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heva, J.J.W. van der Vegta, J.G. VerwerbaDepartment of Applied Mathemati
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s and Computer S
ien
e, P.O. Box 94079, 1090 GB Amsterdam, the NetherlandsAbstra
tThis arti
le 
ompares the dis
ontinuous Galerkin �nite element method (DG-FEM) with the H(curl)-
onforming FEM in the dis
retisation of the se
ond-order time-domain Maxwell equations with possiblynonzero 
ondu
tivity term. While DG-FEM su�ers from an in
reased number of degrees of freedom
ompared with H(curl)-
onforming FEM, it has the advantage of a purely blo
k-diagonal mass matrix.This means that, as long as an expli
it time-integration s
heme is used, it is no longer ne
essary to solvea linear system at ea
h time step � a 
lear advantage over H(curl)-
onforming FEM. It is known thatDG-FEM generally favours high-order methods whereas H(curl)-
onforming FEM is more suitable forlow-order ones. The novelty we provide in this work is a dire
t 
omparison of the performan
e of thetwo methods when hierar
hi
 H(curl)-
onforming basis fun
tions are used up to polynomial order p = 3.The motivation behind this 
hoi
e of basis fun
tions is its growing importan
e in the development of p-and hp-adaptive FEMs.The fa
t that we allow for nonzero 
ondu
tivity requires spe
ial attention with regards to the time-integration methods applied to the semi-dis
rete systems. High-order polynomial basis warrants the useof high-order time-integration s
hemes, but existing high-order s
hemes may su�er from a too severe time-step stability restri
tion as result of the 
ondu
tivity term. We investigate several alternatives from thepoint of view of a

ura
y, stability and 
omputational work. Finally, we 
arry out a numeri
al Fourieranalysis to study the dispersion and dissipation properties of the semi-dis
rete DG-FEM s
heme andseveral of the time-integration methods. It is instru
tive in our approa
h that the dispersion and dissi-pation properties of the spatial dis
retisation and those of the time-integration methods are investigatedseparately, providing additional insight into the two dis
retisation steps.Keywords: H(curl)-
onforming �nite element method, dis
ontinuous Galerkin �nite element method,numeri
al time integration, se
ond-order Maxwell wave equation1. Introdu
tionHigh-order �nite element methods (FEM) are an in
reasingly important te
hnology in large-s
aleele
tromagneti
 simulations thanks to their ability to e�e
tively model 
omplex geometri
al stru
turesand long-time wave propagation. It has long been known that the standard H1-
onforming FEM forele
tromagneti
 waves may result in non-physi
al, spurious solutions. Instead, one may naturally optfor the H(curl)-
onforming FEM pioneered by Nédéle
 [1, 2℄ and Bossavit [3, 4℄. It has the advantageof mimi
king the geometri
al properties of the Maxwell equations at the dis
rete level. However, intime-domain 
omputations it requires solving linear systems with mass matri
es even if an expli
it time-integration method is used. One attra
tive alternative � also free of spurious solutions under 
ertain
onditions � is the dis
ontinuous Galerkin FEM (DG-FEM) [5, 6, 7℄, where the resulting mass matrixis blo
k-diagonal and therefore the 
omputational 
ost of its inversion is negligible. But this additional�exibility 
omes at a 
ost. The number of degrees of freedom in DG dis
retisations is higher than that inthe H(curl)-
onforming dis
retisation, although the di�eren
e de
reases as the polynomial order in the
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spatial dis
retisation grows. As an illustration, Figure 1 shows the sparsity patterns of the mass matri
esfor both methods when a mesh of 320 tetrahedra and third-order polynomials are used.
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nz = 795328Figure 1: Sparsity pattern of the mass matrix for H(curl)-
onforming FEM (left) and DG-FEM (right)for a mesh with 320 elements. Third-order polynomials are used, whi
h means that the size of the blo
ksin the right plot is 60×60. Note the di�eren
e in size between the two matri
es.So there appears to be a trade-o� between the two methods in time-domain 
omputations. In general,the H(curl)-
onforming approa
h is more e�
ient with low-order polynomials and DG-FEM with high-order ones. The expe
ted break-even point depends on a number of fa
tors, su
h as the 
onditioningand sparsity of the mass and sti�ness matri
es in the resulting semi-dis
rete systems. As a novelty, thefo
us of this work is to provide a 
omparison of the 
omputational performan
e of the two methods whenhierar
hi
 H(curl)-
onforming basis fun
tions [8, 9℄ are used on tetrahedral meshes. The motivationbehind this 
hoi
e is that these basis fun
tions play an ever more important role in the development of
p- and hp-adaptive methods [10℄ for the Maxwell equation.Throughout the arti
le, the di�erent dis
retisation te
hniques are applied to the three-dimensionalMaxwell equations in the se
ond-order time-dependent form,

