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Abstract

In this article, we consider the stability of two single-server polling models. More specifi-
cally, we will state and prove the stability conditions of single-server polling systems operating
under the pure and exhaustive exponential time-limited service discipline. These conditions
will be proven for the polling system operating under the periodic polling strategy and pre-
emptive service. The stability proof of the pure time-limited discipline is straightforward as
stability may be considered for each queue in isolation. The proof for the exhaustive time-
limited discipline is more laborious. We follow the line of proof as introduced by Fricker and
Jäıbi [1] for a large class of service disciplines. Unfortunately, the preemptive nature of the
exhaustive time-limited discipline excludes it from this class and as a result substantial efforts
are required to modify the proof as to allow for preemptive disciplines. Finally, the extension
of the proofs to the Markovian polling strategy is discussed.

1 Introduction

In this article, we will state and prove the stability conditions for the pure and exhaustive service
discipline in the context of polling models. The pure time-limited discipline states that the
server visits a queue exactly for a random amount of time, while according to the exhaustive
time-limited discipline the server already leaves a queue as soon as it becomes empty. Both
service disciplines are preemptive disciplines meaning that any on-going service at the time limit
will be interrupted and must be restarted at a next visit. The stability conditions prescribe limits
on the amount of traffic that can be sustained by the system. Exceeding these limits leads to
instable behavior, but operation of the system just below these limits will already lead to large
buffers and long transfer delays.

Stability conditions for a large class of polling systems have been proven by Fricker and Jäıbi
[1]. In particular, the authors considered periodic polling systems under non-preemptive and
work-conserving service disciplines. The necessary and sufficient condition for stability reads:

System is stable ⇐⇒ ρ + max
1≤i≤M

(

λi

E[G∗
i ]

)

· cT < 1,

where ρ is the total offered load to the system, cT is the mean total switch-over time during a
cycle and E[G∗

i ] denotes the mean number of served customers at Qi during a cycle when Qi

is saturated. Saturation in this context means that there is an unlimited number of customers
waiting to be served at a polling instant to Qi. For the exhaustive and gated service discipline,
this condition readily simplifies to:

System is stable ⇐⇒ ρ < 1,
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since the number of served customers may grow to infinity in these cases, i.e., E[G∗
i ] = ∞. Later,

the same authors have also proven a similar stability condition for the Markovian polling strategy
[2]. However, stability results for preemptive service disciplines, such as the pure and exhaustive
time-limited disciplines, are not available in the literature.

To close this gap, we will prove stability conditions for both time-limited disciplines. This
will be done for the periodic polling strategy and an exponential time limit. For the pure-time
limited discipline, the stability question can be resolved by studying each queue in isolation. For
the exhaustive time-limited discipline, stability must be considered for the system as a whole
and we will prove the stability condition by adopting the line of proof of [1].

This article is organized as follows. The model is formally described in Sect. 2. Next, the
stability conditions for the pure and the exhaustive time-limited disciplines are given in Sects. 3
and 4, respectively. We conclude the article in Sect. 5.

2 Model

Let us consider the basic polling system of M queues with Poisson arrivals and generally dis-
tributed service and switch-over times. The server visits the queues according to the periodic
polling strategy. Without loss of generality (w.l.o.g.) we define a cycle as the time period be-
tween two consecutive polling instants at the 1st stage (or visit) of the cycle. A cycle consists
of a stages and we denote by t(j), j = 1, . . . , a, the queue served during stage j of the cycle.
Further, the number of times Qi is visited during a cycle is denoted by ai, i = 1, . . . , M , with
ai ≥ 1 and

∑M
i=1 ai = a.

The service discipline assumed in Sect. 3 is the pure time-limited discipline, whereas in Sect. 4
the exhaustive time-limited discipline is assumed. The time limit at Qi for both disciplines is
exponentially distributed with parameter ξi. Due to the time limit, service will be preempted at
the timer expiration and in such case a service time will be redrawn from the original distribution
at the start of the next visit; thus, we assume the so-called preemptive-repeat with resampling
strategy.

3 Pure exponential time-limited discipline

For the pure time-limited discipline, the queues in the system are independent from a stability
perspective as service capacity cannot be exchanged among the queues. The polling system is
stable if and only if there exists a stationary regime in which each customer in the system can
be served in a finite period of time. We will say that the system is stable if and only if all the
queues in the system are stable.

A necessary and sufficient condition for the stability of a polling system with the server
operating under the pure exponential time-limited discipline is given in the following theorem.

Theorem 1 (Pure exponential time-limited discipline).

System is stable ⇐⇒ ρi < κi, ∀i∈{1,...,M},
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where

ρi = λi ·
1 − X̃i(ξi)

ξi · X̃i(ξi)
,

κi =
ai/ξi

∑M
j=1 aj/ξj +

∑a
k=1 ct(k),t(k+1)

,

where ct(k),t(k+1) is the mean switch-over time from the queue visited in stage k to the queue
visited in stage k + 1.

Proof. It is well-known that for a single queue the nonsaturation condition is both a necessary
and sufficient condition for stability, i.e.,

Qi is stable ⇐⇒ ρi < κi, i = 1, . . . , M,

where ρi is the mean effective amount of work arriving per time unit to Qi and κi is the availability
fraction of the server at Qi.

Consider first the mean effective amount of work arriving per time unit to Qi. This amount
is determined by the total number of customers arriving per time unit λi and the mean effective
amount of work each individual brings for the server, denoted by σ̃i, as follows:

ρi = λi · σ̃i.

