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Abstract

This article compares the discontinuous Galerkin finite element method (DG-FEM) with the H (curl)-
conforming FEM in the discretisation of the second-order time-domain Maxwell equations with possibly
nonzero conductivity term. While DG-FEM suffers from an increased number of degrees of freedom
compared with H (curl)-conforming FEM, it has the advantage of a purely block-diagonal mass matrix.
This means that, as long as an explicit time-integration scheme is used, it is no longer necessary to solve
a linear system at each time step a clear advantage over H(curl)-conforming FEM. It is known that
DG-FEM generally favours high-order methods whereas H(curl)-conforming FEM is more suitable for
low-order ones. The novelty we provide in this work is a direct comparison of the performance of the
two methods when hierarchic H(curl)-conforming basis functions are used up to polynomial order p = 3.
The motivation behind this choice of basis functions is its growing importance in the development of p-
and hp-adaptive FEMs.

The fact that we allow for nonzero conductivity requires special attention with regards to the time-
integration methods applied to the semi-discrete systems. High-order polynomial basis warrants the use
of high-order time-integration schemes, but existing high-order schemes may suffer from a too severe time-
step stability restriction as result of the conductivity term. We investigate several alternatives from the
point of view of accuracy, stability and computational work. Finally, we carry out a numerical Fourier
analysis to study the dispersion and dissipation properties of the semi-discrete DG-FEM scheme and
several of the time-integration methods. It is instructive in our approach that the dispersion and dissi-
pation properties of the spatial discretisation and those of the time-integration methods are investigated
separately, providing additional insight into the two discretisation steps.

Keywords: H (curl)-conforming finite element method, discontinuous Galerkin finite element method,
numerical time integration, second-order Maxwell wave equation

1. Introduction

High-order finite element methods (FEM) are an increasingly important technology in large-scale
electromagnetic simulations thanks to their ability to effectively model complex geometrical structures
and long-time wave propagation. It has long been known that the standard H'-conforming FEM for
electromagnetic waves may result in non-physical, spurious solutions. Instead, one may naturally opt
for the H(curl)-conforming FEM pioneered by Nédélec |1, 2| and Bossavit |3, 4]. It has the advantage
of mimicking the geometrical properties of the Maxwell equations at the discrete level. However, in
time-domain computations it requires solving linear systems with mass matrices even if an explicit time-
integration method is used. One attractive alternative also free of spurious solutions under certain
conditions is the discontinuous Galerkin FEM (DG-FEM) [5, 6, 7], where the resulting mass matrix
is block-diagonal and therefore the computational cost of its inversion is negligible. But this additional
flexibility comes at a cost. The number of degrees of freedom in DG discretisations is higher than that in
the H (curl)-conforming discretisation, although the difference decreases as the polynomial order in the
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spatial discretisation grows. As an illustration, Figure 1 shows the sparsity patterns of the mass matrices
for both methods when a mesh of 320 tetrahedra and third-order polynomials are used.
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Figure 1: Sparsity pattern of the mass matrix for H(curl)-conforming FEM (left) and DG-FEM (right)
for a mesh with 320 elements. Third-order polynomials are used, which means that the size of the blocks
in the right plot is 60x60. Note the difference in size between the two matrices.

So there appears to be a trade-off between the two methods in time-domain computations. In general,
the H(curl)-conforming approach is more efficient with low-order polynomials and DG-FEM with high-
order ones. The expected break-even point depends on a number of factors, such as the conditioning
and sparsity of the mass and stiffness matrices in the resulting semi-discrete systems. As a novelty, the
focus of this work is to provide a comparison of the computational performance of the two methods when
hierarchic H (curl)-conforming basis functions [8, 9] are used on tetrahedral meshes. The motivation
behind this choice is that these basis functions play an ever more important role in the development of
p- and hp-adaptive methods [10] for the Maxwell equation.

Throughout the article, the different discretisation techniques are applied to the three-dimensional
Maxwell equations in the second-order time-dependent form,

0*FE oFE oJ
oo + 00—+ VX (u7' VX E) = —=——, 1
o o (1 T M)
with homogeneous boundary conditions n x E = 0. All quantities are dimensionless! in (1), where E is
the electric field and J is the electric current density. The values o, €, and pu, are assumed to be time-
independent constant scalars, and they respectively denote conductivity, relative dielectric permittivity

and relative magnetic permeability. If the domain is filled with nonconductive material, the damping term

U% is absent. If, in addition, the source term —0@;J is also taken to be zero, we have the conservative

Maxwell wave equation.

Following the method of lines, we first discretise the spatial operators, using the H(curl)-conforming
FEM or the DG-FEM. In either case, we arrive at a semi-discrete system in the form of second-order
ordinary differential equations (ODEs) in R",

M + Myu' + Syu =7, (2)

where u is the unknown vector of N scalar coefficients associated with the approximation of the electric
field E. The source term j is the projection of —0;J onto the finite-element space and in general may
also contain boundary data. For simplicity, however, we restrict ourselves to the homogeneous Dirichlet

1We can derive the dimensionless form by using the scalings @ = &/L, t = /(L /é), E = E/(ZyHy), H = H/Ho,

J = J/(Ho/L) and ¢ = JLZy/E, with tilde denoting the dimensional quantities. Here L is the reference length, ¢y =

(f0éo)~ V2 is the speed of light in vacuum, H is the magnetic field (eliminated in (1)), Hy is the reference magnetic field
strength and Zy = (i®fio/ (5 4 i@0))1/2 is the intrinsic impedance, with & being the angular frequency and i the imaginary
unit.



boundary condition, n x E = 0, in this article. Each term in the left-hand side of (2) corresponds to the
respective term in the left-hand side of (1). The mass matrix M, is symmetric positive definite and the
conductivity matrix M, is symmetric positive semi-definite. In addition, for constant scalars ¢ and &,
the matrices M, and M, are identical up to a constant. The stiffness matrix S, is the discretisation of
the wave term and is symmetric positive semi-definite.

Convergence results for the H(curl)-conforming semi-discrete approximation (2) are relatively well-
established [11, 12]. Results on the semi-discrete DG discretisation are more recent: energy-norm esti-
mates [13] and L%-estimates [14] have been derived for the Maxwell equations; optimal error estimates
for the fully-discrete second-order scalar wave equation have been provided in [15]; and a promising
energy-conserving local-time stepping scheme has been developed in [16].

