
Comparing DG and Nédéle Finite Element Disretisations of theSeond-Order Time-Domain Maxwell EquationD. Sármánya,∗, M.A. Botheva, J.J.W. van der Vegta, J.G. VerwerbaDepartment of Applied Mathematis, University of Twente, P.O. Box 217, 7500 AE Enshede, the NetherlandsbCenter for Mathematis and Computer Siene, P.O. Box 94079, 1090 GB Amsterdam, the NetherlandsAbstratThis artile ompares the disontinuous Galerkin �nite element method (DG-FEM) with the H(curl)-onforming FEM in the disretisation of the seond-order time-domain Maxwell equations with possiblynonzero ondutivity term. While DG-FEM su�ers from an inreased number of degrees of freedomompared with H(curl)-onforming FEM, it has the advantage of a purely blok-diagonal mass matrix.This means that, as long as an expliit time-integration sheme is used, it is no longer neessary to solvea linear system at eah time step � a lear advantage over H(curl)-onforming FEM. It is known thatDG-FEM generally favours high-order methods whereas H(curl)-onforming FEM is more suitable forlow-order ones. The novelty we provide in this work is a diret omparison of the performane of thetwo methods when hierarhi H(curl)-onforming basis funtions are used up to polynomial order p = 3.The motivation behind this hoie of basis funtions is its growing importane in the development of p-and hp-adaptive FEMs.The fat that we allow for nonzero ondutivity requires speial attention with regards to the time-integration methods applied to the semi-disrete systems. High-order polynomial basis warrants the useof high-order time-integration shemes, but existing high-order shemes may su�er from a too severe time-step stability restrition as result of the ondutivity term. We investigate several alternatives from thepoint of view of auray, stability and omputational work. Finally, we arry out a numerial Fourieranalysis to study the dispersion and dissipation properties of the semi-disrete DG-FEM sheme andseveral of the time-integration methods. It is instrutive in our approah that the dispersion and dissi-pation properties of the spatial disretisation and those of the time-integration methods are investigatedseparately, providing additional insight into the two disretisation steps.Keywords: H(curl)-onforming �nite element method, disontinuous Galerkin �nite element method,numerial time integration, seond-order Maxwell wave equation1. IntrodutionHigh-order �nite element methods (FEM) are an inreasingly important tehnology in large-saleeletromagneti simulations thanks to their ability to e�etively model omplex geometrial struturesand long-time wave propagation. It has long been known that the standard H1-onforming FEM foreletromagneti waves may result in non-physial, spurious solutions. Instead, one may naturally optfor the H(curl)-onforming FEM pioneered by Nédéle [1, 2℄ and Bossavit [3, 4℄. It has the advantageof mimiking the geometrial properties of the Maxwell equations at the disrete level. However, intime-domain omputations it requires solving linear systems with mass matries even if an expliit time-integration method is used. One attrative alternative � also free of spurious solutions under ertainonditions � is the disontinuous Galerkin FEM (DG-FEM) [5, 6, 7℄, where the resulting mass matrixis blok-diagonal and therefore the omputational ost of its inversion is negligible. But this additional�exibility omes at a ost. The number of degrees of freedom in DG disretisations is higher than that inthe H(curl)-onforming disretisation, although the di�erene dereases as the polynomial order in the
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spatial disretisation grows. As an illustration, Figure 1 shows the sparsity patterns of the mass matriesfor both methods when a mesh of 320 tetrahedra and third-order polynomials are used.
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nz = 795328Figure 1: Sparsity pattern of the mass matrix for H(curl)-onforming FEM (left) and DG-FEM (right)for a mesh with 320 elements. Third-order polynomials are used, whih means that the size of the bloksin the right plot is 60×60. Note the di�erene in size between the two matries.So there appears to be a trade-o� between the two methods in time-domain omputations. In general,the H(curl)-onforming approah is more e�ient with low-order polynomials and DG-FEM with high-order ones. The expeted break-even point depends on a number of fators, suh as the onditioningand sparsity of the mass and sti�ness matries in the resulting semi-disrete systems. As a novelty, thefous of this work is to provide a omparison of the omputational performane of the two methods whenhierarhi H(curl)-onforming basis funtions [8, 9℄ are used on tetrahedral meshes. The motivationbehind this hoie is that these basis funtions play an ever more important role in the development of
p- and hp-adaptive methods [10℄ for the Maxwell equation.Throughout the artile, the di�erent disretisation tehniques are applied to the three-dimensionalMaxwell equations in the seond-order time-dependent form,

εr
∂2E

∂t2
+ σ

∂E

∂t
+ ∇×

(

µ−1
r ∇×E

)

= −∂J

∂t
, (1)with homogeneous boundary onditions n×E = 0. All quantities are dimensionless1 in (1), where E isthe eletri �eld and J is the eletri urrent density. The values σ, εr and µr are assumed to be time-independent onstant salars, and they respetively denote ondutivity, relative dieletri permittivityand relative magneti permeability. If the domain is �lled with nonondutive material, the damping term

σ ∂E
∂t is absent. If, in addition, the soure term −∂tJ is also taken to be zero, we have the onservativeMaxwell wave equation.Following the method of lines, we �rst disretise the spatial operators, using the H(curl)-onformingFEM or the DG-FEM. In either ase, we arrive at a semi-disrete system in the form of seond-orderordinary di�erential equations (ODEs) in R

n,
Mεu

′′ + Mσu′ + Sµu = j, (2)where u is the unknown vetor of N salar oe�ients assoiated with the approximation of the eletri�eld E. The soure term j is the projetion of −∂tJ onto the �nite-element spae and in general mayalso ontain boundary data. For simpliity, however, we restrit ourselves to the homogeneous Dirihlet1We an derive the dimensionless form by using the salings x = x̃/L̃, t = t̃/(L̃/c̃0), E = Ẽ/(Z̃0H̃0), H = H̃/H̃0,
J = J̃/(H̃0/L̃) and σ = J̃L̃Z̃0/Ẽ, with tilde denoting the dimensional quantities. Here L̃ is the referene length, c̃0 =
(µ̃0ε̃0)−1/2 is the speed of light in vauum, H is the magneti �eld (eliminated in (1)), H̃0 is the referene magneti �eldstrength and Z̃0 = (iω̃µ̃0/(σ̃ + iω̃ε̃0))1/2 is the intrinsi impedane, with ω̃ being the angular frequeny and i the imaginaryunit. 2



