z¢, P, P;) be a strong Markov process (see the definition, for
example, in [18]). Strong Markov property means that the Markov property is still true with
respect to the stopping times of the process M. Recall that a [0, oc]-valued function 7 on (2
is called an {F;}-stopping time if {T < t} € F;,Vt > 0. In particular, any Markov chain is a
strong Markov process. The trajectories of M are modelled by a family of X-valued random
variables (z;), which, as functions of time, can have some continuity properties (as the cadlag
property, i.e. right continuous with left limits). F; is the o-algebra generated by the random
variables x4, s < t, and it describes the history of the process up to the time t.

The stochastic analysis identifies concepts (like infinitesimal generator, semigroup of operators,
resolvent of operators) that characterize in an abstract sense the evolutions of a Markov process.
Under standard assumptions, all these concepts are equivalent, in the sense that given one
concept then all the others can be constructed from it. For a detailed presentation of these

! Recall that the Dirac measure 6;(A), for x € X and A € B(X) is equal to 1 iff z € A, and 0
otherwise.



notions and the connections between them, the reader can consult, for example, [18]. These
tools can be further used to define a very general concept of bisimulation.

2.2 Deterministic dynamical systems

Markov processes are generalizations of semidynamical? in continuous time [28]. Note that
these (semi-dynamical) systems are not supposed to be continuous. They might be thought of
as restrictions of dynamical systems to the positive time interval.

Definition 1. [21] A semi-dynamical system is a function ¢: Ry X XA — XA such that
1. ¢ is a measurable map; 2. ¢(0,z) = x;
3. P(t1 + b2, ) = ¢(t1, 8(t2, 2))
4. d(t,x) = A= ¢(s,x) = A Vs > t;
5 ¢t x)=0o(t,y),Vt>0=x=y.

The life time of the system ¢ is the map ( : Xao — [0,00] defined by ((z) = inf{t >
0|¢(t, x) = A}. We can suppose without loosing the generality that for all x € X the life time
¢(x) > 0. For each = € X the trajectory starting from z is

Iy ={o(t, 2)[t € [0,¢())}

The semi-dynamical system ¢ is called transient if there exists (A4,,) C B such that X = UN A,
ne

and
Vo € X :m{t € [0,00)|¢(t,z) € Ap} < 00

where m is the Lebesgue measure.

2.3 A unifying framework

We can abstract away a set of common properties of Markov processes and semidynamical sys-
tems. These properties are defined less operational but rather algebraic. This unifying method
derives from the so-called weak solutions of differential equations. For equations where solutions
can not be computed, the existence and important analytic properties of the solutions can be
established. The key point is to consider a larger space of elements that contains the solutions.
A typical example of such a space constitutes B(X). The differential operator becomes then
a linear operator on a subset of this large space. Again this operator is too complex and it is
replaced by a time-indexed family of “approximating” simpler operators. This approximating
family is the so-called semigroup of operators.

A family {P; : B(X) — B(X),t > 0} of linear operators on B(X) is called semigroup of
operators if the following conditions are satisfied:

— semigroup property: P;Ps = Pits, t, 5 > 0;
— contraction property: ||P.f|| < ||f||, f € B(X).

In addition, if lim;_o P;f = f, then (P;) is called strongly continuous semigroup.

This concept has enough components to allow us to define powerful analytic tools such as
the operator resolvent and the infinitesimal generator.

To each operator semigroup P = (P;) on the Banach space B(X), the following mathemat-
ical objects can be associated:

%2 dynamical system with pozitive time



1. The resolvent of operators V = (Vi )a>0 associated to P is the Laplace transform of P,
given by formula

Vi f(z) = /0 " ematp, fa)dt.

2. The kernel operator, denoted by V, is the initial operator V; of V (for a = 0).
3. The infinitesimal generator of P is the possibly unbounded linear operator A defined by:

The domain D(A) is the subspace of B(X) for which this limit exists.

Let us have a closer look on the infinitesimal generator. If (P;) is a strongly continuous
contraction semigroup then D(A) is dense. In addition, A is closed, that is if f,, € D(A)
converges to f and Af,, converges to g then g € D(A) and Af = g.

The following definition is inspired by a condition from the Hille-Yosida theorem (Th. 2.6,
Chapter 1 in [18]).

