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Abstract

The numerical method for two fluid flow computations presented in Sol-
lie, Bokhove & van der Vegt, Two Fluid Space-Time Discontinuous Galerkin
Finite Element Method. Part I: Numerical Algorithm (submitted to Com-
puter Methods in Applied Mechanics and Engineering) is applied to a number
of one and two dimensional single and two fluid test problems, including a
magma - ideal gas shocktube and a helium cylinder - shock wave interaction
problem.
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1. Introduction

In part I [19] a space-time discontinuous Galerkin (STDG) finite element
method for two fluid flows was presented. This space-time discontinuous
Galerkin (STDG) finite element method offers high accuracy, an inherent
ability to handle discontinuities and a very local stencil, making it relatively
easy to combine with local hp-refinement. For the interface handling a front
tracking approach is used because front tracking methods are capable of high
accuracy. The front tracking is implemented using cut-cell mesh refinement
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because this type of refinement is very local in nature and hence combines
well with the STGD. To compute the interface dynamics the level set method
(LSM) is used, because of its ability to deal with merging and breakup, be-
cause it was expected that the LSM combines well with the cut-cell mesh
refinement and also because the LSM is easy to extend to higher dimensions.
The small cell problem caused by the cut-cell refinement was solved by us-
ing a merging procedure involving bounding box elements, which improves
stability and performance of the method. The interface conditions can be
incorporated in the numerical flux at the interface and the STDG discretiza-
tion ensures that the scheme is conservative as long as the numerical fluxes
are conservative.

In this article the method is applied to a number of model problems
in two and three space-time dimensions which range from one dimensional
linear advection tests to complex two fluid problems including a magma -
ideal gas shock tube test and a shock wave - helium cylinder interaction
test. The interface is assumed to be clean and without surface tension and
therefore continuity of the normal velocity and pressure is imposed [8, 18].
The simulations have been performed using three dimensional space-time
codes based on the hpGEM software framework for Discontinuous Galerkin
finite element methods [14].

The outline of this article is as follows. First, in Section 2, the two fluid
flow error measure is defined. In Section 3, the HWENO slope limiter is
introduced. In Sections 4-8 the test results are presented. Finally, in Section
9, a discussion with conclusions is given.

2. Error measurement

Let w! (t,11,%) denotes the approximate flow solution, w'(¢,,1,x) the
exact flow solution and € (¢,,1) the spatial mesh for fluid ¢ at time ¢ = t,,41,.
The L, flow error at time t = ¢, is defined as:

||w;1(tn+17 )= wi(tn—i—la ')HLQ(Q}L(th)) =

1/2
([ bt = wnbax) )
Qﬁl(tn-H)

The order of accuracy with respect to the norm ||.| is defined as log( || fr—
/W fny2 = fll)/log(2), where f, and f,/o denote numerical solutions on
embedded meshes 2} and Q} /2> with A the mesh width. It should be noted
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that the refined meshes are often only approximately embedded, hence a
small error is introduced in the orders of accuracy for the flow solutions.

The STDG method has order of accuracy O(h?*!) for smooth solutions
and order of accuracy O(h'/?) for discontinuous solutions ([12, 20]). Front
capturing and tracking techniques can help to improve the accuracy of the
STDG method around discontinuities.

Solutions will be plotted as discontinuous data without any postprocess-
ing to give a clear illustration of the behavior of the STDG numerical scheme
in each individual element.

3. Slope limiter

Around strong discontinuities which are not captured or tracked DG so-
lutions show spurious oscillations. To control these oscillations the Hermite
WENO slope limiter introduced in [13] is used. The limiter is applied after
every physical time step to the spatial solution at the most recent time level.
Since a space-time mesh is used, this means the limiter is applied at time
slab faces. Let S"™! denote a time slab face on which the solution requires
limiting. The solution after slope limiting is defined as the weighted sum of
a number of reconstructed polynomials P;(uy),i=1,---, Np:

ﬂh = ZwZPZ(uh), (2)

where u;, denotes the numerical solution on S™*! @y, the limited solution
on 8" and Np the number of reconstructed polynomials. The weights are
defined as:
I )
LR et on(P)

: (3)

with € > 0 and v > 0 constants. Here o0;(P;) denotes the oscillation indicator
for element /C,:

0i(P) = [ VB sy, (4)

with ||.||,(sn+1) the Ly norm at time slab face S and V the space gradient
operator.
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Figure 1: Lagrange stencils for quadrilateral shaped time slab faces.
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Figure 2: Hermite stencils for quadrilateral shaped time slab faces.