boundary ondition, n×E = 0, in this artile. Eah term in the left-hand side of (2) orresponds to therespetive term in the left-hand side of (1). The mass matrix Mε is symmetri positive de�nite and theondutivity matrix Mσ is symmetri positive semi-de�nite. In addition, for onstant salars σ and εrthe matries Mε and Mσ are idential up to a onstant. The sti�ness matrix Sµ is the disretisation ofthe wave term and is symmetri positive semi-de�nite.Convergene results for the H(curl)-onforming semi-disrete approximation (2) are relatively well-established [11, 12℄. Results on the semi-disrete DG disretisation are more reent: energy-norm esti-mates [13℄ and L2-estimates [14℄ have been derived for the Maxwell equations; optimal error estimatesfor the fully-disrete seond-order salar wave equation have been provided in [15℄; and a promisingenergy-onserving loal-time stepping sheme has been developed in [16℄.A vital feature of (1) and (2) from the point of view of time integration is that it inludes theondutivity σ. Even moderate values of σ may result in a prohibitively small time step for many of thepopular time-integration shemes. Therefore, we pay speial attention to time-integration methods thattreat the ondutivity mass matrix Mσ in an impliit way. Many of suh methods and others disussed inthis artile have been previously studied in [17℄ for the system of �rst-order Maxwell equations disretisedby the lowest-order H(curl)-onforming elements. See also [18℄ for more details on omposition methodsfor the ondution-free Maxwell equations.The semi-disrete system (2) onserves (disrete) energy for the spatial disretisations disussed here,sine these are both symmetri. Hene, using an energy-onservative time-integration method results ina onservative fully-disrete sheme. We investigate the dispersion and dissipation error of the shemesin two steps. First, we determine the dispersion error of the semi-disrete sheme by solving the time-harmoni eigenvalue problem orresponding to the semi-disrete system. Seond, we an then apply anygiven time-integration sheme to a simple, but equivalent, model problem that inludes the informationof the semi-disrete numerial frequeny, and thus de�ne the dispersion (and, if there is any, dissipation)error of the time-integration method. This approah shows if the dispersion error is dominated by thespatial or temporal disretisation � a piee of information that may prove useful in deiding whether ornot to go for high-order time-integration shemes.The omputational performane of the H(curl)-onforming method hinges to a great degree on ef-�iently solving the linear system with the mass matrix. A number of advaned tehniques have beenproposed reently, inluding mass lumping [19, 20, 21℄, the expliit omputation of an approximate sparseinverse mass matrix [22℄, or the onstrution of speial preonditioners. These approahes, however, donot in their urrent states provide a general framework and therefore annot be extended to high-orderdisretisations in a straightforward manner. That is the reason why in this artile we resort to standardpreonditioners. It is of ourse also possible to use sparse diret solvers but in test problems we foundthat they are too memory demanding for large-sale three-dimensional omputations.The remaining part of the artile is organised as follows. The weak formulations of the H(curl)-onforming FEM and the DG-FEM are given in Setion 2. The semi-disrete system arising from eitherof the spatial disretisations is analysed in Setion 3, while we brie�y desribe a number of the mostwidely-used time-integration methods in Setion 4. Numerial examples that ompare the omputationalperformane of the two �nite element approahes are presented in Setion 5, where we test both low-orderand high-order approximations. Setion 6 onludes the artile with �nal remarks.2. The weak formulationBefore we present the weak formulations that result from the H(curl)-onforming and the DG dis-retisations, we introdue the tessellation Th that partitions the polyhedral domain Ω ⊂ R
3 into a setof tetrahedra {K}. Throughout the artile we assume that the mesh is shape-regular and that eahtetrahedron is straight-sided. The notations Fh, F i

h and Fb
h stand respetively for the set of all faes

{F}, the set of all internal faes, and the set of all boundary faes.On the omputational domain Ω, we de�ne the spaes
H(curl; Ω) :=

{

u ∈
[

L2(Ω)
]3

: ∇× u ∈
[

L2(Ω)
]3

}

,

H0(curl; Ω) :=
{

u ∈ H(curl; Ω)
∣

∣

∣ n× u = 0 on ∂Ω
}

,3



and the L2 inner produt (·, ·)
(u,v) =

∫

Ω

u · v dV.The ontinuous weak formulation of (1) now reads as follows: Find E ∈ H0(curl, Ω) suh that ∀w ∈
H0(curl, Ω) the relation

∂2

∂t2
(εrE,w) +

∂

∂t
(σE,w) +

(

µ−1
r ∇×E,∇×w

)

= −
(

∂J

∂t
,w

) (3)is satis�ed. See e.g. [23, 12℄.2.1. Weak formulation of the globally H(curl)-onforming disretisationIn order to disretise (3), we �rst introdue the �nite element spae assoiated with the tessellation
Th. Let Pp(K) be the spae of polynomials of degree at most p ≥ 1 on K ∈ Th. Over eah element Kthe H(curl)-onforming polynomial spae is de�ned as

Qp =
{

u ∈ [Pp(K)]
3
; uT |F K

i
∈

[

Pp(F
K
i )

]2
; u · τ j |eK

j
∈ Pp(e

K
j )

}

, (4)where FK
i , i = 1, 2, 3, 4 are the faes of the element; eK

j , j = 1, 2, 3, 4, 5, 6 are the edges of the element;
uT is the tangential omponent of u; and τ j is the direted tangential vetor on edge eK

j . For theonstrution of Qp, we use a set of H(curl)-onforming hierarhi basis funtions [8, 9℄.Next, we introdue the disrete spae of globally H(curl)-onforming funtions
Υp

h :=
{

υ ∈ [H0(curl, Ω)]
3

∣

∣

∣ υ|K ∈ Qp, ∀K ∈ Th

}

,and let the set of basis funtions {ψi} span the spae Υp
h. See [12℄ for a detailed disussion on bothontinuous and disrete H(curl)-onforming spaes. We an then approximate the eletri �eld E as

E ≈ Eh =
∑

i

ui(t)ψi(x), (5)from whih the disrete weak formulation reads as follows: Find Eh ∈ Υp
h suh that ∀φ ∈ Υp

h the relation
∂2

∂t2
(εrEh,φ) +

∂

∂t
(σEh,φ) +

(

µ−1
r ∇×Eh,∇× φ

)

= −
(

∂J

∂t
,φ

) (6)is satis�ed. Note that (6) is satis�ed if and only if it is satis�ed for every basis funtion ψi, i = 1, . . . , N ,with N being the global number of degrees of freedom. As a result, substitution of (5) into (6) yields thesemi-disrete system (2) with
[Mε]ij =

(

εrψi,ψj

)

, [Sµ]ij =
(

µ−1
r ∇×ψi,∇×ψj

)

,

[Mσ]ij =
(

σψi,ψj

)

, [j]i = −
(

∂J

∂t
,ψi

)

.Eah of the above matries � Mε, Mσ and Sµ � has a large number entries far o� the diagonal, inreasingthe omputational ost for both expliit and impliit time-integration methods.2.2. Weak formulation of DG-FEMIn ontrast to the H(curl)-onforming disretisation, in DG-FEM we are looking for the disretesolution in the spae
Σp

h :=
{

σ ∈
[

L2(Ω)
]3

∣

∣

∣ σ|K ∈ Qp, ∀K ∈ Th

}

.That is, we allow the polynomial funtions to be fully disontinuous aross element interfaes and assumethat the set of basis funtions {ψi} now span the spae Σp
h. Instead of enforing ontinuity of thetangential omponents, the information between elements is now oupled through the numerial �ux4



