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Abstract

We introduce a high-order accurate discontinuous Galerkin (DG) method for the
indefinite frequency-domain Maxwell equations in three spatial dimensions. The
novelty of the method lies in the way the numerical flux is computed. Instead
of using the more popular local discontinuous Galerkin (LDG) or interior-penalty
discontinuous Galerkin (IP-DG) numerical fluxes, we opt for a formulation which
makes use of the local lifting operator. This allows us to choose a penalty parameter
that is independent of the mesh size and the polynomial order. Moreover, we use
a hierarchic construction of H(curl)-conforming basis functions, the first-order
version of which correspond to the second family of Nédélec elements. We also
provide a priori error bounds for our formulation, and carry out three-dimensional
numerical experiments to validate the theoretical results.

Keywords: numerical flux with local lifting operator; IP-DG method; Maxwell
equations; H (curl)-conforming vector elements.

1 Introduction

The difficulties of solving the Maxwell equations usually lie in the complexity of the ge-
ometry, the presence of material discontinuities and the fact that the curl operator has
a large kernel. Moreover, the unknown fields in the Maxwell equations have special geo-
metric characteristics. These are most pronounced in the three-dimensional version of the
equations, and manifest themselves in the de Rham diagram; see e.g. [8, 21, 29]. How-
ever, many of the popular numerical discretisation techniques do not satisfy the de Rham
diagram at the discrete level, and often contaminate the numerical solution by produc-
ing spurious modes. One notable exception are curl-conforming finite-element methods,
which are special vector-valued polynomials that mimic the geometric properties of the
electromagnetic fields at the discrete level. Based on the concept introduced by Whitney
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in the context of algebraic topology [39], they were proposed for the Maxwell system by
Nédélec and Bossavit |7, 30, 31|. A hierarchic construction of high-order basis functions
that satisfy the same properties are given in |1] for tetrahedral meshes and in |34] for more
general three-dimensional meshes. The fact that these functions preserve the geometric
properties of the Maxwell equations has motivated many to study the Maxwell system
and its numerical discretisation in the framework of differential geometry [9, 21].

However, such elements suffer from a couple of practical hurdles. In particular, al-
though they are capable of handling complex geometrical features and material disconti-
nuities, implementation becomes increasingly difficult when high-order basis functions are
used. Furthermore, extending the approach to non-conforming meshes where the local
polynomial order can vary between elements and hanging nodes can be present poses
considerable difficulties.

One attractive alternative is the discontinuous Galerkin (DG) finite element method.
It can handle non-conforming meshes relatively easily and the implementation of high-
order basis functions is also comparatively straightforward. Research in the field of DG
methods has been very active in the past ten years or so; see the recent books [14] and [20]
and references therein. In the context of the Maxwell equations, a nodal approach was
developed in [18|, and further studied in [19]. This approach had originally been based
on Lax-Friedrichs type numerical fluxes, and was later applied to the local discontinuous
Galerkin method [37]. In the meantime, various DG discretisations of the low-frequency
Maxwell equations [23, 24| as well as the high-frequency Maxwell equations [22, 12, 11]
have also been extensively studied. The question of spurious modes in DG discretisations
has been addressed in |12, 37, 11] for conforming meshes and, more recently, in [13| for
two-dimensional non-conforming meshes.

In this work, we investigate the time-harmonic Maxwell equations in a lossless medium
with inhomogeneous boundary conditions, i.e. find the (scaled) electric field E = E(x)
that satisfies

1
Vx —-VxE-kesE=J in(,
oy

nxE=g onl, (1)

where Q is an open bounded Lipschitz polyhedron on R?* with boundary I' = 09 and
outward normal unit vector m. The right-hand side J is the external source and k is
the (real-valued) wave number with the assumption that k? is not a Maxwell eigenvalue.
Throughout this article the (relative) permittivity and the (relative) permeability corre-
spond to vacuum (or dry air). That is, we set ¢, = 1 and p, = 1.

The most important new feature of the high-order DG method discussed here is the
flux formulations we apply. In three-dimensional (or, indeed, in any dimensional) com-
putations of the Maxwell equations the most widely used numerical fluxes are the Lax-
Friedrichs flux, the LDG flux and the IP flux. See [20] for an overview. While we also
study the computational performance of the IP-DG method, the focus of this article is
on a numerical flux which makes use of the local lifting operator. This formulation was
originally introduced in |10| and further analysed—together with a large number of other
flux choices—in |4]|. It has yielded promising results in the discretisation of the Laplace
operator most typically for applications in fluid dynamics [28].



We derive a priori error bounds for the discretisation we introduce. Our analysis
proceeds along the lines of 22|, and is therefore restricted to the case of smooth material
coefficients. However, we believe that the analysis in [12|, which covers discontinuous
materials, can be extended to the DG method presented here. Our theoretical results
demonstrate the main advantage of the formulation. Namely, that it allows us to use
a stabilising parameter that is independent of both the mesh size and the polynomial
order. This is especially important in three-dimensional computations, where there are
still relatively few experiments available to help us tune a mesh-dependent parameter,
such as that in the IP-DG method.

For our DG discretisation we use a hierarchic construction of H(curl)-conforming
basis functions |1, 34|, which satisfy the global de Rham diagram in the continuous finite
element setting. However, because of the discontinuous nature of the method discussed
here, we cannot expect our discretisation to be globally curl-conforming and to satisfy
the global de Rham diagram. Nevertheless, we believe that the use of H (curl)-conforming
basis function is beneficial, since it entails that the average across any face is also H (curl)-
conforming. Furthermore, the local lifting operator is approximated by the same local
polynomial basis as the unknown field.

We implement the basis functions up to order five. In principle, it is possible to increase
the order further, but implementation in three dimensions is hindered by a number of
practical difficulties. First, high-order (i.e. p > 9) quadrature rules for tetrahedra are still
sub-optimal and computationally expensive, making the assembly a lengthy procedure.
Second, iterative solvers for indefinite linear systems are known to converge slowly. This
property is exacerbated by the use of very high-order H (curl)-conforming basis functions,
as finding suitable preconditioners then becomes more of challenge.

The outline of this article is as follows. We define the tessellation and function spaces
in Section 2, derive the DG discretisation for (1) in Section 3, and provide a priori error
bounds in Section 4. The issue of preconditioning is very briefly addressed in Section 5.
We verify and compare the numerical methods on both convex and concave domains in
Section 6. Finally, in Section 7, we conclude and provide an outlook.

2 Tessellation and function spaces

We consider a tessellation 7;, that partitions the polyhedral domain Q C R? into a set of
tetrahedra {K}. Throughout the article we assume that the mesh is shape-regular and
that each tetrahedron is straight-sided. The notations F,, Fi and F}? stand respectively
for the set of all faces {F'}, the set of all internal faces, and the set of all boundary faces.
For a bounded domain D C R?, d = 2,3, we denote by H*(D) the standard Sobolev space
of functions with regularity exponent s > 0 and norm || - ||s,p. When D = Q, we write
|| - [|s- On the computational domain 2, we introduce the space

H(curl; Q) := {u € [LZ(Q)]?’ VXxuce [LZ(Q)]?’} ;

with the norm [Ju|?,, = ||ul|2 + ||V x u|2. Let Hp(curl;2) denote the subspace of

curl
H (curl; Q) of functions with zero tangential trace. We will also use the notation (-, -), for



the standard inner product in [L%(D)]’,
(u,v)p, :/ u-vdV,
D

and the operator V, for the elementwise application of V = (9/dz,d/dy,d/9z)".