A vital feature of (1) and (2) from the point of view of time integration is that it includes the
conductivity o. Even moderate values of o may result in a prohibitively small time step for many of the
popular time-integration schemes. Therefore, we pay special attention to time-integration methods that
treat the conductivity mass matrix M, in an implicit way. Many of such methods and others discussed in
this article have been previously studied in [17] for the system of first-order Maxwell equations discretised
by the lowest-order H (curl)-conforming elements. See also [18] for more details on composition methods
for the conduction-free Maxwell equations.

The semi-discrete system (2) conserves (discrete) energy for the spatial discretisations discussed here,
since these are both symmetric. Hence, using an energy-conservative time-integration method results in
a conservative fully-discrete scheme. We investigate the dispersion and dissipation error of the schemes
in two steps. First, we determine the dispersion error of the semi-discrete scheme by solving the time-
harmonic eigenvalue problem corresponding to the semi-discrete system. Second, we can then apply any
given time-integration scheme to a simple, but equivalent, model problem that includes the information
of the semi-discrete numerical frequency, and thus define the dispersion (and, if there is any, dissipation)
error of the time-integration method. This approach shows if the dispersion error is dominated by the
spatial or temporal discretisation — a piece of information that may prove useful in deciding whether or
not to go for high-order time-integration schemes.

The computational performance of the H(curl)-conforming method hinges to a great degree on ef-
ficiently solving the linear system with the mass matrix. A number of advanced techniques have been
proposed recently, including mass lumping [19, 20, 21], the explicit computation of an approximate sparse
inverse mass matrix [22], or the construction of special preconditioners. These approaches, however, do
not in their current states provide a general framework and therefore cannot be extended to high-order
discretisations in a straightforward manner. That is the reason why in this article we resort to standard
preconditioners. It is of course also possible to use sparse direct solvers but in test problems we found
that they are too memory demanding for large-scale three-dimensional computations.

The remaining part of the article is organised as follows. The weak formulations of the H(curl)-
conforming FEM and the DG-FEM are given in Section 2. The semi-discrete system arising from either
of the spatial discretisations is analysed in Section 3, while we briefly describe a number of the most
widely-used time-integration methods in Section 4. Numerical examples that compare the computational
performance of the two finite element approaches are presented in Section 5, where we test both low-order
and high-order approximations. Section 6 concludes the article with final remarks.

2. The weak formulation

Before we present the weak formulations that result from the H(curl)-conforming and the DG dis-
cretisations, we introduce the tessellation 7, that partitions the polyhedral domain  C R3 into a set
of tetrahedra {K}. Throughout the article we assume that the mesh is shape-regular and that each
tetrahedron is straight-sided. The notations F,, F; and f,l; stand respectively for the set of all faces
{F}, the set of all internal faces, and the set of all boundary faces.

On the computational domain €2, we define the spaces

H(cul; Q) := {u e 2] Vxue [L?(Q)f‘},

Hy(curl; ) := {u € H(curl; Q) ‘ nxu=0on GQ} ,



and the L? inner product (-, ")
(u,v) = / u-vdV.
Q

The continuous weak formulation of (1) now reads as follows: Find E € Hy(curl, ) such that Vw €
Hy(curl, ) the relation
82

o) _1 B oJ
w(er,w)+&(aE,w)+(ur VxE,wa)-—(E,w) (3)

is satisfied. See e.g. [23, 12].

2.1. Weak formulation of the globally H (curl)-conforming discretisation

In order to discretise (3), we first introduce the finite element space associated with the tessellation
Th. Let Pp(K) be the space of polynomials of degree at most p > 1 on K € 7;,. Over each element K
the H(curl)-conforming polynomial space is defined as

Q" = {u e P (K wrlpe € [P(F] s womlox € Pyl )

where FX| i = 1,2,3,4 are the faces of the element; ef(, 7 =1,2,3,4,5,6 are the edges of the element;
ur is the tangential component of u; and 7; is the directed tangential vector on edge ef. For the
construction of QP, we use a set of H(curl)-conforming hierarchic basis functions |8, 9.

Next, we introduce the discrete space of globally H (curl)-conforming functions
1} = {v € [Ho(curl, @) ‘ vlk € Q" VK € Ty},

and let the set of basis functions {¢,} span the space T1. See [12]| for a detailed discussion on both
continuous and discrete H (curl)-conforming spaces. We can then approximate the electric field E as

E~E,=) w(t),(x), (5)
from which the discrete weak formulation reads as follows: Find E}, € Y% such that V¢ € T}, the relation
0? 0 oJ
— (:E — (cE 'V x B,V =— (= 6
ot2 (6 ha¢)+at (U ha¢)+(:ur X Lip, X¢) <at7¢) ( )

is satisfied. Note that (6) is satisfied if and only if it is satisfied for every basis function v,;,i =1,..., N,
with N being the global number of degrees of freedom. As a result, substitution of (5) into (6) yields the
semi-discrete system (2) with

[Ms]ij = (Er,l/)ia,l/)j) 9 [Sﬂ]ij = (Mr_lv X ’I/J“V X ¢g) )
oJ
[Mﬂ]i_j = (U¢ia¢j) ) []]1 = - (E?sz) .

Each of the above matrices M., M, and S, has a large number entries far off the diagonal, increasing
the computational cost for both explicit and implicit time-integration methods.

2.2. Weak formulation of DG-FEM
In contrast to the H(curl)-conforming discretisation, in DG-FEM we are looking for the discrete
solution in the space
SP {0' e [12(@)]’ ‘ olx € QP, VK € Th}

That is, we allow the polynomial functions to be fully discontinuous across element interfaces and assume
that the set of basis functions {%,} now span the space X¥. Instead of enforcing continuity of the
tangential components, the information between elements is now coupled through the numerical flux



[5, 24, 7]. Before we can define the numerical flux and formulate the discretisation for DG-FEM, we first
need to introduce more notation.