[5, 24, 7℄. Before we an de�ne the numerial �ux and formulate the disretisation for DG-FEM, we �rstneed to introdue more notation.Consider an interfae F ∈ Fh between element KL and element KR, and let nL and nR representtheir respetive outward pointing normal vetors. We de�ne the tangential jump and the average of thequantity u aross interfae F as
[[u]]T = nL × uL + nR × uR and {{u}} =

(

uL + uR
)

/2,respetively. Here uL and uR are the values of the trae of u at ∂KL and ∂KR, respetively. At theboundary Γ, we set {{u}} = u and [[u]]T = n × u. We furthermore introdue the global lifting operator
R(u) :

[

L2(Fh)
]3 → Σp

h as
(R(u),v)Ω =

∫

Fh

u · {{v}}dA, ∀v ∈ Σp
h, (7)and, for a given fae F ∈ Fh, the loal lifting operator RF (u) :

[

L2(F )
]3 → Σp

h as
(RF (u),v)Ω =

∫

F

u · {{v}}dA, ∀v ∈ Σp
h. (8)Note that RF (u) vanishes outside the elements onneted to the fae F so that for a given element

K ∈ Th we have the relation
R(u) =

∑

F∈Fh

RF (u), ∀u ∈
[

L2(Fh)
]3

. (9)The disrete weak formulation for DG-FEM now reads as follows [25℄: Find Eh ∈ Σp
h suh that

∀φ ∈ Σp
h the relation

∂2

∂t2
(εrEh,φ) +

∂

∂t
(σEh,φ) +

(

µ−1
r ∇h ×Eh,∇h × φ

)

−
∫

Fh

[[Eh]]T · {{∇h × φ}}dA −
∫

Fh

{{∇h ×Eh}} · [[φ]]T dA

+
∑

F∈Fh

CF (RF ([[E]]T ),RF ([[φ]]T ))Ω = −
(

∂J

∂t
,φ

) (10)is satis�ed, where the operator ∇h denotes the elementwise appliation of ∇. For stability, the onstant
CF has to satisfy the ondition [25℄

CF ≥ nfC1 + min

{

1

2
,

1

C2

}

,where C1 and C2 are positive onstants and nf denotes the number of sides of eah element, that is fortetrahedra nf = 4. As a onsequene, the onstant CF is independent of both the polynomial order andthe mesh size.Again, (10) is satis�ed if and only if it is satis�ed for every basis funtion ψi, i = 1, . . . , N , with Nbeing the global number of degrees of freedom. Substitution of E ≈ Eh =
∑

i ui(t)ψi(x) into (10) yieldsthe semi-disrete system (2) with
[Mε]ij =

(

εrψi,ψj

)

, [Mσ]ij =
(

σψi,ψj

)

, [j]i = −
(

∂J

∂t
,ψi

)

,

[Sµ]ij =
(

µ−1
r ∇h ×ψi,∇h ×ψj

)

−
∫

Fh

[[ψi]]T ·
{{

∇h ×ψj

}}

dA

−
∫

Fh

{{∇h ×ψi}} ·
[[

ψj

]]

T
dA +

∑

F∈Fh

CF

(

RF ([[ψi]]T ),RF (
[[

ψj

]]

T
)
)

Ω
.5



The matries Mε and Mσ are now blok-diagonal with the elementwise matries being the bloks. How-ever, the sti�ness matrix Sµ has still many entries far o� the diagonal beause of the fae integrals in itsonstrution. That is why, DG in general warrants the use of expliit time-integration shemes but notimpliit ones.We emphasise that (10) is only one of many possible formulations of DG-FEM, depending on thenumerial �ux one hooses to use. The one we have introdued here is based on the numerial �ux from[26℄ (see also [27℄), and was analysed in detail for the time-harmoni Maxwell equations in [25℄. See also[24℄ for an overview of DG-FEM methods for ellipti problems and for a large number of possible hoiesfor the numerial �ux.2.3. The energy normConvergene results for FEMs are generally derived not only in the L2-norm but also in a normassoiated with the disrete energy of the approximation [13, 15℄. These are de�ned for the H(curl)-onforming and DG disretisations as
‖v‖2

H(curl) = ‖v‖2 + ‖∇× v‖2and
‖v‖2

DG = ‖v‖2 + ‖∇h × v‖2 + ‖h− 1

2 [[v]]T ‖2
Fh

,respetively. In the above de�nition, ‖ · ‖Fh
denotes the L2(F) norm and h(x) = hF is the diameter offae F ontaining x. We note that the two de�nitions of the energy norm are atually idential as ∇hbeomes ∇ and [[·]]T vanishes if H(curl)-onforming disretisation is used.3. Stability of the semi-disrete systemTo arry out a basi stability analysis, we �rst transform (2) into a �rst-order system of ODEs,

u′ = v, (11)
Mεv

′ + Mσv + Sµu = j.Reall that Sµ is symmetri and therefore � using the inner-produt notation for disrete vetors � wehave the property
d

dt

(

vT Mεv + uT Sµu
)

=
dvT

dt
Mεv + vT Mε

dv

dt
+

duT

dt
Sµu + uT Sµ

du

dt
=

2vT (−Mσv − Sµu + j) + 2vT Sµu = 2vT j − 2vT Mσv. (12)If j = 0, this entails stability, that is
d

dt

(

vT Mεv + uT Sµu
)

= −2vT Mσv ≤ 0,sine, for onstant σ, the matrix Mσ is positive de�nite if σ > 0 and Mσ = 0 if σ = 0. Therefore, if σ = 0in addition to j = 0, (12) shows onservation.In order to use a stability test model introdued later in this setion, we transform (11) to an equivalentexpliit form. To do so, we multiply the �rst equation in (11) with Mε and introdue the Choleskyfatorisation LLT = Mε. The new variables ṽ = LT v and ũ = LT u then satisfy the system
(

ũ′

ṽ′

)

=

(

0 I

−S̃µ −M̃σ

) (

ũ
ṽ

)

+

(

0

j̃

)

, (13)where
j̃ = L−1j, S̃µ = L−1SµL−T , M̃σ = L−1MσL−T .