Each polynomial P;(uy,) is constructed from the numerical solution uy, on a
specific stencil S; of time slab faces, where the shape of the stencil depends on
the type of reconstruction polynomial and the shape of the face S**!. Three
types of reconstruction polynomials are considered: Lagrange, Hermite, and,
the linear projection of the original polynomial. The corresponding stencils
are shown for quadrilateral shaped faces in Figures 1, 2 and 3, respectively.
For the Lagrange polynomials, the stencil is composed of the face S and
also d of the N,, neighboring faces Sﬁjl,j =0,---,d—1, where d denotes the
space dimension and [; ; € {0, - - ,Nn} For the Hermite polynomials, every
stencil is composed of just two time slab faces, namely the face S**! and one
neighboring face S;"' where h € {0,---, N,,}. For the linear projection the

stencil is composed only of the face S

Figure 3: Stencil used for the restriction of the original polynomial for quadrilateral shaped

time slab faces.
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Each Lagrange polynomial Py ; is constructed using only the solution
averages for the time slab faces of the Lagrange stencil. Let z.,z, and z
denote the face midpoints in physical coordinates for the time slab faces
S+l Sﬁfgl and SZ’Tl. The reconstructed Lagrange polynomial P ; is defined
as:

1
_ Pr,dK = — up dK
|Sort] Jgn b |Se| Jsntt "
1 1
| PLdK=— | udK
St sttt ' St syt
! Py dK —— dK (5)
S st ' S st

withi=0,---,3and [; € {(0,1),(0,2),(1,3),(2,3)} for quadrilateral shaped
time slab faces. Each Hermite reconstruction polynomial Py ; is constructed
from the solution average in the time slab face S*™! and the average solution
gradient from one neighbour time slab face and is defined as:

1 1

— Py,dK = —— dK
Se] g SeT] Jgper
—_— ~dK = dK

|8;l+1 | S‘?_H ax |S}lei+1 | SZLL,-FI 8,’]:‘

1 8PH,Z 1 auh
Sn+1 P} = Sl 9 dis
S Jszer Oy S| s Oy

(6)

with h; = ¢ and i = 0,--- ,3 for quadrilateral shaped time slab faces. The
linear projection of the original polynomial Py is treated as a Hermite recon-
struction polynomial, with Sg‘“ = 8™ and is defined as:

1 1

_ PrdK = —— dK
S Jgper " OO0 TSI Jgpn
1 8PO 1 auh
il — dK
‘Sg+1| S;L-H aSL’ ‘Sg+1| S;L-H 837
1 6PO 1 auh
Sntl ) IS+t ) dK
‘ e | Spt Y ‘ e | Spt Y



The slope limiter only needs to be active at places where the solution
displays strong discontinuities and for this purpose the discontinuity detec-
tor proposed by Krivodonova [11] is used. The discontinuity factor Z of a
numerical solution w;, at the time slab face S"*! is defined as:

I | faSgLJrl(u; — ;" )de] ®
heED2(08 [y, ||z,

where u; and u;” denote the solution traces from the inside and the outside
of the time slab face, at time t¢,,; and considering only space directions,
dS" ! denotes the time slab face boundary, which is composed of a number
of finite element edges, and h is the radius of the circle circumscribing S"*1.
The solution is assumed to be smooth when 7 < 7, and discontinuous when
7 > 1, with Zy a constant parameter determining the amount of limiting.

4. Linear advection

Considered first are a number of single fluid linear advection problems
in one space dimension. The purpose of these tests is to check the accuracy
of the STDG method without interface tracking, for continuous and discon-
tinuous solutions, respectively, and also to investigate the effect of interface
tracking on the accuracy for a discontinuous solution. In all test cases linear
basis functions are used.

The linear advection equation:

op dp

5 +a o 0, (9)
with p the advection variable and @ = 5m/s the advection velocity, is solved
on a spatial domain [—5m,5m]| from time ¢t = 0s to 1s. Continuous and
discontinuous initial conditions are defined as:

1.5+ 0.5cos (m(x +2.5)) for |z +25]<1m

(10)
1.0 for |x 4+ 2.5| > 1 m,

pt,x) = polx) = {

and

20 forz < —-2.5m

p(t,z) = po(z) = { (11)

1.0 for z > —2.5 m,



Table 1: Error and order of accuracy in the Lo norm of the advection variable in the linear

advection test with smooth initial conditions (10) and without interface tracking.
| Nz X N | Lo error | Lo order |

20 x 10 0.287488 —

40 x 20 0.0986332 1.543

80 x 40 0.0212308 2.216

160 x 80 | 0.00459294 2.209

Table 2: Error and order of accuracy in the Lo norm of the advection variable for the linear

advection test with discontinuous initial conditions (11) and without interface tracking.
| Nz X Ny | Lo error | Lo order |

20 x 10 0.327226 —

40 x 20 0.255301 0.358

80 x 40 0.198344 0.364

160 x 80 0.1537 0.368

respectively. At the inflow boundary Dirichlet boundary conditions are used:
p(t,x) = po(z)at x = =5 m (12)

Since this is a single fluid test, an upwind flux is used everywhere. The exact
solution to (9) is:

pla,t) = po(x — at). (13)

The simulations are performed at C'F'La; = 1.0.

First, the method is tested for the smooth initial solution (10) without
mesh refinement. The solution at time ¢t = 1 s is illustrated in Figure 4 (left).
The results are presented in Table 1, where the L, errors and corresponding
orders of accuracy are given for various mesh resolutions. Orders of accuracy
of approximately 2 are observed, which is as expected since the STDG is of
order O(hP™1) for smooth solutions.

Second the method is tested for the discontinuous initial solution (11)
without mesh refinement. The solution at time ¢ = 1s is illustrated in
Figure 4 (right). Near the interface spurious oscillations are visible. The
results are presented in Table 2, where the L, errors and the corresponding
orders of accuracy are given for various mesh resolutions. In the L, norm
the orders of accuracy are approximately 0.36, which is as expected since for
discontinuous solutions computed on a static mesh the order of accuracy will
typically not exceed O(h'/?).