Consider an interface F' € Fj, between element K and element K, and let n” and n® represent
their respective outward pointing normal vectors. We define the tangential jump and the average of the
quantity u across interface F' as

[ul; =n" xu” + nff xuf and fu} = (v’ +uf) /2,

respectively. Here u” and u® are the values of the trace of w at 0K and OK%, respectively. At the
boundary T, we set {u} = v and [u], = n x u. We furthermore introduce the global lifting operator

R(u) : [L2(_7:h)}3 — X} as
(R(u),v), = / u-f{v}dA, YveXi, (7)

Fhn

and, for a given face F' € Fp,, the local lifting operator Rp(u) : [L2(F)}3 — X as

(Rr(u),v)g = /Fu fv}dA, YeeXh. (8)

Note that Rp(u) vanishes outside the elements connected to the face F so that for a given element
K € 7;, we have the relation

R(uw)= Y Rp(u), Yue [L2(F)]". (9)
FeFy

The discrete weak formulation for DG-FEM now reads as follows [25]: Find E; € X} such that
V¢ € ¥} the relation

2

0 0
EYel (exEn, @) + e (0En, @) + (1 'V X En, Vi, X @)

- /f [En]; - {Vh x ¢} dA - {Vi x Ep} - [@],dA

Fh

+ ¥ Or Re(BL). Re(Wl o))y = - (57.0) (10

FeF,

is satisfied, where the operator V; denotes the elementwise application of V. For stability, the constant
Cr has to satisfy the condition [25]

1 1
Crp >nsC in< -, —
F ZMNyf 1+mln{2702}7

where C; and C5 are positive constants and n; denotes the number of sides of each element, that is for
tetrahedra ny = 4. As a consequence, the constant C'r is independent of both the polynomial order and
the mesh size.

Again, (10) is satisfied if and only if it is satisfied for every basis function #,,i = 1,..., N, with N
being the global number of degrees of freedom. Substitution of E ~ Ej =), u;(t)1;() into (10) yields
the semi-discrete system (2) with

[Ma]ij = (Er’/’ia".bj) ) [Ma]ij = (0¢iu¢j) ) [J]z = - (aa_{a"ﬂi) )
[S,u]ij = (U;lvh X, Vi x ",bj) - /}_ [W’z]]T : {{Vh X ";bj}} dA

o

- [ 4Vxwd- [e]p0a+ 3 Cr (Re(@sdy). Re([¥,],)

FeFy



The matrices M, and M, are now block-diagonal with the elementwise matrices being the blocks. How-
ever, the stiffness matrix S, has still many entries far off the diagonal because of the face integrals in its
construction. That is why, DG in general warrants the use of explicit time-integration schemes but not
implicit ones.

We emphasise that (10) is only one of many possible formulations of DG-FEM, depending on the
numerical flux one chooses to use. The one we have introduced here is based on the numerical flux from
[26] (see also [27]), and was analysed in detail for the time-harmonic Maxwell equations in [25]. See also
[24] for an overview of DG-FEM methods for elliptic problems and for a large number of possible choices
for the numerical flux.

2.3. The energy norm

Convergence results for FEMs are generally derived not only in the L?-norm but also in a norm
associated with the discrete energy of the approximation [13, 15]. These are defined for the H(curl)-
conforming and DG discretisations as

ol curny = 017 + [V x o]
and 1
lolibe = o) + [Vh < ol* + 072 [] |15,

respectively. In the above definition, || - || 7, denotes the L?(F) norm and h(z) = hp is the diameter of
face F' containing x. We note that the two definitions of the energy norm are actually identical as Vj,
becomes V and [-], vanishes if H (curl)-conforming discretisation is used.

3. Stability of the semi-discrete system
To carry out a basic stability analysis, we first transform (2) into a first-order system of ODEs,

u' =, (11)
MV + Myv+ S,u=j.

Recall that S, is symmetric and therefore using the inner-product notation for discrete vectors we
have the property

d , 7 T doT roodv  duT To du
E(U Mov+u S#U)ZFM‘{U—FU MEE—FFS#U—Fu S#E:

20T (=Myv — S,u+ 5) + 207 Su = 207§ — 20T Myv.  (12)

If 7 = 0, this entails stability, that is

d_i (’UTMEU + uTS#u) =—2"M,v< 0,
since, for constant o, the matrix M, is positive definite if 0 > 0 and M, = 0 if ¢ = 0. Therefore, if 0 =0
in addition to j = 0, (12) shows conservation.

In order to use a stability test model introduced later in this section, we transform (11) to an equivalent
explicit form. To do so, we multiply the first equation in (11) with M. and introduce the Cholesky
factorisation LLT = M,.. The new variables # = L7v and @ = LT v then satisfy the system

()= (5 ) (D)) m

j=L"%, S,=L7'S,L7" M,=L"'M,L7T.

[STRN~

where



Since both the conductivity coefficient o and the permittivity coefficient &, are constant scalars in (1),
the matrix M, in (13) is the constant diagonal matrix

- o
Ma':FYIv ’Y:&__

r

From this we can derive a two-by-two system through which stability of time-integration methods for
(11) can be examined. 3
The matrix S, is symmetric positive semi-definite so it can be decomposed as S, = UAUT, where A

is a diagonal matrix with the eigenvalues of S‘# on its diagonal
A1 2)\22-"2)\7‘2)\7‘-{-1:)\7‘-{-1:-":)\71:07

where r is the rank of the matrix. The matrix U is orthogonal and its columns are the eigenvectors of
S,. Using a permutation matrix P, we have

a0 LN _ 0o uut\ _
“\-8, -m,) " \—vAUuT A1)~

(0 0)Cr 2 (0 o) =G o)rarr (i n) o
Y

where Ap is a block-diagonal matrix with two-by-two blocks

0 1
k=1,...,N. 15
(5 L) . (15)

This allows us to state the following proposition.

Proposition 1. Assume that o and €, are scalar and v = o/e,. Then the matriz A has
(i) n—1r zero eigenvalues,
(ii) n —r eigenvalues which equal —v,

(iii) 2r eigenvalues which are

Y EVYE 4N b1
2 ’ N

NN

Thus, the orthogonal transformation V = (4 0) P decouples (13) into 7 two-by-two systems

()= (5 2) )+ ()

with A=X; >0, k=1,...,r, and n — r two-by-two systems

(#)-G 2) )+ C)

For the stability analysis, we may neglect the source term and thus arrive at the two-by-two stability test

model ,
i 0 1 i
(f/) = (_/\ —’Y) (f;) ) A>0, v=>0. (16)

The attractive feature of this formulation is that stability for the test model (16) induces stability for
(11) in the norm generated by the inner product in (12).

Useful though equation (16) is, it is important to emphasise that the derivation of (16) requires
constant scalars in the coefficients €, and o, thus limiting the generality of this approach.



4. Time-integration methods

Probably the most popular time-integration methods to use in combination with high-order DG
methods are high-order Runge-Kutta methods, giving rise to what are collectively called the Runge-
Kutta DG (RKDG) methods [5]. For continuous and H(curl)-conforming FEMs geometric integrators
are also widely used thanks to their ability to conserve symplecticity? at the discrete level [18]. In this
section, we briefly recall the construction of these two families of methods and we also discuss local and
global Richardson extrapolation.