6



Sine both the ondutivity oe�ient σ and the permittivity oe�ient εr are onstant salars in (1),the matrix M̃σ in (13) is the onstant diagonal matrix
M̃σ = γI, γ =

σ

εr
.From this we an derive a two-by-two system through whih stability of time-integration methods for(11) an be examined.The matrix S̃µ is symmetri positive semi-de�nite so it an be deomposed as S̃µ = UΛUT , where Λis a diagonal matrix with the eigenvalues of S̃µ on its diagonal

λ1 ≥ λ2 ≥ . . . ≥ λr ≥ λr+1 = λr+1 = . . . = λn = 0,where r is the rank of the matrix. The matrix U is orthogonal and its olumns are the eigenvetors of
S̃µ. Using a permutation matrix P , we have
A =

(

0 I

−S̃µ −M̃σ

)

=

(

0 UUT

−UΛUT −γI

)

=

(

U 0
0 U

) (

0 I
−Λ −γI

) (

UT 0
0 UT

)

=

(

U 0
0 U

)

PΛPPT

(

UT 0
0 UT

)

, (14)where ΛP is a blok-diagonal matrix with two-by-two bloks
(

0 1
−λk −γ

)

, k = 1, . . . , N. (15)This allows us to state the following proposition.Proposition 1. Assume that σ and εr are salar and γ = σ/εr. Then the matrix A has(i) n − r zero eigenvalues,(ii) n − r eigenvalues whih equal −γ,(iii) 2r eigenvalues whih are
−γ ±

√

γ2 − 4λk

2
, k = 1, . . . , r.Thus, the orthogonal transformation V ≡ ( U 0

0 U )P deouples (13) into r two-by-two systems
(

û′

v̂′

)

=

(

0 1
−λ −γ

)(

û
v̂

)

+

(

0

ĵ

)

,with λ = λk > 0, k = 1, . . . , r, and n − r two-by-two systems
(

û′

v̂′

)

=

(

0 1
0 −γ

) (

û
v̂

)

+

(

0

ĵ

)

.For the stability analysis, we may neglet the soure term and thus arrive at the two-by-two stability testmodel
(

û′

v̂′

)

=

(

0 1
−λ −γ

)(

û
v̂

)

, λ ≥ 0, γ ≥ 0. (16)The attrative feature of this formulation is that stability for the test model (16) indues stability for(11) in the norm generated by the inner produt in (12).Useful though equation (16) is, it is important to emphasise that the derivation of (16) requiresonstant salars in the oe�ients εr and σ, thus limiting the generality of this approah.7



4. Time-integration methodsProbably the most popular time-integration methods to use in ombination with high-order DGmethods are high-order Runge-Kutta methods, giving rise to what are olletively alled the Runge-Kutta DG (RKDG) methods [5℄. For ontinuous and H(curl)-onforming FEMs geometri integratorsare also widely used thanks to their ability to onserve sympletiity2 at the disrete level [18℄. In thissetion, we brie�y reall the onstrution of these two families of methods and we also disuss loal andglobal Rihardson extrapolation.The highest-order polynomial we use within the �nite element methods is p = 3. For both the DGand the H(curl)-onforming methods, this orresponds to fourth-order onvergene for the semi-disretesystem (2) provided that the solution is smooth [13, 14, 11, 12℄. Therefore, we now only disuss time-integration methods that are also at most fourth-order aurate. Extension to higher order, however, isusually straightforward.For investigating the properties of any given time-integration method, let τ denote the time-step sizeand introdue zλ = τ
√

λ and zγ = τγ.3 The stability of the time-integration method an then, in general,be best inspeted through the (numerially determined) stability region
S = {(zλ, zγ) : zλ, zγ ≥ 0 with |µ| < 1, µ eigenvalues of the ampli�ation operator}assoiated with the test model (16).4.1. Runge-Kutta methodsOut of the many di�erent types of Runge-Kutta methods, strong-stability-preserving Runge-Kuttamethods (SSPRK) [5℄ are partiularly well suited for the time integration of semi-disrete hyperboliproblems.With the de�nition of the initial values U0 = un and V0 = vn for the time step from tn to tn+1, thegeneral s-stage SSPRK sheme for (11) reads

Uk =

k−1
∑

l=0

(αklUl + τβklVl) ,

MεVk =

k−1
∑

l=0

(αklVl + τβkl (−SµUl − MσVl + j(tl))) ,

un+1 = Us,

vn+1 = Vs,

(17)
where k = 1, . . . , s while αkl and βkl are the oe�ients in the SSPRK method. Applying (17) to thetest equation (16), the ampli�ation operator Ms

ssp of an s-stage SSPRK method is
Mk

ssp =
k−1
∑

l=1

BklMl−1
ssp with Bkl = αkl

(

1 0
0 1

)

+ βkl

(

0 1
z2

λ −zγ

)

, (18)where, again, k = 1, . . . , s and M0
ssp is the identity. We show the stability regions of several SSPRKshemes in Figure 2, where we refer to an s-stage pth-order SSPRK method as SSPRK(s,p). It isimportant to emphasise that any (standard as well as `nonstandard' suh as SSP) expliit s-stage pth-order RK methods with s = p has the same ampli�ation matrix. In those ases the hoie of oe�ientsonly determines the SSP property and not the shape of the stability region. For the ases when s = p+1,we display the stability regions of the methods that were derived and analysed in [28, 29, 30℄. Theplots suggest that inreasing the number of stages, while keeping the polynomial order �xed, results in2The preservation of sympletiity is important beause it is related to energy. More preisely, for sympleti integratorsthe error in total energy will remain within a ertain margin throughout the entire time integration.3These values appear in a natural way in the ampli�ation matries of most time-integration methods desribed later inthis setion. 8



a more favourable time-step restrition for the ondution part � one that more than o�sets the ostof introduing an additional stage at eah time step. This is in line with known results for the linearadvetion equation [28, 29℄. Nevertheless, expliit SSPRK methods treat the ondution term, as well asthe wave term, expliitly, whih entails a time-step ondition that is too restritive even for moderatelyondutive materials (see next setion). Note that the seond-order methods are only stable for zγ > 0,i.e. for σ > 0.4.2. Composition methodsComposition methods [31, 32, 33℄ are espeially suitable for geometri integration [18℄ and thus forthe time integration of �rst-order Hamiltonian systems. Our desription of the omposition methods herestritly follows that in [17℄ and we refer to that work for more details.The seond-order omposition method for (11) is de�ned as
un+1/2 − un

τ
=

1

2
vn,

Mε
vn+1 − vn

τ
= −Sµun+1/2 −

1

2
Mσ(vn + vn+1) +

1

2
(j(tn) + j(tn+1)) ,

un+1 − un+1/2

τ
=

1

2
vn+1,

(19)whih is akin to the ubiquitous leapfrog sheme, with the only di�erene being in the treatment of thesoure term (f. [34℄). If applied to the test model (16), it has the ampli�ation matrix
Mco2 =

(

1 − 1
2z2

λ + 1
2zγ 1 − 1

4z2
λ

−z2
λ 1 − 1

2z2
λ − 1

2zγ

)

, (20)whih entails the stability properties: zλ ≤ 2 if zγ = 0 and zλ < 2 if zγ > 0. An attrative feature ofthis method over expliit RK methods is that it is unonditionally stable with respet to the ondutionterm.In priniple, it is possible to onstrut an arbitrary high-order omposition method [31℄. In this artile,however, we are only interested in at most fourth-order aurate methods so we will now only disuss thefourth-order omposition method. We de�ne the initial values for the inner time step as U0 = un and
V0 = vn, time levels tu, tv for u, v and oe�ients

β0 = α0 = 0, β1 = α5 = 14−
√

19
108 , β2 = α4 = −23−20

√
19

270 ,

β3 = α3 = 1
5 , β4 = α2 = −2+10

√
19

135 , β5 = α1 = 146+5
√

19
540 .The fourth-order omposition method [31, 32, 17℄ for (11) now reads

Uk − Uk−1

τ
= (βk + αk−1)Vk−1,

Mε
Vk − Vk−1

τ
= βk

(

−SµUk − MσVk−1 + j(tvk−1)
)

