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∗Correspondene to: D. Sármány 1



in the ontext of algebrai topology [39℄, they were proposed for the Maxwell system byNédéle and Bossavit [7, 30, 31℄. A hierarhi onstrution of high-order basis funtionsthat satisfy the same properties are given in [1℄ for tetrahedral meshes and in [34℄ for moregeneral three-dimensional meshes. The fat that these funtions preserve the geometriproperties of the Maxwell equations has motivated many to study the Maxwell systemand its numerial disretisation in the framework of di�erential geometry [9, 21℄.However, suh elements su�er from a ouple of pratial hurdles. In partiular, al-though they are apable of handling omplex geometrial features and material disonti-nuities, implementation beomes inreasingly di�ult when high-order basis funtions areused. Furthermore, extending the approah to non-onforming meshes�where the loalpolynomial order an vary between elements and hanging nodes an be present�posesonsiderable di�ulties.One attrative alternative is the disontinuous Galerkin (DG) �nite element method.It an handle non-onforming meshes relatively easily and the implementation of high-order basis funtions is also omparatively straightforward. Researh in the �eld of DGmethods has been very ative in the past ten years or so; see the reent books [14℄ and [20℄and referenes therein. In the ontext of the Maxwell equations, a nodal approah wasdeveloped in [18℄, and further studied in [19℄. This approah had originally been basedon Lax-Friedrihs type numerial �uxes, and was later applied to the loal disontinuousGalerkin method [37℄. In the meantime, various DG disretisations of the low-frequenyMaxwell equations [23, 24℄ as well as the high-frequeny Maxwell equations [22, 12, 11℄have also been extensively studied. The question of spurious modes in DG disretisationshas been addressed in [12, 37, 11℄ for onforming meshes and, more reently, in [13℄ fortwo-dimensional non-onforming meshes.In this work, we investigate the time-harmoni Maxwell equations in a lossless mediumwith inhomogeneous boundary onditions, i.e. �nd the (saled) eletri �eld E = E(x)that satis�es
∇×

1

µr
∇×E − k2εrE = J in Ω,

n×E = g on Γ, (1)where Ω is an open bounded Lipshitz polyhedron on R
3 with boundary Γ = ∂Ω andoutward normal unit vetor n. The right-hand side J is the external soure and k isthe (real-valued) wave number with the assumption that k2 is not a Maxwell eigenvalue.Throughout this artile the (relative) permittivity and the (relative) permeability orre-spond to vauum (or dry air). That is, we set εr = 1 and µr = 1.The most important new feature of the high-order DG method disussed here is the�ux formulations we apply. In three-dimensional (or, indeed, in any dimensional) om-putations of the Maxwell equations the most widely used numerial �uxes are the Lax-Friedrihs �ux, the LDG �ux and the IP �ux. See [20℄ for an overview. While we alsostudy the omputational performane of the IP-DG method, the fous of this artile ison a numerial �ux whih makes use of the loal lifting operator. This formulation wasoriginally introdued in [10℄ and further analysed�together with a large number of other�ux hoies�in [4℄. It has yielded promising results in the disretisation of the Laplaeoperator�most typially for appliations in �uid dynamis [28℄.2



We derive a priori error bounds for the disretisation we introdue. Our analysisproeeds along the lines of [22℄, and is therefore restrited to the ase of smooth materialoe�ients. However, we believe that the analysis in [12℄, whih overs disontinuousmaterials, an be extended to the DG method presented here. Our theoretial resultsdemonstrate the main advantage of the formulation. Namely, that it allows us to usea stabilising parameter that is independent of both the mesh size and the polynomialorder. This is espeially important in three-dimensional omputations, where there arestill relatively few experiments available to help us tune a mesh-dependent parameter,suh as that in the IP-DG method.For our DG disretisation we use a hierarhi onstrution of H(curl)-onformingbasis funtions [1, 34℄, whih satisfy the global de Rham diagram in the ontinuous �niteelement setting. However, beause of the disontinuous nature of the method disussedhere, we annot expet our disretisation to be globally url-onforming and to satisfythe global de Rham diagram. Nevertheless, we believe that the use of H(curl)-onformingbasis funtion is bene�ial, sine it entails that the average aross any fae is also H(curl)-onforming. Furthermore, the loal lifting operator is approximated by the same loalpolynomial basis as the unknown �eld.We implement the basis funtions up to order �ve. In priniple, it is possible to inreasethe order further, but implementation in three dimensions is hindered by a number ofpratial di�ulties. First, high-order (i.e. p > 9) quadrature rules for tetrahedra are stillsub-optimal and omputationally expensive, making the assembly a lengthy proedure.Seond, iterative solvers for inde�nite linear systems are known to onverge slowly. Thisproperty is exaerbated by the use of very high-order H(curl)-onforming basis funtions,as �nding suitable preonditioners then beomes more of hallenge.The outline of this artile is as follows. We de�ne the tessellation and funtion spaesin Setion 2, derive the DG disretisation for (1) in Setion 3, and provide a priori errorbounds in Setion 4. The issue of preonditioning is very brie�y addressed in Setion 5.We verify and ompare the numerial methods on both onvex and onave domains inSetion 6. Finally, in Setion 7, we onlude and provide an outlook.2 Tessellation and funtion spaesWe onsider a tessellation Th that partitions the polyhedral domain Ω ⊂ R
3 into a set oftetrahedra {K}. Throughout the artile we assume that the mesh is shape-regular andthat eah tetrahedron is straight-sided. The notations Fh, F i

h and F b
h stand respetivelyfor the set of all faes {F}, the set of all internal faes, and the set of all boundary faes.For a bounded domain D ⊂ R

d, d = 2, 3, we denote by Hs(D) the standard Sobolev spaeof funtions with regularity exponent s ≥ 0 and norm ‖ · ‖s,D. When D = Ω, we write
‖ · ‖s. On the omputational domain Ω, we introdue the spae

H(curl; Ω) :=
{

u ∈
[

L2(Ω)
]3

: ∇× u ∈
[

L2(Ω)
]3
}

,with the norm ‖u‖2
curl = ‖u‖2

0 + ‖∇ × u‖2
0. Let H0(curl; Ω) denote the subspae of

H(curl; Ω) of funtions with zero tangential trae. We will also use the notation (·, ·)D for3



the standard inner produt in [L2(D)]
3,

(u,v)D =

∫

D

u · v dV,and the operator ∇h for the elementwise appliation of ∇ = (∂/∂x, ∂/∂y, ∂/∂z)T .We now introdue the �nite element spae assoiated with the tessellation Th. Let
Pp(K) be the spae of polynomials of degree at most p ≥ 1 on K ∈ Th. Over eahelement K the H(curl)-onforming polynomial spae is de�ned as

Qp =
{

u ∈ [Pp(K)]3 ; uT |si
∈ [Pp(si)]

2 ; u · τ j|ej
∈ Pp(ej)

}

, (2)where si, i = 1, 2, 3, 4 are the faes of the element; ej , j = 1, 2, 3, 4, 5, 6 are the edges ofthe element; uT is the tangential omponent of u; and τ j is the direted tangential vetoron edge ej . We de�ne the spae Σp
h as

Σp
h :=

{

σ ∈ [L2(Ω)]3
∣

∣

∣
σ|K ∈ Qp, ∀K ∈ Th

}

.Consider an interfae F ∈ Fh between element KL and element KR, and let nL and
nR represent their respetive outward pointing normal vetors. We de�ne the tangentialjump and the average of the quantity u aross interfae F as

[[u]]T = nL × uL + nR × uR and {{u}} =
(

uL + uR
)

/2,respetively. Here uL and uR are the values of the trae of u at ∂KL and ∂KR, respe-tively. At the boundary Γ, we set {{u}} = u and [[u]]T = n× u. In ase we only need theaverage of the tangential omponents, we use the notation {{u}}T .For the analysis in Setion 4, we also de�ne the DG norm
‖v‖DG = (‖v‖2

0 + ‖∇h × v‖
2
0 + ‖h− 1

2 [[v]]T ‖2
0,Fh

)
1

2 ,where ‖ · ‖0,Fh
denotes the the L2(F) norm, and h(x) = hF , whih is the diameter of fae

