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ABSTRACT
When we want to use brain-computer interfaces (BCI) as an
input modality for gaming, a short setup procedure is neces-
sary. Therefore a user model has to be learned using small
training sets. The common spatial patterns (CSP) algorithm
is often used in BCI. In this work we investigate how the
CSP algorithm generalizes when using small training sets,
how the performance changes over time, and how well CSP
generalizes over persons. Our results indicate that the CSP
algorithm severely overfits on small training sets. The CSP
algorithm often selects a small number of spatial filters that
generalize poorly, which can have in impact on the classifica-
tion performance. The generalization performance does not
degrade over time, which is promising, but the signal does
not seem to be stationary. In its current form, the CSP gener-
alizes poorly over persons.

1. INTRODUCTION

A brain-computer interface (BCI) provides a direct commu-
nication channel between the brain of a subject and a com-
puter, such that mental activities can be used to influence the
computer. BCIs are used to enable patients in a late stage of
amyotropic lateral sclerosis (ALS) or locked-in syndrome to
communicate. Other applications for BCI include research
in neuroscience, and applications for healthy users such as
training and gaming.

In the context of gaming, a short setup time is required
for a pleasant gaming experience. This implicates that the
BCI has to learn user models from a small training set, while
the model needs to stay reliable during the whole gaming
session. For games, a multi-electrode electroencephalogram
cap (EEG cap) is suitable to extract the signal of mental ac-
tivities. Using spatial filters, mental activities such as imag-
ined movement can be extracted from the EEG signals. A
technique to compute these spatial filters is the common spa-
tial patterns (CSP) algorithm, which has been used success-
fully for the analysis of imagined movement. The CSP al-
gorithm uses labeled trials to produce a transformation that
maximizes the variance for one class while minimizing the
variance for the other class. The difference in variance can
be used to classify a fragment of EEG signals into one of two
classes. While the CSP algorithm is often used in the BCI
pipeline, it tends to overfit [6, 8], resulting in a suboptimal
performance. Several improvements for the CSP have been
suggested, but it remains unclear under what circumstances
the CSP is more susceptible to overfitting.

To find out if the CSP algorithm is usable for the short
setup-time of games, we investigate the influence of the
amount of trials in the training set, the time between training

and use for classification, and the generalization performance
over subjects for BCI based on EEG measurements.

In the next section we describe previous work on the
CSP algorithm. Section 3 will explain the CSP algorithm in
more detail and outline the experiments we performed. Sub-
sequently we will present the results, and conclude with a
discussion and recommendations for future work.

2. PREVIOUS WORK

The CSP algorithm was first presented by Koles [7] as a
method to extract the abnormal components from EEG, using
a set of patterns that are common to both the normal and the
abnormal recordings and have a maximally different propor-
tion of the combined variances (see Section 3.3). The EEG
is decomposed into orthogonal signals that can be judged by
experts. Afterwards, the signal can be recomposed using
only the abnormal signals so that the spatial topography of
the abnormal components can be inspected.

Later CSP was used by Ramoser et al. [10] to create fea-
tures for classification of the event-related desynchronization
(ERD) in EEG caused by imagined movements. The first and
last few CSP components (the spatial filters that maximize
the difference in variance) are used to classify the trials with
a high accuracy.

Since then the CSP has often been used [1] for classifi-
cation of imagined movement. Hill et al. noticed that the
CSP algorithm has a tendency to overfit [6], and a few ex-
tensions to the CSP algorithm have been developed in order
to improve the generalization performance. A few of these
extensions incorporate spatio-spectral filters [8, 3], that in-
clude frequency filtering in the CSP algorithm to make it
more robust against artifacts. Another extension focuses on
sparsifying the CSP to prevent overfitting [4]. While these
approaches seem to increase the performance it is still un-
clear what influences the overfitting observed with the CSP
algorithm, and therefore it is not known if these changes are
adequate.

3. METHODS

3.1 Dataset
For our experiments we selected Dataset IVa of the BCI
Competition III [1]. This dataset was selected because it
contained multiple subjects, and two classes of cued motor
imagery. The dataset contains trials recorded on five healthy
subjects, ranging from 28 to 224 labeled trials per subject.
The CSP algorithm has been used before on this dataset and
produced good results.

Visual cues indicated for 3.5 seconds which motor im-
agery the subject should perform. No feedback was given



during the experiment. The recording was made using
BrainAmp amplifiers and a 128 channel Ag/AgCl electrode
cap from ECI and were subsequently down-sampled from
1000Hz to 100Hz.

3.2 Preprocessing
Before we applied the CSP algorithm, the EEG recording
was re-referenced, bandpass filtered and separated into tri-
als of 3.5 seconds. First the data was re-referenced using
the Common Average Reference (CAR). After re-referencing
the data, we used a zero-phase forward-backward FIR-filter
to bandpass filter the data to the alpha and beta frequency
ranges. The filter we used was a 400 taps Blackman-window
FIR-filter with a bandpass range from 8 to 30 Hz and an ap-
proximate transition band of 1 Hz. After filtering the data
was split into trials according to the markers provided with
the dataset, and unlabeled trials were removed.