+ αk (−SµUk − MσVk + j(tvk)) ,

vn+1 = Vs,

un+1 = Us + αsτVs,

(21)where k = 1, . . . , s, s = 5 is the number of internal time levels, and tvk = tn + (α̃k + β̃k)τ and tuk =

tn + (α̃k−1 + β̃k)τ with the oe�ients α̃k = α1 + · · · + αk and β̃k = β1 + · · · + βk.The ampli�ation operator of (21) when applied to (16) is then
1

∏

k=5

1

1 + αkzγ

(

1 + αkzγ (1 + αkzγ) (αk−1 + βk)
− (αk + βk) z2

λ 1 − βkzγ − (βk + αk−1) (βk + αk) z2
λ

)

. (22)An important property of any fourth-order omposition method is that it inevitably ontains a negativeoe�ient, whih in our ase is α4 = β2. This entails a stability restrition that is onditional even foran impliitly treated ondution term. This is illustrated in Figure 3, where parts of the upper right9
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(f) SSPRK(5,4)Figure 2: Stability regions (shaded areas) for several expliit SSPRK(s,p) methods, where s is the numberof stages and p is the order of the method. Note that all expliit RK methods with s = p have the samestability regions as SSPRK(s,p) with s = p (left olumn).half of the stability region for (21) is shown. Stability is guaranteed as long as zγ < 2.4 and zλ < 3, orequivalently, if τ < 2.4/γ and τ < 3/
√

λ. 10
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Figure 3: Stability region (shaded area) of the fourth-order omposition method. The right plot zoomsin on the region where stability is guaranteed. (Cf. Figure 5.1 in [17℄.)4.3. Fourth-order global Rihardson extrapolationAs already mentioned in the previous setion, when σ > 0 the stability ondition may be veryrestritive even for moderately ondutive materials. In these ases, high-order omposition methodsand SSPRK methods are not ompetitive. Instead, one would prefer to use expliit methods whih treatthe ondution term in an unonditionally stable manner. Sine the seond-order omposition method issuh a method, extending it to higher order through Rihardson extrapolation is an obvious alternative.We refer to [17℄ for a detailed disussion on the stability properties of the fourth-order loal and globalversions of the Rihardson extrapolation. Here we �rst reall the onstrution of the fourth-order globalRihardson extrapolation (GEX4)
ugex4

τ =
4

3
uco2

τ
2

− 1

3
uco2

τ , (23)where uco2
τ
2

and uco2
τ denote the results at �nal time omputed by the seond-order omposition methodwith time steps τ

2 and τ , respetively. Sine extrapolation only takes plae one at the �nal time of theintegration, this method has the same stability properties as the seond-order omposition method. Notethat it only needs three times as muh omputational work per time step.For long time integration and in the absene of damping, global extrapolation may not be su�ientlye�etive in annihilating leading error terms. In these ases, the loal version of Rihardson extrapolation� when the extrapolation is performed at eah time step � is usually more bene�ial. The loal versionof (23) is, however, not unonditionally stable with respet to zγ . Instead, we an use the fourth-orderloal extrapolation (LEX4) de�ned as
ulex4

τ =
9

8
uco2

τ/3 −
1

8
uco2

τ , (24)where the work per time step is approximately four times as muh as that of CO2. The ampli�ationoperator of LEX4 for the test model (16) reads
9

8
M3

co2(zλ/3, zγ/3) − 1

8
Mco2(zλ, zγ), (25)where Mco2(zλ, zγ) denotes the ampli�ation operator (20) of CO2. Figure 4 shows the assoiatedstability region S, whih indiates an approximate stability interval 0 ≤ zλ ≤ 2.85 and unonditionalstability for zγ .5. Numerial experimentsIn this setion, we perform numerial tests to establish the onvergene rates of the fully disretesystems that result from the spatial and time disretisations desribed in the previous two setions. We11
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Figure 4: Stability region (shaded area) of the fourth-order loal Rihardson extrapolation (24). The rightplot zooms in on the region where stability for wave term zλ is guaranteed. Stability for the ondutionterm zγ is unonditional.also arry out a numerial dispersion analysis of the semi- and fully disrete system with DG spatialdisretisation. This is done in the following way: i) solve the time-harmoni eigenvalue problem, whihorresponds to the semi-disrete system with Fourier mode initial onditions; ii) apply a hosen time-integration method to the test model (16) with the omputed semi-disrete numerial frequeny. Thisapproah has two main advantages over simply solving the eigenvalue problem that results from applyingthe ampli�ation matrix diretly to (11). First, it is more e�ient beause we solve an eigenvalueproblem that is smaller and always symmetri. Seond, it makes it possible to study the dispersion (anddissipation) properties of the time-integration sheme separately from those of the semi-disrete sheme.5.1. Convergene and omparison of performaneWe use a simple test example to illustrate the numerial performane of the two spatial disretisationtehniques desribed in Setion 2. For both methods, the predited onvergene rate of the semi-disretesystem is O(hp+1) in the L2(Ω) norm and O(hp) in the energy norm for smooth solutions; see for example[12, 35, 25, 13, 14℄. It is thus natural to hoose the time-integration method suh that it guarantees atleast the same order of onvergene. Therefore, if the polynomial order in the FEM is at most one weuse the seond-order omposition method; if the polynomial order is two or three we apply one of thepossible fourth-order methods desribed in Setion 4.The numerial tests are implemented in hpGEM4 [36℄, a general �nite element pakage suitable forsolving a variety of physial problems in �uid dynamis and eletromagnetism. To integrate the semi-disrete system in time we use PETS [37℄, whih is partiularly e�ient in omputing matrix-vetormultipliations and solving linear systems for large sparse matries. As a stopping riterion in the linearsolver for the H(curl)-onforming method, we set the tolerane at tol = 10−8.In the example, we onsider (1) in the ubi domain Ω = (0, 1)3. We de�ne the time-independent �eld
Ē(x, y, z) =





sin(πy) sin(πz)
sin(πz) sin(πx)
sin(πx) sin(πy)



and hoose the soure term to be
−∂J

∂t
=

(

εrη
′′(t) + ση′(t) + 2π2η(t)

)

Ē(x, y, z).4The software is free to download and available at http://wwwhome.math.utwente.nl/~hpgemdev/download.php.12