The quantity σ̃i is in fact the mean total time the server spends on serving a customer at Qi

including any interrupted services. Noting that the number of interruptions per customer is
geometrically distributed, it can be found via simple calculus that:

σ̃i =
1 − X̃i(ξi)

ξi · X̃i(ξi)
.

The availability fraction of the server κi is fully specified by the mean visit times, the visit
frequencies and the switch-over times between the queues. Notice that a complete cycle consists
of ai visits to Qi, i = 1, . . . ,M , and the switch-over times between the queues. It then readily
follows for the availability fraction of the server at Qi:

κi =
ai/ξi

∑M
j=1 aj/ξj +

∑a
k=1 ct(k),t(k+1)

.

It is good to notice that the fraction κi is independent of the load at the queues. The observation
that the system is stable if and only if all the queues in the system are stable completes the
proof.

4 Exhaustive exponential time-limited discipline

For the exhaustive time-limited discipline, service capacity can be exchanged between the queues.
This suggests that stability must be considered for the system as a whole. However, as the visit
time to each queue is bounded by the timer, the occupancy of individual queues also plays a
role. The polling system is considered stable if there exists a stationary regime in which each
customer in the system can be served in a finite period of time.

A necessary and sufficient condition for the stability of a polling system with the server oper-
ating under the exhaustive exponential time-limited discipline is given in the following theorem.
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Theorem 2 (Exhaustive exponential time-limited discipline).

System is stable ⇐⇒ ρ + max
1≤i≤M

(

λi

E[G∗−
i ]

)

· cT < 1,

where

E[G∗−
i ] =

ai · X̃i(ξi)

1 − X̃i(ξi)
,

denotes the mean number of served customers at Qi during a cycle when Qi is saturated and cT

is the mean total switch-over time during a cycle.

We will prove the theorem adopting the approach of Fricker and Jäıbi [1]. To this end, we will
often stick to their notation whenever it does not lead to ambiguity. We should emphasize that the
authors of [1] considered only work-conserving service disciplines. The exhaustive time-limited
(E-TL) discipline allows for preemption of service and thus is definitely not work conserving.

The organization of the proof is as follows. In Sects. 4.1 and 4.2, we state several preliminary
and monotonicity results which are analogous to the results in [1]. Essentially, we need to
introduce notation to account for the preemption of the service, but the line of proof remains
similar. Hence, the lemmas and theorems corresponding directly to the ones provided in [1] will
be given without proof. In Sect. 4.3, we present several novel results for the visit time to the
queues during a cycle and also give the proofs. These results are then incorporated in the final
necessary and sufficiency proofs of [1], so that these account for preemptive service.

4.1 Preliminaries and stochastic monotonicity

The general service disciplines for which stability is proven in [1] should satisfy four properties.
Property 1 and 3 refer to the independence of the service discipline on the history of the service
process and on the independence of the customer selection. These properties are readily seen
to be satisfied for the E-TL discipline. Property 2 deals with the work conservation and is
not satisfied for this discipline since work is created due to preemptions. However, during the
course of a visit the server is always working and does not idle. Finally, Property 4 is the so-
called stochastic monotonicity property and is defined as follows [1]: “As the queue size grows,
the number of customers served during one stage (visit) grows stochastically, but such that the
number of customers left at the end of the stage (visit) grows stochastically as well.” This latter
property plays a crucial role in the proof.

Let us w.l.o.g. consider an arbitrary queue in the polling system. First, we define an indepen-
dent and identically distributed (i.i.d.) sequence (σm)m=1,2,..., as the modified service times of a
customer, with mean σ, and being distributed as min(X, V ), where X is distributed according
to the original service time distribution, and V is exponentially distributed and independent of
X. That is, the modified service times can be seen as the duration of a service attempt (which
can either be successful or interrupted). For non-preemptive service disciplines, the number of
customers taken into service is equal to the number of customers served during a visit. However,
this is not always true for the preemptive discipline that we consider here. Hence, we will define
also the following quantities for a visit with x customers present at the start (i.e., t = 0):

• f+(x): the number of customers that is taken into service during the visit;
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• f−(x): the number of customers that is actually served during the visit;

• v(x): the duration of the visit;

• φ(x): the number of customers at the end of the visit.

The quantities f+(x) and f−(x) are given by:

f+(x) = min(N0(x), N∗), (1)

f−(x) = min(N0(x), N∗ − 1),

where N0(x) refers to the number of served customers during a visit which started with x
customers and which ends due to the queue becoming empty, and N∗ refers to the number of
customers taken into service during a visit which ends due to the expiration of the time limit.
Notice that, due to the exponential visit times, N∗ is in fact a geometrically distributed random
variable independent of x.

Let us denote by N(a, b] the number of arrivals to the queue during the interval (a, b]. Thus,
we may write the following relations between f+(x), f−(x), v(x) and φ(x):

v(x) =

f+(x)
∑

m=1

σm, (2)

φ(x) = x − f−(x) + N(0, v(x)], (3)

with f+(0) = f−(0) = v(0) = 0. It is good to notice that σm in Eq. (2) refers to the duration of
an arbitrary service attempt rather than an original service time of an arbitrary customer.

Let us next recall the definitions of ≤-monotonicity and ≤d-monotonicity as given in [1]:

Definition 1. (≤-monotonicity)
A real function h defined on R

n is called ≤-monotone when:

x ≤ y ⇒ h(x) ≤ h(y).