A linear operator A has the Hille-Yosida property if for all A > 0, the operator A\ — A
has an everywhere defined inverse R(\,.A) such that [|AR(A, A)|| <1 (To say A I — A has an
everywhere defined inverse means that the operator A I — A is injective on the domain of A
and that its range is all of X. )

We have now all ingredients to introduce an unifying concept for deterministic and stochastic
continuous processes.

Definition 2. An abstract continuous system (ACS) consists of:

— a state space X, with the structure of a Polish/analytic space;

— a bounded linear operator A on B(X) that is densely defined and has the Hille-Yosida
property;

— an operator semigroup P = (P;) on B(X) such that A is the infinitesimal generator asso-
ciated to P.

The Hille-Yosida theorem gives necessary and sufficient conditions for a linear operator to be
the generator of a strongly continuous, positive contraction semigroup. It results from the Hille-
Yosida theorem that the last component of an ACS is superfluous because it can be derived
from the second component. We decided to keep it in the definition motivated by practical
reasons. The Hille-Yosida theorem is non-constructive and in the most practical situations the
expression of the semigroup is known.

On the state space X of an ACS we can define a preorder relation < as

r<y<=Vfy) <Vfx),VfeBX)f=0. (2)

Now, let see how the framework looks like for a Markov process M.
Let P = (P;)t>0 denote the family of linear operators associated to M, which maps B(Xx)
into itself given by
Puf(@) = [ fo)pla,dy) = Eof(e) Vo € X (3)

where E, is the expectation w.r.t. P,. We make the standard assumption that f(A) = 0. The
Chapman-Kolmogorov property ensures that this family of operators has indeed the semigroup
property. This is a strongly continuous semigroup of operators.



For each t > 0, the function P, f applied in a state x € X is the expectation of the image of the
measurable function f applied to the states at the time ¢ of those trajectories of the process
that start in x at time 0. In other words, P;f describes the transition probability of the abstract
state of the system at time t.

To the semigroup P given by (3), one can associate its operator resolvent V and its infin-
itesimal generator 4. Conversely, given an operator semigroup P, one can check if it might
be associated to a Markov process (for necessary and sufficient conditions to ensure that the
semigroup can be interpreted as a semigroup of conditional expectations see Th. 2.2, Chapter
4, [18]). The importance of the infinitesimal generator for a Markov process is briefly explained
in the following paragraph.

The evolution of a continuous time Markov process can be described in very much the same
terms as those used for discrete time processes. Many difficulties may arise in the analysis,
especially when the state space is infinite. The way out of these difficulties is too complicated
to describe in detail here, and the reader should look elsewhere [18]. Even for continuous time
Markov chains the things are quite difficult. The general scheme is as follows. For discrete-time
processes the n-step transition probabilities can be written in a matrix form and expressed
them in terms of the one-step matrix (usually denoted by P and called the stochastic matrix
associated to a discrete time Markov chain). In continuous time there is no exact analogue of
P since there is no implicit unit length of the time. The infinitesimal calculus offers one way to
plug this gap. For example, for continuous time Markov chains there exists a matrix G (such
that P, = exp(tQ)), called the generator of the chain, which takes over the role of P. For
more general continuous time Markov processes (when the state space is infinite), the matrix
G becomes the linear operator A defined by (1) using the operator semigroup given by (3).

The following assumption is essential for the mathematical reasoning presented in this paper.

Assumption 1 Suppose that M is a transient Markov process, i.e. there exists a strict positive
Borel measurable function q such that Vq is a bounded function.

The transience of M means that for any Borel set E in X and for almost all trajectories there
exists a finite stopping time ¢* such that x; ¢ F for all ¢ > t* (for more explanations about the
transience property see [14]).

Using (2), we can define a preorder relation <j; associated to M. Intuitively, <ps is the
order on the trajectories of M. In particular, if M degenerates in a semi-dynamical system, <,
is exactly the order relation on the trajectories.

Now we instantiate the framework with semi-dynamical systems. With every semi-dynamical
system ¢ one can associate the semigroup of operators P = (P;)¢o defined by

P f(x) = f(o(t,x)) (4)

for all functions f € B(X ). The standard assumption f(A) = 0 is in force. For each ¢ > 0, the
function P, f applied in a state x € X is the image of the measurable function f at that point
corresponding to the time ¢ of the flow ¢(-, ) (which starts in z at time 0). In other words, P f
describes the abstract state of the system at time ¢t or how a logical formula f is changed after
the time t.