Thus the exat solution reads
E(t, x, y, z) = η(t)Ē(x, y, z), η(t) =

3
∑

k=1

cosωkt, (26)with ω1 = 1, ω2 = 1/2, ω3 = 1/3, εr = 1. We either set σ = 0 or σ = 60π, and we integrate until �naltime Tend = 12π (exatly one time period).When the globally H(curl)-onforming disretisation [12, 11℄ is used, we need to solve a linear systemat eah time step. Sine the matrix Mε is positive de�nite, a natural hoie of linear solver is thepreonditioned onjugate gradient (PCG) method. For simpliity, we apply the inomplete Choleskypreonditioner for all meshes and polynomial orders. We emphasise that preonditioning is not an issuefor the DG method sine we an simply invert the blok-diagonal mass matrix at negligible ost.As a �rst example, we run (26) with σ = 0 and �nal time Tend = 12π, on a sequene of struturedmeshes with Nel = 5, 40, 320, 2560, 20480, 163840 elements. In eah mesh the largest fae diameter h isexatly half that of the previous mesh. We plot the onvergene rates in Figure 5 in both the L2(Ω)-normand the energy norm for polynomial orders p = 1, 2, 3. Note that the onvergene is shown as a funtionof degrees of freedom, whih is equivalent to showing the onvergene as funtion of 1/h in the DGase. However, in the H(curl)-onforming ase there is some di�erene between the two, as the numberof degrees of freedom generally inrease slightly more than eightfold when h is halved. Nevertheless,we an see that the expeted onvergene rates are ahieved asymptotially for both the DG and the
H(curl)-onforming methods. We an also observe that it takes fewer degrees of freedom for the H(curl)-onforming disretisation to reah a given auray. Furthermore, we an on�rm the well-establishedobservation that the use of high-order approximations pays o� (at least for smooth solutions) in terms ofauray per degrees of freedom.To gain further insight into the omputational osts of the time integration, we show the performaneof the DG method in Tables I and III; and that of the H(curl)-onforming method in Tables II andIV. In this partiular example, we use a strutured mesh with 320 elements and an unstrutured onewith 432 elements.5 Although the auray of the two methods is omparable, the omputational ostsare not and the pattern hanges dramatially as the order inreases. The total number of matrix-vetormultipliations (matves) needed to integrate until Tend is always higher for the H(curl)-onforming asethan for the DG method. This is not surprising given that at eah time step a linear system has to besolved. However, this seemingly unfavourable property does not manifests itself in longer omputationaltime for p = 1 and p = 2 on strutured meshes, thanks in part to the smaller size of the system andin part to a weaker time-step restrition in the H(curl)-onforming FEM. The situation is di�erent for
p = 3. Here, the inreased number of matves translates readily into more CPU time on both struturedand unstrutured meshes. This is partly beause of a trade-o� between the onditioning of the massmatrix and the use of the hierarhi basis. Mass matries based on hierarhi bases tend to be relativelybadly onditioned. This does not in�uene the performane of the DG method. But it renders the
H(curl)-onforming method less e�etive beause the number of iterations in solving the linear systemat eah time step grows signi�antly with the polynomial order. This e�et is even more pronounedon unstrutured meshes, where DG performs slightly better for p = 2 already and where the H(curl)-onforming omputation for p = 3 is exessively long � whih is one reason why we only ompleted oneof them.The hoie of the time-integration method does not in�uene the omputational results muh in thisexample. Nevertheless, LEX4 appears to be the most e�ient thanks to the balane between the allowabletime-step size and the omputational work needed per time step. We also note that for this partiularmesh the use of fourth-order time-integration methods may not be neessary even for p = 2, 3. This issolely beause the spatial error is not yet in the asymptoti regime and therefore dominates. We take aloser look at this shortly in terms of numerial dispersion and dissipation.On strutured meshes, we repeat example (26) with ondutivity σ = 60π, whih orresponds to thedimensional value σ̃ = 0.5 S m−1, typial of the human abdomen. The onvergene results are shown in5A mesh of 320 or 432 tetrahedra is su�ient to ompare the di�erent methods from the point of view of aurayand omputational work. A �ner mesh would naturally give a more aurate solution but the relative performane of themethods would remain the same. 13



Table I: Computational osts of the DG method for example (26) with σ = 0. A strutured mesh of 320elements is used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matves τ CPU time
p = 1 CO2 3840 1.2174e-01 4526 0.0167 8s
p = 2 CO2 9600 1.1696e-02 7542 0.0100 114s
p = 2 GEX4 9600 1.2303e-02 22624 0.0100 342s
p = 3 CO4 19200 7.0432e-04 35192 0.0107 2013s
p = 3 GEX4 19200 9.0148e-04 31672 0.0071 1863s
p = 3 LEX4 19200 6.1762e-04 28154 0.0107 1623sTable II: Computational osts of the H(curl)-onforming method for example (26) with σ = 0. Astrutured mesh of 320 elements is used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matves τ CPU time
p = 1 CO2 504 2.7283e-01 7783 0.0417 2s
p = 2 CO2 2388 1.3642e-02 59201 0.0250 87s
p = 2 GEX4 2388 1.2942e-02 180067 0.0250 264s
p = 3 CO4 6640 7.4117e-04 817880 0.0268 19683s
p = 3 GEX4 6640 7.7523e-04 736276 0.0179 17492s
p = 3 LEX4 6640 8.5234e-04 653611 0.0268 15510sTable III: Computational osts of the DG method for example (26) with σ = 0. An unstrutured meshof 432 elements is used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matves τ CPU time
p = 1 CO2 5184 1.9583e-01 11878 0.00635 41s
p = 2 CO2 12960 1.3396e-02 19796 0.00381 429s
p = 2 GEX4 12960 1.4316e-02 59384 0.00381 1263s
p = 3 CO4 25920 1.4311e-03 92372 0.00408 7585s
p = 3 GEX4 25920 1.5558e-03 83134 0.00272 6749s
p = 3 LEX4 25920 1.4038e-03 73898 0.00408 5909sTable IV: Computational osts of the H(curl)-onforming method for example (26) with σ = 0. Anunstrutured mesh of 432 elements is used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matves τ CPU time
p = 1 CO2 744 1.9113e-01 33691 0.02380 18s
p = 2 CO2 3420 1.7294e-02 169129 0.01429 963s
p = 2 GEX4 3420 1.8860e-02 406784 0.01429 2778s
p = 3 CO4 9360 � >1e+07 0.01530 >5e+05s
p = 3 GEX4 9360 1.9676e-03 21337490 0.01020 782647s
p = 3 LEX4 9360 � >1e+07 0.01530 >5e+05sFigure 6, from whih it appears that they are similar to the nonondutive ase exept that optimal ratesof onvergene are reahed sooner. On unstrutured meshes, the example is repeated with ondutivity
σ = 450π, a value more typial of seawater. See Table V for the ondutivity of a small seletion ofmaterials (soure: en.wikipedia.org/wiki/Eletrial_ondutivity).The omputational work, depited in Tables VI�IX, also shows a similar pattern to the ondution-free ase, exept when the fourth-order omposition method is used. In that ase, the ondution termposes a striter time-step size than the wave term and inreases the number of time steps and thusthe omputational ost. On the strutured mesh with 320 elements and σ = 60π, this only a�ets the14
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Figure 5: Convergene plots in the L2-norm (left olumn) and in the energy norm (right olumn) fortest example (26) with σ = 0. In eah plot the onvergene rates of the DG method and the H(curl)-onforming method are shown along with the expeted order of onvergene.
H(curl)-onforming disretisation beause the sti�ness matrix in the DG method has a signi�antly largerspetral radius (and therefore it still determines the stability ondition). On the unstrutured mesh with15