The highest-order polynomial we use within the finite element methods is p = 3. For both the DG
and the H (curl)-conforming methods, this corresponds to fourth-order convergence for the semi-discrete
system (2) provided that the solution is smooth [13, 14, 11, 12]. Therefore, we now only discuss time-
integration methods that are also at most fourth-order accurate. Extension to higher order, however, is
usually straightforward.

For investigating the properties of any given time-integration method, let 7 denote the time-step size
and introduce zy = 7v/\ and Zy = 7v.% The stability of the time-integration method can then, in general,
be best inspected through the (numerically determined) stability region

S ={(2x,2y) : 2x,2y >0 with |u| <1, p eigenvalues of the amplification operator}

associated with the test model (16).

4.1. Runge-Kutta methods

Out of the many different types of Runge-Kutta methods, strong-stability-preserving Runge-Kutta
methods (SSPRK) [5] are particularly well suited for the time integration of semi-discrete hyperbolic
problems.

With the definition of the initial values Uy = u,, and V) = v, for the time step from ¢,, to t,11, the
general s-stage SSPRK scheme for (11) reads

k-1
Uy = Z (Ui + m0uVi) ,

1=0
k—1

M. Vi, = Z (@ Vi + 701 (=S, U — M,V + 5 (1)), (17)
1=0

Un+1 = U57

Un+1 - ‘/87

where k = 1,...,s while ay; and (i, are the coefficients in the SSPRK method. Applying (17) to the

test equation (16), the amplification operator Mgy, of an s-stage SSPRK method is

2y

- 10 0 1
ML, = E BuMl, — with By =ap <0 1> + B (z/z\ _ > ) (18)
=1

where, again, £k = 1,...,s and /\/lsosp is the identity. We show the stability regions of several SSPRK
schemes in Figure 2, where we refer to an s-stage pth-order SSPRK method as SSPRK(s,p). It is
important to emphasise that any (standard as well as ‘nonstandard’ such as SSP) explicit s-stage pth-
order RK methods with s = p has the same amplification matrix. In those cases the choice of coefficients
only determines the SSP property and not the shape of the stability region. For the cases when s = p+1,
we display the stability regions of the methods that were derived and analysed in [28, 29, 30]. The

plots suggest that increasing the number of stages, while keeping the polynomial order fixed, results in

2The preservation of symplecticity is important because it is related to energy. More precisely, for symplectic integrators
the error in total energy will remain within a certain margin throughout the entire time integration.

3These values appear in a natural way in the amplification matrices of most time-integration methods described later in
this section.



a more favourable time-step restriction for the conduction part — one that more than offsets the cost
of introducing an additional stage at each time step. This is in line with known results for the linear
advection equation [28, 29]. Nevertheless, explicit SSPRK methods treat the conduction term, as well as
the wave term, explicitly, which entails a time-step condition that is too restrictive even for moderately
conductive materials (see next section). Note that the second-order methods are only stable for z, > 0,
i.e. for o > 0.

4.2. Composition methods

Composition methods [31, 32, 33] are especially suitable for geometric integration [18] and thus for
the time integration of first-order Hamiltonian systems. Our description of the composition methods here
strictly follows that in [17] and we refer to that work for more details.

The second-order composition method for (11) is defined as

un+1/2 — Un o 1’U

T 2"
Vi1 — Un 1 1 . .
Ma% = _Suun+1/2 - §MU(U71 + Un-i—l) + ) (](tn) +.7(tn+1)) ) (19)
Unt1l = Unt1/2 lv
. 2 n+1,

which is akin to the ubiquitous leapfrog scheme, with the only difference being in the treatment of the
source term (cf. [34]). If applied to the test model (16), it has the amplification matrix

1-122+1, 1—132
- 27X T 2%y KD 2
Mco2 ( _Z§ 1— %Zi _ lz'y ) ( 0)

which entails the stability properties: z) < 2 if z, = 0 and z) < 2 if z, > 0. An attractive feature of
this method over explicit RK methods is that it is unconditionally stable with respect to the conduction
term.

In principle, it is possible to construct an arbitrary high-order composition method [31]. In this article,
however, we are only interested in at most fourth-order accurate methods so we will now only discuss the
fourth-order composition method. We define the initial values for the inner time step as Uy = u,, and
Vo = vy, time levels t%, t¥ for u, v and coefficients

Bo=ap=0, pi=a5= 14fo\éﬁa 5220442%@7
Bs=as=1%, Ba=oay= 7_%113%@, fs =1 = 7146;2150@-
The fourth-order composition method [31, 32, 17] for (11) now reads
Ui — Ug—
% = Bk + ag—1) Vi1,
Vie= Vi1 . e
Maf = ﬁk (_SMU]C - MUVk—l +](tk—l)) + o (_SHUk - MUV]C +](tk)) ; (21)
Un+1 = V97
Unp+1 = Us + asT‘/su
where k = 1,...,s, s = 5 is the number of internal time levels, and ¢} = t, + (& + Bk)r and t} =

tn + (Gp—1 + Bk)T with the coefficients & = a1 + -+ - + a and Bk =014+ Bk
The amplification operator of (21) when applied to (16) is then

1
H 1 1+ agz,y (1+ agzy) (k-1 + Br) (22)
ot Tt apzy \— (ke +Bk) 28 1= Brezy — (B + 1) (B +aw) 23]

An important property of any fourth-order composition method is that it inevitably contains a negative
coefficient, which in our case is ay = (2. This entails a stability restriction that is conditional even for
an implicitly treated conduction term. This is illustrated in Figure 3, where parts of the upper right
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of stages and p is the order of the method. Note that all explicit RK methods with s = p have the same
stability regions as SSPRK(s,p) with s = p (left column).

equivalently, if 7 < 2.4/y and 7 < 3/V/\.

10

o

z =1
yo Y

(f) SSPRK(5,4)
Figure 2: Stability regions (shaded areas) for several explicit SSPRK(s,p) methods, where s is the number
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half of the stability region for (21) is shown. Stability is guaranteed as long as z, < 2.4 and z) < 3, or
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Figure 3: Stability region (shaded area) of the fourth-order composition method. The right plot zooms

in on the region where stability is guaranteed. (Cf. Figure 5.1 in [17].)

4.3. Fourth-order global Richardson extrapolation

As already mentioned in the previous section, when o > 0 the stability condition may be very
restrictive even for moderately conductive materials. In these cases, high-order composition methods
and SSPRK methods are not competitive. Instead, one would prefer to use explicit methods which treat
the conduction term in an unconditionally stable manner. Since the second-order composition method is
such a method, extending it to higher order through Richardson extrapolation is an obvious alternative.
We refer to [17] for a detailed discussion on the stability properties of the fourth-order local and global
versions of the Richardson extrapolation. Here we first recall the construction of the fourth-order global

Richardson extrapolation (GEX4)

U§QX4 _ %'U,C%(ﬂ _ %U.C,_OZ, (23)
where u%oz and uS°? denote the results at final time computed by the second-order composition method
with time steps § and 7, respectively. Since extrapolation only takes place once at the final time of the
integration, this method has the same stability properties as the second-order composition method. Note
that it only needs three times as much computational work per time step.