F ontaining x. Similarly, hK denotes the diameter of element K. Note that the shape-regular property of the mesh implies that there is a positive onstant Cd independent ofthe mesh size suh that for all faes F and the assoiated elements KR and KL we have
hF ≤ Cd min{hKL, hKR}. (3)To derive the DG formulations (in the next setion) we �rst need to introdue globallifting operators for u ∈ Σp

h. The global lifting operator L : [L2(F i
h)]

3
→ Σp

h is de�ned as
(L(u),v)Ω =

∫

Fi
h

u · [[v]]T dA, ∀v ∈ Σp
h, (4)and the global lifting operator R(u) : [L2(Fh)]

3
→ Σp

h as
(R(u),v)Ω =

∫

Fh

u · {{v}} dA, ∀v ∈ Σp
h. (5)4



For a given fae F ∈ Fh, we will also need the loal lifting operator RF (u) : [L2(F )]
3
→

Σp
h, de�ned as

(RF (u),v)Ω =

∫

F

u · {{v}}dA, ∀v ∈ Σp
h. (6)Note that RF (u) vanishes outside the elements onneted to the fae F so that for a givenelement K ∈ Th we have the relation

R(u) =
∑

F∈Fh

RF (u), ∀u ∈
[

L2(Fh)
]3

. (7)3 Disontinuous Galerkin disretisationWe now derive the DG formulation for (1). We �rst provide a general bilinear formwhere the hoie of the numerial �ux is not yet spei�ed. Then we onsider two di�erentde�nitions of the numerial �ux, eah of whih results in a symmetri algebrai system.3.1 Derivation of the bilinear formThe derivation follows the same lines as the one in [35℄ for the Laplae operator. However,this time it is arried out for the url-url operator. We also refer to [4℄ for a uni�edanalysis on DG methods for ellipti problems.We �rst introdue the auxiliary variable q ∈ [L2(Ω)]
3 so that, instead of (1), we anonsider the �rst-order system

∇× q − k2E = J in Ω,

q = ∇×E in Ω,

n×E = g on Γ. (8)From here we follow the standard DG approah (given, for example, in [4℄ or [35℄ forellipti operators): a) integrate both equations in (8) by parts; b) in the element boundaryintegrals substitute the numerial �uxes q∗h and E∗
h for their original ounterparts; ) and�nally integrate again the seond equation in (8) by parts. Then we seek the pair (Eh, qh)suh that for all test funtions (φ,π) ∈ Σ

p
h × Σ

p
h:

(qh,∇h × φ)Ω − k2 (Eh,φ)Ω +
∑

K∈Th

(n× q∗h,φ)∂K = (J ,φ)Ω , (9)
(qh,π)Ω = (∇h ×Eh,π)Ω +

∑

K∈Th

(n× (E∗
h −Eh) ,π)∂K . (10)Before we proeed, we make use of the following result: for any given u,v ∈ Σp

h, theidentity
∑

K∈Th

(n× u,v)∂K =

−

∫

Fi
h

{{u}} · [[v]]T dA +

∫

Fi
h

{{v}} · [[u]]T dA +

∫

Fb
h

(n× u) · v dA (11)5



holds. Combine this with (9) and (10) to obtain
(qh,∇h × φ)Ω − k2 (Eh,φ)Ω −

∫

Fi
h

{{q∗h}} · [[φ]]T dA

+

∫

Fi
h

{{φ}} · [[q∗h]]T dA +

∫

Fb
h

(n× q∗h) · φ dA = (J ,φ)Ω (12)and
(qh,π)Ω = (∇h ×Eh,π)Ω −

∫

Fi
h

{{E∗
h −Eh}} · [[π]]T dA

+

∫

Fi
h

{{π}} · [[E∗
h −Eh]]T dA +

∫

Fb
h

(n× (E∗
h −Eh)) · π dA. (13)We an use the lifting operators to express�and thus eliminate�the auxiliary variable qhas a funtion of Eh. From (13) and from the de�nition of the lifting operators (4) and(5), it follows that

qh = ∇h ×Eh − L({{E∗
h −Eh}}) + R([[E∗

h −Eh]]T ). (14)Here we have also used the boundary de�nition of [[·]]T . Substituting (14) into (12) andapplying (10) result in the weak form
B(Eh,φ) := (∇h ×Eh,∇h × φ)Ω − k2 (Eh,φ)Ω

−

∫

Fi
h

{{E∗
h −Eh}} · [[∇h × φ]]T dA +

∫

Fi
h

[[E∗
h −Eh]]T · {{∇h × φ}} dA

−

∫

Fi
h

{{q∗h}} · [[φ]]T dA +

∫

Fi
h

[[q∗h]]T · {{φ}}dA

+

∫

Fb
h

(n× (E∗
h −Eh)) · (∇h × φ) dA −

∫

Fb
h

q∗h · (n× φ) dA = (J ,φ)Ω . (15)This is the general primal formulation where one still has freedom to make the hoiesabout the numerial �uxes E∗
h and q∗h that are most suitable for the problem. An overviewof di�erent �uxes for the Poisson equation is given in [4℄.3.2 Numerial �uxesAt this point, we speify the numerial �uxes E∗

h and q∗h in (15). We investigate twodi�erent formulations, one of whih results in the IP-DG formulation that was thoroughlyanalysed in [22℄. The other is similar to the stabilised entral �ux, exept that in thestabilisation term we use the loal lifting operator (6). Note that in both ases thenumerial �uxes are onsistent, i.e. ∀E, q ∈ H(curl, Ω) the relations {{E}}T = n × E,
{{q}}T = n × qh, [[E]]T = 0 and [[q]]T = 0 hold. The onsisteny of the DG formulationwith the numerial �ux of Brezzi et al. [10℄ is disussed in Appendix A.6



3.2.1 Interior-penalty �uxFirst, we de�ne the numerial �uxes so that they orrespond to the IP �ux,
E∗

h = {{Eh}} , q∗h = {{∇h ×Eh}} − τ [[Eh]]T , if F ∈ F i
h, (16)

n×E∗
h = g, q∗h = ∇h ×Eh − τ (n×Eh) + τg, if F ∈ F b

h,with τ being the penalty parameter. We an now transform the following fae integralsas
∫

Fi
h

[[E∗
h −Eh]]T · {{∇h × φ}} dA = −

∫

Fi
h

[[Eh]]T · {{∇h × φ}}dA,

∫

Fb
h

(n× (E∗
h −Eh)) · (∇h × φ) dA =

∫

Fb
h

(g − n×Eh) · (∇h × φ) dA,

∫

Fi
h

{{q∗h}} · [[φ]]T dA =

∫

Fi
h

{{∇h ×Eh}} · [[φ]]T dA −

∫

Fi
h

τ [[Eh]]T · [[φ]]T dA,

∫

Fb
h

(n× q∗h) · φ dA = −

∫

Fb
h

(∇h ×Eh) · (n× φ) dA

+

∫

Fb
h

τ (n×Eh) · (n× φ) dA −

∫

Fb
h

τg · (n× φ) dA,while the other fae integrals are zero. If we plug these bak to (15), we have the IP-DGmethod for the time-harmoni Maxwell equations,
Bip

h (Eh,φ) := (∇h ×Eh,∇h × φ)Ω − k2 (Eh,φ)Ω −

∫

Fh

[[Eh]]T · {{∇h × φ}} dA

−

∫

Fh

{{∇h ×Eh}} · [[φ]]T dA +

∫

Fh

τ [[E]]T · [[φ]]T dA

= (J ,φ)Ω −

∫

Fb
h

g · (∇h × φ) dA +

∫

Fb
h

τg · (n× φ) dA. (17)Note that in the left-hand side we no longer distinguish expliitly between internal andboundary faes. This is permissible thanks to the de�nitions of the average and thetangential jump at the boundary.3.2.2 Numerial �ux of Brezzi et al.As a next step, we de�ne the numerial �uxes in the manner of Brezzi et al. [10℄:
E∗

h = {{Eh}} , q∗h = {{qh}} − αR([[Eh]]T ), if F ∈ F i
h, (18)

n×E∗
h = g, q∗h = qh − αR(n×Eh) + αR(g), if F ∈ F b

h.