If in the semigroup formula (4), we take f = I4 with A € B (the indicator function of
a measurable set A) then Pila(x) = Ia(¢(t,x)), ie. it takes the value one iff ¢(t,xz) € A,
otherwise it is equal to zero (see [21] and the references therein, for more properties of the
semigroup associated to a semi-dynamical system).

Remark 1. The semigroup formula (4) can be derived as a particular case of (3), taking the
transition probabilities

pe(E,) = bp(t2) (1), £ 20



where 64 (;,2) is the Dirac distribution corresponding to ¢(t, x).
In a standard way, to the semigroup (4), one can associate its resolvent V and its generator A.

Remark 2. If A € B then VI4(x) is exact the Lebesgue measure of those moments of time ¢t > 0
for which the trajectory I, has a non-empty intersection with A.

We denote < y if there exists ¢ € [0, 00) such that y = ¢(¢, x). If the system under consid-
eration is transient then <4 is an order relation [21]. This order relation can be characterized
using the initial resolvent kernel (Prop. 13 [5]) via (2).

3 Bisimulation in the Presence of Probability and Continuity

In this section we define a bisimulation concept for abstract continuous systems, organized in
a category. We further instantiate this category for continuous time, continuous space Markov
processes.

In the first subsection, we discuss a general view of the methodology for defining bisimula-
tion for Markov processes. In the remainder of the section, this methodology will be generalized
using operator parameterizations of stochastic processes, in order to make it applicable to a
general category of Markov processes. The resulting concept of bisimulation will be compared
with a concept of bisimulation via open maps (as introduced by Winskel et.a. [22]) for con-
tinuous dynamical system by P. Tabuada, G. Pappas et.a. - see [19] and its references) and of
bisimulation for different classes of Markov chains (build on the ideas of Panangaden, Edalat
e.a. [4,17] and of Larsen and Skou [23]).

3.1 Algebraic concepts of bisimulation

For ACS, the open maps definition of bisimulation can not be adapted straightforward. The
main problem is how to define the simulation morphisms and the open maps.

In a category, a semi-pullback means that, for any pair of morphisms ! : M* — M and
©? : M? — M (M',M? M are objects in that category) there exists an object M and
morphisms 7¢ : M? — M (i = 1,2) such that

1 2

plom! = 2o

We develop a concept of unifying bisimulation for ACS defined on Polish/analytic spaces,
which can be instantiated with the bisimulation defined for different particular classes of Markov
processes studied in the literature. A zigzag morphism between two ACS should ‘commute’
with the infinitesimal operators of the processes considered. Then the bisimulation relation
is naturally given via zigzag morphism spans between ACS. Moreover, the category of ACS
defined on Polish/analytic spaces with these zigzag morphisms as arrows has semi-pullback.
Therefore, the bisimulation relation is an equivalence relation.

We also derive from the above bisimulation for ACS, a notion of bisimulation for (deter-
ministic) semi-dynamical systems. For dynamical systems, we prove that our concept of zigzag
morphism and the open map concept, defined in [19], are equivalent.

3.2 A Category of abstract continuous systems

We define the category ACS of abstract continuous systems, which has as:



1. objects - a countable set of ACS, defined on Polish/analytic spaces, denoted S*,S?, ...
2. arrows - zigzag morphisms, which will be defined in the following.

The aim of this subsection is to give an appropriate definition of these zigzag morphisms
(and of simulation morphisms) between such processes, which will allow us to define a general
concept of unifying bisimulation in this category.

The main difference with respect to the similar notions from [17], is that we require some
global conditions written in terms of infinitesimal generators (associated to the ACSs considered)
to be satisfied by these morphisms. Our choice is motivated by the fact that, in general, the
transition probabilities depend on time and their computation, for each moment of time ¢ > 0,
is not practically possible.

Let S* and S? be two objects of ACS. The state space of S (resp. S$?) is X() (resp. X2)).
For any mapping ¢ : X® — X®) we denote by ¥* the action of ¥ on the their monoids of
bounded measurable functions, i.e. 1* : B(X()) — B(X () given by

U f=fou, Vf e B(XW) (5)

Let A! and A? the infinitesimal generators of S and S?, with the domains D(A') and D(A?%),
respectively. The following assumption is essential for defining the arrows in the category ACS.