Definition 2. (≤d-monotonicity)
Two (cumulative) distributions functions P1 and P2 on R

n satisfy P1 ≤d P2 when:

∫

h dP1 ≤

∫

h dP2,

for any ≤-monotone function h such that the integrals are well defined.
Two random vectors X1 and X2 satisfy X1 ≤d X2 if their distributions satisfy P1 ≤d P2.

Hence, the monotonicity property for the E-TL discipline is that
(f+(x), f−(x), φ(x)) is ≤d-monotone in x. It follows immediately from Eq. (2) that ≤d-monotonicity
of f+(x) implies ≤d-monotonicity of v(x), and that ≤d-monotonicity of f−(x) does not imply
that of φ(x).

Next, we embed the queue into the polling system. Let the nth visit to the queue start at
stopping time Tn (with respect to the complete history of the system) with Nn customers waiting.
Define the following quantities:

• F+
n : the number of customers that is taken into service during visit n;
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• F−
n : the number of customers that is actually served during visit n;

• Vn: the duration of visit n;

• Φn: the number of customers at the end of visit n.

Let us introduce the tuple (f+, f−, v, φ) which represents the service discipline. It can readily
be argued (cf. [1, p.215]) that for each n:

(F+
n , F−

n , Vn, Φn) =d (f+(Nn), f−(Nn), v(Nn), φ(Nn)).

Along the single-queue equations, Eqs. (2) and (3), we find that for any n, Vn and Φn are related
to F+

n and F−
n as follows.

Vn =

Dn+F+
n

∑

i=Dn+1

σi,

Φn = Nn − F−
n + N(Tn, Tn + Vn],

where Dn denotes the number of service attempts performed up to Tn. Since (F+
n , F−

n , Vn, Φn)
is independent of future service attempt durations, i.e.,
(σi)

i>Dn+F+
n

, and the future customer arrival process, i.e., N(Tn +Vn, Tn +Vn + ·], we may apply
Wald’s equation and obtain:

E[Vn] = E[F+
n ] · σ, (4)

E[N(Tn, Tn + Vn]] = E[F+
n ] · λ · σ. (5)

Notice that the expectations in (4) and (5) are finite, since the visit duration is always bounded
by the exponential timer.

Let F ∗+ (F ∗−) be the number of customers that are taken into service (served) during a visit
if there are infinitely many customers waiting in the queue, and V ∗ the duration of such a visit,
i.e.,

0 < limx→∞ E[f+(x)] = E[F ∗+] < ∞,

0 < limx→∞ E[f−(x)] = E[F ∗−] < ∞,

and also,

lim
x→∞

E[v(x)] = E[V ∗] = E[F ∗+] · σ < ∞.

Next, we present a lemma which will be needed in the final part of the proof. This lemma
substitutes in fact Lemma 1 of [1].

Lemma 1. Let (Nn)n be a sequence of random variables converging in distribution to a, possibly
degenerate, integer-valued random variable N . Let (f+, f−, v, φ) be induced by the E-TL service
discipline and be independent of (N, (Nn)n), i.e., N∗ is independent of (N, (Nn)n) (see, Eq.(1)).
The sequence (Nn, f+(Nn), f−(Nn), v(Nn),
φ(Nn))n converges in distribution to (N, f+(N), f−(N), v(N), φ(N)), and
(i) when E[F ∗−] < ∞, and if N has a defective distribution, then so is the limiting distribution
of Nn − f−(Nn);
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(ii) when E[F ∗−] < ∞, E[F−(N)] < E[F ∗−] if and only if there exists a y < ∞ such that
P(N ≤ y) > 0 and E[f−(y)] < E[F ∗−].
In both cases, if (Nn)n is ≤d-monotone, limn→∞ E[F−(Nn)] = E[f−(N)] and
limn→∞ E[v(Nn)] = E[v(N)].

Proof. The proof is immediate from the proof of Lemma 1 in [1].

Remark 1 (Number of customers taken into service). We have defined Lemma 1 in terms of the
number of customers served. Analogously, this lemma can be defined for the number of customers
taken into service.

Finally, the following lemma is essential for the remainder of the proof and refers to a specific
property of the service discipline addressed in the beginning of this section.

Lemma 2. The E-TL discipline satisfies the stochastic monotonicity property.

Proof. The proof follows by sample-path arguments and is immediate from the proof of Lemma 2
in [1].

4.2 Monotonicity

The stochastic monotonicity property plays a key role in the stability proof. Therefore, we
will state several monotonicity results [1] which are valid for service disciplines satisfying this
property.

To this end, we describe the system by the queue lengths at the polling instants and define
M(t) as follows:

M(t) = (N1(t), . . . , NM (t)), t ≥ 0.

Recall that t(i) denotes the queue served at visit i of a cycle. We denote by visit (n, i) the ith
visit in the nth cycle and let visit (1, 1) start at time t = 0. Let Tn,i denote the time of the
polling instant of visit (n, i), so that we have:

0 = T1,1 ≤ T1,2 ≤ . . . ≤ T1,a ≤ T2,1 ≤ . . . .

For convenience, we write Mn,i for M(Tn,i) and Nn,i for Nt(i)(Tn,i). Hence, we can describe the
Markovian behavior of the system as follows.

Proposition 1. (Prop. 1 of [1]) The sequence (Mn,i)n,i is a Markov chain. For each i fixed in
{1, . . . , a}, the Markov chain (Mn,i)n is homogeneous, aperiodic and irreducible on (a subset of)
N

M .