7



where αR(u) = ηF {{RF (uh)}} for F ∈ Fh and ηF ∈ R
+. Following the same line ofargument as before and using (14), the bilinear form (15) now transforms as

Bbr
h (Eh,φ) := (∇h ×Eh,∇h × φ)Ω − k2 (Eh,φ)Ω

−

∫

Fh

[[Eh]]T · {{∇h × φ}}dA −

∫

Fh

{{∇h ×Eh}} · [[φ]]T dA

−

∫

Fh

{{R([[E∗
h −Eh]]T )}} · [[φ]]T dA +

∑

F∈Fh

∫

F

ηF {{RF ([[Eh]]T )}} · [[φ]]T dA

+

∫

Fb
h

g · (∇h × φ) dA −
∑

F∈Fb
h

∫

F

ηFRF (g) · (n× φ) dA. (19)We an now use the relation
∫

Fh

{{R([[E∗
h −Eh]]T )}} · [[φ]]T dA = (R([[E∗

h −Eh]]T ),R([[φ]]T ))Ω

≈ nf

∑

F∈Fh

(RF ([[E∗
h −Eh]]T ),RF ([[φ]]T ))Ω

= −nf

∑

F∈F i
h

(RF ([[Eh]]T ),RF ([[φ]]T ))
Ω

+ nf

∑

F∈Fb
h

(RF ([[g −Eh]]T ),RF ([[φ]]T ))
Ω

= −nf

∑

F∈Fh

(RF ([[Eh]]T ),RF ([[φ]]T ))Ω + nf

∑

F∈Fb
h

(RF ([[g]]T ),RF ([[φ]]T ))Ω ,where nf is the number of faes of an element.Let us introdue the bilinear form Bbr
h : Σp

h×Σp
h → R and the linear form J br

h : Σp
h → Ras

Bbr
h (Eh,φ) = (∇h ×Eh,∇h × φ)Ω − k2 (Eh,φ)Ω −

∫

Fh

[[Eh]]T · {{∇h × φ}} dA

−

∫

Fh

{{∇h ×Eh}} · [[φ]]T dA +
∑

F∈Fh

(ηF + nf) (RF ([[E]]T ),RF ([[φ]]T ))
Ω

, (20)and
J br

h (φ) = (J ,φ)Ω−

∫

Fb
h

g · (∇h × φ) dA+
∑

F∈Fb
h

(ηF + nf) (RF (g),RF (n× φ))Ω , (21)respetively, then the disrete formulation for the time-harmoni Maxwell equations anbe written as follows. Find Eh ∈ Σp
h suh that for all φ ∈ Σp

h the relation
Bbr

h (Eh,φ) = J br
h (φ) (22)is satis�ed.

8



4 A priori error boundsFollowing the lines of [22℄ we prove that the disontinuous Galerkin disretisation inSetion 3 results in an optimal onvergene rate of the numerial solution with respet tothe lassial DG norm. For simpliity, we restrit the analysis to homogeneous boundaryonditions.A key ingredient in the error estimation formula is the following Gårding inequality.Lemma 1 There exists a onstant η, independent of the disretisation parameter h =
maxK∈Th

diam K and the wave number k, suh that for all v ∈ Σp
h we have the followinginequality

Bbr
h (v,v) ≥ β2‖v‖2

DG − (k2 + β2)‖v‖2
0, (23)with β2 = min{1

2
, 1

C̃inv} and C̃inv determined by inequality (30).Proof: The right hand side of (23) an be rewritten as
β2(‖∇h × v‖

2
0 + ‖h− 1

2 [[v]]T ‖2
0,Fh

) − k2‖v‖2
0.Therefore, using (20) we have to prove that

‖∇h × v‖
2
0 − 2

∫

Fh

[[v]]T · {{∇h × v}} dA +
∑

F∈Fh

(nf + ηF )‖RF ([[v]]T )‖2
0

≥ β2(‖∇h × v‖
2
0 + ‖h− 1

2 [[v]]T ‖2
0,Fh

).

(24)The seond term on the left hand side an be estimated with any positive C1 as
4

∫

Fh

[[v]]T · {{∇h × v}} dA =

∫

Fh

2 · 2h− 1

2 C−1
1 [[v]]T · h 1

2 C1 {{∇h × v}} dA

≤

∫

Fh

4h−1C−2
1 | [[v]]T |2 + hC2

1 | {{∇h × v}} |
2 dA

≤ 4C−2
1 ‖h− 1

2 [[v]]T ‖2
0,Fh

+ C2
1

∑

F∈Fh

hF‖ {{∇h × v}} ‖
2
0,F .(25)Next, we use in Σp

h the inverse inequality
‖w‖2

0,∂K ≤ Cinv(hK)−1‖w‖2
0,K , (26)whih is a straightforward onsequene of the loal inverse inequality (Lemma 1.38) andthe trae theorem (B.52) in [14℄. The onstant Cinv does not depend on the mesh size, aswe have a shape-regular mesh. Applying (26) in the seond term on the right hand sideof (25) for an arbitrary fae F assoiated with elements KL and KR and using (3) weobtain

hF C2
1‖ {{∇h × v}} ‖

2
0,F ≤

1

2
hFC2

1 (‖∇h × v
L‖2

0,F + ‖∇h × v
R‖2

0,F )

≤
1

2
Cd min{hKL, hKR}C2

1(‖∇h × v
L‖2

0,F + ‖∇h × v
R‖2

0,F )

≤
1

2
C2

1CinvCd(‖∇h × v‖
2
0,KL + ‖∇h × v‖

2
0,KR).

(27)
9



A summation of these inequalities over all faes gives that
∑

F∈Fh

hF C2
1‖ {{∇h × v}} ‖

2
0,F ≤ ‖∇h × v‖

2
0, (28)with the hoie

C2
1 =

2

CinvCdnf

. (29)The estimate preeeding (3.52) in [14℄ gives that for all v ∈ Σp
h

C̄inv ∑
F∈Fh

‖RF ([[v]]T )‖2
0 ≤ ‖h− 1

2 [[v]]T ‖2
0,Fh

≤ C̃inv ∑
F∈Fh

‖RF ([[v]]T )‖2
0 (30)with the onstants C̄inv and C̃inv independent of h. Therefore, using (29) we obtain

C−2
1 ‖h− 1

2 [[v]]T ‖2
0,Fh

=
nfCdCinv

2
‖h− 1

2 [[v]]T ‖2
0,Fh

≤
nfCdCinv

2
C̃inv ∑

F∈Fh

‖RF ([[v]]T )‖2
0.

(31)Introduing the sum of (28) and (31) in (25) then gives
2

∫

Fh

[[v]]T · {{∇h × v}} dA ≤
1

2
‖∇h × v‖

2
0 + nfCdCinvC̃inv ∑

F∈Fh

‖RF ([[v]]T )‖2
0, (32)and, using (30) we obtain

‖∇h × v‖
2
0 − 2

∫

Fh

[[v]]T · {{∇h × v}} dA +
∑

F∈Fh

(nf + ηF )‖RF ([[v]]T )‖2
0

≥
1

2
‖∇h × v‖

2
0 +

∑

F∈Fh

(nf + ηF − nfCdCinvC̃inv)‖RF ([[v]]T )‖2
0

≥ min
F∈Fh

{
1

2
, nf + ηF − nfCdCinvC̃inv}(‖∇h × v‖

2
0 +

∑

F∈Fh

‖RF ([[v]]T )‖2
0)