We now introduce the finite element space associated with the tessellation 7,. Let
P,(K) be the space of polynomials of degree at most p > 1 on K € 7;. Over each
element K the H (curl)-conforming polynomial space is defined as

Q" = {ue PR ; wrly, € [Py(s)l’s w-mjl, € Pyle))}, 2)

where s;, i = 1,2, 3,4 are the faces of the element; e;, 7 = 1,2,3,4,5,6 are the edges of
the element; wr is the tangential component of u; and 7; is the directed tangential vector
on edge e;. We define the space 3} as

- {0' e [LX(Q)P | olx € QP VK € Th} .

Consider an interface F' € Fj, between element K” and element K%, and let n” and
n’ represent their respective outward pointing normal vectors. We define the tangential
jump and the average of the quantity w across interface I’ as

[ul, =n" xu" +n xu” and {u} = (u" +u") /2,

respectively. Here u” and u” are the values of the trace of u at K% and 0K %, respec-
tively. At the boundary I', we set {u} = v and [u],; = n x u. In case we only need the
average of the tangential components, we use the notation {u}} .

For the analysis in Section 4, we also define the DG norm

_1 1
lvllpe = ([0ll§ + 11V x vl[g + 1072 [v] 7[5 £,)2,

where || - ||o.7, denotes the the L?(F) norm, and h(x) = hx, which is the diameter of face
F' containing . Similarly, hx denotes the diameter of element K. Note that the shape-
regular property of the mesh implies that there is a positive constant Cy independent of
the mesh size such that for all faces F' and the associated elements K and K* we have

hF S Cdmin{hKL,hKR}. (3)

To derive the DG formulations (in the next section) we first need to introduce global
lifting operators for w € ¥, The global lifting operator £ : [L2(F1)]> — X¥ is defined as

(L(u),v), = / u- [v]dA, VveXP, (4)

7

and the global lifting operator R(u) : [L2(F4)]° — 2P as

(R(w),v), :/ w- v} dA, VoesP. (5)

Fh



For a given face F' € F, we will also need the local lifting operator Rp(w) : [L2(F)]® —
Y7 defined as

(R(w), )Q—/Fu~{{'v}}dA, Vo € 52, (6)

Note that Rr(u) vanishes outside the elements connected to the face F' so that for a given
element K € 7;, we have the relation

=3 Re(w), Yue [LA(F)]". (7)

FeFy

3 Discontinuous Galerkin discretisation

We now derive the DG formulation for (1). We first provide a general bilinear form
where the choice of the numerical flux is not yet specified. Then we consider two different
definitions of the numerical flux, each of which results in a symmetric algebraic system.

3.1 Derivation of the bilinear form

The derivation follows the same lines as the one in |35| for the Laplace operator. However,
this time it is carried out for the curl-curl operator. We also refer to [4] for a unified
analysis on DG methods for elliptic problems.

We first introduce the auxiliary variable g € [L2(€2)]* so that, instead of (1), we can
consider the first-order system

Vxqg—kE=J in(Q,
qgq=V xE in (),
nxE=g onl. (8)

From here we follow the standard DG approach (given, for example, in [4] or [35] for
elliptic operators): a) integrate both equations in (8) by parts; b) in the element boundary
integrals substitute the numerical fluxes g and Ej, for their original counterparts; ¢) and
finally integrate again the second equation in (8) by parts. Then we seek the pair (E}, q;,)
such that for all test functions (¢, 7) € XV x 3F:

(@, Vi x @) — k> (En,@)g+ Y (n X} d)or = (J, d)g . 9)
KeT,
(@) = (Vo X By, m)g+ Y, (nx (B; — By), m) . (10)
KeT,

Before we proceed, we make use of the following result: for any given u,v € X7, the
identity

Z (N X u,v)y, =

KeTy,

{{u}} dA+/ {v} -] dA—i—/ (nxu) -vdA (11)

h



holds. Combine this with (9) and (10) to obtain

(@ Vi X @)a = 1 (Brsdg — | {ai}- [¢]rdA
- - {o} - [an]rdA+ /]-'b (nxq;) ¢dA=(J,9), (12)
and

(@) = (Vi x By = | 4B~ By} - [], 4

+ [ {r} [E; — E,)dA —I—/ (nx (E; — Ey))-wdA. (13)
Fi i

We can use the lifting operators to express—and thus eliminate-the auxiliary variable g,
as a function of Ej. From (13) and from the definition of the lifting operators (4) and
(5), it follows that

@, =V X Ey— L E} — Ev}) + R([E}, — Ep]7). (14)
Here we have also used the boundary definition of [-],. Substituting (14) into (12) and
applying (10) result in the weak form
B(En, @) := (Vi X Ey, Vi X ¢)g — k* (En, @)
- [ ABi - B} 190 x 9lpdd+ [ (B - Bily - (V) x ¢}
Fi Fi

- | taiy-101paa+ | laily-4o}aa
+/ <nx<Ez—Eh>>-<vhx¢>dA—/ g, (nx @) dA=(J.d)y. (15)
F F

This is the general primal formulation where one still has freedom to make the choices
about the numerical fluxes E} and g; that are most suitable for the problem. An overview
of different fluxes for the Poisson equation is given in [4].

3.2 Numerical fluxes

At this point, we specify the numerical fluxes E; and g; in (15). We investigate two
different formulations, one of which results in the IP-DG formulation that was thoroughly
analysed in [22|. The other is similar to the stabilised central flux, except that in the
stabilisation term we use the local lifting operator (6). Note that in both cases the
numerical fluxes are consistent, i.e. VE,q € H(curl,Q) the relations {E}, = n x E,
{a} =n x q,, [E]; = 0 and [g],; = 0 hold. The consistency of the DG formulation
with the numerical flux of Brezzi et al. [10] is discussed in Appendix A.