Third the method is tested for a discontinuous initial solution (11) with
mesh refinement. The numerical solution at time 7" = 1s and the refined
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Figure 4: The exact (dotted) and numerical (solid) solutions at time ¢t = 1 s of the linear
advection tests without mesh refinement for continuous (left) and discontinuous initial
conditions (right) using 160 elements.

space-time mesh using 20 elements are shown in Figure 5. The performance of
the two fluid scheme is optimal for this test, with the error in the solution and
the interface position both at machine precision. This is the case because the
interface movement is linear in space-time; hence, the interface is represented
exactly in the refined mesh.

Fourth, the method is tested for a non constant advection velocity a =
—xm/s, a discontinuous initial solution (11) and with mesh refinement. The
exact solution is given as:

plt,x) = po(aet). (14)

and the exact interface position at time ¢ is x7x(t) = —2.5 e " m. In this test
the discontinuity moves nonlinearly; hence, it cannot be represented exactly
in the mesh. In Figure 6 the space-time mesh and solution are shown for a
mesh of 20 elements and it is observed that the discontinuity is not resolved
very well. The results are presented in Table 4.

Fifth, the same case as in the fourth test is considered, but at the dis-
continuity solid wall conditions are applied, implemented as a zero flux. By
using solid wall conditions at the discontinuity, it is treated as an interface;
hence, the problem is considered as a two fluid problem. In Figure 7 solution
is shown for a mesh of 20 elements. The interface is captured much better.
The results are presented in Table 4. In the Ly norm the error converges to
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Figure 5: Space-time mesh and numerical solution at time ¢ = 1 s of the linear advection
test with mesh refinement for discontinuous initial conditions using 20 elements.

Table 3: Error and order of accuracy in the Lo norm of the advection variable for the
linear advection test with non constant velocity a = —xm/s and upwind flux at the

discontinuity.
| Nz X Ny | Lo error | Lo order |
20 x 10 0.0408045 -
40 x 20 0.0254312 0.682
80 x 40 0.017552 0.535
160 x 80 | 0.0117917 0.5739
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Figure 6: Space-time mesh and solution at time ¢t = 1 s for the linear advection test with
non constant velocity a = —z using 20 elements and upwind flux at the discontinuity.
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Table 4: Error and order of accuracy in the Lo norm of the advection variable for the
linear advection test with non constant velocity @ = —zm/s and solid wall flux at the
discontinuity.

| Nz X N | Lo error | Lo order |
20 x 10 0.00112646 -

40 x 20 0.000735784 0.614
80 x 40 0.000736948 | —0.00228
160 x 80 | 0.000551662 0.4178
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Figure 7: Solution at time ¢ = 1 s for the linear advection test with non constant velocity
a = —xm/s using 20 elements and solid wall flux at the discontinuity.
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O(h'/?),

In conclusion, results were presented for a number of single fluid linear
advection tests in one space dimension. For a uniform mesh and continuous
and discontinuous solutions respectively the theoretical Ly orders of accuracy
could be confirmed. The results for the discontinuous solution were improved
greatly by applying mesh refinement to capture the discontinuity. In addition
results were presented for a non constant advection velocity a = —xzm/s.
When using an upwind flux at the discontinuity, it was observed that the
discontinuity could not be captured very well. When using a solid wall flux
at the interface, the discontinuity could be captured much better.

5. Zalesak disc

In order to investigate how well the method can handle moving inter-
faces in two space dimensions, the Zalesak disc test problem [29] is exam-
ined. A disc, initially as shown in Figure 8, is rotated counterclockwise
one period around the domain midpoint (z,y) = (0,0)m with velocity
u = (—2my,2mx)m/s. The purpose of this test is to check the accuracy
of the level set solution obtained with the discontinuous Galerkin method
when the level set smoothing procedure is turned on. The test also serves to
illustrate the two fluid mesh refinement. The most difficult part in this test
consists of capturing the sharp corners of the disc. The level set equation is
solved in two space dimensions on the domain [—4 m, 4 m] x [-4m, 4 m| from
time t =0s to 1s.

The simulations are performed at C'F'L = 1.0. In Figure 9 the approxi-
mate disc at the initial and the final time is shown for 80 x 80 and 160 x 160
elements, respectively. The interface evolution for 80 x 80 elements is shown
in Figure 10. At the initial time the level set shows an error near the sharp
edges of the disc, due to the fact that the nonlinear initial level set conditions
cannot be represented exactly using piecewise linear polynomials. Also, af-
ter one rotation the level set solution shows a relatively large error near the
sharp edges of the disc. It is expected that the results will improve by using a
higher order level set approximation or by applying h-refinement. The latter
option is preferred since in general the level set velocity will be obtained from
the flow velocity and may not be of high order.

From the test results it is concluded that when sharp corners are present in
the problem, the accuracy of the method is expected to suffer quite severely.

11
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Figure 8: Zalesak disc test problem.

However, even for a smooth interface, small errors in the level set and inter-
face position are likely to be present.

6. Sod’s ideal gas shock tube

Considered is Sod’s ideal gas shock tube test [23]. The purpose of this
test is to investigate the performance of the method for a case where the
interface moves with the flow velocity. To account for this, two solve steps
are used for the flow and level set equations in each time step. The contact
wave is considered an interface and is captured using the two fluid method.