Assumption 2 If f € D(AY) then *f € D(A?), i.e. the twisted function ¥* can action
between the domains of the generators A' and A2:

¥ D(AY) — D(A?)

Definition 3. A simulation morphism between the processes S% and S (the process S* simu-
lates the process S?) is a measurable, monotone increasing, continuous application v : X @ -
XU such that it satisfies the Assumption 2 and

A% oyp* <ypro Al

where A' (resp. A?) is the infinitesimal generator associated to S* (resp. S?) and ¥* is given

by (5).

Definition 4. A surjective simulation morphism 1 between the processes S* and S* is called
zigzag morphism if the condition from the Def. 8 holds with equality, i.e.

Ao = o AT (6)

Using the relationships between generator, operator semigroup and kernel operator (see, for
example, [18]), we can prove the following result.

Proposition 1. A surjective simulation morphism 1 between the processes S* and S' is a
zigzag morphism iff for almost allt > 0 (i.e. except with a zero Lebesgue measure set of times)
the following equality holds

Pfoy" =¢" o P} (7)
where (P}) (resp. (P?)) is the semigroup of operators associated to S (resp. S2).

The relation (7) is known in the literature by the name of Dynkin intertwining relation [15].



Corollary 1. A surjective simulation morphism 1 between S and S' is a zigzag morphism
iff for almost all t > 0 (i.e. except with a zero Lebesque measure set of times) and for all
E e B(XW) and 2? € X, the following equality holds

pi(@?, 7N A)) = pp((2?), A) (8)
where (pt) (resp. (p?)) is the transition probability functions associated to S* (resp. S2).

This corollary illustrates that the simulating process can make all the transitions of the sim-
ulated process with the same transition probabilities than in the process being simulated.
Moreover, this corollary illustrates that the zigzag morphism introduced in this section is a
natural generalization of the similar concept defined for particular classes of Markov processes
in [4,17].

The monotony of a zigzag morphism ¢ can be derived from the condition satisfied by a zigzag
morphism. Roughly speaking, this means that whilst the process S2 evolves from u to ¢~ (A)
(A € B(X™M)) on a trajectory with a given probability, the process S evolves from 1 (u) to A
with the same probability.

3.3 Bisimulation

We consider the category ACS defined in the previous section. Then, we define the bisimulation
between two processes in this category as the existence of a span of zigzag morphisms between
them.

Definition 5. Let S' and S? be two objects in ACS. S* is bisimilar to S? (written S* ~ S?)
if there exists a span of zigzag morphisms between them, i.e. there exists S'? (object in ACS)

1 b2
and two zigzag morphisms ' and ¥? as follows: XM L= x12 %5 x (@),

Theorem 1. The category ACS has semi-pullbacks.

Proof. Suppose that S, 52, S are three ACS defined on the Polish/analytic spaces XV, X2 X
respectively. Assume that there exist two zigzag morphisms

Pl XMW - X, 92 X3 - X,

Our goal is to prove that there exists another object S° € ACS and two zigzag morphisms
al: XO© - X® and 72 : X — X @) guch that the following diagram commutes

x(0)
/ N\
x @) X2
N\ e
U 2
X

First step is to construct the desired ACS SY. The state space of S° will be defined as
XO) = (2|9 (a) = ().

Let now have a closer look at the space X(©):



— it is a nonempty space since 1! and 1? are supposed surjective,

— it is a topological space because it can be naturally equipped with the trace topology of the
product topology on X x X2

— it is a Polish/analytic space because it is a closed subset of the space X M % X@ The
product space XM x X@ is a Polish/analytic space because it is the product of two such
spaces.

Now we can define S° as the restriction to X9 of S' @ 52 (the product of S*,5?).

Denote by A, A? the infinitesimal generators associated with S and S2. According to [29],
the product process S' ® S? (which is still an object in ACS) has the infinitesimal generator
given by the smallest closed extension of the operator defined on D(A') ® D(A?) by Trotter
formula [29]

A(f®g) = A ()@ g+ f© A(g), 9)

where f € D(A') and g € D(A?). The domain of the generator A denoted by D(A) includes
D(A') ® D(A?). Note that we can use Trotter formula (9) because the operator semigroups of
S1 and S? are strongly continuous (as it results considering the Hille-Yosida theorem).
For all f € D(.A) that vanish outside X (0), the generator of S° is related with the generator of
S ® 82 by

A%f = A(f)

The second step is to find suitable zigzag morphisms 7' and 72. These can be taken as the
projection maps. The surjectivity of 7! or 72 can be easily derived using the surjectivity of
and ¢? and the definition of X(©).