3.2.1 Interior-penalty flux
First, we define the numerical fluxes so that they correspond to the IP flux,

E;,={E.}, q, ={VixE)}—7[E)];, if FeF, (16)
nxE;=g ¢ =Vy,xE,—1(nxE,)+7g, if FecF.,

with 7 being the penalty parameter. We can now transform the following face integrals
as

| 1B =Bl AV < ohaa = = [ 1BV o} ad

/fb(nx(E;—Eh))-(th@dA:/ (g—nx Ey) - (Vi x ¢)dA,

7

faid- Il dA= [ AVix B (el da- [ riBl [l da

Fi Fi Fi

/ (nxq}’;)-qbdA:—/ (Vi x Ep) - (nx ¢)dA

7 7
—l—/FgT(nxEh)-(nx¢)dA—/Fng~(n><q,’))dA,

while the other face integrals are zero. If we plug these back to (15), we have the IP-DG
method for the time-harmonic Maxwell equations,

BP(Ep, @) = (Vi x Ep, Vi X @) — k2 (En, @) — . [EL] ;- {Vr x ¢} dA

- {WXE&%MNAﬁATMMWMNA

Fh

~T )= [ g Vaxo)aa+ [ rg-mxgar ()

7
Note that in the left-hand side we no longer distinguish explicitly between internal and
boundary faces. This is permissible thanks to the definitions of the average and the
tangential jump at the boundary.
3.2.2 Numerical flux of Brezzi et al.
As a next step, we define the numerical fluxes in the manner of Brezzi et al. [10]:

E;,={E.}, @ ={a}—aor(E:l,), if FeF, (18)
nx E; =g, q,=4q,—ar(nxE,)+ar(g), if FeF.



where ag(u) = np {Rr(up)} for F € F, and np € RT. Following the same line of
argument as before and using (14), the bilinear form (15) now transforms as

BY(Ep, @) = (Vi x By, Vi X @)y — K (Ey, ),
— | [Ey - {Vixo}dA— [ {Vix E,} [¢];dA

- | AR(E; - B} -[elrdA+ Y [ o ARe(BI} - [6]a4
+/Fbg-<vh><¢>dz4— > [ nRete)- (nx g)as. (19

FeF}

We can now use the relation

tR(EL = Elp)} - 16l dA = (R(IE}, = Ew]p), R([#]1))g

Fh
~n; Yy (Re([E; — Eily), Re([#]1))q
FeF,
= —n; Y (Re([Blp)s Re([8lr)q + 15 D (Re(lg = Enlp), Re([0]r)),
FeF; FeFy
= —ns Y (Re([Bilp), Re([8l)q + 17 Y (Re(lglr), Re([¢]1)q
FeFy Fer?

where ns is the number of faces of an element.
Let us introduce the bilinear form By : XF x ¥} — R and the linear form 7" : X8 — R

B (En, ) = (Vi x B Vi x d)g — K (B, b)g — L [Edly - (V0 x ¢} dA
- /F (Vi x B [0ldA+ S (o +np) Re([Ely), Re([8ly)g (20)
and

T () = (T, $)g L g (Vix @)dA+ Y (np +np) (Rilg), Re(n x 6))g. (21)

h FeF}

respectively, then the discrete formulation for the time-harmonic Maxwell equations can
be written as follows. Find E;, € ¥ such that for all ¢ € X} the relation

By (En, ¢) = T, (¢) (22)

is satisfied.



4 A priori error bounds

Following the lines of [22] we prove that the discontinuous Galerkin discretisation in
Section 3 results in an optimal convergence rate of the numerical solution with respect to
the classical DG norm. For simplicity, we restrict the analysis to homogeneous boundary
conditions.

A key ingredient in the error estimation formula is the following Garding inequality.

Lemma 1 There exists a constant 1, independent of the discretisation parameter h =
maxger, diam K and the wave number k, such that for all v € X} we have the following
inequality

By (v,v) > 8°|lv|lbe — (k* + 6%) [[v]l5, (23)
with (% = min{%, @L} and Ciyy determined by inequality (30).

Proof: The right hand side of (23) can be rewritten as
_1
B(IVn x vll5 + 1072 [v] 7[5 5,) — K*[[v]G:
Therefore, using (20) we have to prove that
Vi x ol =2 [ ol 4% x v} dA+ 3 G+ ) [Re(lel) I
Fh FeF, (24)
_1
> B2(IVh > vlfg + 1272 [v] 7 1[5 7).

The second term on the left hand side can be estimated with any positive C; as
4/ [vlp - {Vr x v} dA = / 2.2h" 20! [v] ;- h2Cy {V, x v} dA
Fh Fh
< [ 407107 ol P+ G (Vs x 0} [ dA
Fh

<ACT|NE [oly 5 s, + CF Y bl V0 x v} 5 -

FeF,
(25)

Next, we use in X} the inverse inequality
[wllf ox < Ciu (hre) w5 14 (26)

which is a straightforward consequence of the local inverse inequality (Lemma 1.38) and
the trace theorem (B.52) in [14]. The constant Ci,, does not depend on the mesh size, as
we have a shape-regular mesh. Applying (26) in the second term on the right hand side
of (25) for an arbitrary face F associated with elements K and K*® and using (3) we
obtain

1
heCH{Va x v} [5r < SheCE(IVa < 0P[5 e + 1Va x 075 )

1.,
< SCamin{hger, hier}CH([[Va x 0[5 p + 1Vi x 055 p) (27)

1
inC’inde(IIVh X Vg gr + Vi X 0§ k)

9



A summation of these inequalities over all faces gives that

Y G {Vh x o} I p < Vi x 0l (28)

FeF,

with the choice

2

=" 29
! C1invctdln'f ( )
The estimate preceeding (3.52) in [14] gives that for all v € X
Cine > IR ([0l 1E < 1072 [0]7 155, < Cinw Y IRe([0]4)II7 (30)
FeF, FeF,
with the constants C,, and é’inv independent of h. Therefore, using (29) we obtain
oy 1 nfCqCiny . _1
Oz [y 5.5, = =507 [l 5,
n;CyCluy ~ (31)
< MCCm G S Re(Tol) I

FeF,
Introducing the sum of (28) and (31) in (25) then gives
1 -
2 [ [l (9 % 0 44 < SV x 0l + 0, CuCinCine Y- IRe(IL )13 (32
Fh FeF,
h
and, using (30) we obtain

IV x w2 — 2 /f [y {Vh x v} dA+ 3 (s + )[R0l 2

FeFy

1 ~
> SV xvllg+ > (ng + e = 1CaCinyCin)) [ R ([0]1) 13
FeF,

- =
> min {5, ny +n0p = 1 CaCin Cine [V X o5+ D IRe([0]7)IIF)
FeFy

1 ~ 1 1
> 152%{5,nf +nr — 1 CaCiayCiny || Vi X 0|l + G b2 [v], [I5.5,)-

Inequality (24) is, therefore satisfied if
. ~ . [1 1
min (ny + np — nfCeCinCiny) > min < =, =— ¢,

FeFy,

inv

or, equivalently,

n Z nf(CdCinvC’inv - 1) + min {1, é’i} (33)



with n = miIlFE]:h nNr- O
Remark: The constant Ci,y in (26) can be estimated using Theorem 4 in |38|.

In the analysis we consider now the extended (cf. with (20)) bilinear form
By, : (Ho(curl, Q) + X7) x (Hp(curl, Q) + X¥) — R,
which is given as

Bi(u,v) = (V) x u, Vi x v)g = K (u,v)o — Y _ (Rp([u]y), Vi x v)g

FeFy,

+ (Re([vl7), Vi x wa + Y (nf +1p)(Re([ulr), Re([v]7))e

FeFy

and the linear form Jj, : Ho(curl, Q) + ¥} — R, defined as
jh('v) = (J, ’U)Q.