≥ min
F∈Fh

{
1

2
, nf + ηF − nfCdCinvC̃inv}(‖∇h × v‖

2
0 +

1

C̃inv‖h− 1

2 [[v]]T ‖2
0,Fh

).Inequality (24) is, therefore satis�ed if
min
F∈Fh

(nf + ηF − nfCdCinvC̃inv) ≥ min

{

1

2
,

1

C̃inv} ,or, equivalently,
η ≥ nf (CdCinvC̃inv − 1) + min

{

1

2
,

1

C̃inv} (33)10



with η = minF∈Fh
ηF . �Remark: The onstant Cinv in (26) an be estimated using Theorem 4 in [38℄.In the analysis we onsider now the extended (f. with (20)) bilinear form
Bh : (H0(url, Ω) + Σp

h) × (H0(url, Ω) + Σp
h) → R,whih is given as

Bh(u,v) = (∇h × u,∇h × v)Ω − k2(u,v)Ω −
∑

F∈Fh

(RF ([[u]]T ),∇h × v)Ω

+ (RF ([[v]]T ),∇h × u)Ω +
∑

F∈Fh

(nf + ηF )(RF ([[u]]T ),RF ([[v]]T ))Ωand the linear form Jh : H0(url, Ω) + Σp
h → R, de�ned as

Jh(v) = (J ,v)Ω.Lemma 2 The bilinear form Bh is ontinuous on (H0(url, Ω)+Σp
h)× (H0(url, Ω)+Σp

h)with respet to the DG norm, i.e. the following inequality holds for all u = u0 + uh and
v = v0 + vh with u0,v0 ∈ H0(url, Ω) and uh,vh ∈ Σp

h:
Bh(u,v) ≤ C‖u‖DG‖v‖DG. (34)Proof: Using the result of Lemma 4.8 in [22℄ it is su�ient to prove that
∑

F∈Fh

|(RF ([[u]]T ),RF ([[v]]T ))Ω| ≤ C‖u‖DG‖v‖DGwith some mesh-independent onstant C. Using the deomposition of u and v, whihimplies that [[u0]]T = [[v0]]T = 0, the Shwarz inequality and the estimate in (30) weobtain
∑

F∈Fh

|(RF ([[u]]T ),RF ([[v]]T ))Ω| =
∑

F∈Fh

|(RF ([[uh]]T ),RF ([[vh]]T ))Ω|

≤

√

∑

F∈Fh

‖RF ([[uh]]T )‖2
0

√

∑

F∈Fh

‖RF ([[vh]]T )‖2
0

≤ C̄−1inv‖h− 1

2 [[uh]]T ‖0,Fh
‖h− 1

2 [[vh]]T ‖0,Fh

= C−1inv‖h− 1

2 [[u]]T ‖0,Fh
‖h− 1

2 [[v]]T ‖0,Fh

≤ C−1inv‖u‖DG‖v‖DG. �Next, we will estimate the residual term orresponding to the bilinear form Bh, whihis de�ned for an arbitrary v ∈ Σp
h, as

rh(v) = Bh(E,v) −Jh(v), (35)where E is the exat solution of (1). We an easily obtain an equivalent form
rh(v) = Bh(E −Eh,v), ∀ v ∈ Σp

h. (36)11



Lemma 3 Using the notation Πh : [L2(Ω)]3 → Σp
h for the L2 projetion to the �niteelement spae we have for all v ∈ Σp

h the relation
rh(v) =

∫

Fh

[[v]]T · {{∇ ×E − Πh(∇×E)}} dA. (37)If ∇×E ∈ [Hs(Ω)]3 also holds for some s with s > 1
2
then the following upper bound isvalid for all v ∈ Σp

h:
|rh(v)| ≤ C‖v‖DG√nf

∑

K∈Th

h
2min{p,s}
K ‖∇ ×E‖2

s,K , (38)where C does not depend on the mesh size.Proof: First, we note that for v ∈ Σp
h ∩ H0(url, Ω) we have [[v]]T = 0 and therefore, thebilinear form Bh(E,v) simpli�es to

Bh(E,v) = (∇×E,∇× v) − k2(E,v). (39)Using (35) and the weak formulation of the time-harmoni Maxwell equations we obtainthat
rh(v) = Bh(E,v) −Jh(v) = (∇×E,∇× v)Ω − k2(E,v)Ω − (J ,v) = 0 (40)is valid for all v ∈ Σp

h ∩ H0(url, Ω). This implies the orthogonality relation
Bh(E −Eh,v) = 0 ∀v ∈ Σp

h ∩ H0(url, Ω).The Green formula, the fat that the tangential omponents of ∇h ×E and {{∇h ×E}}oinide, and the de�nition of the L2 projetion result in the following relation for anarbitrary v ∈ Σp
h

rh(v) = Bh(E,v) − Jh(v)

= (∇×E,∇h × v)Ω − k2(E,v)Ω −
∑

F∈Fh

(RF ([[v]]T ),∇×E)Ω − (J ,v)Ω

= (∇×∇×E,v) +

∫

Fh

∇×E · [[v]]T dA − k2(E,v)

−
∑

F∈Fh

(RF ([[v]]T ),∇×E)Ω − (J ,v)Ω

=

∫

Fh

{{∇ ×E}} · [[v]]T dA −
∑

F∈Fh

(RF ([[v]]T ), Πh(∇×E))Ω

=

∫

Fh

[[v]]T · {{∇ ×E − Πh(∇×E)}} dA,

(41)
whih proves (37).If v ∈ [Hs(K)]3 with s > 1

2
we use the interpolation estimate, see Theorem 1.7 in [2℄,

‖v − Πhv‖
2
0,K + hK‖v − Πhv‖

2
0,∂K ≤ CKh

2min{p,s}
K ‖v‖2

s,K , (42)12



where the onstant CK is independent of the mesh size h and the polynomial order p ∈ Σp
h.Using (41), the Shwarz inequality and elementwise summation of (42) give that

rh(v) =

∫

Fh

[[v]]T · {{∇ ×E − Πh(∇×E)}} dA

=

√

∫

Fh

h−1| [[v]]T |2 dA

√

∫

Fh

h| {{∇ ×E − Πh(∇×E)}} |2 dA

≤ ‖v‖DG√nf

∑

K∈Th

CKh
2min{p,s}
K ‖∇ ×E‖2

s,K.Using the shape-regular property of the mesh we obtain the upper bound as stated in(38). �Remark: Using the mesh parameter h, the upper bound (38) an be rewrittenas
|rh(v)| ≤ Chmin{p,s}‖v‖DG‖∇h ×E‖s. (43)For the error estimation we split the omputational error into three parts.Lemma 4 Let η satisfy the assumption in Lemma 1. Then the omputational error ofthe solution Eh ∈ Σp

h of (1) an be estimated as
‖E−Eh‖DG ≤ C

(

inf
v∈Σp

h

‖E − v‖DG + sup
0 6=v∈Σp

h

rh(v)

‖v‖DG + sup
0 6=v∈Σp

h

(v,E −Eh)Ω

‖v‖DG )

, (44)where the onstant C does not depend on the mesh size.Proof: Using the triangle inequality and the Gårding inequality stated in Lemma 1 weobtain that for an arbitrary v ∈ Σp
h

‖E −Eh‖DG ≤ ‖E − v‖DG + ‖Eh − v‖DG
≤ ‖E − v‖DG +

1

β2
sup

06=w∈Σp

h

Bh(Eh − v,w)

‖w‖DG +
k2 + β2

β2
sup

06=w∈Σp

h

(Eh − v,w)

‖w‖DG
≤ ‖E − v‖DG +

1

β2
sup

06=w∈Σp

h

Bh(Eh −E,w)

‖w‖DG +
1

β2
sup

06=w∈Σp

h

Bh(E − v,w)

‖w‖DG
+

k2 + β2

β2
sup

06=w∈Σp

h

(Eh −E,w)

‖w‖DG +
k2 + β2

β2
sup

06=w∈Σp

h

(E − v,w)

‖w‖DG
≤ ‖E − v‖DG +

1

β2
sup

06=w∈Σp

h

rh(w)

‖w‖DG +
C

β2
‖E − v‖DG

+
k2 + β2

β2
sup

06=w∈Σp

h

(Eh −E,w)

‖w‖DG +
k2 + β2

β2
‖E − v‖DG

= (1 +
C

β2
+

k2 + β2

β2
)‖E − v‖DG +

1

β2
sup

06=w∈Σp

h

rh(w)

‖w‖DG
+

k2 + β2

β2
sup

06=w∈Σp

h

(Eh −E,w)