3.3 CSP
The CSP algorithm calculates a matrix W with spatial filters
with a high variance for the first class and a low variance
for the second, and vice versa. It is a M×N transformation
matrix W with the following property:

Cov(WX1) = D and Cov(WX1)+Cov(WX2) = I (1)

where D is a diagonal matrix with elements monotonely
descending, I is the identity matrix and Cov(X) is the covari-
ance matrix of X . N is the number of channels and M is the
rank of Cov(X), and Xi is a matrix with observations in the
rows, and EEG channels in the columns for class i. In other
words: the transformed channels with a low variance for one
class will have a high variance for the other class. This vari-
ance can be used for classification. Eq. 1 is equivalent to the
CSP equations found in [9, 8]:

WCov(X1)W T = D and WCov(X2)W T = I−D (2)

We can calculate a matrix P using Singular Value De-
composition (SVD) 1 that will transform the data to have an
identity covariance matrix:

Cov(PX) = I⇒Cov(X) = (PT P)−1 = UλUT (3)

P =
√

λ−1U (4)
Where U is an orthogonal matrix, and λ is a diagonal ma-
trix. This transfomation is equivalent to performing a princi-
pal component analysis (PCA) and normalizing the variance
to one. When rank(Cov(X)) < M, only the significant eigen-
values and eigenvectors are used to compute P.

While Cov(PX) = I, Cov(PX1) and Cov(PX2) will gener-
ally have a covariance matrix that is not completely diagonal.
To create a diagonal covariance matrix for Cov(WX1) and
Cov(WX2), we perform an additional SVD after the whiten-
ing transform P:

Cov(PX1) = BDBT ⇒W = BT P (5)
This definition of W satifies Eq. 1.

1Note that for a symmetric matrix – such as a covariance matrix – the
SVD is equivalent to diagonalization, or the solution to the eigenvalue prob-
lem.

3.4 Generalization

If the results on the test set differ significantly from the re-
sults on the training set, overfitting occurs, and we cannot ex-
pect a good generalization performance of a classifier trained
on the output of the CSP. As the CSP algorithm is defined in
terms of component variance, we have chosen to measure
the generalization performance in terms of variance. More
specifically, we measure if the distribution of the component
variances for each of the two classes is statistically different
for the training set and the test set. As we want to compare
non-normal values, we test for differences with the Mann-
Whitney U test [5]. If the distribution for a specific CSP
component is significantly (p < 0.05) different for the test
set, we regard this as a generalization error. For each of the
following experiments we display these generalization errors
graphically.

3.4.1 Generalization for different amounts of training data

In the first experiment we performed, we measured the in-
fluence of the amount of training data on the generalization
performance as described above.

For each subject, we selected n trials using stratified ran-
dom sampling to form the training set. The test set was
formed by stratified sampling of 10 trials from the remaining
trials. The CSP is calculated on the training set, the general-
ization error for each CSP component was computed on the
test set and stored. In order to get more stable results this was
repeated 10 times for each n; the mean error used used in the
evaluation.

We expect to find less generalization error for the first and
last CSP components, as these components are used for clas-
sification in previous work, and should therefore have good
generalization properties. The generalization error should
decrease when more trials in the training set are used.

3.4.2 Generalization over time

The first experiment gives some insight on the influence of
the number of trials used to construct the CSP. For a real BCI
system, not only the number but also the performance over
time is of importance.

In this second experiment we measure the generalization
error as a function of the delay t between training and testing.
For training the first 30 trials were used, for testing we used
the first 20 trials found at t > 0 seconds after the last trial in
the training set.

Because the EEG patterns are known to differ from ses-
sion to session, we expect that the overfitting increases over
time.

3.4.3 Generalization over subjects

While generalization over time is necessary to produce a us-
able BCI system, it would be convenient to train a BCI sys-
tem once on a number of subjects, and use this system for
new subjects. In a final experiment we measure how well the
properties of the CSP algorithm hold when it is trained on
4 of the 5 subjects, and tested on the other subject. Koles
[7] mentions that magnitude variations in EEG exist between
subjects, therefore we do not expect a good generalization
performance in this experiment.
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Figure 1: Variances on the training set (first row), the test set (second row), and the generalization error (last row) for each subject. Black
represents trials of the class “right hand”, gray represents trials of the class “foot”. On the training set the complementary variance for
the two classes is clearly visible, on the test set this property is less clear. When there is a significant difference between the component
variances on the training and test set, a black bar is drawn for that component in the last row.

4. RESULTS

We will begin with the results for the generalization perfor-
mance depending on the number of trials in the training set.