For long time integration and in the absence of damping, global extrapolation may not be sufficiently
effective in annihilating leading error terms. In these cases, the local version of Richardson extrapolation
— when the extrapolation is performed at each time step — is usually more beneficial. The local version
of (23) is, however, not unconditionally stable with respect to z,. Instead, we can use the fourth-order

local extrapolation (LEX4) defined as

lex4 __ guco2 1%5.02, (24)

Ur _8 7'/3_8

where the work per time step is approximately four times as much as that of CO2. The amplification
operator of LEX4 for the test model (16) reads

9 1
S Meo2(22/3,2/3) = T Mooz (21, 2), (25)

where Mcoa(2), 2y) denotes the amplification operator (20) of CO2. Figure 4 shows the associated
stability region S, which indicates an approximate stability interval 0 < z) < 2.85 and unconditional
stability for z,.

5. Numerical experiments

In this section, we perform numerical tests to establish the convergence rates of the fully discrete
systems that result from the spatial and time discretisations described in the previous two sections. We
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Figure 4: Stability region (shaded area) of the fourth-order local Richardson extrapolation (24). The right
plot zooms in on the region where stability for wave term z) is guaranteed. Stability for the conduction
term z, is unconditional.

also carry out a numerical dispersion analysis of the semi- and fully discrete system with DG spatial
discretisation. This is done in the following way: i) solve the time-harmonic eigenvalue problem, which
corresponds to the semi-discrete system with Fourier mode initial conditions; ) apply a chosen time-
integration method to the test model (16) with the computed semi-discrete numerical frequency. This
approach has two main advantages over simply solving the eigenvalue problem that results from applying
the amplification matrix directly to (11). First, it is more efficient because we solve an eigenvalue
problem that is smaller and always symmetric. Second, it makes it possible to study the dispersion (and
dissipation) properties of the time-integration scheme separately from those of the semi-discrete scheme.

5.1. Convergence and comparison of performance

We use a simple test example to illustrate the numerical performance of the two spatial discretisation
techniques described in Section 2. For both methods, the predicted convergence rate of the semi-discrete
system is O(hP*1) in the L?(Q2) norm and O(hP) in the energy norm for smooth solutions; see for example
[12, 35, 25, 13, 14]. It is thus natural to choose the time-integration method such that it guarantees at
least the same order of convergence. Therefore, if the polynomial order in the FEM is at most one we
use the second-order composition method; if the polynomial order is two or three we apply one of the
possible fourth-order methods described in Section 4.

The numerical tests are implemented in hpGEM? [36], a general finite element package suitable for
solving a variety of physical problems in fluid dynamics and electromagnetism. To integrate the semi-
discrete system in time we use PETSc [37], which is particularly efficient in computing matrix-vector
multiplications and solving linear systems for large sparse matrices. As a stopping criterion in the linear
solver for the H (curl)-conforming method, we set the tolerance at tol = 1075,

In the example, we consider (1) in the cubic domain © = (0,1)®. We define the time-independent field

- sin(7ry) sin(wz)
E(z,y,z) = | sin(nz) sin(mx)
sin(ma) sin(7y)

and choose the source term to be

=S = (") + o' (1) + 2°0(0) By, 2).

4The software is free to download and available at http://wwwhome.math.utwente.nl/~hpgemdev/download.php.
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Thus the exact solution reads
B 3
E(t,,y,2) = n()E(w,y,2), n(t) =3 coswt, (26)
k=1

with wy =1, we = 1/2, w3 = 1/3, &, = 1. We either set 0 = 0 or ¢ = 607, and we integrate until final
time Tong = 127 (exactly one time period).

When the globally H (curl)-conforming discretisation [12, 11] is used, we need to solve a linear system
at each time step. Since the matrix M. is positive definite, a natural choice of linear solver is the
preconditioned conjugate gradient (PCG) method. For simplicity, we apply the incomplete Cholesky
preconditioner for all meshes and polynomial orders. We emphasise that preconditioning is not an issue
for the DG method since we can simply invert the block-diagonal mass matrix at negligible cost.

As a first example, we run (26) with o = 0 and final time T,,q = 127, on a sequence of structured
meshes with Ny = 5,40, 320, 2560, 20480, 163840 elements. In each mesh the largest face diameter h is
exactly half that of the previous mesh. We plot the convergence rates in Figure 5 in both the L?(Q)-norm
and the energy norm for polynomial orders p = 1,2, 3. Note that the convergence is shown as a function
of degrees of freedom, which is equivalent to showing the convergence as function of 1/h in the DG
case. However, in the H (curl)-conforming case there is some difference between the two, as the number
of degrees of freedom generally increase slightly more than eightfold when h is halved. Nevertheless,
we can see that the expected convergence rates are achieved asymptotically for both the DG and the
H (curl)-conforming methods. We can also observe that it takes fewer degrees of freedom for the H(curl)-
conforming discretisation to reach a given accuracy. Furthermore, we can confirm the well-established
observation that the use of high-order approximations pays off (at least for smooth solutions) in terms of
accuracy per degrees of freedom.

To gain further insight into the computational costs of the time integration, we show the performance
of the DG method in Tables I and III; and that of the H(curl)-conforming method in Tables II and
IV. In this particular example, we use a structured mesh with 320 elements and an unstructured one
with 432 elements.® Although the accuracy of the two methods is comparable, the computational costs
are not and the pattern changes dramatically as the order increases. The total number of matrix-vector
multiplications (matvecs) needed to integrate until To,q is always higher for the H (curl)-conforming case
than for the DG method. This is not surprising given that at each time step a linear system has to be
solved. However, this seemingly unfavourable property does not manifests itself in longer computational
time for p = 1 and p = 2 on structured meshes, thanks in part to the smaller size of the system and
in part to a weaker time-step restriction in the H(curl)-conforming FEM. The situation is different for
p = 3. Here, the increased number of matvecs translates readily into more CPU time on both structured
and unstructured meshes. This is partly because of a trade-off between the conditioning of the mass
matrix and the use of the hierarchic basis. Mass matrices based on hierarchic bases tend to be relatively
badly conditioned. This does not influence the performance of the DG method. But it renders the
H (curl)-conforming method less effective because the number of iterations in solving the linear system
at each time step grows significantly with the polynomial order. This effect is even more pronounced
on unstructured meshes, where DG performs slightly better for p = 2 already and where the H (curl)-
conforming computation for p = 3 is excessively long which is one reason why we only completed one
of them.