Proof. See [1].

Let us define by πi the transition operator at visit i, 1 ≤ i ≤ a, of the Markov chain (Mn,i)n,i

as follows:

πih(m) = E[h(Mn,i+1)|Mn,i = m],

for any m = (m1, . . . , mM ) and any real function h defined on N
M for which the expectation

exists. Besides, we let π̃ be the transition operator of the Markov chain (Mn,i)n. An operator
π is said to be ≤d-monotone if for all distributions P1 ≤d P2, πP1 ≤d πP2. This holds if πh is
≤-monotone when h is.
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Lemma 3. (Lemma 3 of [1]) For all i, πi and π̃i are ≤d-monotone.

Proof. See [1].

Let us next define the following quantities:

• F+
n,i: the number of customers taken into service during visit (n, i);

• F−
n,i: the number of customers served during visit (n, i);

• Vn,i: the duration of visit (n, i).

An immediate consequence of Lemma 3 is the monotonicity property of the state process.

Proposition 2. Suppose M1,1 = (0, . . . , 0). Then, for each i, (Mn,i)n and (F+
n,i, F

−
n,i, Vn,i) are

≤d-monotone.

Proof. The proof is immediate from the proof of Proposition 2 in [1].

Next, we turn to dominance relations between polling systems. In particular, we compare
systems with a different number of saturated queues. Here, saturation means that at a polling
instant of a queue there is an infinite number of customers waiting. The saturation of a queue
implies that the server serves the queue up to the time limit and then leaves. From the viewpoint
of the other queues in the system, such a visit to a saturated queue is merely an additional switch-
over time. Let S be the initial polling system with queues 1, . . . , M . For e ∈ {0, . . . , M}, we
define the subsystem Se as the polling system consisting of the queues 1, . . . , e, resulting from
the saturation of the queues e+1, . . . , M , and served according to the same periodic schedule as
the original system. We emphasize that if t(i) > e then in Se no queue is served but the server
becomes unavailable for a duration of V ∗

t(i), which is defined as the stationary duration of a visit

to queue t(i) with an infinite number of customers waiting at the start of the visit. Let us define
σj as the mean duration of a service attempt at Qj , i.e., σj := E[min(Xj , Vj)], where Xj refers
to the original service time of a customer at Qj and Vj to the visit time of the server to Qj .
Further, denote by E[G∗+

j ] the expected number of customers taken into service at Qj during a
cycle when Qj is saturated. Then, the mean total switch-over time in the subsystem ce

T can be
written as:

ce
T = cT +

M
∑

j=e+1

σjE[G∗+
j ] = cT +

M
∑

j=e+1

aj/ξj .

The state space of the subsystem Se is given by the sequence M e
n,i = (N e

1 (T e
n,i),

. . . , N e
e (T e

n,i)) at the polling instants T e
n,i. For each visit i, (M e

n,i)n is a Markov chain and is ≤d-
monotone if the initial state is the empty state. The subsystem Se is similar to the original system
S in the sense that all previous results apply to it. Let denote by Mg|e the e first components of
a vector Mg having g > e components. Then, the subsystems Se satisfy the following dominance
property.

Lemma 4. (Lemma 4 of [1]) For e < g both in {0, . . . ,M}, Se dominates Sg in the sense that

if M
g|e
1,1 ≤d M e

1,1 then M
g|e
n,i ≤d M e

n,i for all (n, i).

Proof. See [1].
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4.3 Stability proof

The polling system is said to be stable if:

• there exists a proper stationary joint-distribution for the queue lengths at the polling
instants at stage k, for all k = 1, . . . , a;

• the stationary cycle time is finite.

4.3.1 Proof: Sufficient condition

We assume w.l.o.g. that the system is empty at time 0 as the stationary distribution of the
Markov chain does not depend on the initial distribution. For convenience, let us introduce
several definitions for the number of customers at a specific queue, viz.,

• H−
k : number of customers actually served at Qk during a visit to Qk;

• H+
k : number of customers taken into service at Qk during a visit to Qk;

• H∗−
k : number of customers actually served at Qk during a visit when Qk is saturated;

• H∗+
k : number of customers taken into service at Qk during a visit when Qk is saturated.

Notice that these definitions resemble the definitions of F−
n , F+

n , F ∗−
n and F ∗+

n . However, the
latter quantities refer to the number of customers at the nth visit rather than to the number at
a specific queue.

W.l.o.g. we consider the cycle from Tn,1 to Tn+1,1. Then, we may similarly define the counter-
parts G−

k , G+
k , G∗−

k and G∗+
k which count the same quantities but over a complete cycle. Hence,

we may then also write:

E[G−
k ] := E[H−

k,1] + · · · + E[H−
k,ak

],

E[G+
k ] := E[H+

k,1] + · · · + E[H+
k,ak

],

E[G∗−
k ] := E[H∗−

k,1 ] + · · · + E[H∗−
k,ak

],

E[G∗+
k ] := E[H∗+

k,1 ] + · · · + E[H∗+
k,ak

],

where E[H−
k,i] is the mean number of customers served at Qk during the ith visit to Qi in a

cycle, and E[H+
k,i], E[H∗−

k,i ], and E[H∗+
k,i ] are defined similarly. Besides, we define σ̃k as the mean

effective service time of a customer at Qk. The effective service time refers to the total time spent
by the server on serving a customer (including interrupted service attempts, but excluding the
periods that the server is not present at the queue) and it is in fact a geometric sum of service
attempt durations. Thus, using Wald’s equation, we may write for its mean:

σ̃k = E

[

N
∑

n=1

min(Xk,n, Vk,n)

]

= σk/X̃k(ξk), (6)

where N is geometrically distributed with success probability p = X̃k(ξk), and {Xk,n}n≥1 and
{Vk,n}n≥1 are two independent families of independent random variables distributed as Xk and
Vk, respectively.
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Let us denote by E[V c
k ] the mean total visit time to Qk during a cycle, i.e.,

E[V c
k ] = E[Vk,1] + · · · + E[Vk,ak

],

where E[Vk,j ] stands for the mean visit time during the jth visit to Qk of a cycle. Then, we are
ready to present the following lemma:

Lemma 5.