Lemma 2 The bilinear form By, is continuous on (Ho(curl, ) +XV) x (Ho(curl, Q) 4+ 37)
with respect to the DG norm, i.e. the following inequality holds for all w = ug + wy, and
v = vy + vy, with ug, vy € Hy(curl, Q) and up, v, € X7 -

B (u,v) < Cllullps||v]pe- (34)
Proof: Using the result of Lemma 4.8 in [22| it is sufficient to prove that

> (Re([uly), Re([olr))al < Cllullbellbe

FeF,

with some mesh-independent constant C'. Using the decomposition of w and v, which
implies that [uo]; = [vo]; = 0, the Schwarz inequality and the estimate in (30) we
obtain

Y Re(uly), Re(wlp)al = D [(Re(lunly), Re([orlr))al

FeF, FeFy,
< D IRe(Tunl IR, | D IRe(loal )13
FeF, FeFy

< CinalIn™= [unly oz, 072 [orl o,
= CinalIn™2 [l Jlo.7, 072 [0l llo7,
< Cavllullpcllvfpe. O
Next, we will estimate the residual term corresponding to the bilinear form By, which
is defined for an arbitrary v € 3 as

ra(v) = Bu(E, v) = Jn(v), (35)
where F is the exact solution of (1). We can easily obtain an equivalent form

’l“h(’l)) = Bh(E — Ey, ’U), Vove ZJZ (36)

11



Lemma 3 Using the notation 11, : [L2(Q)]* — XF for the Ly projection to the finite
element space we have for all v € X} the relation

i (v) = /ﬁ [v], -V x E - T,(V x B)} dA. (37)

If V x E € [H*(Q)]? also holds for some s with s > % then the following upper bound is
valid for all v € X}

2min{p,s
ra(v)] < Cllollpe, fny Y BV x B2 1, (38)

KeT,
where C does not depend on the mesh size.

Proof: First, we note that for v € 3} N Hy(curl, Q) we have [v]; = 0 and therefore, the
bilinear form By, (E, v) simplifies to

B.(E,v) = (V x E,V xv) — k*(E,v). (39)

Using (35) and the weak formulation of the time-harmonic Maxwell equations we obtain
that

rh(v) = By(E,v) — Jh(v) = (V x E,V x v)q — k*(E,v)q — (J,v) =0 (40)
is valid for all v € ¥} N Hy(curl, ©2). This implies the orthogonality relation
By(E — Ep,v) =0 Yv e X} N Hy(curl, Q).

The Green formula, the fact that the tangential components of V;, x E and {V, x E}
coincide, and the definition of the L, projection result in the following relation for an
arbitrary v € X

rp(v) = B(E,v) — Jp(v)
= (VX E, V), xv)g—k(Ev)o— > (Re([v]).V x E)g — (J,v)q

=(VxVxEv)+ | VXE:[v],dA -k (E,v)
— > (Re([v],), V x E)g — (J,v)q (41)
- /F (VX B} [oly dA— 3 (Re([o],), (¥ x E))q

FeFy,

:/ [l {V x E—I1,(V x E)} dA,
Fh

which proves (37).
If v € [H*(K)]® with s > 1 we use the interpolation estimate, see Theorem 1.7 in [2],

v — w2 + hicllv — o2 o5 < Crchi™™ P w2 4, (42)

12



where the constant Cl is independent of the mesh size h and the polynomial order p € ¥7.
Using (41), the Schwarz inequality and elementwise summation of (42) give that

rp(v) = / [vl; - {V<xE-IIL(VxE)} dA

Fh
_ / h!| o], |2 dA\// B[ {V x E —II,(V x E)}|>dA4
Fi Fi

2min{p,s
fwﬂm¢w§j@%<“ﬂWxEmK

KeT,
Using the shape-regular property of the mesh we obtain the upper bound as stated in
(38). O
Remark: Using the mesh parameter h, the upper bound (38) can be rewritten
as
[ra(v)] < Ch™ P |o| 6| Vi x Es. (43)
For the error estimation we split the computational error into three parts.

Lemma 4 Let n satisfy the assumption in Lemma 1. Then the computational error of
the solution Ey, € X7 of (1) can be estimated as

. Th(v v, FE—F

|\E—E|pe <C | inf ||E—v|pc+ sup ﬁ—i— sup . E— Eo , (44)
vex) ozves? [Vllba  ozvesr  [vlba

where the constant C' does not depend on the mesh size.

Proof: Using the triangle inequality and the Garding inequality stated in Lemma 1 we
obtain that for an arbitrary v € X}

|E — Epllpc < |E —vlpe + | Ex — v|pa

1 By(E, —v,w) Kk + 3 E, —v,w
<|[[E—-wv|pec+ 5 sup n(En ) 2/6 sup By~ v,w)
0% orwesr |w|pa 5 orwesr  lwlna
1 ByL(E, — E, w 1 BL(E —v,w
<IE -l + = sup DMEn-Ew) 1o BB —vw)
&4 0Awes? |wl/pa &) oAwes? |wllpa
k* + 3 E,—FE w k% + 3 E—vw
+ 726 sup 20 ) + 25 sup g
5 werr  llwlng 7 orwesr  [wlpe
1 rp(w C
< H.E—’IJH];)G—|——2 sup h( ) —|——2||E—’U||DG
6 0AWexy lwlpe 3
K + 52 E,—Ew) K+
P qp BBl KT gy
B orwesr lwllpa &)
C K+ p? 1 rp(w)
=(1+5+ IE —vlpe + = sup
32 B B 0AWeRY lwllpa
K+ B (En— E,w)
B orwesr lw|lbe
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Taking the infimum over all v € ¥} we obtain the statement in the lemma. [

Using smoothness assumptions to the exact solution of (1), we can now prove the main
result of this section.

Theorem 1 Assume that n satisfies the condition in Lemma 1 and for some parameter
s > % the exact solution of (1) satisfies

E € H*(Q) and V x E € H(Q).
Then for a mesh size h sufficiently small, we have the following optimal error bound
|E — Eullpe < Ch™™ =} (| B0 + |V x Ells0) - (45)

Proof: We have to estimate the last two terms on the right hand side of (44). For the
estimation of the third term we refer to Proposition 5.2 in |22]. Note that in the proof
therein the bilinear form a is investigated on (Hy(curl, Q) + 37) x (Hp(curl, Q) + X7),
which coincides with B;, on the same domain. Therefore, the same estimation holds, i.e.

sup £ < CW||E — Ep|pe. (46)

0#£vVex? lvlpe

For the estimation of the term infyesy [[E — v[|pe we take the Nédélec interpolant v =
IIy nE. which satisfies the relation

|E ~ Ty Eloc = [|1E ~ UnpEllen < CRMPH(|E| + [V x E|Ly). (47)

See Theorem 5.41 and Theorem 8.15 in [29] for the first and second family of Nédélec ele-
ments. Using (46), (47) and the result in (43) we obtain the estimate in the theorem. [

Remarks:

1. This result guarantees the same convergence rate as Theorem 3.2 in [22]|. The
profound difference between the IP method (discussed in |22|) and the approach
analysed here is that we do not have to use mesh dependent constants in the bilinear
form. More precisely, n does not depend on h, which results in the uniform stability
of the solution.

maxge7;, b

minge7;, hix
should use the result of Lemma 3 and the elementwise interpolation estimate corre-

sponding to (47).