‖w‖DG .13



Taking the in�mum over all v ∈ Σp
h we obtain the statement in the lemma. �Using smoothness assumptions to the exat solution of (1), we an now prove the mainresult of this setion.Theorem 1 Assume that η satis�es the ondition in Lemma 1 and for some parameter

s > 1
2
the exat solution of (1) satis�es

E ∈ Hs(Ω) and ∇×E ∈ Hs(Ω).Then for a mesh size h su�iently small, we have the following optimal error bound
‖E −Eh‖DG ≤ Chmin{p,s} (‖E‖s,0 + ‖∇ ×E‖s,0) . (45)Proof: We have to estimate the last two terms on the right hand side of (44). For theestimation of the third term we refer to Proposition 5.2 in [22℄. Note that in the prooftherein the bilinear form ã is investigated on (H0(url, Ω) + Σp

h) × (H0(url, Ω) + Σp
h),whih oinides with Bh on the same domain. Therefore, the same estimation holds, i.e.

sup
0 6=v∈Σp

h

(v,E −Eh)Ω

‖v‖DG ≤ Chs‖E −Eh‖DG. (46)For the estimation of the term infv∈Σp

h
‖E − v‖DG we take the Nédéle interpolant v =

ΠN,hE, whih satis�es the relation
‖E − ΠN,hE‖DG = ‖E − ΠN,hE‖url ≤ Chmin{p,s}(‖E‖s + ‖∇ ×E‖s). (47)See Theorem 5.41 and Theorem 8.15 in [29℄ for the �rst and seond family of Nédéle ele-ments. Using (46), (47) and the result in (43) we obtain the estimate in the theorem. �Remarks:1. This result guarantees the same onvergene rate as Theorem 3.2 in [22℄. Theprofound di�erene between the IP method (disussed in [22℄) and the approahanalysed here is that we do not have to use mesh dependent onstants in the bilinearform. More preisely, η does not depend on h, whih results in the uniform stabilityof the solution.2. The upper bound is not sharp if the ratio maxK∈Th

hK

minK∈Th
hK

is large. In those ases oneshould use the result of Lemma 3 and the elementwise interpolation estimate orre-sponding to (47).3. Aording to (46) the mesh size should satisfy the inequality Chs < 1.4. For an extensive study on the smoothness assumption in Theorem 1 we refer to [3℄.
14



5 A note on preonditioningThe disretisations (17) and (20) result in linear algebrai systems. In this setion wesimplify notation and write the linear system as
Ax = b, (48)whih an now denote either of the linear systems that result from the disretisations (17)and (20), respetively. The system (48) an be solved by a diret method or an iterativemethod, typially one of the numerous Krylov subspae methods. Diret methods arereliable but not well suited for large-sale problems beause one also needs to store thematrix �ll-in during the solution proess. On the other hand, e�ient iterative methodsrequire a good preonditioner. Sine matrix A is symmetri but not de�nite, �nding ane�ient preonditioner is a non-trivial task. See for example [5, 6, 15, 33, 36℄.The approah we adopt here is that of shifted preonditioners for seond-order deriva-tive operators. Let S be the matrix that orresponds to the disretisation of the url-urloperator, and let M be the disretisation of the seond term in (20) (and also in (17)).One an then rewrite (48) as
(S − M)x = b. (49)We use preonditioners that take the form
P = SB + γMB, (50)where SB onsists of NK-by-NK diagonal bloks of S, with NK being the loal number ofdegrees of freedom in element K. The positive real number γ is the shift parameter andwe determine its value experimentally. The matrix MB is either taken to be the identitymatrix I or hosen to be M itself. Finally, we ompute the Cholesky fatorisation of

P and use its resulting matries to apply two-sided preonditioning to the linear system(48).In priniple, it is possible to hoose SB to be S, and this is often the ase when Srepresents the disrete ounterpart of the Laplaian. However, in the present situationthe Cholesky fatorisation turns out to be omputationally very expensive if SB = S.The approah we have just presented here is similar to the one proposed in [36℄ forthe disrete Helmholtz operator. But the analysis in that work is not diretly appliableto the DG disretisations disussed here. Instead, we rely on omputational evideneto verify the approah. On the whole, we have found that, if γ is suitably hosen, thepreonditioners speed up the onvergene of the MINRES method in terms of iterationsteps as well as CPU time. The optimal value of γ depends slightly on the mesh-size hand more onsiderably on the polynomial order of the approximation p. We will brie�yillustrate this behaviour in Setion 6.3.6 Numerial experimentsWe now provide three-dimensional numerial examples to verify and demonstrate theDG disretisations of (1). For all omputations, H(curl)-onforming vetor-valued basis15



funtions are used [1, 34℄. We also mention here that the �rst six of the basis funtionsonstitute the �rst-order �rst-family of Nédéle elements [30℄. The �rst twelve of the basisfuntions used here are not the same as those that form the �rst-order seond-family ofNédéle elements. However, they span exatly the same spae and have exatly the sameproperties as those de�ned in [31℄.In the IP-DG disretisation, the interior-penalty parameter in (17) is often de�ned as
τ = CIP

p2

hF

, (51)where CIP = 10, p is the polynomial order, and hF is the diameter of the fae F ∈ Fh. Thevalue of the onstant CIP is based on numerial experiments. It has been demonstrated fora range of problems that this hoie of CIP is su�iently large to guarantee stability. See[25℄ and referenes therein. We have found, however, that in the ase of three-dimensionalomputations for the Maxwell system, this penalty is not large enough. So instead of (51),we de�ne the above parameter as
τ = CIP

(p + 1)2

hF

,with CIP = 10. See also the reent artile [13℄, where the same penalty term is used foromputing Maxwell eigenvalues on two-dimensional domains.The parameter ηF (20), resulting from the stabilisation term αR in (18), is set to
ηF = 20,but the results do not signi�antly depend on this hoie, as long as ηF satis�es ondition(33).All numerial omputations have been arried out in the framework of hpGEM [32℄,a software environment for DG disretisations suitable for a variety of physial problems.6.1 Example 1: smooth solutionAs a �rst example, we onsider the Maxwell equations (1) with k2 = 1 in the domain

Ω = (0, 1)3 and assume the boundary to be a perfet eletri ondutor (PEC), i.e. g = 0in (1). The soure term is given as
J(x, y, z) =

(

2π2 − 1
)





sin(πy) sin(πz)
sin(πz) sin(πx)
sin(πx) sin(πy)



 , (52)so we have the exat solution
E(x, y, z) =





sin(πy) sin(πz)
sin(πz) sin(πx)
sin(πx) sin(πy)



 . (53)The omputations are performed on two di�erent sequenes of meshes. The �rst arehighly strutured meshes and onstruted as follows. The domain Ω = (0, 1)3 is divided16



into n × n × n number of ongruent sububes, with integer n = 2m and nonnegativeinteger m. We then divide eah of these sububes into �ve tetrahedra, four of whih areongruent and have volume one-sixth of the original ube. The �fth has volume one-thirdof the original ube. Although the mesh is not uniform, this has proved to be a simple andonvenient way of measuring onvergene, as eah time we re�ne the mesh, the maximumof the fae diameter hF will be exatly half of that of the previous mesh. The onvergeneresults on strutured meshes are shown in Table I for the IP-DG method and in Table IIIfor the method of Brezzi et al.We have also run the same example on a sequene of unstrutured meshes. The mesheswere generated by CentaurSoft (http://www.entaursoft.om), a pakage suitable forgenerating a variety of hybrid meshes with omplex geometries. In this sequene of meshes,we begin with a oarse mesh of 54 tetrahedra. Then we divide eah tetrahedron into eightsmaller tetrahedra to get the next (�ner) mesh. The onvergene results on struturedmeshes are depited in Table II for the IP-DG disretisation and in Table IV for themethod of Brezzi et al.Based on our analysis in Setion 4 and on the analysis on [22℄, the optimal onvergenerate for this example is O(hp+1) in the L2(Ω)-norm and O(hp) in the DG norm. We ansee that, for both methods on strutured meshes, optimal onvergene rate is ahieved inthe L2(Ω)-norm, and higher-than-optimal onvergene rates are observed in the DG norm.On unstrutured meshes, we only have an estimated onvergene rate with h ∼ N
− 1