E[V c
k ] = E[G−

k ] · σ̃k, k = 1, . . . , M. (7)

The proof of the lemma will be given below. However, we will derive several intermediate
results first.

Clearly, when Qk is saturated, there is always exactly one interrupted service. Thus, we have
the following property:

Property 1.

H∗+
k = H∗−

k + 1, k = 1, . . . , M,

and since E[H∗+
k ] < ∞ also:

E[H∗+
k ] = E[H∗−

k ] + 1, k = 1, . . . , M.

Besides, there is a less obvious relation between the quantities H+
k , H−

k , H∗+
k and H∗−

k .
However, before we get to this relation, we give a lemma and present some useful properties for
H+

k and H−
k .

Lemma 6. Let H be a geometrically distributed random variable and let W be a non-negative
discrete random variable independent of H. Then, the following assertion holds:

E[H1{W≥H}] + E[W1{W<H}] = E[H] · E[1{W≥H}].

Proof.

E[H] = E[H1{W≥H}] + E[H1{W<H}]

= E[H1{W≥H}] + E[W1{W<H}] + E[(H − W )1{W<H}].

Next, we may use the fact that H is a geometric and thus memoryless random variable, i.e.,
H − W |H>W =d H, so that:

E[H] = E[H1{W≥H}] + E[W1{W<H}] + E[H] · E[1{W<H}].

This completes the proof.

Denote by N0
k the number of customers served until Qk would become empty for the first

time if there were no timer. The following properties are readily verified:
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Property 2.

H+
k = min(N0

k ,H∗+
k ) = N0

k1{N0
k
≤H∗+

k
} + H∗+

k 1{N0
k
>H∗+

k
},

H−
k = min(N0

k ,H∗−
k ) = N0

k1{N0
k
≤H∗−

k
} + H∗−

k 1{N0
k
>H∗−

k
}.

These properties imply that if the server leaves Qk because it is empty, then H+
k = H−

k and
H+

k = H−
k + 1, otherwise.

The following lemma demonstrates that the ratio of mean number of served customers and
mean number of customers taken into service is equal both for a saturated and a non-saturated
queue.

Lemma 7.

E[H∗−
k ]

E[H∗+
k ]

=
E[H−

k ]

E[H+
k ]

, k = 1, . . . ,M.

Proof. Note that H∗+
k is a geometrically distributed random variable (with success probability

p = 1 − X̃k(ξk), since an interruption is seen as a success). Then,

E[H+
k ] · E[H∗−

k ] =
(

E[N0
k1{N0

k
<H∗+

k
}] + E[H∗+

k 1{N0
k
≥H∗+

k
}]

)

(

E[H∗+
k ] − 1

)

=
(

E[N0
k1{N0

k
<H∗+

k
}] + E[H∗+

k 1{N0
k
≥H∗+

k
}]

)

· E[H∗+
k ]

−
(

E[N0
k1{N0

k
<H∗+

k
}] + E[H∗+

k 1{N0
k
≥H∗+

k
}]

)

=
(

E[N0
k1{N0

k
<H∗+

k
}] + E[H∗+

k 1{N0
k
≥H∗+

k
}]

)

· E[H∗+
k ]

− E[1{N0
k
≥H∗+

k
}] · E[H∗+

k ]

= E[H∗+
k ] ·

(

E[N0
k1{N0

k
<H∗+

k
}] + E[(H∗+

k − 1)1{N0
k
≥H∗+

k
}]

)

,

where for the third equality sign we used Lemma 6. Finally, observe that
{N0

k < H∗+
k } = {N0

k ≤ H∗−
k } (since all variables are discrete), so that we may write:

E[N0
k1{N0

k
<H∗+

k
}] + E[(H∗+

k − 1)1{N0
k
≥H∗+

k
}]

= E[N0
k1{N0

k
≤H∗−

k
}] + E[(H∗+

k − 1)1{N0
k
>H∗−

k
}]

= E[N0
k1{N0

k
≤H∗−

k
}] + E[H∗−

k 1{N0
k
>H∗−

k
}]

= E[H−
k ],

where we used Proposition 2 in the final step.

Remark 2 (Independence of N0
k ). It is important to notice that the equivalence of the ratios does

not depend on the distribution of N0
k . In particular, we have made no assumptions whatsoever

on the number of customers present at the start of a visit in the unsaturated case. So, the time of
the previous polling instant of the queue does not impact the ratio of the unsaturated case (while
the ratio of the saturated case is obviously fixed).

Recall that E[V ∗
k ] denotes the mean visit time of the server to Qk when Qk is saturated. This

quantity satisfies the following relation.
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Lemma 8.

E[V ∗
k ] = E[H∗+

k ] · σk = E[H∗−
k ] · σ̃k, k = 1, . . . , M.