2. The upper bound is not sharp if the ratio is large. In those cases one

3. According to (46) the mesh size should satisfy the inequality Ch® < 1.

4. For an extensive study on the smoothness assumption in Theorem 1 we refer to |3].
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5 A note on preconditioning

The discretisations (17) and (20) result in linear algebraic systems. In this section we
simplify notation and write the linear system as

Az =, (48)

which can now denote either of the linear systems that result from the discretisations (17)
and (20), respectively. The system (48) can be solved by a direct method or an iterative
method, typically one of the numerous Krylov subspace methods. Direct methods are
reliable but not well suited for large-scale problems because one also needs to store the
matrix fill-in during the solution process. On the other hand, efficient iterative methods
require a good preconditioner. Since matrix A is symmetric but not definite, finding an
efficient preconditioner is a non-trivial task. See for example |5, 6, 15, 33, 36|.

The approach we adopt here is that of shifted preconditioners for second-order deriva-
tive operators. Let S be the matrix that corresponds to the discretisation of the curl-curl
operator, and let M be the discretisation of the second term in (20) (and also in (17)).
One can then rewrite (48) as

(S—M)x =0b. (49)
We use preconditioners that take the form
P = SB + fyMBv (50)

where S consists of Ng-by-Ng diagonal blocks of S, with N being the local number of
degrees of freedom in element K. The positive real number v is the shift parameter and
we determine its value experimentally. The matrix Mp is either taken to be the identity
matrix [ or chosen to be M itself. Finally, we compute the Cholesky factorisation of
P and use its resulting matrices to apply two-sided preconditioning to the linear system
(48).

In principle, it is possible to choose Sp to be S, and this is often the case when S
represents the discrete counterpart of the Laplacian. However, in the present situation
the Cholesky factorisation turns out to be computationally very expensive if Sp = S.

The approach we have just presented here is similar to the one proposed in [36] for
the discrete Helmholtz operator. But the analysis in that work is not directly applicable
to the DG discretisations discussed here. Instead, we rely on computational evidence
to verify the approach. On the whole, we have found that, if v is suitably chosen, the
preconditioners speed up the convergence of the MINRES method in terms of iteration
steps as well as CPU time. The optimal value of v depends slightly on the mesh-size h
and more considerably on the polynomial order of the approximation p. We will briefly
illustrate this behaviour in Section 6.3.

6 Numerical experiments

We now provide three-dimensional numerical examples to verify and demonstrate the
DG discretisations of (1). For all computations, H (curl)-conforming vector-valued basis
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functions are used [1, 34]. We also mention here that the first six of the basis functions
constitute the first-order first-family of Nédélec elements |30]. The first twelve of the basis
functions used here are not the same as those that form the first-order second-family of
Nédélec elements. However, they span exactly the same space and have exactly the same
properties as those defined in [31].

In the IP-DG discretisation, the interior-penalty parameter in (17) is often defined as

2
T = Clpp—, (51)

hp
where Cip = 10, p is the polynomial order, and hp is the diameter of the face F' € Fj,. The
value of the constant Cip is based on numerical experiments. It has been demonstrated for
a range of problems that this choice of Cip is sufficiently large to guarantee stability. See
|25] and references therein. We have found, however, that in the case of three-dimensional
computations for the Maxwell system, this penalty is not large enough. So instead of (51),

we define the above parameter as

2
T = C’IPL9 i 1> )
hp

with Crp = 10. See also the recent article 13|, where the same penalty term is used for
computing Maxwell eigenvalues on two-dimensional domains.
The parameter np (20), resulting from the stabilisation term ap in (18), is set to

Nr = 207

but the results do not significantly depend on this choice, as long as ng satisfies condition
(33).

All numerical computations have been carried out in the framework of hpGEM [32],
a software environment for DG discretisations suitable for a variety of physical problems.

6.1 Example 1: smooth solution

As a first example, we consider the Maxwell equations (1) with &% = 1 in the domain
Q = (0,1)* and assume the boundary to be a perfect electric conductor (PEC), i.e. g = 0
in (1). The source term is given as

sin(my) sin(7rz)
J(z,y,2) = (2r* — 1) | sin(r2) sin(7z) | , (52)
sin(7zx) sin(my)

so we have the exact solution

sin(my) sin(7z)
E(z,y,z) = | sin(7z)sin(nz) | . (53)
sin(7x) sin(7y)

The computations are performed on two different sequences of meshes. The first are
highly structured meshes and constructed as follows. The domain 2 = (0, 1)3 is divided
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into n X n X n number of congruent subcubes, with integer n = 2™ and nonnegative
integer m. We then divide each of these subcubes into five tetrahedra, four of which are
congruent and have volume one-sixth of the original cube. The fifth has volume one-third
of the original cube. Although the mesh is not uniform, this has proved to be a simple and
convenient way of measuring convergence, as each time we refine the mesh, the maximum
of the face diameter hp will be exactly half of that of the previous mesh. The convergence
results on structured meshes are shown in Table I for the IP-DG method and in Table III
for the method of Brezzi et al.

We have also run the same example on a sequence of unstructured meshes. The meshes
were generated by CentaurSoft (http://www.centaursoft.com), a package suitable for
generating a variety of hybrid meshes with complex geometries. In this sequence of meshes,
we begin with a coarse mesh of 54 tetrahedra. Then we divide each tetrahedron into eight
smaller tetrahedra to get the next (finer) mesh. The convergence results on structured
meshes are depicted in Table II for the IP-DG discretisation and in Table IV for the
method of Brezzi et al.

Based on our analysis in Section 4 and on the analysis on [22], the optimal convergence
rate for this example is O(hP™!) in the L*(Q2)-norm and O(hP) in the DG norm. We can
see that, for both methods on structured meshes, optimal convergence rate is achieved in
the L?(Q2)-norm, and higher-than-optimal convergence rates are observed in the DG norm.

On unstructured meshes, we only have an estimated convergence rate with h ~ N_*. The
convergence rates are slightly suboptimal, in part because we have to estimate the rates
of convergence, and in part because we are still in the pre-asymptotic regime.

W=

6.2 Example 2: Fichera cube

As a second example, we investigate the DG discretisations (17) and (22) of the
Maxwell equations (1) with non-smooth solution. To this end, we consider the domain
Q = (=1,1)*\ [~1,0)°, and select J and the non-homogeneous boundary conditions so
that the analytical solution is given by

E =Vo¢(r), with ¢(r)=e"sin(r), (54)

where r = /22 4+ y? + z2. The analytical solution contains a singularity at the re-entrant
corner located at the origin of Q. As a result, E lies in the Sobolev space [H=¢(€)]°, ¢ > 0.
Again, based on our analysis in Section 4 and on the analysis of [22|, the theoretically
predicted asymptotical convergence rate for (54) is O(h™®(12+D) in the L?(Q)-norm and
O(R™®(P)) in the DG norm.

We compute the numerical solutions for a sequence of globally refined unstructured
meshes. The global refinement is, of course, far from being optimal for singular solutions,
but it is nonetheless suitable for Yerifying the theoretical results. The convergence rates

are again estimated with h ~ N_ 3.