The one dimensional Euler equations expressing conservation of mass,
momentum and energy are defined as

dp O(pu) _

ot " or 0

A(pu)  O(pu*+p)

o T or Y

I(pE)  O(u(pE +p))
o T o =, (15)

12
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Figure 9: The refined mesh at the initial time (left) and after one rotation (right) for the
Zalesak disc test problem for a mesh with 80 x 80 (top) 160 x 160 (bottom) elements.
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with p the density, u the fluid velocity, p the pressure and pE = pu?/2 + pe
the total energy, with pe the internal energy. In addition to these equations
an equation of state (EOS) is required to account for the thermodynamic
properties of the ideal gas:

e=—2L _ (16)

p(y—1)

where v = 1.4. The Euler equations are solved on a spatial domain [—5m, 5 m]
from time t = 0s to 0.01 s. Initially the interface is located at x = 0 m and
both fluids are in constant states:

(P u,p)(0,2) = (17)
(pr,ur,pr) = (2.37804 kg/m?,0 m/s,2.0 x 10° Pa) forz <0 m
(pr,ur, pr) = (1.18902 kg/m?3,0 m/s,1.0 x 10° Pa) for z > 0 m.

At the boundaries solid wall conditions are imposed:
u-n=0atz=25bm (18)

At the interface the velocity and pressure are continuous.

The solution to (15), illustrated in Figure 11, features an expansion wave
moving to the left with head speed Sy = —343.138 m/s and tail speed
Spr = —241.218 m/s, a contact wave moving to the right with speed S¢ =
84.9331m/s and a shock wave also moving to the right with speed Sr =
397.861m/s. Between the expansion and the contact wave the solution is
constant and equal to the left star state (pj,u*, p*) and between the contact
and the shock wave the solution is also constant and equal to the right
star state (pj, u*,p*), where pj = 1.84490 kg/m?, pk = 1.51174 kg/m?, u* =
84.9331m/s and p* = 1.40179 x 10° Pa.

Let w = (p, pu, pE) and F = (pu, pu® + p,u(pE + p)) denote the con-
servative variables and flux vectors. The HLLC flux provides an accurate
solution to the Riemann problem, which is an initial value problem for the
Euler equations, where the initial conditions consists of two constant states:

(2.0) w; when z <0 (19)
w(x,0) =
wgr when z > 0.

15
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Figure 11: The solution structure of the ideal gas shock tube.
The HLLC flux extended to space-time meshes [3, 24] is defined as:

1
Hurrc =3 (FL +Fgr

— (152 = v[ =[Sy = o)W + (ISr — v =[Sy = v[)wg

+|SL_U|WL_|SR_'U|WR_'U(WL+WR))> (20)

with v the interface velocity. It is assumed that the speeds are the same at
both sides of the contact wave, so Sy = u} = up = u*. From the Rankine-
Hugoniot relations F(wg) — F(w?;) = Sx(wx — wi) with K = L or R for
the left and the right waves, respectively, the following relations are found
for the star state variables:

_ Sk — uk
pru (U — Sk) = (px — p*) + pruk(ug — Sk), (21)

and also an approximation for the speed S); = u* of the contact wave is
obtained:

o _ PrUr(Sk — ur) = prur(Sp —uL) + prL — P
M — .
pr(Sk — ur) — pr(SL — ur)

(22)
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The wave speeds Sy, and Sk are estimated as:
Sp, =min(uy — ar,ur — ag), Sg = max(uy, + ar,ur + ag). (23)

By using the Rankine-Hugoniot relations of the left wave and substituting
the left and right states and wave speeds, the values of w} are calculated as:

0
Pt —pL , (24)
p*Sn — prur

SL—ULW 4 1
S, —Su *S, — Sy

*
W =

and likewise for w}, by replacing L with R. By using the expression for pj,
and u* in the Rankine-Hugoniot relation for the momentum of the left and
the right moving wave, the intermediate pressure is found:

P" = pr(Se —ur)(Smu —ur) +pr = pr(Sk —ur)(Su —ur) + pr. (25)

The Euler equations are discretized using the set of primitive variables
v = (p,u, p). This is motivated by the observation that in many two fluid flow
problems the velocity and often also the pressure are continuous across the
interface while the momentum and energy are not. Since the conservative
equations are used mass, momentum and energy are still conserved. The
approximate primitive variables are defined as:

Vit (6, )l = Y Vi (K" dm(t, %) (26)

with \A/'fn the primitive flow approximation coefficients. The discretized equa-
tions extended into pseudo-time become:

My, =52+ L3 (WP V"), W (V) = 0 (27)
with
ri,n 8WZ
My, = /K . Giom W’ﬂ K. (28)
j p

The discretized equations are simplified by using evaluations in the element
midpoints X,,;4 and replacing the ¥y, terms by the delta function d;,, in
(28) to obtain:

7i,n l LM XRTT n\ YArn— n—
N P WAV, W (V) = 0 (20)

17



Algorithm 1 Pseudo-time integration method for solving the non-linear algebraic equa-
tions in the space-time discretization.