Proof. Consider the saturated case. We write: V ∗
k =

∑H∗+

k

j=1 Yk,j , where Yk,j , j = 1, 2, . . . , are
i.i.d. random variables distributed as min(Xk, Vk) and with mean σk. Let further Vk,j and
Xk,j , j = 1, 2, . . . , be i.i.d. random variables distributed as the generic random variables Xk

and Vk, with Xk and Vk independent. Notice that H∗+
k = min{j : Xk,j > Vk,j}. Therefore,

H∗+
k is a stopping time for Yk,j , j = 1, 2, . . ., so that we may apply Wald’s equation yielding:

E[V ∗
k ] = E[H∗+

k ] · σk. Next, consider a period Z comprising a single visit of length V ∗
k to

Qk extended with the (service) time needed to complete the service of the customer that was
interrupted at the end of the visit. That is, Z is the time needed to complete all (residual)
services that were started during V ∗

k (in particular, we include a possible residual service time,
which is in fact distributed as an effective service time due to the geometric nature of the effective
service time). Thus, E[Z] = E[H∗+

k ] · σ̃k, but also E[Z] = E[V ∗
k ] + σ̃k, since there is always an

interrupted service with a mean residual service time identical to the original mean effective
service time. Hence, it follows that: E[V ∗

k ] = (E[H∗+
k ] − 1) · σ̃k = E[H∗−

k ] · σ̃k.

Combining Lemma 8 with Eq. (6) gives after some manipulations:

Corollary 1.

E[G∗−
k ] = ak · E[H∗−

k ] =
ak · X̃k(ξk)

1 − X̃k(ξk)
.

Proof. (Proof of Lemma 5) It is readily seen that to prove Eq. (7) it is sufficient to show:

E[Vk,j ] = E[H−
k,j ] · σ̃k, j = 1, . . . , ak.

W.l.o.g. we consider the first visit to Qk in a cycle and leave out the subscript 1. Thus, we need
to prove the following:

E[Vk] = E[H−
k ] · σ̃k.

Analogously to the proof of Lemma 8, we write Vk =
∑H+

k

j=1 Xk,j for the unsaturated case.

By arguing that H+
k is a stopping time for the sequence {Xk,j}j , it immediately follows via

Wald that: E[Vk] = E[H+
k ] · σk. The proof is then completed by appealing to Lemma 7 and

Lemma 8.

Let us define ρ̂k, k = 1, . . . , M as follows:

ρ̂k :=
k

∑

j=1

ρj =
k

∑

j=1

λj σ̃j .

Next, we define a stability condition for the complete system and for the subsystems Se with
e ∈ {0, . . . ,M}:

12



Definition 3. (Condition CM )

CM : ρ̂M + max
1≤j≤M

(λj/E[G∗−
j ])cT < 1.

Definition 4. (Condition Ce)

Ce : ρ̂e + max
1≤j≤e

(λj/E[G∗−
j ])ce

T < 1.

We number the queues according to the ratio λj/E[G∗−
j ] in non-decreasing order. Hence, we

have that:

Ce : ρ̂e + (λe/E[G∗−
e ])ce

T < 1.

Further, we note that it can verified by simple calculations that Ce+1 implies Ce.
We are now ready to present the following lemma (cf. Lemma 6 of [1]) which forms a crucial

link in the proof:

Lemma 9. If condition Ce holds, then

E[Ge−
k ] < E[G∗−

k ], 1 ≤ k ≤ e.

Proof. Let us consider the mean duration of a cycle. W.l.o.g. we say that the nth cycle starts at
time Tn,1 and ends at time Tn+1,1. A cycle consists of the visits to the queues and the switch-over
times, so that we may write (cf. Lemma 5):

E[Tn+1,1 − Tn,1] =
M
∑

j=1

σ̃jE[G−
n,j ] + cT , n = 0, 1, . . . .

Hence, for the change in number of customers at Qk during this cycle, we readily have for
k = 1, . . . ,M, n = 0, 1, . . . :

E[Nk(Tn+1,1) − Nk(Tn,1)] = λk ·





M
∑

j=1

σ̃jE[G−
n,j ] + cT



 − E[G−
n,k].

Suppose w.l.o.g. that the system is empty at time 0. Using the ≤d-monotonicity for each given
visit, it follows that the expectations of the queue lengths at the polling times are non-decreasing,
i.e.,

E[Nk(Tn+1,1) − Nk(Tn,1)] ≥ 0, k = 1, . . . , M, n = 0, 1, . . . ,

which provides us immediately with the following system of equations:

E[G−
n,k] ≤ λk ·





M
∑

j=1

σ̃jE[G−
n,j ] + cT



 , k = 1, . . . , M, n = 0, 1, . . . . (8)

13



Observe that E[G−
n,k] and E[G+

n,k] are non-decreasing in n and are bounded from above by

E[G∗+
k ] < ∞. Thus, we may write for the following limits, k = 1, . . . , M :

lim
n→∞

E[G−
n,k] = E[G−

k ],

lim
n→∞

E[G+
n,k] = E[G+

k ].

Let us consider next Eq. (8) for k = 1 and let n → ∞:

E[G−
1 ] ≤ λ1 ·





M
∑

j=1

σ̃jE[G−
j ] + cT



 .

This can readily be rewritten to:

E[G−
1 ] · (1 − ρ̂1) ≤ λ1 ·





M
∑

j=2

σ̃jE[G−
j ] + cT



 .