εr
∂2E

∂t2
+ σ

∂E

∂t
+ ∇×

(

µ−1
r ∇×E

)

= −∂J

∂t
, (1)with homogeneous boundary 
onditions n×E = 0. All quantities are dimensionless1 in (1), where E isthe ele
tri
 �eld and J is the ele
tri
 
urrent density. The values σ, εr and µr are assumed to be time-independent 
onstant s
alars, and they respe
tively denote 
ondu
tivity, relative diele
tri
 permittivityand relative magneti
 permeability. If the domain is �lled with non
ondu
tive material, the damping term

σ ∂E
∂t is absent. If, in addition, the sour
e term −∂tJ is also taken to be zero, we have the 
onservativeMaxwell wave equation.Following the method of lines, we �rst dis
retise the spatial operators, using the H(curl)-
onformingFEM or the DG-FEM. In either 
ase, we arrive at a semi-dis
rete system in the form of se
ond-orderordinary di�erential equations (ODEs) in R

n,
Mεu

′′ + Mσu′ + Sµu = j, (2)where u is the unknown ve
tor of N s
alar 
oe�
ients asso
iated with the approximation of the ele
tri
�eld E. The sour
e term j is the proje
tion of −∂tJ onto the �nite-element spa
e and in general mayalso 
ontain boundary data. For simpli
ity, however, we restri
t ourselves to the homogeneous Diri
hlet1We 
an derive the dimensionless form by using the s
alings x = x̃/L̃, t = t̃/(L̃/c̃0), E = Ẽ/(Z̃0H̃0), H = H̃/H̃0,
J = J̃/(H̃0/L̃) and σ = J̃L̃Z̃0/Ẽ, with tilde denoting the dimensional quantities. Here L̃ is the referen
e length, c̃0 =
(µ̃0ε̃0)−1/2 is the speed of light in va
uum, H is the magneti
 �eld (eliminated in (1)), H̃0 is the referen
e magneti
 �eldstrength and Z̃0 = (iω̃µ̃0/(σ̃ + iω̃ε̃0))1/2 is the intrinsi
 impedan
e, with ω̃ being the angular frequen
y and i the imaginaryunit. 2