1. Initialize first Runge-Kutta stage: V() = vin,
2. Calculate V&) s =1,--. 5:

(1+ asA)Vﬁ@ = Ve 4 a N (Vi,(s—l)

—At (N@',n)fl E(Wi,(sfl) (Vi,(sfl))’ Wz,nl(Vz,(nl))))
3. Update solution: Vin = V&),

with
8W}'C
8V§)

Nent = K5 2= (Xmia)- (30)

To account for the change in variables the Runge-Kutta pseudo time inte-
gration method is modified with N in the following way:

At the interface the HLLC flux for a contact discontinuity is used. As-
suming the interface coincides with the contact wave, S); = v and the cor-
responding HLLC flux defines the contact HLLC flux H$ ;-

1
HiLLe =3 <FL +Fr+ (Sy — Sp)(wr —wp)

—|—(SM—SR)(WR—W};) —SM<WL+WR)). (31)
By inserting the expressions for wj,, it follows that:
H%LLC = (0,p", p"u")" (32)

which shows that there is no mass flux through the contact interface. At
the domain boundary faces the solid wall conditions are implemented in the
HLLC flux by defining the right state as:

PR = PL; UR = —UL, PR = PL- (33)

The simulations are performed at C'F'La; =~ 0.4.
The test results using the contact flux (32) are presented in Table 5.
The solution converges in the Ly norm. In Figure 12 the evolution of the

18



Table 5: Error and order of accuracy in the Lo norm of the density for the ideal gas Euler
shock tube test using the contact interface flux.
| Nz X N¢ | Lo error | Lo order |
40 x 40 0.0708762 -
80 x 80 0.0484641 0.548
160 x 160 | 0.0296357 0.710
320 x 320 | 0.0213965 0.467

0.4 6

03}

01

AT NI NS S RS el
0 0.02 0.04 0.06 0.08 -4 -2 0 2 4

Figure 12: The time evolution of the interface and level set solution at time ¢t = 0.01s
for the ideal gas shock tube using 320 background elements, the contact flux and no slope
limiter.

interface position for the first few time steps and the level set at the final
time are shown. It is observed that in the first few time steps the interface
moves too slow. The density, density zoom, velocity and pressure profiles
at the final time are shown in Figure 13. Because the interface moves too
slow initially, small undershoots are created in the density at the interface,
which remain in the numerical solution until the final time. Small oscillations
are also observed in the density, velocity and pressure profiles which radiate
outwards from the interface.

In order to diminish the observed oscillations at the interface, an alter-
native interface flux is proposed, which is defined separately for the left and
right sides of the interface:

Hirre =wi(Su —v) + HipLe

Hire =Wi(Su —v) + Hy e (34)

19
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Figure 13: The exact (dotted) and numerical (solid) density, density zoom, velocity and
pressure at time ¢ = 0.01 s for the ideal gas shock tube using 320 background elements,

the contact flux and no slope limiter.
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Table 6: Error and order of accuracy in the L, norm of the density for the ideal gas Euler

shock tube test with interface tracking and using the interface flux (34).
| Nz X Ny | Lo error | Lo order |
10 x 40 | 0.0729742 —
80 x 80 0.0492437 0.567
160 x 160 | 0.0300191 0.714
320 x 320 | 0.0217169 0.467

When the interface representation in the mesh is exact, Sy = v and the
interface flux is reduced to H%, ;. The interface numerical flux now removes
the small numerical oscillations caused by errors in the interface shape and
position at the cost of mass conservation at the interface. The results with
the interface flux (34) are presented in Table 6. The solution converges in
the Ly norm. In Figure 14 the density, density zoom, velocity and pressure
profiles at the final time with the interface flux (34) are shown. Again, the
interface moves too slow initially, causing undershoots in the density at the
interface, which remains in the numerical solution until the final time. The
density, velocity and pressure profiles do not show the oscillations observed
before with the contact interface flux. In Figure 15 the mass evolution of the
two fluids is shown. The mass loss is very small for this test.

In order to remove the spikes appearing near the expansion and shock
waves in the solution with the interface flux (34) the HWENO slope limiter
is used, and in Figure 16 the resulting density, density zoom, velocity and
pressure profiles at the final time are shown. The slope limiter reduces the
spikes at the expansion and shock waves. However, a small offset error is
observed in the density, velocity and pressure profiles in the star region.

Finally, the simulation is run without the initial time steps, from ¢t = 7'/10
to t = T. The resulting density profile is shown in Figure 17. The results
are much better than those obtained previously, especially near the interface.
This is because the error made in the first number of time steps, when the
rarefaction, contact and shock waves are too close to each other to be resolved
well numerically, remains in the simulation for all subsequent time.

In conclusion, the two fluid method has been applied to Sod’s shock tube
test. Using a contact interface flux oscillations were observed at the interface.
An alternative interface flux (34) was developed, reducing the oscillations at
the interface at the cost of conservation. The interface flux (34) was tested
with promising results. Using the slope limiter reduced the spikes near the
expansion and shock waves, but introduced a small offset error in the star
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Figure 14: The exact (dotted) and numerical (solid) density, density zoom, velocity and
pressure at time ¢ = 0.01 s for the ideal gas shock tube using 320 background elements,

interface flux (34) and no slope limiter.
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Figure 15: Relative mass over time of the left (left) and right (right) fluids for the ideal
gas shock tube using 320 background elements, interface flux (34) and no slope limiter.
The relative mass is defined as |M, — M},|/M., with M, the exact and M}, the numerical
amount of mass.

region. Starting the simulation at ¢ = 7'/10 greatly improved the numerical
results.