3

el . Theonvergene rates are slightly suboptimal, in part beause we have to estimate the ratesof onvergene, and in part beause we are still in the pre-asymptoti regime.6.2 Example 2: Fihera ubeAs a seond example, we investigate the DG disretisations (17) and (22) of theMaxwell equations (1) with non-smooth solution. To this end, we onsider the domain
Ω = (−1, 1)3 \ [−1, 0]3, and selet J and the non-homogeneous boundary onditions sothat the analytial solution is given by

E = ∇φ(r), with φ(r) = er sin(r), (54)where r =
√

x2 + y2 + z2. The analytial solution ontains a singularity at the re-entrantorner loated at the origin of Ω. As a result, E lies in the Sobolev spae [H1−ǫ(Ω)]
3, ǫ > 0.Again, based on our analysis in Setion 4 and on the analysis of [22℄, the theoretiallypredited asymptotial onvergene rate for (54) is O(hmin(1,p+1)) in the L2(Ω)-norm and

O(hmin(1,p)) in the DG norm.We ompute the numerial solutions for a sequene of globally re�ned unstruturedmeshes. The global re�nement is, of ourse, far from being optimal for singular solutions,but it is nonetheless suitable for verifying the theoretial results. The onvergene ratesare again estimated with h ∼ N
− 1

3

el .We show the errors of the IP-DG approximations for (54) in Table V. The errors ofthe disretisation with the loal lifting operator are depited in Table VI. We an expet�rst-order onvergene in both norms, whih is what we approximately observe. Preiseonvergene rates are not ahieved beause the meshes are not subsequently re�ned (i.e. wedo not use the previous mesh to onstrut the next), and also beause they are still in the17



pre-asymptoti regime. Nevertheless, we see that the error, as predited, is determinedby the Sobolev oe�ient and not by the order of the approximating polynomials.6.3 Performane of the iterative solverTo illustrate the e�et of the preonditioning tehnique brie�y desribed in Setion 5,we onsider two ases of Example 1 from Setion 6.1. One we all mesh1
4 and it onsistsof 27648 elements with polynomial order p = 1. The other, mesh2

3, onsists of 3456elements with polynomial order p = 2. In Table VII we show the relative residual and theomputational work after 10000 iterations for di�erent values of γ. We an see that withthe orret value of γ, the onvergene rate an be improved signi�antly. Let us assume,for example, that we want to ahieve a tolerane of tol = 10−6 for the given problemwith mesh1
4. With γ = 106 it takes 15324 iterations and 4990s to reah that tolerane. Byontrast, the relative residual for the system without preonditioning is still only 0.0085after 40000 iterations and 6097s. Finally, we note that there is a limit to how far theparameter γ an be inreased without ompromising the solution of the disrete weakformulation(s). That limit is around 1010�1011, and may thus mean that for high-orderapproximation we need to resort to a less-than-optimal value for γ.7 Conluding remarks and outlookWe have introdued and analysed a disontinuous Galerkin method for the inde�nitetime-harmoni Maxwell equations in three dimensions. The novelty of this approahis twofold. First, we make use of a loal lifting operator to ompute the (stabilising)numerial �ux. This approah is muh in the spirit of [10℄, and it has been applied to theLaplae operator in a number of artiles sine. It also allows us to hoose the onstantin the �ux formulation independent of the mesh size and the polynomial order. Seond,we use H(curl)-onforming vetor-valued funtions to build the loal polynomial basis,whih is a very natural hoie for the Maxwell equations and is widely used in H(curl)-onforming �nite element disretisations [29℄.We have presented a ouple of numerial experiments whih have demonstrated thatthe method onverges at an optimal rate on both strutured and unstrutured meshes.We have also arried out the same experiments using the IP-DG �ux with the same basisfuntions. Optimal onvergene rate is, too, observed on both types of meshes. However,for the IP-DG method the penalty parameter depends on the mesh size as well as onthe polynomial order. Furthermore, we found that we need a slightly larger penalisationthan the empirial value given in [22, 25℄, whih is mostly based on two-dimensionalexperiments. See also [13℄.It is also lear that a number of questions have remained unanswered. The mostobvious one onerns the spetral properties of the method. In [12℄ the authors provided ageneral framework for studying the spetral orretness of DG methods (see also [11, 13℄).The method introdued in this artile �ts into that framework, and the study of itsspetral properties is urrently under way.Another important step would be to provide a posteriori error indiator for the dis-retisation, either in the form of expliit a posteriori error analysis [25℄, or in the ontext18



of impliit a posteriori error estimation [26, 16℄.Aknowledgments� This researh was supported by the Duth government through the national programBSIK: knowledge and researh apaity, in the ICT projet BRICKS (http://www.bsik-briks.nl), theme MSV1.� We gratefully appreiate the ontribution of Mike Bothev to Setion 5.A Appendix: onsistenyIn order to show onsisteny for the bilinear forms resulting from the �ux formulation(18), we begin with the general primal formulation
Bh(Eh,φ) = (∇h ×Eh,∇h × φ)Ω − k2 (Eh,φ)Ω

−

∫

Fi
h

{{E∗
h −Eh}} · [[∇h × φ]]T dA +

∫

Fi
h

[[E∗
h −Eh]]T · {{∇h × φ}} dA

−

∫

Fi
h

{{q∗h}} · [[φ]]T dA +

∫

Fi
h

[[q∗h]]T · {{φ}}dA

+

∫

Fb
h

(n× (E∗
h −Eh)) · (∇h × φ) dA +

∫

Fb
h

(n× q∗h) · φdA.Using the identity
(∇h ×Eh,∇h × φ)Ω = (∇h ×∇h ×Eh,φ)Ω

−

∫

Fi
h

{{φ}} · [[∇h ×Eh]]T dA +

∫

Fi
h

{{∇h ×Eh}} · [[φ]]T dA

+

∫

Fb
h

(n× φ) · (∇h ×Eh) dA,we have the equivalent formulation
Bh(Eh,φ) = (∇h ×∇h ×Eh,φ)Ω − k2 (Eh,φ)Ω

−

∫

Fi
h

{{E∗
h −Eh}} · [[∇h × φ]]T dA +

∫

Fi
h

[[E∗
h −Eh]]T · {{∇h × φ}} dA

−

∫

Fi
h

{{q∗h −∇h ×Eh}} · [[φ]]T dA +

∫

Fi
h

[[q∗h −∇h ×Eh]]T · {{φ}} dA

+

∫

Fb
h

(n× (E∗
h −Eh)) · (∇h × φ) dA +

∫

Fb
h

(n× (q∗h −∇h ×Eh)) · φdA.

19



We now insert the exat solution E into the bilinear form to obtain
Bh(E,φ) = (∇×∇×E,φ)Ω − k2 (E,φ)Ω

−

∫

Fi
h

({{E∗
h}} −E) · [[∇h × φ]]T dA +

∫

Fi
h

[[E∗
h]]T · {{∇h × φ}}dA

−

∫

Fi
h

({{q∗h}} −∇h ×E) · [[φ]]T dA +

∫

Fi
h

[[q∗h]]T · {{φ}} dA

+

∫

Fb
h

(n× (E∗
h −E)) · (∇h × φ) dA +

∫

Fb
h

(n× (q∗h −∇h ×E)) · φ dA,sine {{E}}T = ET , {{∇h ×E}}T = (∇h ×E)T and [[E]]T = [[∇h ×E]]T = 0. Note that weonly require the ontinuity of the tangential omponent of the exat solution E. This isorret beause we take the inner produt of the �elds with tangential jumps so the normalomponents do not have a ontribution. It is easy to see that the numerial �ux E∗
h isonsistent (in either form) at the internal faes, that is, {{E∗

h}}T = ET and [[E∗
h]]T = 0.The bilinear form then further simpli�es as

Bh(E,φ) = (∇×∇×E,φ)Ω − k2 (E,φ)Ω

−

∫

Fi
h

({{q∗h}} −∇h ×E) · [[φ]]T dA +

∫

Fi
h

[[q∗h]]T · {{φ}} dA

+

∫

Fb
h

(n× (E∗
h −E)) · (∇h × φ) dA +

∫

Fb
h

(n× (q∗h −∇h ×E)) · φ dA.Reall that
qh = ∇×Eh − L({{E∗

h −Eh}}) + R([[E∗
h −Eh]]T ).If we replae Eh with E, we obtain

[[E∗
h −E]]T = [[{{E}} −E]]T = 0,and

(L({{E∗
h −E}} ,φ))Ω =

∫

Fi
h

{{E∗
h −E}} · [[φ]]T dA =

∫

Fi
h

{{E∗
h −E}}T · [[φ]]T dA = 0,sine {{E∗

h}}T = ET . Thus {{q∗h}} = {{∇ ×E}} at F i
h and {{q∗h}} = ∇×E at F b

h. We alsohave [[q∗h]]T = 0, from whih we obtain
Bh(E,φ) = (∇×∇×E,φ)Ω − k2 (E,φ)Ω