Applying a triangularization procedure (see Appendix 6), we may obtain for 1 ≤ k ≤ M :

E[G−
k ] · (1 − ρ̂k) ≤ λk ·





M
∑

j=k+1

σ̃jE[G−
j ] + cT



 . (9)

The latter result does also hold if we consider the system with queues e + 1 up to M being
saturated. From the point of view of the first e queues only the return time of the server will
change while the behavior of the server during a visit remains identical. Denoting the quantities
in this modified system by adding the superscript e, we may write:

E[Ge−
k ] ≤

λk

1 − ρ̂k

·





M
∑

j=k+1

σ̃jE[Ge−
j ] + ce

T



 , k = 1, . . . , e,

where ce
T = cT +

∑M
j=e+1 E[V ∗

j ]. Since, E[Ge−
j ] ≤ E[G∗−

j ], j = 1, . . . , M , we obtain:

E[Ge−
k ] ≤

λk

1 − ρ̂k

·





M
∑

j=k+1

σ̃jE[G∗−
j ] + cT





=
λk

1 − ρ̂k

· ck
T , k = 1, . . . , e.

On the other hand, the condition Ck, k = 1, . . . , e, which is implied by Ce, reads:

Ck : ρ̂k + max
1≤j≤k

(λj/E[G∗−
j ]) · ck

T < 1.

Under the assumption that the ratios λj/E[G∗−
j ] are ordered non-decreasingly, it is readily found

that Ck implies:

E[G∗−
k ] >

λk

1 − ρ̂k

· ck
T ,

which completes the proof.
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The remainder of the proof is along the lines of [1]. Recall that we want to show here that
if condition CM is satisfied, then the system is stable. An equivalent definition of stability (see
[1]) is that there exists a proper stationary joint queue-length distribution at the polling instants
such that the expectation of the stationary cycle time is finite. A sufficient condition for the
stationary distribution to exist is that the multi-dimensional Markov chain (M e

n,1) is ergodic.
The ergodicity of this chain (M e

n,1) is equivalent to the existence of me such that the limit

lim
n→∞

P(M e
n,1 ≤ me) ≥ 1 −

e
∑

k=1

lim
n→∞

P(Nk(T
e
n,1) ≥ mk), (10)

is strictly positive. We note that the system will become empty once the chain enters some
state ≤ me with a strictly positive probability (due to no arrivals for a specific time). Since the
positiveness of the limit implies that you return infinitely often to some state ≤ me, it follows
that with probability one you will reach the empty state in a finite amount of time; in other
words, it excludes transient or null-recurrent behaviour of the chain. Thus, to have ergodicity,
we need the sum on the right-hand side of Eq. (10) to be strictly smaller than one. This can be
established if for one k the limiting distribution (Nk(T

e
n,1))n is not concentrated at infinity, i.e.,

P(Nk < ∞) > 0 and all other limiting distributions are proper, i.e., P(Nk < ∞) = 1.
We will prove this by induction starting with the subsystem S0. This system S0 is readily

seen to be stable. Next, we suppose Se−1 is stable, and consider Se, 1 ≤ e ≤ M . We note since
Se−1 is stable, the Markov chain (M e−1

n,1 ) is ergodic and in particular (Nk(T
e−1
n,1 ))n, 1 ≤ k ≤ e−1

has a proper distribution. Also, (M e−1
n,i )n, i = 1, ..., a has a proper limiting distribution and

by Lemma 4, M
e|e−1
n,i ≤d M e−1

n,i for all n. Thus, (M
e|e−1
n,i )n has a proper limiting distribution.

Moreover, from Lemma 5, we have that E[Ge−
e ] < E[G∗−

e ]. Hence, there exists a visit r such that
limn→∞ E[F e−

n,r ] < E[F ∗−
r ]. Then, by Lemma 1-ii there exists a y such that limn→∞ P(N e

n,r ≤ y) >
0, i.e., the limiting distribution of the last component N e

n,r = N e
e (Tn,r) of M e

n,r is not concentrated
at infinity. Thus, the chain (M e

n,r)n is ergodic. The observation that the expectation of the cycle
time is finite completes the proof.

¤

4.3.2 Proof: Necessary condition

Suppose the polling system S is stable. Let us define F−
n,kl

as the mean number of customers
served during the kl-th stage of the nth cycle, where the kl-th stage corresponds to exactly the lth
visit to Qk in the cycle. We let for each visit i the initial distribution of (Mn,i)n be its stationary
distribution. Since S is stable, these chains are stationary with positive-recurrent states. As a
result, P(Nk(Tn,i) = 0) > 0 for all k and (n, i). Further, as the expected cycle time is finite,
E[G−

k ] =
∑ak

l=1 E[F−
n,kl

] does not depend on n and is finite for all k. It follows by Lemma 1 that

E[G−
k ] < E[G∗−

k ] for 1 ≤ k ≤ M and in particular that E[G−
M ] < E[G∗−

M ].
On the other hand, it can readily be seen that:

Nk(T2,1) − Nk(T1,1) = Nk(T1,1, T2,1] −

ak
∑

l=1

F−
1,kl

.
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Hence, we can bound Nk(T2,1) − Nk(T1,1) as follows:

−

ak
∑

l=1

F−
1,kl

≤ Nk(T2,1) − Nk(T1,1) ≤ Nk(T1,1, T2,1].