7. Isothermal magma - ideal gas shock tube

Considered is an isothermal magma - ideal gas shock tube problem. This
test is motivated by the high speed geological event analyzed in [4, 5, 6, 27]
and [28] and it features very high density and pressure ratio’s which cause
strong oscillations around the interface between the gas and magma with
standard shock capturing schemes. The governing equations for an effectively
compressible magma are the Euler equations for mass and momentum:

ow + 0, F(w) =0, (35)

w:(p’;),F=<pu§“+p). (36)

For the ideal gas the one dimensional Euler equations (15) are used. The
magma consists of a mixture of molten rock and 2 wt% (weight percentage)
H50. At high pressure, the H,O only has a liquid form. When the pressure

with
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pressure at time ¢ = 0.01 s for the ideal gas shock tube using 320 background elements,
interface flux (34) and slope limiter.
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Figure 17: The exact (dotted) and numerical (solid) density and density zoom at time
t = 0.01 s for the ideal gas shock tube using 320 background elements, interface flux (34),
no slope limiter and starting at initial time ¢t = 7'/10.

decreases water vapor is formed within the mixture due to decompression
effects. In this situation the magma effectively is a pseudo one-phase mixture.
In explosive eruptions starting with a high pressure difference viscosity effects
are negligible at leading order relative to the nonlinear inertial effects driven
by the high bubble content. The total mass fraction ny of HoO in the magma
consists of a fraction n(p) which is exsolved in the magma as gas and a
fraction 1 — n(p) which is dissolved in the magma as liquid.

The mixture of magma and liquid H,O has a density o = 2500 kg/m?
and the water vapor has a density of p,. The total void or bubble fraction
of the mixture is given by a = n(p)p/p,. The density of the magma is
defined as p = ap, + (1 — a)o. Using the relation for o and the ideal gas law

pg = p/(RT) gives:

) (n(p)RmT 1= n(p))I’

» > (37)

where R,,, = 462 J/kgK is the mixtures gas constant. This relation is only
valid when there are bubbles, i.e., n(p) > 0. The critical pressure p, is
reached when there are no longer any bubbles in the mixture. This is the
case when n(p = p.) = 0 which gives p. = (4/9) x 10® Pa. The magma
considered will be assumed to be compressible; hence, p < p.. For p > p. the
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following relation is used:

p =0+, (p—pe), (38)

with ¢,, = 2000m/s the speed of sound in bubble free magma. The mass
fraction n(p) is assumed to satisfy Henry’s law, which is valid when bubbles
and melt are in equilibrium:

n(p) =no — Sup”. (39)

For basaltic high volatile magma, ny = 0.02, § =~ 0.5, T'= 1200 K and S, =
3.0 x 107% Pa=P. The magma is assumed to be isothermal at a temperature
of 1200K. For isothermal magma the density depends only on the pressure,
p = p(p). The speed of sound a is defined for isothermal magma as:

-SG5 0) - (40)

The simulations are performed on a spatial domain [—5m,5m] from time
t =0s tot = 0.0075s. Initially the interface is located at x = 0m, with
the magma on the left and the ideal gas on the right, and both fluids are in
constant states:

(P u,p)(0,2) = (41)
(pr,ur,pr) = (535.195 kg/m?,0 m/s,5 x 10° Pa) forx <0 m
(pr,ur, pr) = (1.18902 kg/m?3,0 m/s,1.0 x 10° Pa) for z > 0 m.

At the boundaries solid wall conditions are imposed:
u-n=0m/s at v = £5 m. (42)

At the interface continuity of the velocity and pressure is imposed. The exact
solution is calculated by solving the magma and ideal gas Riemann prob-
lem and consists of a left moving expansion wave with head and tail speeds
of Spg = —97.2861m/s, Sy = 186.409m/s respectively, a contact wave
which is identified with the magma-air interface and moves with speed S¢ =
286.329m/s; and, a right moving shock wave with speed Sg = 555.540m/s.
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Figure 18: The solution structure of the Euler magma - ideal gas shock tube.

The left and right star states are defined as: p} = 28.0517kg/m?, ph =
2.45364 kg/m?3, u* = 286.329m/s, p* = 2.89134 x 105 Pa. The solution struc-
ture is shown in Figure 18. At the interface the interface flux (34) is used,
adapted for use with isothermal magma. With the contact interface flux (32)
the simulations were not stable enough. At the boundary faces the solid wall
conditions are implemented in the HLLC flux by defining the right state as:

PR = PL, UR = —UL, PR = PL- (43)

To account for the dependence of the level set on the flow velocity the flow and
level set are updated twice each time step. The simulations are performed
at CFLa; ~ 0.56. Primitive variable discretizations are used for both fluids.