−

∫

Fi
h

({{∇ ×E}} − ∇×E) · [[φ]]T dA +

∫

Fb
h

(n× (E∗
h −E)) · (∇h × φ) dA

+

∫

Fb
h

(n× (q∗h −∇×E)) · φ dA = (∇×∇×E,φ)Ω − k2 (E,φ)Ω ,20



thanks to the fat that
({{∇ ×E}} − ∇×E) · [[φ]]T = ({{∇ ×E}}T − (∇×E)T ) · [[φ]]T = 0,and to the onditions
n×E∗

h = n×E = g and q∗h = ∇×E at F b
h.B Appendix: onstrution of the linear systemIn this appendix we disuss some of the implementation details of the DG disretisationsintrodued in Setion 3. We use the hierarhi onstrution of H(curl)-onforming basisfuntions from [1℄ (see also [34℄). The omplete set of hierarhi basis funtions {ψK

i

}that satisfy the disrete de Rham diagram (i.e. L2-, H1-, H(curl)- and H(div)-onformingbasis funtions) an also be found in [1℄ and [34℄. The basis funtions are usually de�nedfor a referene element K̂ ∈ R
3, whih in our ase is hosen to be given by the verties

v1 = (0, 0, 0) , v2 = (1, 0, 0) , v3 = (0, 1, 0) , v4 = (0, 0, 1) .Then the basis funtions need be transformed from the referene element to eah physialmesh element K ∈ Th. We refer to [29℄ for the details of the H(curl) transformation rules.We an now express the unknown �eld with the polynomial expansion in eah elementas
EK

h (x) =

Np
∑

j=1

EK
j ψ

K
j (x), ∀x ∈ K. (55)The entries of the elemental sti�ness matrix SK and the elemental mass matrix MK anbe expressed as

S
K
ij =

∫

K

(∇h ×ψi) ·
(

∇h ×ψj

)

dV and M
K
ij = k2

∫

K

ψi ·ψj dV,respetively. Here, the indies run from i, j = 1, . . . , NK , with NK being the number ofdegrees of freedom in element K.As for the fae ontributions F ∈ Fh in (17) and (20), we need to onsider values inthe two elements KL and KR whih are onneted through fae F . So we (abuse thenotation slightly and) de�ne the matries D
LR, G

LR and H
LR as

D
LR
ij =

∫

F

ψL
i ·
(

nR ×ψR
j

)

dA,

G
LR
ij =

∫

F

(

∇h ×ψ
L
i

)

·
(

n×ψR
j

)

dA,

H
LR
ij = τ

∫

F

(

n×ψL
i

)

·
(

n×ψR
j

)

dA.The indies i and j now run between 1 and NL and between 1 and NR, respetively, with
NL and NR being the number of degrees of freedom in element KL and KR. Note that the21



fae matries are `sparse' as many of the basis funtions' tangential omponents vanishat a given interfae. This is espeially true for higher order elements.Exploiting the appropriate transformation rules [29℄, the above integrals an be om-puted on the referene domain K̂ (and on the referene fae F̂ ∈ R
2) by means of Gaussubature rules. One way to de�ne Gauss ubatures on a tetrahedra is to ompute themfor the ube and `ollapse' the ubature points (and the assoiated weights) into thetetrahedron. However, this proedure turns out to be very expensive for higher-orderdisretisations. Instead, we are making use of the so-alled eonomial Gauss ubatures[34℄, whih have been derived for polynomials up to order p ≤ 9. The onstrution ofthese points and weights is based on topologial symmetries within the tetrahedron, andis onsiderable more ompliated for orders p > 9. Sine we implement basis funtions upto polynomial degree �ve, the highest order ubature rule we need (to ompute the entriesof the mass matrix, for example) is p = 10. Table VIII shows the number of ubaturepoints needed to integrate polynomials up to order p ≤ 13. (The table is taken from[34℄ and we are not aware of any improvements on the ubature rules sine.) We an im-mediately see that numerial integration over a tetrahedron beomes inreasingly ostly,whih pratially prohibits the use of very high-order polynomials for three-dimensionalproblems. This hurdle an be partially irumvented by using nodal-based polynomialbases. See [17, 27, 20℄ for example.We now fous on omputing the lifting operators in the last term of (20). We approx-imate the loal lifting operator RF in (6) by using the same basis as for the disretisationof Eh,

RK
F ([[Eh]]T )(x) =

Np
∑

j=1

RK,F
j ψK

j (x), ∀x ∈ K.Sine RF is only nonzero in the two elements KL and KR whih are onneted to the fae
F , we have

∫

KL

φL · RL
F ([[Eh]]T ) dV +

∫

KR

φR · RR
F ([[Eh]]T ) dV =

1

2

∫

F

(

φL + φR
)

·
(

nL ×EL
h + nR ×ER

h

)

dA, ∀φL,φR ∈ Σ
p
h. (56)If we substitute these into (56) and use the fat that it must be satis�ed for arbitrary testfuntions φL and φR, we obtain the following matrix relations

M
LRL =

1

2
D

LLEL +
1

2
D

LRER, (57)
M

RRR =
1

2
D

RLEL +
1

2
D

RRER,where
M

K
ij = k2

∫

K

ψi ·ψj dV and D
LR
ij =

∮

F

ψL
i ·
(

nR ×ψR
j

)

dA.22



Let us again use the de�nition of the loal lifting operator (6) for a given fae F ∈ F toreover
(RF ([[E]]T ),RF ([[φ]]T ))Ω =

∫

F

[[φ]]T · {{RF ([[Eh]]T )}} dA =

1

2

∫

F

(

nL × φL + nR × φR
)

·
(

RL
F ([[Eh]]T ) + RR

F ([[Eh]]T )
)

dA, (58)whih in turn an be approximated as
1

2

∫

F

(

nL × φL + nR × φR
)

·
(

RL
F ([[Eh]]T ) + RR

F ([[Eh]]T )
)

dA ≈

1

4

(

C
LL
(

M
L
)−1

D
LL + C

LR
(

M
R
)−1

D
RL
)

+

1

4

(

C
LL
(

M
L
)−1

D
LR + C

LR
(

M
R
)−1

D
RR
)

+

1

4

(

C
RL
(

M
L
)−1

D
LL + C

RR
(

M
R
)−1

D
RL
)

+

1

4

(

C
RL
(

M
L
)−1

D
LR + C

RR
(

M
R
)−1

D
RR
)

.We use this relation to ompute the last term of (20). The onstrution of the otherelemental matries follow the standard proedure. Finally, an assembly proedure isperformed to arrive at the linear system
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Table I: Example 1. Convergene of the IP-DG method on strutured meshes.
p = 1