The choice of the time-integration method does not influence the computational results much in this
example. Nevertheless, LEX4 appears to be the most efficient thanks to the balance between the allowable
time-step size and the computational work needed per time step. We also note that for this particular
mesh the use of fourth-order time-integration methods may not be necessary even for p = 2,3. This is
solely because the spatial error is not yet in the asymptotic regime and therefore dominates. We take a
closer look at this shortly in terms of numerical dispersion and dissipation.

On structured meshes, we repeat example (26) with conductivity ¢ = 607, which corresponds to the
dimensional value & = 0.5Sm™!, typical of the human abdomen. The convergence results are shown in

5A mesh of 320 or 432 tetrahedra is sufficient to compare the different methods from the point of view of accuracy
and computational work. A finer mesh would naturally give a more accurate solution but the relative performance of the
methods would remain the same.
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Table I: Computational costs of the DG method for example (26) with ¢ = 0. A structured mesh of 320
elements is used with spatial polynomial orders p = 1,2, 3.

method # DoF L3(9) error # matvecs T CPU time
p=1 CO2 3840 1.2174e-01 4526 0.0167 8s
p=2 CO2 9600 1.1696e-02 7542 0.0100 114s
p=2 GEX4 9600 1.2303e-02 22624 0.0100 342s
p=3 CO4 19200 7.0432e-04 35192 0.0107 2013s
p=3 GEX4 19200 9.0148e-04 31672 0.0071 1863s
p=3 LEX4 19200 6.1762e-04 28154 0.0107 1623s

Table II: Computational costs of the H(curl)-conforming method for example (26) with o = 0. A
structured mesh of 320 elements is used with spatial polynomial orders p = 1,2, 3.

method # DoF L3(9) error # matvecs T CPU time
p=1 CO2 504 2.7283e-01 7783 0.0417 2s
p=2 CO2 2388 1.3642e-02 59201 0.0250 87s
p=2 GEX4 2388 1.2942e-02 180067 0.0250 264s
p=3 CO4 6640 7.4117e-04 817880 0.0268 19683s
p=3 GEX4 6640 7.7523e-04 736276 0.0179 17492s
p=3 LEX4 6640 8.5234e-04 653611 0.0268 15510s

Table III: Computational costs of the DG method for example (26) with 0 = 0. An unstructured mesh
of 432 elements is used with spatial polynomial orders p = 1,2, 3.

method # DoF L3() error # matvecs T CPU time
p=1 CO2 5184 1.9583e-01 11878 0.00635 41s
p=2 CO2 12960 1.3396e-02 19796 0.00381 429s
p=2 GEX4 12960 1.4316e-02 59384 0.00381 1263s
p=3 CO4 25920 1.4311e-03 92372 0.00408 7585s
p=3 GEX4 25920 1.5558e-03 83134 0.00272 6749s
p=3 LEX4 25920 1.4038e-03 73898 0.00408 5909s

Table IV: Computational costs of the H(curl)-conforming method for example (26) with ¢ = 0. An
unstructured mesh of 432 elements is used with spatial polynomial orders p = 1,2, 3.

method # DoF L?(Q) error # matvecs T CPU time
p=1 CcO2 744 1.9113e-01 33691 0.02380 18s
p=2 CcO2 3420 1.7294e-02 169129 0.01429 963s
p=2 GEX4 3420 1.8860e-02 406784 0.01429 2778s
p=3 CO4 9360 >1le+07 0.01530 >5e-+05s
p=3 GEX4 9360 1.9676e-03 21337490 0.01020 782647s
p=3 LEX4 9360 >1le+07 0.01530 >5e-+05s

Figure 6, from which it appears that they are similar to the nonconductive case except that optimal rates
of convergence are reached sooner. On unstructured meshes, the example is repeated with conductivity
o = 4507, a value more typical of seawater. See Table V for the conductivity of a small selection of
materials (source: en.wikipedia.org/wiki/Electrical_conductivity).

The computational work, depicted in Tables VI IX, also shows a similar pattern to the conduction-
free case, except when the fourth-order composition method is used. In that case, the conduction term
poses a stricter time-step size than the wave term and increases the number of time steps and thus
the computational cost. On the structured mesh with 320 elements and o = 60w, this only affects the
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Figure 5: Convergence plots in the L2-norm (left column) and in the energy norm (right column) for
test example (26) with 0 = 0. In each plot the convergence rates of the DG method and the H(curl)-
conforming method are shown along with the expected order of convergence.

H (curl)-conforming discretisation because the stiffness matrix in the DG method has a significantly larger
spectral radius (and therefore it still determines the stability condition). On the unstructured mesh with
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Table V: Electrical conductivity of some materials measured in Siemens per metre

(Sm™1). For the dimensionless value a multiplication by 1207 is needed. Source:
en.wikipedia.org/wiki/Electrical_conductivity.

Material Conductivity (Sm~1) Note

Silver 63.0e+06 Best electrical conductor

Copper 59.6e+06

Gold 45.2e+06 Commonly used in electrical contacts
Aluminium 37.8e+06

Seawater 4.8 For average salinity of 35 g/kg

Human Body 0.006 1.5 Varies from bone to cerebrospinal fluids
Drinking water 0.0005 0.05

Deionised water 5.5e-06 Lowest value, with monoatomic gases present
Air 5e-15 Varies slightly depending on humidity

432 elements and o = 4507, however, it already affects the DG discretisation too. This indicates that
large values of o prohibit the use of fourth-order (or, indeed, any high-order) composition methods, as well
as explicit RK methods, such as SSPRK. Instead, Richardson extrapolation based on the second-order
composition method may be used since they are unconditionally stable with respect to the conductivity
term. Similarly to the conduction-free case we killed the H (curl)-conforming computations after almost
six days already significantly more than what the DG computations take.