We show the errors of the IP-DG approximations for (54) in Table V. The errors of
the discretisation with the local lifting operator are depicted in Table VI. We can expect
first-order convergence in both norms, which is what we approximately observe. Precise
convergence rates are not achieved because the meshes are not subsequently refined (i.e. we
do not use the previous mesh to construct the next), and also because they are still in the
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pre-asymptotic regime. Nevertheless, we see that the error, as predicted, is determined
by the Sobolev coefficient and not by the order of the approximating polynomials.

6.3 Performance of the iterative solver

To illustrate the effect of the preconditioning technique briefly described in Section 5,
we consider two cases of Example 1 from Section 6.1. One we call mesh} and it consists
of 27648 elements with polynomial order p = 1. The other, mesh?, consists of 3456
elements with polynomial order p = 2. In Table VII we show the relative residual and the
computational work after 10000 iterations for different values of v. We can see that with
the correct value of v, the convergence rate can be improved significantly. Let us assume,
for example, that we want to achieve a tolerance of tol = 107 for the given problem
with mesh}. With v = 109 it takes 15324 iterations and 4990s to reach that tolerance. By
contrast, the relative residual for the system without preconditioning is still only 0.0085
after 40000 iterations and 6097s. Finally, we note that there is a limit to how far the
parameter v can be increased without compromising the solution of the discrete weak
formulation(s). That limit is around 10'® 10", and may thus mean that for high-order
approximation we need to resort to a less-than-optimal value for 7.

7 Concluding remarks and outlook

We have introduced and analysed a discontinuous Galerkin method for the indefinite
time-harmonic Maxwell equations in three dimensions. The novelty of this approach
is twofold. First, we make use of a local lifting operator to compute the (stabilising)
numerical flux. This approach is much in the spirit of [10], and it has been applied to the
Laplace operator in a number of articles since. It also allows us to choose the constant
in the flux formulation independent of the mesh size and the polynomial order. Second,
we use H (curl)-conforming vector-valued functions to build the local polynomial basis,
which is a very natural choice for the Maxwell equations and is widely used in H (curl)-
conforming finite element discretisations [29].

We have presented a couple of numerical experiments which have demonstrated that
the method converges at an optimal rate on both structured and unstructured meshes.
We have also carried out the same experiments using the IP-DG flux with the same basis
functions. Optimal convergence rate is, too, observed on both types of meshes. However,
for the IP-DG method the penalty parameter depends on the mesh size as well as on
the polynomial order. Furthermore, we found that we need a slightly larger penalisation
than the empirical value given in [22, 25|, which is mostly based on two-dimensional
experiments. See also [13].

It is also clear that a number of questions have remained unanswered. The most
obvious one concerns the spectral properties of the method. In [12| the authors provided a
general framework for studying the spectral correctness of DG methods (see also [11, 13]).
The method introduced in this article fits into that framework, and the study of its
spectral properties is currently under way.

Another important step would be to provide a posteriori error indicator for the dis-
cretisation, either in the form of explicit a posteriori error analysis |25], or in the context
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of implicit a posteriori error estimation [26, 16].
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A Appendix: consistency

In order to show consistency for the bilinear forms resulting from the flux formulation
(18), we begin with the general primal formulation

Bw(En, @) = (Vi X Ep, Vi X ¢)g — k* (En, @)
- [ AB - B} uxalodd+ | 18- By AV g} a4

= | Aai-[8lydA+ | [a]- {e}dA
Fi Fi

+/fﬁ(n><(E;—Eh))-(vhxqb)dA+/fb(nxq2)-¢>dA.

h

Using the identity

(Vh X Eh, Vh X ¢)Q = (Vh X Vh X Eh, QZ'))Q
- - {{¢}} . [[Vh X Eh]]TdA + . {{Vh X Eh} . [[¢]]TdA

h

+/fb(n><qb)-(Vh><Eh)dA,

h

we have the equivalent formulation

Bh(Eiw ¢)) = (vh X vh X Eh> ¢)Q - k2 (Eh> ¢)Q
— _{{E;—Eh}}-[[th(ﬁ]]TdA—l—/}_ [E; — Ei]r-{Vi x ¢} dA

F /

T

h

~ /. {a;, — Vi x E,} - [@],dA + - lay, — Vi x Ep], - {o} dA

"—/}_b(nx(EZ—Eh))'(Vth’))dA—i—/}_b(nX(q;—thEh))'(ﬁdA.

h
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We now insert the exact solution E into the bilinear form to obtain
Bh(E7 ¢) = (v X v X Ev d))Q - k2 (Ev d))Q
- [ AB} - B)- (Vi x 0l ad+ [ 1Bil,- (Vi x o} a4
i F

4
h

- [ (et =Vix B)- @l dd+ [ il g as

d i
‘Fh h

# [ X (Bi=E) - (Vi x@)dd+ [ (nx(ai =V < B)) -

7

since {E}; = Er, {V, x E},; = (V) x E); and [E], = [V, x E]; = 0. Note that we
only require the continuity of the tangential component of the exact solution E. This is
correct because we take the inner product of the fields with tangential jumps so the normal
components do not have a contribution. It is easy to see that the numerical flux E; is
consistent (in either form) at the internal faces, that is, {E} } = Er and [E}]; = 0.
The bilinear form then further simplifies as

Bh(Ea¢) = (v XV X E>¢)Q - k2 (E>¢)Q
- / {aL}) — Vi x B) - [$l,dA + L [ajly - {¢}dA

7 i
Fh h

+/ (nx(E’;L—E))-(thqb)dA%—/ (nx(q;, —V,x E))-¢dA.
Fb i

h

Recall that

a, =V x By — LI{E}, — Ex}) + R([E}, — En]7)-
If we replace Ej with E, we obtain

[E) — E]; = [{E} - E]; =0,
and

(L E, - E}. ) =

B - B} [8l,dd = [ (B} - B}, lol, a4 =0,
Fi Fi

since {E}}, = E7r. Thus {q;} = {V x E} at F} and {q}}} = V x E at F}. We also
have [g;]; = 0, from which we obtain

Bh(E7¢>:(vxvXEvd))Q_kz(Evd))Q
—/P({{VXE}}—VXE)-[[qb]]TdAjL/ (nx (E; — E))-(V, x ¢)dA

7

+/ (n><(qZ—VxE))-qbdA:(VxVXE,¢)Q—I<:2(E,¢)Q,
]:b

h
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thanks to the fact that

{V xE} =V xE)-[¢]l,={Vx E}y = (VX E))[¢]; =0,
and to the conditions

nxE,=nxE=g and q,=VxE at F}.

B Appendix: construction of the linear system

In this appendix we discuss some of the implementation details of the DG discretisations
introduced in Section 3. We use the hierarchic construction of H(curl)-conforming basis
functions from [1] (see also [34]). The complete set of hierarchic basis functions {4}
that satisfy the discrete de Rham diagram (i.e. L>-, H'-, H(curl)- and H (div)-conforming
basis functions) can also be found in [1] and |34]. The basis functions are usually defined
for a reference element K € R3, which in our case is chosen to be given by the vertices

v; =(0,0,0), w9 =(1,0,0), w3=1(0,1,0), wv4=(0,0,1).