Figure 1 shows the variance of the CSP components on
the training set (80% of the trials) and test set (20% of the
trials). The CSP algorithm does indeed overfit; the com-
plementary, ordered variances are more chaotic on the test
set. Usually the first and last m components are used for
classification. Only for subject “al” these most discrimina-
tive components seem to generalize well, and for this subject
the best scores were obtained during BCI Competition III as
well. The generalization error is displayed on the last row.
Black bars represent components that have a statistically dif-
ferent distribution on the training and test set.

In Figure 2 the mean generalization error is plotted for
different numbers of trials in the training set. As we ex-
pected, the generalization error decreases for all subjects
when more trials are used for training. The low-numbered
components (these have a high variance for trials of imagined
movement of the right hand) show remarkably more general-
ization error than the components associated with the imag-
ined movement of the feet for all subjects. The good gener-
alization performance of the lowest and highest components
of subject “al” is visible as clear white bands on the top and
the bottom of the generalization-error plot. All plots contain
less generalization error for the middle components. These
components are often not discriminatory, and are of little use
for classification.

Now we have some information about the influence of
the number of trials on the generalization performance, we
can take a look at the generalization performance over time.
Figure 3 shows the generalization error of the CSP trained
on the first 30 trails of a subject, and a test set delayed by t
seconds. Experiment 1 showed that overfitting is to be ex-
pected when using 30 trials. Unfortunately this dataset did
not contain enough trials to use a larger training set and still
measure over a large range of delay. Figure 3 clearly shows
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Figure 2: Mean generalization error depending on the number of
trials in the training set. In order to compare the performance of
different subjects, all errors are plotted using the same time scale,
which explains the white areas for all subjects except “al”.

that the generalization performance is not stationary, most
likely the source signal changes over time. Periods of about
200 seconds seem to be more or less stationary. While the
signal changes over time, there is no evidence that the gen-
eralization performance drops as the delay is increased. The
changes over time that are visible in this experiment show
that the analysis of BCI signals should incorporate tempo-
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Figure 4: Variances on the training set consisting of 4 subjects, the test set consisting of the 5th person and the generalization error. The
black columns in the last row indicate statistically significant generalization errors of the individual components.
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Figure 3: Generalization error as the result of time between the
training and test set. Subject “ay” was removed because not enough
trials were available to perform the experiment. In the images, time
is represented from left to right, components are displayed from
top to bottom. Statistically significant generalization errors are dis-
played from light gray (p = 0.05) to black (p = 0).

rally distinct train and test sets.
In our last experiment we tested the CSP on subjects that

were not present in our training set. All subjects were in-
structed to produce the same imagined movements, and the
classes corresponded which allowed us to combine the trials
of different subjects. In Figure 4 we can see that the CSP
does not generalize over persons; nearly all components pro-
duce variances that are statistically different on the training
and test set. Koles [7] mentions that magnitude variations in
the EEG data exist between subjects. These variations can
be the cause of the bad generalization performance over sub-
jects. To prevent these magnitude varations from influencing
the results, Koles and later Ramoser et al. [10] used normal-

ized covariance matrices to train the CSP. However, for test-
ing a different normalization procedure was applied, which
makes it hard to replicate their normalization procedure in a
meaningful way.

5. CONCLUSIONS AND FUTURE WORK

Our first experiment showed that the CSP algorithm does
overfit severely on small training sets. As expected, the
generalization performance of the CSP algorithm improved
when more trials were used in the training sets. However,
the first and last CSP components that are often used do not
generalize very well, except for for subject “al”, on which
also the highest scores are obtained in the BCI Competition
III using the CSP algorithm.

Hill et al. obtained the best generalization performance
using components with high eigenvalues [6]. This contra-
dicts our results. A possible explanation is that the sup-
port vector machine (SVM) classifier they used on the CSP-
filtered data is robust to the overfitting we observed by com-
paring variances. Another cause for this contradiction could
be the presence of artifacts in the data. Artifacts are most
likely captured by a component with a high variance [2],
which would impact the generalization performance.

The results of the second experiment show us that the
variance of the CSP components are not stationary. There
is no clear evidence of drifting; the performance does not
constantly degrade over time, which we did expect.

Our third experiment shows that current generalization
over subjects does not work very well. The most likely cause
is the magnitude variations in the EEG that exist between in-
dividuals. Normalization could be used to improve the gen-
eralization over subjects.

The CSP does severely overfit, which makes sparse CSP-
like algorithms an interesting development. Evaluation using
chronologically separated training sets and test sets is needed
to measure real-world performance. A number of studies al-
ready use chronologically split training and test sets [3, 8],



others do not [4, 6]. For a convenient BCI, short training
times are required. From our second experiment we know
that variations in the variance of the CSP do occur. It is there-
fore unlikely that a short training period contains enough in-
formation to generalize over these variances. For future work
we would recommend investigating the source of this drifting
over time, perhaps the users change their imagery of the mo-
tor task, or the pattern changes in a way for which the CSP
is not invariant. As the first and last components often seem
to overfit on small training sets, we would recommend the
use of feature selection to select discriminatory, generalizing
features for classification.
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