boundary 
ondition, n×E = 0, in this arti
le. Ea
h term in the left-hand side of (2) 
orresponds to therespe
tive term in the left-hand side of (1). The mass matrix Mε is symmetri
 positive de�nite and the
ondu
tivity matrix Mσ is symmetri
 positive semi-de�nite. In addition, for 
onstant s
alars σ and εrthe matri
es Mε and Mσ are identi
al up to a 
onstant. The sti�ness matrix Sµ is the dis
retisation ofthe wave term and is symmetri
 positive semi-de�nite.Convergen
e results for the H(curl)-
onforming semi-dis
rete approximation (2) are relatively well-established [11, 12℄. Results on the semi-dis
rete DG dis
retisation are more re
ent: energy-norm esti-mates [13℄ and L2-estimates [14℄ have been derived for the Maxwell equations; optimal error estimatesfor the fully-dis
rete se
ond-order s
alar wave equation have been provided in [15℄; and a promisingenergy-
onserving lo
al-time stepping s
heme has been developed in [16℄.A vital feature of (1) and (2) from the point of view of time integration is that it in
ludes the
ondu
tivity σ. Even moderate values of σ may result in a prohibitively small time step for many of thepopular time-integration s
hemes. Therefore, we pay spe
ial attention to time-integration methods thattreat the 
ondu
tivity mass matrix Mσ in an impli
it way. Many of su
h methods and others dis
ussed inthis arti
le have been previously studied in [17℄ for the system of �rst-order Maxwell equations dis
retisedby the lowest-order H(curl)-
onforming elements. See also [18℄ for more details on 
omposition methodsfor the 
ondu
tion-free Maxwell equations.The semi-dis
rete system (2) 
onserves (dis
rete) energy for the spatial dis
retisations dis
ussed here,sin
e these are both symmetri
. Hen
e, using an energy-
onservative time-integration method results ina 
onservative fully-dis
rete s
heme. We investigate the dispersion and dissipation error of the s
hemesin two steps. First, we determine the dispersion error of the semi-dis
rete s
heme by solving the time-harmoni
 eigenvalue problem 
orresponding to the semi-dis
rete system. Se
ond, we 
an then apply anygiven time-integration s
heme to a simple, but equivalent, model problem that in
ludes the informationof the semi-dis
rete numeri
al frequen
y, and thus de�ne the dispersion (and, if there is any, dissipation)error of the time-integration method. This approa
h shows if the dispersion error is dominated by thespatial or temporal dis
retisation � a pie
e of information that may prove useful in de
iding whether ornot to go for high-order time-integration s
hemes.The 
omputational performan
e of the H(curl)-
onforming method hinges to a great degree on ef-�
iently solving the linear system with the mass matrix. A number of advan
ed te
hniques have beenproposed re
ently, in
luding mass lumping [19, 20, 21℄, the expli
it 
omputation of an approximate sparseinverse mass matrix [22℄, or the 
onstru
tion of spe
ial pre
onditioners. These approa
hes, however, donot in their 
urrent states provide a general framework and therefore 
annot be extended to high-orderdis
retisations in a straightforward manner. That is the reason why in this arti
le we resort to standardpre
onditioners. It is of 
ourse also possible to use sparse dire
t solvers but in test problems we foundthat they are too memory demanding for large-s
ale three-dimensional 
omputations.The remaining part of the arti
le is organised as follows. The weak formulations of the H(curl)-
onforming FEM and the DG-FEM are given in Se
tion 2. The semi-dis
rete system arising from eitherof the spatial dis
retisations is analysed in Se
tion 3, while we brie�y des
ribe a number of the mostwidely-used time-integration methods in Se
tion 4. Numeri
al examples that 
ompare the 
omputationalperforman
e of the two �nite element approa
hes are presented in Se
tion 5, where we test both low-orderand high-order approximations. Se
tion 6 
on
ludes the arti
le with �nal remarks.2. The weak formulationBefore we present the weak formulations that result from the H(curl)-
onforming and the DG dis-
retisations, we introdu
e the tessellation Th that partitions the polyhedral domain Ω ⊂ R
3 into a setof tetrahedra {K}. Throughout the arti
le we assume that the mesh is shape-regular and that ea
htetrahedron is straight-sided. The notations Fh, F i

h and Fb
h stand respe
tively for the set of all fa
es

{F}, the set of all internal fa
es, and the set of all boundary fa
es.On the 
omputational domain Ω, we de�ne the spa
es
H(curl; Ω) :=

{

u ∈
[

L2(Ω)
]3

: ∇× u ∈
[

L2(Ω)
]3

}

,

H0(curl; Ω) :=
{

u ∈ H(curl; Ω)
∣

∣

∣ n× u = 0 on ∂Ω
}

,3



and the L2 inner produ
t (·, ·)
(u,v) =

∫

Ω

u · v dV.The 
ontinuous weak formulation of (1) now reads as follows: Find E ∈ H0(curl, Ω) su
h that ∀w ∈
H0(curl, Ω) the relation

∂2

∂t2
(εrE,w) +

∂

∂t
(σE,w) +

(

µ−1
r ∇×E,∇×w

)

= −
(

∂J

∂t
,w

) (3)is satis�ed. See e.g. [23, 12℄.2.1. Weak formulation of the globally H(curl)-
onforming dis
retisationIn order to dis
retise (3), we �rst introdu
e the �nite element spa
e asso
iated with the tessellation
Th. Let Pp(K) be the spa
e of polynomials of degree at most p ≥ 1 on K ∈ Th. Over ea
h element Kthe H(curl)-
onforming polynomial spa
e is de�ned as

Qp =
{

u ∈ [Pp(K)]
3
; uT |F K

i
∈

[

Pp(F
K
i )

]2
; u · τ j |eK

j
∈ Pp(e

K
j )

}

, (4)where FK
i , i = 1, 2, 3, 4 are the fa
es of the element; eK

j , j = 1, 2, 3, 4, 5, 6 are the edges of the element;
uT is the tangential 
omponent of u; and τ j is the dire
ted tangential ve
tor on edge eK

j . For the
onstru
tion of Qp, we use a set of H(curl)-
onforming hierar
hi
 basis fun
tions [8, 9℄.Next, we introdu
e the dis
rete spa
e of globally H(curl)-
onforming fun
tions
Υp

h :=
{

υ ∈ [H0(curl, Ω)]
3

∣

∣

∣ υ|K ∈ Qp, ∀K ∈ Th

}

,and let the set of basis fun
tions {ψi} span the spa
e Υp
h. See [12℄ for a detailed dis
ussion on both
ontinuous and dis
rete H(curl)-
onforming spa
es. We 
an then approximate the ele
tri
 �eld E as