Table V: Eletrial ondutivity of some materials measured in Siemens per metre(S m−1). For the dimensionless value a multipliation by 120π is needed. Soure:en.wikipedia.org/wiki/Eletrial_ondutivity.Material Condutivity (S m−1) NoteSilver 63.0e+06 Best eletrial ondutorCopper 59.6e+06Gold 45.2e+06 Commonly used in eletrial ontatsAluminium 37.8e+06Seawater 4.8 For average salinity of 35 g/kgHuman Body 0.006�1.5 Varies from bone to erebrospinal �uidsDrinking water 0.0005�0.05Deionised water 5.5e-06 Lowest value, with monoatomi gases presentAir 5e-15 Varies slightly depending on humidity432 elements and σ = 450π, however, it already a�ets the DG disretisation too. This indiates thatlarge values of σ prohibit the use of fourth-order (or, indeed, any high-order) omposition methods, as wellas expliit RK methods, suh as SSPRK. Instead, Rihardson extrapolation based on the seond-orderomposition method may be used sine they are unonditionally stable with respet to the ondutivityterm. Similarly to the ondution-free ase we killed the H(curl)-onforming omputations after almostsix days � already signi�antly more than what the DG omputations take.Table VI: Computational osts of the DG method for example (26) with σ = 60π. A mesh of 320 elementsis used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matves τ CPU time
p = 1 CO2 3840 6.6817e-02 4526 0.0167 8s
p = 2 CO2 9600 8.4244e-03 7542 0.0100 113s
p = 2 GEX4 9600 8.4243e-03 22624 0.0100 341s
p = 3 CO4 19200 5.5619e-04 35192 0.0107 2012s
p = 3 GEX4 19200 5.5612e-04 31672 0.0071 1864s
p = 3 LEX4 19200 5.5612e-04 28154 0.0107 1623sTable VII: Computational osts of the H(curl)-onforming method for example (26) with σ = 60π. Amesh of 320 elements is used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matves τ CPU time
p = 1 CO2 504 1.1789e-01 6253 0.0417 1s
p = 2 CO2 2388 1.2315e-02 56301 0.0250 82s
p = 2 GEX4 2388 1.2314e-02 166303 0.0250 247s
p = 3 CO4 6640 7.3357e-04 1717157 0.0127 40862s
p = 3 GEX4 6640 7.3358e-04 734732 0.0179 17472s
p = 3 LEX4 6640 7.3358e-04 653024 0.0268 15498s5.2. Numerial dispersion analysisTo investigate the dispersion and dissipation properties of the fully disrete shemes, we onsider thesemi-disrete system (11) with σ = 0 and j = 0,

(

u′

v′

)

= A
(

u
v

) with A =

(

0 I
−M−1

ε Sµ 0

)

, (27)16
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Figure 6: Convergene plots in the L2-norm (left olumn) and in the energy norm (right olumn) fortest example (26) with σ = 60π. In eah plot the onvergene rates of the DG method and the H(curl)-onforming method are shown along with the expeted order of onvergene.and assume a plane wave exat solution
E(x, t) = Ê exp(−iωt) exp(ik · x) (28)17



Table VIII: Computational osts of the DG method for example (26) with σ = 450π. An unstruturedmesh of 432 elements is used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matves τ CPU time
p = 1 CO2 5184 4.6168e-02 11878 0.00635 41s
p = 2 CO2 12960 8.1650e-03 19796 0.00381 422s
p = 2 GEX4 12960 8.1650e-03 59384 0.00381 1240s
p = 3 CO4 25920 8.5690e-04 222072 0.00170 17606s
p = 3 GEX4 25920 8.5671e-04 83134 0.00272 6618s
p = 3 LEX4 25920 8.5690e-04 73898 0.00136 5906sTable IX: Computational osts of the H(curl)-onforming method for example (26) with σ = 450π. Anunstrutured mesh of 432 elements is used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matves τ CPU time
p = 1 CO2 744 1.2498e-01 32049 0.02380 17s
p = 2 CO2 3420 1.3102e-02 163451 0.01429 938s
p = 2 GEX4 3420 1.3102e-02 490287 0.01429 2677s
p = 3 CO4 9360 � >1e+07 0.01530 >5e+05s
p = 3 GEX4 9360 � >1e+07 0.01020 >5e+05s
p = 3 LEX4 9360 � >1e+07 0.01530 >5e+05swith periodi boundary onditions and Ê = 1. In (28), i2 = −1, ω denotes the angular frequeny,
k = (kx, ky , kz)

T is the wave number. Between these quantities the (exat) dispersion relation ω2 = k2/c2holds with k2 = k2
x + k2

y + k2
z and with c = 1/ (εrµr)

1/2, whih is the speed of light.As a �rst step, we projet the exat initial onditions E(x, 0) and ∂tE(x, 0) onto the �nite-elementspae
Ej

h(0) =
(

E(x, 0),ψj

)

Ω
, j = 1 . . .N,

d

dt
Ej

h(0) =
(

∂tE(x, 0),ψj

)

Ω
, j = 1 . . .N.

(29)We an now obtain the initial onditions for (27) through the relations u0 = u(0) = M−1
εr

Eh(0) and
v0 = v(0) = u′(0) = M−1

εr

d
dt Eh(0). The time-exat disrete Fourier mode at time level nτ is then de�nedas

(

un

vn

)

= νn

(

u0

v0

) with νn = e−iωhnτ , (30)where νn is the exat ampli�ation fator and ωh is the semi-disrete numerial frequeny.To �rst see the impat of the spae disretisation only, we onsider the semi-disrete equation
Mεu

′′ + Sµu = 0 (31)with periodi boundary onditions and a plane wave initial ondition (28). In this ase, (31) is equivalentto the disrete time-harmoni Maxwell eigenvalue problem
Sµu − ω2

hMεu = 0 (32)with periodi boundary onditions. All semi-disrete eigenvalues ω2
h of (32) are real and non-negative,whih entails that the spae disretisation imposes no dissipation. In Table X, we show the numerialfrequenies of the spatial DG disretisation for the Fourier mode with kx = 2π, ky = −2π, kz = 0, i.e. withexat angular frequeny ωex =

√
8π. The number of elements for eah mesh is Nel = 5( 1

h )3 and in eahelement the loal number of degrees of freedom is 1
2 (p + 1)(p + 2)(p + 3). To solve the eigenvalue disrete
18



problem (32) of this size the Matlab implementation6 of the Jaobi-Davidson iterative method [38, 39℄is used. We note that for other Fourier modes the same approximation properties apply as long as ωhhis in the same region as shown in the tables. The frequeny errors for the same meshes and polynomialorders are depited in Table XI. Note that the frequeny errors are signed, indiating phase advane.Table X: Semi-disrete frequenies ωh of the DG method that approximate the exat frequeny ωex =
√