Using Trotter formula (9), it follows that these projection maps are indeed zigzag morphisms.
For example, for !, we have 71* f € D(A°) if f € D(A') (it depends only on x! and A% does
not change it). Then

A(r )zt 2?) = (A f)(r' («F, 22))
for all (z!,22) € X(©. The equality ¢* o 7! = ¢* o 72 trivially holds.[]
An immediate corollary of the existence of semi-pullbacks in the category ACS is the following.

Proposition 2. The bisimulation in the category ACS is an equivalence relation.

Bisimulation is difficult to understand especially because of unavailability of the next state
concept. In most cases, bisimulation has a computational understanding described in terms of
next transition in each system. Random trajectories with discrete steps are treated globally
using metrics, topologies, etc. When the continuous and probabilistic features interact new
system properties emerge. Typical examples of this kind of properties are:

— a continuous or hybrid system trajectory is not uniquely determined anymore and
— the system may switch between possible trajectories according to some probability distrib-
utions. In this way, the trajectory space itself has contiguous properties.

The emerging properties make system analysis very difficult and their treatment requires
a global approach based on topological and stochastic analysis methods. Therefore, the com-
putational equivalence, usually implied by bisimulation for discrete and deterministic hybrid
systems, needs to be explained in specific mathematical terms.



3.4 Particular cases

In this subsection we investigate the cases when all objects of ACS have the same type.
In the case when all objects are Markov processes we obtain a generalization GMP of the
category defined in [7].

In the case of Markov models, we say that a Markov process M* simulates another Markov
M? if there exists a surjective continuous morphism 1 : X? — X! between their state spaces
such that each transition probability on X? ‘is matched’ by a transition probability on X*'. The
meaning of this ‘matching’ is that for each measurable set A C X' and for each u € X? we
have

pi(u, 7 (A) < pf(P(u), 4)  VE=0 ()
where (p?) and (p}) are the transition functions corresponding to M2, respectively to M!. Such
a morphism 1 is called simulation morphism. The open maps are replaced then by the zigzag
morphisms, which are simulation morphism for which the above condition holds with equality.

For continuous time Markov processes, a simulation condition as before is hard to be checked
because the time ¢ runs in a ‘continuous’ set. Therefore, it is required to provide supplementary
assumptions about the transition probabilities of the processes we are talking about. This kind
of simulation morphisms and zigzag morphisms have been defined for some particular classes
of Markov processes: for discrete/continuous time Markov chains [23], for labelled Markov
processes and for step Markov processes (which are natural extensions of Markov chain to
processes with continuous space), defined on Polish or analytic spaces (see [17] and the references
therein). The categories considered there have, as objects, the above Markov models, and, as
morphisms, the zigzag morphisms. Then the concept of bisimulation for these categories is
given in a ‘classical’ way [22]. For example, two labelled Markov processes are probabilistically
bisimilar if there exists a span of zigzag morphisms between them. Here, we underlie another
reason why only some special kind of Markov processes is considered. This bisimulation relation
is always reflexive and symmetric. But the transitivity of such a relation (the bisimulation should
be an equivalence relation) is usually implied by the existence of semi-pullbacks in the Markov
process category considered [22,17].

In the categories of labelled or stationary Markov processes, the construction of the semi-
pullback is strongly based on the stationarity property of the Markov processes considered [17].
In this case the transition probabilities do not depend on time! Then the construction mecha-
nism of the semi-pullback in such categories of Markov processes is reduced to the construction
of the semi-pullback in the category of transition probability functions and surjective transition
probability preserving Borel maps (as morphisms in the respective category).

Our approach is more general and somehow more elegant. The unifying bisimulation has, by
far, considerably many and more general instantiations. Moreover, the analytic machinery of
generators is more readable compared with the lengthy technical arguments involving transition
probabilities.

In the case when all objects are semi-dynamical systems, we obtain a new category SD. In
fact, SD is a full subcategory of ACS.