Both the lower and upper bound have finite expectation, such that for all k (see [1, Lemma 7]):

E[Nk(T2,1) − Nk(T1,1)] = 0,

and in general for n ≥ 1:

E[Nk(Tn+1,1) − Nk(Tn,1)] = 0.

This leads to (cf. Eq. (8)) the following system of equalities:

E[G−
k ] = λk ·





M
∑

j=1

σ̃jE[G−
j ] + cT



 , 1 ≤ k ≤ M,

and along the lines of deriving Eq. (9), we obtain:

E[G−
k ] · (1 − ρ̂k) = λk ·





M
∑

j=k+1

σ̃jE[G−
j ] + cT



 , 1 ≤ k ≤ M.

Specifically, for k = M this implies:

E[G−
M ] · (1 − ρ̂M ) = λM · S.

Together with the observation above, E[G−
M ] < E[G∗−

M ], it follows that condition CM holds.

5 Concluding remarks

We have proven the stability conditions for two polling models with time-limited service and
periodic polling. The proof for the pure time-limited discipline is straightforward, since the
queues can in fact be decoupled and thus studied in isolation. For the proof of the exhaustive
time-limited discipline, we have relied largely on the rigorous stability proof of Fricker and Jäıbi
[1] for a class of service disciplines. Unfortunately, this class covers only non-preemptive and
work-conserving service disciplines. Though, the main ideas of their proof could still be used to
prove stability here.

A logical next step would be to extend the results to Markovian polling of the server. The
fixed cycle of periodic polling will then become a random cycle. One would typically consider per-
queue cycles, i.e., a cycle starting and ending at consecutive polling instants of a specific queue.
Consequently, the number of visits to the other queues during a cycle are random variables. For
the pure time-limited discipline, such an extension can readily be incorporated by appropriately
adjusting the availability fraction κi. For the exhaustive time-limited, it might require some
more work to prove this extension. However, we strongly believe this could also be done using
similar techniques as the ones presented in this article.
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6 Triangularization

Let us explain below the triangularization method that we apply. We depart from the following
set of equalities:

E[G−
k ] ≤ λk ·





M
∑

j=1

σ̃jE[G−
j ] + S



 , k = 1, . . . , M. (11)

Rearranging the equality for k = 1, we obtain:

(1 − ρ̂1) · E[G−
1 ] ≤ λ1 ·





M
∑

j=2

σ̃jE[G−
j ] + S



 . (12)

Next, we will show that also for 2 ≤ k ≤ M we may write:

(1 − ρ̂k) · E[G−
k ] ≤ λk ·





M
∑

j=k+1

σ̃jE[G−
j ] + S



 .

This will be done by proving the following inequalities by induction.

k
∑

j=1

σ̃jE[G−
j ] ≤

ρ̂k

1 − ρ̂k

·





M
∑

j=k+1

σ̃jE[G−
j ] + S



 , k = 1, . . . , M,

(13)

(1 − ρ̂k+1) · E[G−
k+1] ≤ λk+1 ·





M
∑

j=k+2

σ̃jE[G−
j ] + S



 , k = 1, . . . , M − 1.

(14)

First, notice that for k = 1 Eq. (13) has been shown above, while Eq. (14) reads as follows:

(1 − ρ̂2) · E[G−
2 ] ≤ λ2 ·





M
∑

j=3

σ̃jE[G−
j ] + S



 .

This inequality can be proven from Eq. (11) and taking k = 2. First, we take all terms E[G−
2 ] to

the left-hand side, second we apply Eq. (12), and finally some simple manipulations provide us
with the desired result. Next, we show that once these inequalities hold for l these also hold for
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l + 1. First, consider Eq. (13) for l + 1:

l+1
∑

j=1

σ̃jE[G−
j ] =

l
∑

j=1

σ̃jE[G−
j ] + σ̃l+1E[G−

l+1]

≤
ρ̂l

1 − ρ̂l

·





M
∑

j=l+2

σ̃jE[G−
j ] + S



 +
1

1 − ρ̂l

· σ̃l+1E[G−
l+1]

≤

(

ρ̂l

1 − ρ̂l

+
ρl+1

(1 − ρ̂l)(1 − ρ̂l+1)

)

·





M
∑

j=l+2

σ̃jE[G−
j ] + S





=
ρ̂l+1

1 − ρ̂l+1
·





M
∑

j=l+2

σ̃jE[G−
j ] + S



 .

Second, we have to prove Eq. (14) for l + 1, i.e.,

(1 − ρ̂l+2) · E[G−
l+2] ≤ λl+2 ·





M
∑

j=l+3

σ̃jE[G−
j ] + S



 . (15)

To this end, we depart from Eq. (11) for l + 2:

E[G−
l+2] ≤ λl+2 ·





M
∑

j=1

σ̃jE[G−
j ] + S





= λl+2 ·
l+1
∑

j=1

σ̃jE[G−
j ] + λl+2 ·





M
∑

j=l+2

σ̃jE[G−
j ] + S





≤ λl+2 ·
ρ̂l+1

1 − ρ̂l+1
·





M
∑

j=l+2

σ̃jE[G−
j ] + S





+ λl+2 ·





M
∑

j=l+2

σ̃jE[G−
j ] + S





=
λl+2

1 − ρ̂l+1
·





M
∑

j=l+3

σ̃jE[G−
j ] + S



 +
λl+2

1 − ρ̂l+1
· σ̃l+2E[G−

l+2].

Hence, moving all the terms E[G−
l+2] to the left-hand side and performing some rearrangements

yields Eq. (15).
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