E ≈ Eh =
∑

i

ui(t)ψi(x), (5)from whi
h the dis
rete weak formulation reads as follows: Find Eh ∈ Υp
h su
h that ∀φ ∈ Υp

h the relation
∂2

∂t2
(εrEh,φ) +

∂

∂t
(σEh,φ) +

(

µ−1
r ∇×Eh,∇× φ

)

= −
(

∂J

∂t
,φ

) (6)is satis�ed. Note that (6) is satis�ed if and only if it is satis�ed for every basis fun
tion ψi, i = 1, . . . , N ,with N being the global number of degrees of freedom. As a result, substitution of (5) into (6) yields thesemi-dis
rete system (2) with
[Mε]ij =

(

εrψi,ψj

)

, [Sµ]ij =
(

µ−1
r ∇×ψi,∇×ψj

)

,

[Mσ]ij =
(

σψi,ψj

)

, [j]i = −
(

∂J

∂t
,ψi

)

.Ea
h of the above matri
es � Mε, Mσ and Sµ � has a large number entries far o� the diagonal, in
reasingthe 
omputational 
ost for both expli
it and impli
it time-integration methods.2.2. Weak formulation of DG-FEMIn 
ontrast to the H(curl)-
onforming dis
retisation, in DG-FEM we are looking for the dis
retesolution in the spa
e
Σp

h :=
{

σ ∈
[

L2(Ω)
]3

∣

∣

∣ σ|K ∈ Qp, ∀K ∈ Th

}

.That is, we allow the polynomial fun
tions to be fully dis
ontinuous a
ross element interfa
es and assumethat the set of basis fun
tions {ψi} now span the spa
e Σp
h. Instead of enfor
ing 
ontinuity of thetangential 
omponents, the information between elements is now 
oupled through the numeri
al �ux4



[5, 24, 7℄. Before we 
an de�ne the numeri
al �ux and formulate the dis
retisation for DG-FEM, we �rstneed to introdu
e more notation.Consider an interfa
e F ∈ Fh between element KL and element KR, and let nL and nR representtheir respe
tive outward pointing normal ve
tors. We de�ne the tangential jump and the average of thequantity u a
ross interfa
e F as
[[u]]T = nL × uL + nR × uR and {{u}} =

(

uL + uR
)

/2,respe
tively. Here uL and uR are the values of the tra
e of u at ∂KL and ∂KR, respe
tively. At theboundary Γ, we set {{u}} = u and [[u]]T = n × u. We furthermore introdu
e the global lifting operator
R(u) :

[

L2(Fh)
]3 → Σp

h as
(R(u),v)Ω =

∫

Fh

u · {{v}}dA, ∀v ∈ Σp
h, (7)and, for a given fa
e F ∈ Fh, the lo
al lifting operator RF (u) :

[

L2(F )
]3 → Σp

h as
(RF (u),v)Ω =

∫

F

u · {{v}}dA, ∀v ∈ Σp
h. (8)Note that RF (u) vanishes outside the elements 
onne
ted to the fa
e F so that for a given element

K ∈ Th we have the relation
R(u) =

∑

F∈Fh

RF (u), ∀u ∈
[

L2(Fh)
]3

. (9)The dis
rete weak formulation for DG-FEM now reads as follows [25℄: Find Eh ∈ Σp
h su
h that

∀φ ∈ Σp
h the relation

∂2

∂t2
(εrEh,φ) +

∂

∂t
(σEh,φ) +

(

µ−1
r ∇h ×Eh,∇h × φ

)

−
∫

Fh

[[Eh]]T · {{∇h × φ}}dA −
∫

Fh

{{∇h ×Eh}} · [[φ]]T dA

+
∑

F∈Fh

CF (RF ([[E]]T ),RF ([[φ]]T ))Ω = −
(

∂J

∂t
,φ

) (10)is satis�ed, where the operator ∇h denotes the elementwise appli
ation of ∇. For stability, the 
onstant
CF has to satisfy the 
ondition [25℄