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 5 2.5854E-01 � 4.5133E-01 �
Nel = 40 2.5686E-01 0.01 3.9962E-01 0.18
Nel = 320 5.8863E-02 2.13 1.1723E-01 1.78
Nel = 2560 1.4605E-02 2.01 4.5535E-02 1.36
Nel = 20480 3.6754E-03 1.99 2.0669E-02 1.14

p = 2

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 5 2.8524E-01 � 4.1467E-01 �
Nel = 40 3.1044E-02 3.20 5.0040E-02 3.05
Nel = 320 3.7101E-03 3.06 8.2802E-03 2.60
Nel = 2560 4.6444E-04 3.00 1.7224E-03 2.27

p = 3

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 5 5.7244E-02 � 8.5302E-02 �
Nel = 40 4.5008E-03 3.67 7.1218E-03 3.58
Nel = 320 2.3366E-04 4.27 5.0151e-04 3.83

p = 4

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 5 2.3057E-02 � 3.2834E-02 �
Nel = 40 5.3477E-04 5.43 8.1995E-04 5.32
Nel = 320 1.5714E-05 5.09 3.0315E-05 4.75

p = 5

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 5 4.4752E-03 � 6.4666E-03 �
Nel = 40 1.4442E-04 4.95 2.0711E-04 4.96
Nel = 320 1.1092E-06 7.02 1.8604E-06 6.80

27



Table II: Example 1. Convergene of the IP-DG on unstrutured meshes.
p = 1

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 54 2.2548E-01 � 3.6943E-01 �
Nel = 432 7.1925E-02 1.65 1.4363E-01 1.36
Nel = 3456 2.1031E-02 1.77 6.1771E-02 1.22
Nel = 27648 6.2947E-03 1.74 3.8283E-02 0.69

p = 2

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 54 3.0435E-02 � 4.9090E-02 �
Nel = 432 4.9945E-03 2.61 1.0397E-02 2.24
Nel = 3456 7.2720E-04 2.78 2.4843E-03 2.07

p = 3

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 54 4.8645E-03 � 7.9219E-03 �
Nel = 432 4.9752E-04 3.29 9.8238E-04 3.01
Nel = 3456 4.1326E-05 3.60 1.2622E-04 2.96

p = 4

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 54 5.4669E-04 � 8.2955E-04 �
Nel = 432 3.7641E-05 3.86 6.3357E-05 3.71

p = 5

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 54 1.4740E-04 � 2.1325E-04 �
Nel = 432 6.0287E-06 4.61 9.2191E-06 4.53
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Table III: Example 1. Convergene of the method of Brezzi et al. on strutured meshes.
p = 1

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 5 5.2216E-01 � 7.4201E-01 �
Nel = 40 3.0615E-01 0.77 4.3594E-01 0.77
Nel = 320 7.1871E-02 2.09 1.0625E-01 2.04
Nel = 2560 1.7673E-02 2.02 2.9920E-02 1.83
Nel = 20480 4.4003E-03 2.01 1.0473E-02 1.51

p = 2

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 5 3.0892E-01 � 4.3901E-01 �
Nel = 40 3.3887E-02 3.19 4.9367E-02 3.15
Nel = 320 4.0850E-03 3.05 6.7364E-03 2.87
Nel = 2560 5.0782E-04 3.01 1.1718E-03 2.52

p = 3

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 5 6.4391E-02 � 9.1864E-02 �
Nel = 40 4.7730E-03 3.75 6.9565E-03 3.72
Nel = 320 2.4716E-04 4.27 4.3197E-04 4.01

p = 4

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 5 2.3335E-02 � 3.3088E-02 �
Nel = 40 5.5087E-04 5.40 8.1681E-04 5.34
Nel = 320 1.6179E-05 5.09 2.8348E-05 4.85

p = 5

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 5 4.3251E-03 � 6.1734E-03 �
Nel = 40 1.4449E-04 4.90 2.0586E-04 4.91
Nel = 320 1.1041E-06 7.03 1.8247E-06 6.82
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Table IV: Example 1. Convergene of the method of Brezzi et al. on unstrutured meshes.
p = 1

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 54 2.9871E-01 � 4.2626E-01 �
Nel = 432 9.4108E-02 1.67 1.3758E-01 1.63
Nel = 3456 2.7543E-02 1.77 4.3294E-02 1.67
Nel = 27648 8.3263E-03 1.73 1.5441E-02 1.49

p = 2

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 54 3.3293E-02 � 4.8203E-02 �
Nel = 432 5.4652E-03 2.61 8.4958E-03 2.50
Nel = 3456 7.9569E-04 2.78 1.5428E-03 2.46

p = 3

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 54 5.2936E-03 � 7.7574E-03 �
Nel = 432 5.2925E-04 3.32 8.3911E-04 3.21
Nel = 3456 4.3710E-05 3.60 8.7359E-05 3.26

p = 4

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 54 5.6374E-04 � 8.2022E-04 �
Nel = 432 3.8520E-05 3.87 5.8694E-05 3.80

p = 5

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 54 1.4759E-04 � 2.1091E-04 �
Nel = 432 6.0329E-06 4.61 8.8707E-06 4.57
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Table V: Example 2. Convergene of the IP-DG method on unstrutured meshes.
p = 1

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 177 1.5881E-01 � 2.3438E-01 �
Nel = 478 8.7179E-02 1.81 1.2750E-01 1.84
Nel = 1532 6.8334E-02 0.63 9.9882E-02 0.63
Nel = 5856 4.2021E-02 1.09 6.4586E-02 0.98
Nel = 27084 3.3663E-02 0.43 5.0961E-02 0.46

p = 2

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 177 5.7874E-02 � 9.1278E-02 �
Nel = 478 2.9493E-02 2.04 5.4558E-02 1.55
Nel = 1532 1.9221E-02 1.10 3.6505E-02 1.04
Nel = 5856 1.3413E-02 0.80 2.6045e-02 0.76

p = 3

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 177 2.2440E-02 � 4.0852E-02 �
Nel = 478 1.3614E-02 1.51 3.1392E-02 0.80
Nel = 1532 7.9415E-03 1.39 2.0326E-02 1.12

p = 4

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 177 1.1709E-02 � 2.2644E-02 �
Nel = 478 7.0465E-03 1.53 1.8140E-02 0.67

31



Table VI: Example 2. Convergene of the method of Brezzi et al. on unstrutured meshes.
p = 1

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 177 1.5629E-01 � 2.3634E-01 �
Nel = 478 8.6095E-02 1.80 1.3488E-01 1.69
Nel = 1532 6.8245E-02 0.60 1.0016E-01 0.77
Nel = 5856 4.1962E-02 1.09 6.5097E-02 0.96
Nel = 27084 3.3624E-02 0.43 5.1538E-02 0.46

p = 2

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 177 5.8141E-02 � 9.1806E-02 �
Nel = 478 2.9484E-02 2.05 5.4598E-02 1.57
Nel = 1532 1.9231E-02 1.10 3.6324E-02 1.05
Nel = 5856 1.3387E-02 0.81 2.5930E-02 0.75

p = 3

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 177 2.2312E-02 � 4.0874E-02 �
Nel = 478 1.3563E-02 1.50 3.1478E-02 0.79
Nel = 1532 7.9297E-03 1.38 2.0212E-02 1.14

p = 4

‖E −Eh‖0 Order ‖E −Eh‖DG Order
Nel = 177 1.1736E-02 � 2.2663E-02 �
Nel = 478 7.0572E-03 1.54 1.8099E-02 0.68
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Table VII: Computational ost of solving the disrete system with MINRES.mesh1
4 mesh2

3Preonditioner Rel. residual CPU time Rel. residual CPU timeNone 3.9E-02 1516s 1.6E-02 933s
γ = 0 2.5E-04 3185s 8.2E-03 2110s
γ = 102 2.5E-04 3183s 8.2E-03 2110s
γ = 104 2.2E-04 3183s 7.4E-03 2107s
γ = 106 9.7E-06 3175s 8.9E-04 2107s
γ = 108 3.3E-04 3189s 3.6E-04 2105s
γ = 1010 � � 1.5E-05 2107s
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Table VIII: Known or predited minimum numbers and ahieved numbers of ubaturepoints for the Gauss integration rule over triangles and tetrahedraTriangles TetrahedraPoly. order Min. Ahieved Min. Ahieved1 1 1 1 12 3 3 4 43 4 4 5 54 6 6 11 115 7 7 14 146 12 12 24 247 13 13 28 318 16 16 40 439 19 19 52 5310 24 25 6811 27 27 12612 33 3313 36 37 210
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