Then the basis functions need be transformed from the reference element to each physical
mesh element K € 7;,. We refer to |29] for the details of the H (curl) transformation rules.

We can now express the unknown field with the polynomial expansion in each element
as

Np

Ef(z) =Y Ef¢f(z), VzeckK. (55)

j=1

The entries of the elemental stiffness matrix S and the elemental mass matrix Mg can
be expressed as

5= [T (Dxw)av and M= [ g
respectively. Here, the indices run from ¢,7 = 1,..., Ng, with Ng being the number of
degrees of freedom in element K.
As for the face contributions F' € Fy, in (17) and (20), we need to consider values in

the two elements K and K% which are connected through face F. So we (abuse the
notation slightly and) define the matrices D*®, G*# and H*# as

D/ = / Pl - (nf x yl) dA,

F
G/ = /F (Vi x 9)) - (n x 9T) dA,
H@sz/F(nxwf) - (n x 9l dA.

The indices 7 and j now run between 1 and Ny and between 1 and Ng, respectively, with
Ny, and Ng being the number of degrees of freedom in element K and Kg. Note that the
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face matrices are ‘sparse’ as many of the basis functions’ tangential components vanish
at a given interface. This is especially true for higher order elements.

Exploiting the appropriate transformation rules 29|, the above integrals can be com-
puted on the reference domain K (and on the reference face Fe R?) by means of Gauss
cubature rules. One way to define Gauss cubatures on a tetrahedra is to compute them
for the cube and ‘collapse’ the cubature points (and the associated weights) into the
tetrahedron. However, this procedure turns out to be very expensive for higher-order
discretisations. Instead, we are making use of the so-called economical Gauss cubatures
|34|, which have been derived for polynomials up to order p < 9. The construction of
these points and weights is based on topological symmetries within the tetrahedron, and
is considerable more complicated for orders p > 9. Since we implement basis functions up
to polynomial degree five, the highest order cubature rule we need (to compute the entries
of the mass matrix, for example) is p = 10. Table VIII shows the number of cubature
points needed to integrate polynomials up to order p < 13. (The table is taken from
[34] and we are not aware of any improvements on the cubature rules since.) We can im-
mediately see that numerical integration over a tetrahedron becomes increasingly costly,
which practically prohibits the use of very high-order polynomials for three-dimensional
problems. This hurdle can be partially circumvented by using nodal-based polynomial
bases. See [17, 27, 20| for example.

We now focus on computing the lifting operators in the last term of (20). We approx-
imate the local lifting operator R in (6) by using the same basis as for the discretisation
of Eh,

RE([E], ZRKF¢ ), Veek.

Since Rp is only nonzero in the two elements K and Kz which are connected to the face
I, we have

¢" RE(E]) AV + [ ¢" - RE([Er]y) dV =
Ky, Kpgr
1
5/ (¢" + ¢") - (n" x Ef + nf x Ef)dA, V¢ ¢" € =2, (56)
F
If we substitute these into (56) and use the fact that it must be satisfied for arbitrary test

functions ¢” and ¢, we obtain the following matrix relations

1
5DLREH, (57)

MRRR — %DRLEL 4 %DRRER,

MLRL — %DLLEL +

where

ij.:kZ/Kq,z;,.-wjdv and D= 7{1/) n x yi) dA.
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Let us again use the definition of the local lifting operator (6) for a given face F' € F to
recover

Re([El). Re([8]7))g = / (6], - {Re([E],)} dA =

1

3 [ (nhx 6"+ x 8) - (RE(ELL) + REEl) dA. (9

which in turn can be approximated as

5 [ (nf x @+ x @) (RE(B,) + RE(B],)) dA ~
i <CLL (ML)—1 DEL 1 QLR (MR)—l DRL) I

i <CLL (ML>_1 DELE 4 CLR (MR)—l DRR) 4

i <CRL (ML>—1 DL 1 CRR (MR)—l DRL) X

i <CRL (ML)_l DLE | CRR (MR)_l DRR)

We use this relation to compute the last term of (20). The construction of the other
elemental matrices follow the standard procedure. Finally, an assembly procedure is
performed to arrive at the linear system

AE, = by, (59)

where the matrix A is symmetric but not definite.
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Table I: Ezample 1. Convergence of the IP-DG method on structured meshes.

p=1
|E — Ello Order \E — E4llpc Order
Ng =5 2.5854E-01 — 4.5133E-01 —
Nq =40 2.5686E-01 0.01 3.9962E-01 0.18
Ny = 320 5.8863E-02 2.13 1.1723E-01 1.78
Nq = 2560 1.4605E-02 2.01 4.5535E-02 1.36
Ng = 20480 3.6754E-03 1.99 2.0669E-02 1.14
p=2
|E — Ello Order \E — E4|lpc Order
Ng =5 2.8524E-01 — 4.1467E-01 —
Ng =40 3.1044E-02 3.20 5.0040E-02 3.05
Ng = 320 3.7101E-03 3.06 8.2802E-03 2.60
Ny = 2560 4.6444F-04 3.00 1.7224E-03 2.97
p=3
|E — Ello Order \E — E4|lpc Order
Ng =5 5.7244E-02 — 8.5302E-02 —
Ng =40 4.5008E-03 3.67 7.1218E-03 3.58
Ng = 320 2.3366E-04 4.27 5.0151e-04 3.83
p=4
||E — EhHO Order HE — EhHDG Order
Ng =5 2.3057E-02 3.2834E-02
Nq =40 5.3477E-04 0.43 8.1995E-04 5.32
Na = 320 1.5714E-05 5.09 3.0315E-05 4.75
p=5
|E — Ello Order \E — E4llpc Order
Ng =5 4.4752E-03 — 6.4666E-03 —
N =40 1.4442E-04 4.95 2.0711E-04 4.96
Ng = 320 1.1092E-06 7.02 1.8604E-06 6.80
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Table I1: Example 1. Convergence of the IP-DG on unstructured meshes.

p=1
|E — Ello Order \E — E4llpc Order
Ne =54 2.2548E-01 — 3.6943E-01 —
Ny =432 7.1925E-02 1.65 1.4363E-01 1.36
Ny = 3456 2.1031E-02 1.77 6.1771E-02 1.22
Ng = 27648 6.2947E-03 1.74 3.8283E-02 0.69
p=2
|E — Ello Order \E — E4llpc Order
Ng =54 3.0435E-02 — 4.9090E-02 —
N =432 4.9945E-03 2.61 1.0397E-02 2.24
Ng = 3456 7.2720E-04 2.78 2.4843E-03 2.07
p=3
||E — EhHO Order HE — EhHDG Order
Ny =54 4.8645E-03 7.9219E-03
Ny =432 4.9752E-04 3.29 9.8238E-04 3.01
Ng = 3456 4.1326E-05 3.60 1.2622E-04 2.96
p=4
|E — Eullo Order |E — Eyl||pc Order
Ng =54 5.4669E-04 — 8.2955E-04 —
Ng = 432 3.7641E-05 3.86 6.3357E-05 3.71
p=5
||E — EhHO Order HE — EhHDG Order
Ny =54 1.4740E-04 2.1325E-04
Ny =432 6.0287E-06 4.61 9.2191E-06 4.53
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Table III: Example 1. Convergence of the method of Brezzi et al. on structured meshes.