CF ≥ nfC1 + min

{

1

2
,

1

C2

}

,where C1 and C2 are positive 
onstants and nf denotes the number of sides of ea
h element, that is fortetrahedra nf = 4. As a 
onsequen
e, the 
onstant CF is independent of both the polynomial order andthe mesh size.Again, (10) is satis�ed if and only if it is satis�ed for every basis fun
tion ψi, i = 1, . . . , N , with Nbeing the global number of degrees of freedom. Substitution of E ≈ Eh =
∑

i ui(t)ψi(x) into (10) yieldsthe semi-dis
rete system (2) with
[Mε]ij =

(

εrψi,ψj

)

, [Mσ]ij =
(

σψi,ψj

)

, [j]i = −
(

∂J

∂t
,ψi

)

,

[Sµ]ij =
(

µ−1
r ∇h ×ψi,∇h ×ψj

)

−
∫

Fh

[[ψi]]T ·
{{

∇h ×ψj

}}

dA

−
∫

Fh

{{∇h ×ψi}} ·
[[

ψj

]]

T
dA +

∑

F∈Fh

CF

(

RF ([[ψi]]T ),RF (
[[

ψj

]]

T
)
)

Ω
.5



The matri
es Mε and Mσ are now blo
k-diagonal with the elementwise matri
es being the blo
ks. How-ever, the sti�ness matrix Sµ has still many entries far o� the diagonal be
ause of the fa
e integrals in its
onstru
tion. That is why, DG in general warrants the use of expli
it time-integration s
hemes but notimpli
it ones.We emphasise that (10) is only one of many possible formulations of DG-FEM, depending on thenumeri
al �ux one 
hooses to use. The one we have introdu
ed here is based on the numeri
al �ux from[26℄ (see also [27℄), and was analysed in detail for the time-harmoni
 Maxwell equations in [25℄. See also[24℄ for an overview of DG-FEM methods for ellipti
 problems and for a large number of possible 
hoi
esfor the numeri
al �ux.2.3. The energy normConvergen
e results for FEMs are generally derived not only in the L2-norm but also in a normasso
iated with the dis
rete energy of the approximation [13, 15℄. These are de�ned for the H(curl)-
onforming and DG dis
retisations as
‖v‖2

H(curl) = ‖v‖2 + ‖∇× v‖2and
‖v‖2

DG = ‖v‖2 + ‖∇h × v‖2 + ‖h− 1

2 [[v]]T ‖2
Fh

,respe
tively. In the above de�nition, ‖ · ‖Fh
denotes the L2(F) norm and h(x) = hF is the diameter offa
e F 
ontaining x. We note that the two de�nitions of the energy norm are a
tually identi
al as ∇hbe
omes ∇ and [[·]]T vanishes if H(curl)-
onforming dis
retisation is used.3. Stability of the semi-dis
rete systemTo 
arry out a basi
 stability analysis, we �rst transform (2) into a �rst-order system of ODEs,

u′ = v, (11)
Mεv

′ + Mσv + Sµu = j.Re
all that Sµ is symmetri
 and therefore � using the inner-produ
t notation for dis
rete ve
tors � wehave the property
d

dt

(

vT Mεv + uT Sµu
)

=
dvT

dt
Mεv + vT Mε

dv

dt
+

duT

dt
Sµu + uT Sµ

du

dt
=

2vT (−Mσv − Sµu + j) + 2vT Sµu = 2vT j − 2vT Mσv. (12)If j = 0, this entails stability, that is
d

dt

(

vT Mεv + uT Sµu
)

= −2vT Mσv ≤ 0,sin
e, for 
onstant σ, the matrix Mσ is positive de�nite if σ > 0 and Mσ = 0 if σ = 0. Therefore, if σ = 0in addition to j = 0, (12) shows 
onservation.In order to use a stability test model introdu
ed later in this se
tion, we transform (11) to an equivalentexpli
it form. To do so, we multiply the �rst equation in (11) with Mε and introdu
e the Choleskyfa
torisation LLT = Mε. The new variables ṽ = LT v and ũ = LT u then satisfy the system
(

ũ′

ṽ′

)

=

(

0 I

−S̃µ −M̃σ

) (

ũ
ṽ

)

+

(

0

j̃

)

, (13)where
j̃ = L−1j, S̃µ = L−1SµL−T , M̃σ = L−1MσL−T .