Table VI: Computational costs of the DG method for example (26) with o = 607. A mesh of 320 elements
is used with spatial polynomial orders p = 1,2, 3.

method # DoF L3(9) error # matvecs T CPU time
p=1 CO2 3840 6.6817e-02 4526 0.0167 8s
p=2 CO2 9600 8.4244e-03 7542 0.0100 113s
p=2 GEX4 9600 8.4243e-03 22624 0.0100 341s
p=3 CO4 19200 5.5619e-04 35192 0.0107 2012s
p=3 GEX4 19200 5.5612e-04 31672 0.0071 1864s
p=3 LEX4 19200 5.5612e-04 28154 0.0107 1623s

Table VII: Computational costs of the H(curl)-conforming method for example (26) with o = 607. A
mesh of 320 elements is used with spatial polynomial orders p = 1,2, 3.

method # DoF L?(2) error # matvecs T CPU time
p=1 CO2 504 1.1789e-01 6253 0.0417 1s
p=2 CO2 2388 1.2315e-02 56301 0.0250 82s
p=2 GEX4 2388 1.2314e-02 166303 0.0250 247s
p=3 CoO4 6640 7.3357e-04 1717157 0.0127 408625
p=3 GEX4 6640 7.3358e-04 734732 0.0179 17472s
p=3 LEX4 6640 7.3358e-04 653024 0.0268 15498s

5.2. Numerical dispersion analysis

To investigate the dispersion and dissipation properties of the fully discrete schemes, we consider the
semi-discrete system (11) with 0 = 0 and j = 0,

(1) = 4(2) v 4= (s, 8) o

16



p = 1, convergence in the L? norm

N -e-DG
T -2 H(curl)
NN ——order 2
-1 AV
10 ¢ RN 1
N N \D\
S SN
= NN
[} N N
N_] N R
-2 NN
10 ¢ R . ]
W e
NN
N
2 4 6
10 10 10
Degrees of Freedom
p = 2, convergence in the L2 norm
o :
10 -e-DG §
I - H(curl)
T EN —order 3
1 N AN
10 S S 1
N S
~oo
S RN
t ~ ~
o -2 NN
~, 10 ¢ SN J
3 e b
lo L N . D\\ 4
\A \\
2 4
10 10
Degrees of Freedom
p = 3, convergence in the energy norm
-e-DG
K a -2 H(curl)
N . —order 4
5 R -
= 0 N N i
510 . .
O AN N
a) N .
= N .
a A o
5 N AN
) N N
I N N \\
-1 A N AN
10 ¢ R . ]
2 3 4
10 10 10

Degrees of Freedom

10

H(curl, Q) / DG error

10

10

H(curl, Q) / DG error

10

10

L? error

10

p =1, convergence in the energy norm

-2

K -o-DG
T a -4 H(curl)
S o —order 1
\A \\\
. o,
h » AN
~ \Q
\A AN
. o,
N \\\
2 4 6
10 10 10
Degrees of Freedom
p = 2, convergence in the energy norm
-o-DG
™ -2 H(curl)
T & ——order 2
~a S N
~ O\
A e
N A \\
N aQ 7]
I I 2 N
2 4
10 10
Degrees of Freedom
p = 3, convergence in the L% norm
-o-DG
i -2 H(curl)
o Q ——order 3|
L ) \A\ i A N 4
N N \Q
3 r ) N : A N 4
. .
‘ ‘ ‘
2 3 4
10 10 10

Degrees of Freedom

Figure 6: Convergence plots in the L2-norm (left column) and in the energy norm (right column) for
test example (26) with o = 607. In each plot the convergence rates of the DG method and the H(curl)-
conforming method are shown along with the expected order of convergence.

and assume a plane wave exact solution

E(x,t) = Eexp(—iwt) exp(ik - )
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Table VIII: Computational costs of the DG method for example (26) with o = 4507. An unstructured
mesh of 432 elements is used with spatial polynomial orders p = 1,2, 3.

method # DoF L2() error # matvecs T CPU time
p=1 CO2 5184 4.6168e-02 11878 0.00635 41s
p=2 CO2 12960 8.1650e-03 19796 0.00381 422s
p=2 GEX4 12960 8.1650e-03 59384 0.00381 1240s
p=3 CO4 25920 8.5690e-04 222072 0.00170 17606s
p=3 GEX4 25920 8.5671e-04 83134 0.00272 6618s
p=3 LEX4 25920 8.5690e-04 73898 0.00136 9906s

Table IX: Computational costs of the H (curl)-conforming method for example (26) with ¢ = 4507. An
unstructured mesh of 432 elements is used with spatial polynomial orders p = 1,2, 3.

method # DoF L2() error # matvecs T CPU time
p=1 CO2 744 1.2498e-01 32049 0.02380 17s
p=2 CcO2 3420 1.3102e-02 163451 0.01429 938s
p=2 GEX4 3420 1.3102e-02 490287 0.01429 2677s
p=3 CcO4 9360 — >1e+407 0.01530 >5e+05s
p=3 GEX4 9360 — >1e+407 0.01020 >5e+05s
p=3 LEX4 9360 >1e+07 0.01530 >5e+05s
with periodic boundary conditions and E = 1. In (28), i = —1, w denotes the angular frequency,

k= (ky,ky, kZ)T is the wave number. Between these quantities the (exact) dispersion relation w? = k2 /c?
holds with k% = k2 + k2 + k2 and with ¢ = 1/ (e,4,)"/?, which is the speed of light.
As a first step, we project the exact initial conditions E(x,0) and 9;E(x,0) onto the finite-element
space _
E}JL(O): (E(m70),¢])gl7 j:]‘"'N7
d

EE,{(O) = (0:E(,0),4,),, Jj=1...N.

We can now obtain the initial conditions for (27) through the relations ug = u(0) = M 'E,(0) and
vo = v(0) = u/(0) = M- "4 F},(0). The time-exact discrete Fourier mode at time level n7 is then defined

er dt
as
<Un) —n (UO) with " = efiw;ﬂm" (30)
Un Vo

where v" is the exact amplification factor and wy, is the semi-discrete numerical frequency.
To first see the impact of the space discretisation only, we consider the semi-discrete equation

(29)

M + Su=0 (31)

with periodic boundary conditions and a plane wave initial condition (28). In this case, (31) is equivalent
to the discrete time-harmonic Maxwell eigenvalue problem

Sy — wiMou =0 (32)

with periodic boundary conditions. All semi-discrete eigenvalues w? of (32) are real and non-negative,
which entails that the space discretisation imposes no dissipation. In Table X, we show the numerical
frequencies of the spatial DG discretisation for the Fourier mode with k, = 27, k, = —27,k, = 0, i.e. with
exact angular frequency wex = v/87. The number of elements for each mesh is Ng = 5(%)3 and in each

element the local number of degrees of freedom is §(p+1)(p+2)(p+3). To solve the eigenvalue discrete
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problem (32) of this size the Matlab implementation® of the Jacobi-Davidson iterative method |38, 39|
is used. We note that for other Fourier modes the same approximation properties apply as long as wph
is in the same region as shown in the tables. The frequency errors for the same meshes and polynomial
orders are depicted in Table XI. Note that the frequency errors are signed, indicating phase advance.