Proposition 3. A surjective simulation morphism ¢ : X2 — XO) between two semi-
dynamical systems ¢* and ' is a zigzag morphism if and only if

/ " P2 fdt = / T (P Y f € BEXD), >0, (10)
0 0

where (P}) and (P?) are the semigroups of kernels associated to ¢* and ¢°.



Proposition 4. The condition (10) is equivalent with

V(P (t,u) = o' (t,x) (m —a.e. wrt. t>0) (11)
for all w € X® such that x = (u).

Corollary 2. If v is a zigzag morphism between two semi-dynamical systems ¢° and ¢* then
W(Iy) =Ty

except a set of times with Lebesque measure zero.

Proposition 5. For dynamical systems a zigzag morphism is exactly an open map in the sense

of [19].

Proof. A zigzag morphism is monotone, i.e. if u <42 v then Yu <41 v, or in other words if
the system ¢2 evolves from u to v in the time ¢, then the system ¢? evolves from u to v in
the same period of time ¢. Therefore, it ‘transforms trajectories in trajectories’, and then it is
an open map according to the characterization of open maps (Prop.11, [19]).

Therefore, the bisimulation for dynamical systems given in terms of zigzag morphisms is
exactly the bisimulation given in terms of open maps [19].

In the light of the Corollary 2, a zigzag morphism 1) between two semi-dynamical systems
#? and ¢' induces an equivalence relation (bisimulation) on the state of trajectories of $? as
follows:

Definition 6. Two trajectories I'> and I'? are equivalent if and only if their initial points are
bisimilar, i.e. Yu = .

4 Mobile Markovian Systems

4.1 A categorical concept of bisimulation for mobile processes

In a series of papers (see [12], [13] and the references therein) G. Winskel and coworkers defined
a generic model of mobile processes, where each process is a presheaf.

We use the category theory notations from [1]. In particular, arrow composition, denoted
by ;, is the sequential composition. For example, for two functions F| g this means f;g = go f.

In the following we define the concept of bisimulation for presheaves.

A preashef over a category P is a functor from P to Set, the category of sets and functions.
The preasheaves over the same category, together with the natural transformations between
them, form a category, denoted P. This construction comes accompanied by the Yoneda lemma
[1], which provides a functor

yp : P —P,yp(A) = P(, 4)

which fully and faithfully embeds P into P. Basically the Yoneda lemma ensures a preashef
representation for every category P : it can be regarded as a full subcategory of P.

The bisimulation of mobile processes is the standard open bisimulation from open maps, as
introduced in [22].



Now we give the definition of functors preserving open maps. Given two categories, P and Q,
and a functor F' between them, an arrow f : X — Y is called F—open if, for every commuting
square

F(A) % X
Flg)l  LIf
F(B) —Y

B
there is an arrow v : F(B) — X such that F(g);y = a and ~; f = 8. The isomorphisms
are F'—open and the all F—open maps form a subcategory. In it is proved [13] that an arrow
between presheaves in lgAis P-open iff it yp-open.

Two presheaves in P are called P-bisimilar iff there is a span of surjective open maps
between them.

An P—indexed category, denoted QF, is formed by all functors of the shape P — Q. Pro-
functors are indexed presheaves. A profunctor is a functor of the shape F': P —Q. Profunctors
compose and form a bicategory (i.e. there is an additional category on arrows), denoted PR.

4.2 The integrated model

As a mobile process evolves, the ambient set of channel names may change. These channel
names are modelled by the category I of finite sets (of names) and injective maps between
them. To take account of this variability, we have to consider the semantic categories involved
as indexed by I.

The object of names N is the functor N : I — PR, that sends a set S € I to the correspond-
ing discrete category.

The category of abstract continuous systems with names is ACSY".

Now the integrated model is obtained by including the category ACS in the domain equa-
tions that define the basic processes of m-calculus.

P=ACS"2Q
Q=Q,+Out+1In

Out =(NeN®Q.)+(N®(Q),)
In=N®(N—>Q),

where ® and + denote the product, respectively the coproduct.

A method to solve the domain equations is presented in detail in [12]. Due to the lengthy and
technical arguments, we have to recommend to the interested reader to consult that paper. We
briefly describe the meaning of the solutions. The mobile processes are products of m-calculus
processes and abstract continuous systems with names. The ACS can communicate values and
the names of other channels. Therefore, the communication is first order and deterministic.