p=1
|E — Ello Order \E — E4llpc Order
Ng =5 5.2216E-01 — 7.4201E-01 —
Nq =40 3.0615E-01 0.77 4.3594E-01 0.77
Ny = 320 7.1871E-02 2.09 1.0625E-01 2.04
Nq = 2560 1.7673E-02 2.02 2.9920E-02 1.83
Ng = 20480 4.4003E-03 2.01 1.0473E-02 1.51
p=2
|E — Ello Order \E — E4|lpc Order
Ng =5 3.0892E-01 — 4.3901E-01 —
Ng =40 3.3887E-02 3.19 4.9367E-02 3.15
Ng = 320 4.0850E-03 3.05 6.7364E-03 2.87
Ng = 2560 5.0782E-04 3.01 1.1718E-03 2.52
p=3
|E — Ello Order \E — E4|lpc Order
Ng =5 6.4391E-02 — 9.1864E-02 —
Ng =40 4.7730E-03 3.75 6.9565E-03 3.72
Ng = 320 2.4716E-04 4.27 4.3197E-04 4.01
p=4
||E — EhHO Order HE — EhHDG Order
Ng =5 2.3335E-02 3.3088E-02
Ng =40 5.5087E-04 5.40 8.1681E-04 5.34
Ng = 320 1.6179E-05 5.09 2.8348E-05 4.85
p=>5
|E — Ello Order \E — E4llpc Order
Ng =5 4.3251E-03 — 6.1734E-03 —
N =40 1.4449E-04 4.90 2.0586E-04 4.91
Ng = 320 1.1041E-06 7.03 1.8247E-06 6.82
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Table IV: Ezample 1. Convergence of the method of Brezzi et al. on unstructured meshes.

p=1
||E — EhHO Order HE — EhHDG Order
Ng = 54 2.9871E-01 4.2626E-01
Ng = 432 9.4108E-02 1.67 1.3758E-01 1.63
Ng = 3456 2.7543E-02 1.77 4.3294E-02 1.67
N = 27648 8.3263E-03 1.73 1.5441E-02 1.49
p=2
|E — Ello Order \E — E4|lpc Order
Ng =54 3.3293E-02 — 4.8203E-02 —
N =432 5.4652E-03 2.61 8.4958E-03 2.50
Ng = 3456 7.9569E-04 2.78 1.5428E-03 2.46
p=3
||E — EhHO Order HE — EhHDG Order
Ng = 54 5.2936E-03 7.7574E-03
N =432 5.2925E-04 3.32 8.3911E-04 3.21
Ng = 3456 4.3710E-05 3.60 8.7359E-05 3.26
p=4
||E — EhHO Order HE — EhHDG Order
Ny =54 5.6374E-04 — 8.2022E-04 —
Ng = 432 3.8520E-05 3.87 5.8694E-05 3.80
p=9
||E — EhHO Order HE — EhHDG Order
Ng = 54 1.4759E-04 2.1091E-04
Ng = 432 6.0329E-06 4.61 8.8707E-06 4.57
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Table V: Example 2. Convergence of the IP-DG method on unstructured meshes.

p=1
|E — Ello Order \E — E4llpc Order
Ny = 177 1.5881E-01 — 2.3438E-01 —
Ny =478 8.7179E-02 1.81 1.2750E-01 1.84
Ny = 1532 6.8334E-02 0.63 9.9882E-02 0.63
Ng = 5856 4.2021E-02 1.09 6.4586E-02 0.98
Ng = 27084 3.3663E-02 0.43 5.0961E-02 0.46
p=2
|E — Ello Order \E — E4|lpc Order
Ng =177 5.7874E-02 — 9.1278E-02 —
Ny =478 2.9493E-02 2.04 5.4558E-02 1.55
Ny = 1532 1.9221E-02 1.10 3.6505E-02 1.04
Ng = 5856 1.3413E-02 0.80 2.6045e-02 0.76
p=3
|E — Ello Order \E — E4|lpc Order
Ny =177 2.2440E-02 — 4.0852E-02 —
Ny =478 1.3614E-02 1.51 3.1392E-02 0.80
Ny = 1532 7.9415E-03 1.39 2.0326E-02 1.12
p=4
||E — EhHO Order HE — EhHDG Order
Ny = 177 1.1709E-02 2 2644E-02
Ng =478 7.0465E-03 1.53 1.8140E-02 0.67
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Table VI: Ezample 2. Convergence of the method of Brezzi et al. on unstructured meshes.

p=1
||E — EhHO Order HE — EhHDG Order
Ng = 177 1.5629E-01 2.3634E-01
Ny =478 8.6095E-02 1.80 1.3488E-01 1.69
Ny = 1532 6.8245E-02 0.60 1.0016E-01 0.77
Ng = 5856 4.1962E-02 1.09 6.5097E-02 0.96
Ng = 27084 3.3624E-02 0.43 5.1538E-02 0.46
p=2
||E — EhHO Order HE — EhHDG Order
Ny =177 5.8141E-02 — 9.1806E-02 —
Ng =478 2.9484E-02 2.05 5.4598E-02 1.57
Ny = 1532 1.9231E-02 1.10 3.6324E-02 1.05
Ng = 5856 1.3387E-02 0.81 2.5930E-02 0.75
p=3
|E — Ello Order \E — E4llpc Order
Ng = 177 2.2312E-02 — 4.0874E-02 —
Ny =478 1.3563E-02 1.50 3.1478E-02 0.79
Ny = 1532 7.9297E-03 1.38 2.0212E-02 1.14
p=4
||E — EhHO Order HE — EhHDG Order
Ng = 177 1.1736E-02 2.2663E-02
Ng =478 7.0572E-03 1.54 1.8099E-02 0.68
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Table VII: Computational cost of solving the discrete system with MINRES.

mesh} mesh?
Preconditioner Rel. residual CPU time Rel. residual CPU time
None 3.9E-02 1516s 1.6E-02 933s
v=0 2.5E-04 3185s 8.2E-03 2110s
v = 10? 2.5E-04 3183s 8.2E-03 2110s
v =10% 2.2E-04 3183s 7.4E-03 2107s
v =106 9.7E-06 3175s 8.9E-04 2107s
v =108 3.3E-04 3189s 3.6E-04 2105s
v =10 — — 1.5E-05 2107s
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Table VIII: Known or predicted minimum numbers and achieved numbers of cubature
points for the Gauss integration rule over triangles and tetrahedra

Triangles Tetrahedra

Poly. order Min. Achieved Min. Achieved
1 1 1 1 1
2 3 3 4 4
3 4 4 5 5
4 6 6 11 11
5 7 7 14 14
6 12 12 24 24
7 13 13 28 31
8 16 16 40 43
9 19 19 52 53
10 24 25 68
11 27 27 126
12 33 33
13 36 37 210
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