Table X: Semi-discrete frequencies wy, of the DG method that approximate the exact frequency wex = v/87

h=1 h=1 h=1 h= L o
p=1 — 9.4286 9.0469 8.9271 8.8858
p=2 9.4738 8.9276 8.8887 8.8858
p=3 8.9146 8.8875 8.8858 8.8858

Table XI: Frequency error wy, — wey of the DG semi-discrete system with exact frequency wex = V87

=1 h=1 =1 h=
p=1 5.4283e-01 1.6117e-01 4.1380e-02
p=2 5.8800e-01 4.1831e-02 2.9628e-03 —
p=3 2.8869e-02 1.7173e-03 3.0850e-05 —

To include the time integration in the dispersion analysis it suffices to apply a chosen time-integration
method to the test model (16) with v = 0. We are allowed to do that because the eigenvalues of S'M are
the same as the eigenvalues of M 1S, that is A\ = w?. Let M denote the amplification operator of any
of the time-integration methods described in Section 4. So instead of (30) we now have the fully discrete

Fourier mode at time level nr,
n+l (W0 _ n [ U0
v, (v()) = My} (v()) , (33)

which reduces to the eigenvalue problem
- M (uo) : (34)
Vo

U
» ()

Solving this eigenvalue problem will produce two eigenpairs, representing two waves with the same wave
number but travelling in opposite directions. Without loss of generality, we can discard the one with
negative real part and establish the dispersive and dissipative properties of the fully discrete scheme
through the relation

v, = e—lw;‘l”
where w] represents the fully discrete numerical frequency. The real part of w] defines the actual an-
gular frequency in the discrete dispersion relation, while a negative imaginary part indicates numerical
dissipation. A non-negligible positive imaginary part would mean instability.

We show the frequency errors of the time-integration schemes SSPRK(4, 3), CO2 and LEX4 in
Tables XII- XIV. They show that the frequency error of the time-integration method is at least an order
smaller than the one of the DG method, as long as the order of the time-integration method is on a
par with the order of the DG method. When this is not the case, such as when CO2 is used for p = 2
or p = 3, the frequency error of the time integration is commensurate with, or exceeds that of the DG
discretisation.

Composition methods, such as CO2 and CO4, are known to be non-dissipative [31]. Thus combining
them with a symmetric spatial discretisation results in an energy-conservative fully-discrete discretisa-
tion. Global Richardson extrapolation based on a composition method naturally inherits this property.
However, local Richardson extrapolation may introduce a slight dissipation even when based on a non-
dissipative scheme such as CO2. We show this in Table XV and note that the error is generally too

6The software is free to download and available at http://www.math.uu.nl/people/sleijpen.
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small to have a real impact on simulations arising in practice. By comparison, the SSPRK(4, 3) scheme
introduces a much more significant level of dissipation, shown in Table XVI.

Finally, we note that if a time-dependent boundary condition is used in (1) instead of a homogeneous
one, order reduction may occur. See [17] for the possible effects of this.

Table XII: Frequency error imposed only by the time integration, Re(w]) — wp, of the SSPRK(4, 3)
method for semi-discrete numerical frequencies wy, taken from Table X.

p=1 — 7.1799e-05 3.6525e-06 2.1360e-07
p=2 1.5242e-04 7.0867e-06 4.3347e-07
p=3 2.9293e-05 1.8039e-06 1.1265e-07

Table XIII: Frequency error imposed only by the time integration, Re(w]) — wp, of the CO2 method for
semi-discrete numerical frequencies wy, taken from Table X.

h= b= i1 =%
p=1 9.7283e-03 2.1439e-03 5.1472e-04
p=2 1.4229e-02 2.9674e-03 7.3172e-04
p=3 6.0353e-03 1.4930e-03 3.7292e-04

Table XIV: Frequency error imposed only by the time integration, Re(w}) — wp, of the LEX4 method
for semi-discrete numerical frequencies wy taken from Table X. The negative values indicate that the
frequency error caused by the time integration counteracts that of imposed by the space discretisation.

h=1 h=1 =1 h=
p=1 -7.9554e-06 -4.0558e-07 -2.3730e-08
p=2 -1.6866e-05 -7.8671e-07 -4.8152e-08 —
p=3 -3.2488e-06 -2.0035e-07 -1.2516e-08

Table XV: Imaginary part of the numerical frequency, Im(wj), for the LEX4 time-integration method,
where the semi-discrete numerical frequencies wj, are taken from Table X. This term is responsible for
numerical dissipation.

h=1 h=1 h=1 h= L
p=1 -6.9642e-07 -1.6998e-08 -4.9043e-10
p=2 -1.7825e-06 -3.9053e-08 -1.1891e-09
p=3 -2.3027e-07 -7.0689e-09 -2.2071e-10

Table XVI: Imaginary part of the numerical frequency, Im(wj), for the SSPRK(4, 3) time-integration
method, where the semi-discrete numerical frequencies wy, are taken from Table X. This term is respon-
sible for numerical dissipation.

=1 h=1 =1 h=
p=1 -7.5911e-04 -8.0688e-05 -9.5692e-06
p=2 -1.3346e-03 -1.3217e-04 -1.6251e-05
p=3 -3.8256e-04 -4.7337e-05 -5.9156e-06
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6. Concluding remarks

We have investigated the time-dependent second-order Maxwell equation in three spatial dimensions.
A direct comparison between the high-order DG-FEM and the high-order H(curl)-conforming FEM on
both structured and unstructured meshes was provided when H (curl)-conforming hierarchic basis func-
tions are used. It has revealed that, in case hierarchic basis functions are used, the computational cost
is already lower for DG-FEM when p = 3, or even p = 2 on unstructured meshes. The computational
tests have highlighted the fact that the inclusion of moderate conductivity renders many of the popu-
lar time-integration methods uncompetitive owing to a stringent time-step restriction. In these cases,
global or local Richardson extrapolations based on the second-order composition method provide a viable
alternative as they treat the conductivity term implicitly.

Through a numerical dispersion and dissipation analysis, we have also shown that the spatial discreti-
sation dominates the frequency error as long as the order of the time integration is at least the same as
the order of the spatial discretisation. Since the semi-discrete system is symmetric and therefore con-
serves (the discrete) energy, applying a composition method to integrate in time results in a fully-discrete
scheme that also conserves (the discrete) energy.
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