These types could be combined, for example, with the type subsystem corresponding to the
name passing CCS. This construction has been investigated in [8], but the stochastic hybrid
systems could exchange names of communication channels.

G. Winskel and co-workers have extended (see, for example, [25]) the preasheaves semantics
to higher order mobile processes, as expressed in higher order m-calculus or the ambient calculus.
Unfortunately, the integration mechanism must be changed in this case. The reason is given by
the fact the higher order functions do not preserve open maps (see Section 2 for the definition).
Winskel solution is to introduce a new language called HOPLA with an operational semantics
derived from the preasheaves semantics. Then the bisimulation is defined using the operational



semantics. A formal calculus for stochastic processes with mobile communication is subject to
future investigations.

Examples of systems that mix continuous behaviours (deterministic or randomised) with
software mobility abound. A trivial example is that of people travelling by car or by plane and
use a mobile phone. Less trivial, imagine a mobile software that proceeds a secret security check
in the pilots cabin. But the target application of this framework is the field of gene regulatory
networks, making possible to integrate the existing approaches: stochastic m-calculus [3] and
hybrid systems [2]. This integration will be realized in a following paper.

In [7], the authors have introduced a concept of bisimulation for stochastic hybrid systems
(SHS). In [6], it is proved that the executions of an SHS form a Markov process on a Borel space,
whose trajectories are right continuous with left limits. This paper proposes a different approach
where the system properties are derived from the infinitesimal generator of a continuous process.
The mathematical model of an embedded system is in general constructed starting with the
differential equation characterizing the evolution of the environment. This differential equation
gives rise to the expression of the generator. When probabilities are introduced, the resulted
stochastic process is also called in the literature a random dynamical system (RDS). In the
context of this paper, an RDS is simply a Markov process, alternatively defined using the
associated generator. The expression of the generator is known for large classes of processes [18]
including diffusions, step processes, Poisson processes, piecewise deterministic Markov processes
and so on. In consequence, the concept of bisimulation from this paper is more adequate for
these classes of processes. Summarizing this bisimulation is for controllers embedded in complex
physical environments that exhibit mobile communication.

5 Final Remarks

Due to physical environment of embedded systems, it is natural to consider continuous feature
representations in the system model (arising from the interaction with the environment). Ran-
domization knows recent intensive applications in modelling and verification of embedded sys-
tems. The combination of these two paradigms gives rise to models with new and sophisticated
mathematical characteristics that can obscure the understanding of computational concepts.
In the current work, we have addressed this issue, by introducing a unifying framework, of
abstract continuous systems, for systems with (partially) continuous behaviours, deterministic
or stochastic.

Bisimulation is now well understood for discrete probabilistic automata [4] or deterministic
hybrid systems [19], but it is far more complicated for the stochastic embedded systems. In this
paper we have developed a unifying notion of bisimulation for different classes of embedded
systems including semi-dynamical systems [5], [21] and strong Markov processes defined on
Polish/analytic spaces with continuous time, which are non-stationary. We define a category
for each class of systems. For the former category, the morphisms are the so-called zigzag
morphisms, which are surjective continuous measurable functions between their state spaces
which ‘commutes’ with the infinitesimal generators of the processes considered. We say that
two Markov processes are bisimilar if there exists a span of zigzag morphisms between them.

The category of abstract continuous systems can be used in conjunction with a categorical
semantics of m-calculus [12] to define systems mixing physical and logical mobility. The cor-
nerstone of this construction is the concept of bisimulation, which must be equivalent with the
one derived from open map [22] (and it must exist). The existence of open map bisimulation is
proved for the category of abstract continuous systems. A proof theoretic approach to combine
m-calculus and deterministic hybrid systems is presented in [27].



The mobile stochastic hybrid systems provide a very general semantic frameworks in which
embedded systems can be studied. Examples could include sensor networks and air traffic
control. Mobility allows system reconfiguration, which, combined with probabilities, provide
the basic ingredients for randomized learning. This work puts the grounds for semantics of the
most actual issues in ubiquitous computing: the self-* systems (abbreviation for features like
reconfigurable, adaptive, learning, self-managed, etc. systems).

An extended version of this paper is available on www>. It includes more explanations,
examples and background material.
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