The test results for the solution at time ¢ = 0.0075 s using the interface
flux (34) are presented in Table 7 and convergence in the Ly norm is observed.
In Figure 19 the interface evolution over time and the level set profile at the
final time are shown. Compared to the ideal gas shock tube test results, it
takes much longer for the interface to reach the star velocity. Also, the level
set becomes more distorted over time. The reason for this behavior lies in
the use of the global flow velocity for advecting the level set. This problem
can be fixed by reinitializing the level set every few time steps. In Figure
20 the density, density zoom, velocity and pressure at the final time using
the interface flux (34) are shown. In Figure 21 the mass evolution for the
magma and the ideal gas when using the interface flux (34) and without
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Table 7: Error and order of accuracy in the Lo norm of the density for the isothermal

magma and ideal gas Euler shock tube test using the interface flux (34).
| Ny X N | Lo error | Lo order |

40 x 30 28.5747 —

80 x 60 16.7343 0.772

160 x 120 10.6157 0.657

320 x 240 | 5.95713 0.834

04 6

Figure 19: The time evolution of the interface position and level set at time ¢ = 0.0075 s
for the Euler magma - ideal gas shock tube using 320 background elements, interface flux
(34) and no slope limiter.

slope limiter is shown. The amount of mass loss is negligible. In Figure 22
the density, density zoom, velocity and pressure at the final time using the
interface flux (34) and the slope limiter are shown. Like in the shock tube test
with the ideal gas, the slope limiter reduces the spikes at the shock wave but
introduces a small offset error in the density, velocity and pressure profiles in
the star region. Also, in the solution with the slope limiter the error in the
shock position is visibly larger, probably because of the numerical dissipation
added by the slope limiter to the flow velocity near the shock.

Finally, the simulation is run without the initial time steps, from ¢ = 7'/10
to t = T'. The resulting density profile is shown in Figure 23. Because the
error made in the first number of time steps remains is excluded in this
simulation, the results are much better.

In conclusion, the two fluid method was used to solve a magma - ideal gas
shock tube problem with the interface flux (34) with promising results. Using
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Figure 20: The exact (dotted) and numerical (solid) density, density zoom, velocity and
pressure at time ¢ = 0.0075s for the Euler magma - ideal gas shock tube using 320
background elements, interface flux (34) and no slope limiter.
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the slope limiter reduced the spikes near the expansion and shock waves,
but introduced a small offset error in the star region and also decreased
the accuracy of the shock position. Starting the simulation at t = 7/10
greatly improved the numerical results. In this test the level set became
very distorted, probably because of the advection with the global velocity.
Periodic reinitialization of the level set can be used to solve this problem.

8. Helium cylinder - ideal gas shock interaction

To test the algorithm in a more complex setting computations are per-
formed on the interaction between a cylindrical helium volume in a tube filled
with an ideal gas and a Mach 1.22 shock wave [9, 10, 15, 26] as illustrated
in Figure 24. For the Euler equations this problem has no unique solution,
because the shock induces a Rayleigh-Taylor instability at the interface, but
it presents a challenging test case for the numerical algorithm. The adia-
batic indices and the gas constants for an ideal gas and helium are given
as vy = 1.4, Ry = 287.0J/kgK and vy = 1.67, Ry = 2080.0 J/kgK. Ini-
tially the helium volume is a cylinder with a radius 0.025 m and is located at
(z,y) = (0m,0m) while the shock is located at = 0.055625 m. The domain
has dimensions [—0.11125m,0.11125m| x [—0.0445 m, 0.0445 m|. Both fluids
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Figure 22: The exact (dotted) and numerical (solid) density, density zoom, velocity and
pressure at time ¢ = 0.0075s for the Euler magma - ideal gas shock tube using 320
background elements and the interface flux (34) and slope limiter.
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t = 0.0075 s for the Euler magma - ideal gas shock tube using 320 background elements
and the interface flux (34), no slope limiter and starting at initial time ¢t = 7'/10.
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Figure 24: Helium cylinder - shock interaction test
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are modelled using the two dimensional Euler equations. The initial state of
the helium, and the ideal gas in front and behind of the shock are given as:

(pB,up,vg,pp) = (0.164062 kg/m> 0 m/s,0 m/s, 1.0 x 10° Pa)
(pr,ur,vr,pr) = (1.18902 kg/m* 0 m/s,0 m/s, 1.0 x 10° Pa) (44)
(pr, ur, Vg, Pr) = (1.63652 kg/m* —114.473 m/s,0 m/s,1.5698 x 10° Pa),

where the density of the helium is related to the density of the air in front
of the shock as pp = prR;/Ry. The shock velocity is Vs = Ma, =

418.628 m/s, with ap = /vmpr/pr = 343.138m/s. The states on both
sides of the shock wave are related through the Rankine-Hugoniot relations:

(pr — p)Vs = (prur — prur)
(prug — prur)Vs = (pru% — prut) + (pr — pr)
(prERr — pLEL)Vs = up(prER + pr) — ur(prErL + pL). (45)

Using the definition of the total energy, pFE = p(u® + v?)/2 + pe, and the
EOS for an ideal gas, pe = p/(~y; — 1), the Rankine-Hugoniot conditions can
be solved for pg,ur and pg.

When the initial shock wave incidents the upstream boundary of the he-
lium volume, the shock is transmitted into the helium volume and accelerates
due to the decrease in density, while the upstream boundary of the helium
volume is set into downstream motion and an expansion wave is generated
moving in the upstream direction. When the transmitted shock incidents
the downstream boundary of the helium volume, the shock is transmitted
and decelerates, while the downstream boundary of the helium volume is set
into downstream motion and another expansion wave is generated moving in
the upstream direction. Over time the helium volume flattens and is sub-
sequently transformed into a vortex like structure. Basically the cylindrical
helium volume acts as a divergent lens for the shock wave. In addition, the
top wall adds to the complexity of the solution through a number of wave
reflections.