8π

h = 1
2 h = 1

4 h = 1
8 h = 1

16 ωex

p = 1 � 9.4286 9.0469 8.9271 8.8858
p = 2 9.4738 8.9276 8.8887 � 8.8858
p = 3 8.9146 8.8875 8.8858 � 8.8858Table XI: Frequeny error ωh − ωex of the DG semi-disrete system with exat frequeny ωex =

√
8π

h = 1
2 h = 1

4 h = 1
8 h = 1

16

p = 1 � 5.4283e-01 1.6117e-01 4.1380e-02
p = 2 5.8800e-01 4.1831e-02 2.9628e-03 �
p = 3 2.8869e-02 1.7173e-03 3.0850e-05 �To inlude the time integration in the dispersion analysis it su�es to apply a hosen time-integrationmethod to the test model (16) with γ = 0. We are allowed to do that beause the eigenvalues of S̃µ arethe same as the eigenvalues of M−1

ε Sµ, that is λ = ω2
h. Let M denote the ampli�ation operator of anyof the time-integration methods desribed in Setion 4. So instead of (30) we now have the fully disreteFourier mode at time level nτ ,

νn+1
h

(

u0

v0

)

= Mνn
h

(

u0

v0

)

, (33)whih redues to the eigenvalue problem
νh

(

u0

v0

)

= M
(

u0

v0

)

. (34)Solving this eigenvalue problem will produe two eigenpairs, representing two waves with the same wavenumber but travelling in opposite diretions. Without loss of generality, we an disard the one withnegative real part and establish the dispersive and dissipative properties of the fully disrete shemethrough the relation
νh = e−iωτ

hτ ,where ωτ
h represents the fully disrete numerial frequeny. The real part of ωτ

h de�nes the atual an-gular frequeny in the disrete dispersion relation, while a negative imaginary part indiates numerialdissipation. A non-negligible positive imaginary part would mean instability.We show the frequeny errors of the time-integration shemes SSPRK(4, 3), CO2 and LEX4 inTables XII� XIV. They show that the frequeny error of the time-integration method is at least an ordersmaller than the one of the DG method, as long as the order of the time-integration method is on apar with the order of the DG method. When this is not the ase, suh as when CO2 is used for p = 2or p = 3, the frequeny error of the time integration is ommensurate with, or exeeds that of the DGdisretisation.Composition methods, suh as CO2 and CO4, are known to be non-dissipative [31℄. Thus ombiningthem with a symmetri spatial disretisation results in an energy-onservative fully-disrete disretisa-tion. Global Rihardson extrapolation based on a omposition method naturally inherits this property.However, loal Rihardson extrapolation may introdue a slight dissipation even when based on a non-dissipative sheme suh as CO2. We show this in Table XV and note that the error is generally too6The software is free to download and available at http://www.math.uu.nl/people/sleijpen.19



small to have a real impat on simulations arising in pratie. By omparison, the SSPRK(4, 3) shemeintrodues a muh more signi�ant level of dissipation, shown in Table XVI.Finally, we note that if a time-dependent boundary ondition is used in (1) instead of a homogeneousone, order redution may our. See [17℄ for the possible e�ets of this.Table XII: Frequeny error imposed only by the time integration, Re(ωτ
h) − ωh, of the SSPRK(4, 3)method for semi-disrete numerial frequenies ωh taken from Table X.

h = 1
2 h = 1

4 h = 1
8 h = 1

16

p = 1 � 7.1799e-05 3.6525e-06 2.1360e-07
p = 2 1.5242e-04 7.0867e-06 4.3347e-07 �
p = 3 2.9293e-05 1.8039e-06 1.1265e-07 �Table XIII: Frequeny error imposed only by the time integration, Re(ωτ

h) − ωh, of the CO2 method forsemi-disrete numerial frequenies ωh taken from Table X.
h = 1

2 h = 1
4 h = 1

8 h = 1
16

p = 1 � 9.7283e-03 2.1439e-03 5.1472e-04
p = 2 1.4229e-02 2.9674e-03 7.3172e-04 �
p = 3 6.0353e-03 1.4930e-03 3.7292e-04 �Table XIV: Frequeny error imposed only by the time integration, Re(ωτ

h) − ωh, of the LEX4 methodfor semi-disrete numerial frequenies ωh taken from Table X. The negative values indiate that thefrequeny error aused by the time integration ounterats that of imposed by the spae disretisation.
h = 1

2 h = 1
4 h = 1

8 h = 1
16

p = 1 � -7.9554e-06 -4.0558e-07 -2.3730e-08
p = 2 -1.6866e-05 -7.8671e-07 -4.8152e-08 �
p = 3 -3.2488e-06 -2.0035e-07 -1.2516e-08 �Table XV: Imaginary part of the numerial frequeny, Im(ωτ

h), for the LEX4 time-integration method,where the semi-disrete numerial frequenies ωh are taken from Table X. This term is responsible fornumerial dissipation.
h = 1

2 h = 1
4 h = 1

8 h = 1
16

p = 1 � -6.9642e-07 -1.6998e-08 -4.9043e-10
p = 2 -1.7825e-06 -3.9053e-08 -1.1891e-09 �
p = 3 -2.3027e-07 -7.0689e-09 -2.2071e-10 �Table XVI: Imaginary part of the numerial frequeny, Im(ωτ

h), for the SSPRK(4, 3) time-integrationmethod, where the semi-disrete numerial frequenies ωh are taken from Table X. This term is respon-sible for numerial dissipation.
h = 1

2 h = 1
4 h = 1

8 h = 1
16

p = 1 � -7.5911e-04 -8.0688e-05 -9.5692e-06
p = 2 -1.3346e-03 -1.3217e-04 -1.6251e-05 �
p = 3 -3.8256e-04 -4.7337e-05 -5.9156e-06 �20



6. Conluding remarksWe have investigated the time-dependent seond-order Maxwell equation in three spatial dimensions.A diret omparison between the high-order DG-FEM and the high-order H(curl)-onforming FEM onboth strutured and unstrutured meshes was provided when H(curl)-onforming hierarhi basis fun-tions are used. It has revealed that, in ase hierarhi basis funtions are used, the omputational ostis already lower for DG-FEM when p = 3, or even p = 2 on unstrutured meshes. The omputationaltests have highlighted the fat that the inlusion of moderate ondutivity renders many of the popu-lar time-integration methods unompetitive owing to a stringent time-step restrition. In these ases,global or loal Rihardson extrapolations based on the seond-order omposition method provide a viablealternative as they treat the ondutivity term impliitly.Through a numerial dispersion and dissipation analysis, we have also shown that the spatial disreti-sation dominates the frequeny error as long as the order of the time integration is at least the same asthe order of the spatial disretisation. Sine the semi-disrete system is symmetri and therefore on-serves (the disrete) energy, applying a omposition method to integrate in time results in a fully-disretesheme that also onserves (the disrete) energy.AknowledgmentsThis researh was supported by the Duth government through the national program BSIK: knowledgeand researh apaity, in the ICT projet BRICKS (http://www.bsik-briks.nl), theme MSV1.[1℄ J.-C. Nédéle, Mixed �nite elements in R
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