At the top, bottom and left boundaries solid wall boundary conditions
are imposed. At the right boundary the ideal gas state behind the shock is
imposed weakly by using it as the external state of the numerical flux. At
the interface continuity of the normal velocity and the pressure is imposed
and the numerical flux (34) is used. To account for the dependence of the
level set on the flow velocity the flow and level set are updated twice during
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each time step. Because the solution is symmetric with respect to the x-axis,
computations are performed on the half domain [—0.11125m,0.11125 m] x
[0m, 0.0445 m]. The simulations are run using 40 x 8, 80 x 16, 160 x 32 and
320 x 64 elements from time ¢t = 0s to 3.125 x 107 s at CFL =~ 1.0 using
linear basis functions for the flow field and the level set, where the level set
smoothing reconstructs a bilinear level set. By solving for a linear level set
the Rayleigh-Taylor instabillity is effectively suppressed. Because the shock
is not very strong the slope limiter is not used.

The density contours for subsequent times are shown in Figures 25 and
26. The mesh at time t = 3.4375 x 10~*s for different mesh resolutions is
shown in Figures 27 and 28. The evolution of helium mass over time for
different mesh resolutions is shown in Figure 29 and is relatively small. The
mesh evolution is illustrated for 80 x 16 elements in Figure 30.

In conclusion, the interaction between a helium cylinder and a shock wave
was simulated using the interface flux (34). The mass loss was observed to
be small.

9. Discussion

The space-time discontinuous Galerkin method with interface tracking
has been applied to a number of one and two dimensional single and two
fluid test problems.

1. Using a one dimensional linear advection test it was observed that
the flow solution has approxmate orders of accuracy of 2 for smooth
initial conditions and 0.36 for discontinuous initial conditions, which
matched theoretical orders of accuracy obtained in various studies. For
the discontinuous solution, results improved when interface tracking
was applied, because the interface could be captured exactly by mesh
refinement. For a non-constant advection velocity it was observed that
the interface tracking works quite well in combination with solid wall
interface conditions.

2. The level set accuracy was tested using Zalesak’s test. The level set
solution was smoothed after each physical time step. It was observed
that the influence of the limiting and smoothing was small. The shape
of the disc after one rotation was preserved well at smooth area’s of
the disc, while in the neighborhood of the sharp corners the accuracy
clearly suffered.
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Figure 25: Density contours at times t = 0.625 x 107%5,0.9375 x 107%s,1.25 x
107%5,1.5625 x 10~%5,1.875 x 10~ % s for the helium cylinder - ideal gas shock interaction
test using 320 x 64 elements.
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Figure 26: Density contours at times t = 2.1875 x 107%5,2.5 x 107%5,2.8125 x
107%5,3.125 x 1075, 3.4375 x 10~ % s for the helium cylinder - ideal gas shock interaction
test using 320 x 64 elements.
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Figure 27: Mesh at time 3.4375x10~% s for the helium cylinder - ideal gas shock interaction
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test using 40 x 8 and 80 x 16 elements.
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Figure 28: Mesh at time 3.4375x10~% s for the helium cylinder - ideal gas shock interaction
test using 160 x 32 and 320 x 64 elements.
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Figure 29: Relative helium mass over time for the helium cylinder - ideal gas shock inter-
action test using 40 x 8, 80 x 16, 160 x 32 and 320 x 64 elements. The relative mass is
defined as | M, — My|/M., with M, the exact and M}, the numerical amount of mass.

3. The method was applied to a one dimensional ideal gas single fluid
Euler shock tube problem. Using a contact interface flux, oscillations
were observed at the interface. An alternative interface flux (34) was
developed, which reduces the oscillations at the interface at the cost
of a very small mass conservation error. The interface flux (34) was
tested with promising results. Slope limiting reduced the spikes in the
solution but also caused a decrease in accuracy. Starting the simulation
at t = T'/10 greatly improved the results.

4. The method was applied to a magma - ideal gas shock tube. This
test case featured two very different fluids and very high density and
pressure ratio’s. The method gave good results with the interface flux
(34). Slope limiting reduced the spikes in the solution but also caused
a decrease in accuracy. Starting the simulation at ¢ = T'/10 greatly
improved the results.

5. The method was applied to calculate the interaction between a helium
cylinder and a shock wave using the interface flux (34). The mass loss
was observed to be small.

Some interesting future applications involve:
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Figure 30: Interface evolution for the helium cylinder - ideal gas shock interaction test
using 80 x 16 elements.
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e The shallow water equations to simulate flooding and drying [2, 3, 7,
16, 21] two-phase flows [17] and other applications [1, 22, 25]. Because
of the methods’ flexibility in defining flow domains with interfaces it is
expected that valuable contributions are possible in these fields.

e The well known Rayleigh-Taylor and Kelvin-Helmholtz instability tests,
which are interesting because they feature extreme interface deforma-
tion.

e Interface related phenomena with the method including interface cur-
vature, tension and contamination, chemical reactions and membranes,
which play a role in many real life two-fluid problems.
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