6



Sin
e both the 
ondu
tivity 
oe�
ient σ and the permittivity 
oe�
ient εr are 
onstant s
alars in (1),the matrix M̃σ in (13) is the 
onstant diagonal matrix
M̃σ = γI, γ =

σ

εr
.From this we 
an derive a two-by-two system through whi
h stability of time-integration methods for(11) 
an be examined.The matrix S̃µ is symmetri
 positive semi-de�nite so it 
an be de
omposed as S̃µ = UΛUT , where Λis a diagonal matrix with the eigenvalues of S̃µ on its diagonal

λ1 ≥ λ2 ≥ . . . ≥ λr ≥ λr+1 = λr+1 = . . . = λn = 0,where r is the rank of the matrix. The matrix U is orthogonal and its 
olumns are the eigenve
tors of
S̃µ. Using a permutation matrix P , we have
A =

(

0 I

−S̃µ −M̃σ

)

=

(

0 UUT

−UΛUT −γI

)

=

(

U 0
0 U

) (

0 I
−Λ −γI

) (

UT 0
0 UT

)

=

(

U 0
0 U

)

PΛPPT

(

UT 0
0 UT

)

, (14)where ΛP is a blo
k-diagonal matrix with two-by-two blo
ks
(

0 1
−λk −γ

)

, k = 1, . . . , N. (15)This allows us to state the following proposition.Proposition 1. Assume that σ and εr are s
alar and γ = σ/εr. Then the matrix A has(i) n − r zero eigenvalues,(ii) n − r eigenvalues whi
h equal −γ,(iii) 2r eigenvalues whi
h are
−γ ±

√

γ2 − 4λk

2
, k = 1, . . . , r.Thus, the orthogonal transformation V ≡ ( U 0

0 U )P de
ouples (13) into r two-by-two systems
(

û′

v̂′

)

=

(

0 1
−λ −γ

)(

û
v̂

)

+

(

0

ĵ

)

,with λ = λk > 0, k = 1, . . . , r, and n − r two-by-two systems
(

û′

v̂′

)

=

(

0 1
0 −γ

) (

û
v̂

)

+

(

0

ĵ

)

.For the stability analysis, we may negle
t the sour
e term and thus arrive at the two-by-two stability testmodel
(

û′

v̂′

)

=

(

0 1
−λ −γ

)(

û
v̂

)

, λ ≥ 0, γ ≥ 0. (16)The attra
tive feature of this formulation is that stability for the test model (16) indu
es stability for(11) in the norm generated by the inner produ
t in (12).Useful though equation (16) is, it is important to emphasise that the derivation of (16) requires
onstant s
alars in the 
oe�
ients εr and σ, thus limiting the generality of this approa
h.7



4. Time-integration methodsProbably the most popular time-integration methods to use in 
ombination with high-order DGmethods are high-order Runge-Kutta methods, giving rise to what are 
olle
tively 
alled the Runge-Kutta DG (RKDG) methods [5℄. For 
ontinuous and H(curl)-
onforming FEMs geometri
 integratorsare also widely used thanks to their ability to 
onserve symple
ti
ity2 at the dis
rete level [18℄. In thisse
tion, we brie�y re
all the 
onstru
tion of these two families of methods and we also dis
uss lo
al andglobal Ri
hardson extrapolation.The highest-order polynomial we use within the �nite element methods is p = 3. For both the DGand the H(curl)-
onforming methods, this 
orresponds to fourth-order 
onvergen
e for the semi-dis
retesystem (2) provided that the solution is smooth [13, 14, 11, 12℄. Therefore, we now only dis
uss time-integration methods that are also at most fourth-order a

urate. Extension to higher order, however, isusually straightforward.For investigating the properties of any given time-integration method, let τ denote the time-step sizeand introdu
e zλ = τ
√

λ and zγ = τγ.3 The stability of the time-integration method 
an then, in general,be best inspe
ted through the (numeri
ally determined) stability region
S = {(zλ, zγ) : zλ, zγ ≥ 0 with |µ| < 1, µ eigenvalues of the ampli�
ation operator}asso
iated with the test model (16).4.1. Runge-Kutta methodsOut of the many di�erent types of Runge-Kutta methods, strong-stability-preserving Runge-Kuttamethods (SSPRK) [5℄ are parti
ularly well suited for the time integration of semi-dis
rete hyperboli
problems.With the de�nition of the initial values U0 = un and V0 = vn for the time step from tn to tn+1, thegeneral s-stage SSPRK s
heme for (11) reads

Uk =

k−1
∑

l=0

(αklUl + τβklVl) ,

MεVk =

k−1
∑

l=0

(αklVl + τβkl (−SµUl − MσVl + j(tl))) ,

un+1 = Us,

vn+1 = Vs,

(17)
where k = 1, . . . , s while αkl and βkl are the 
oe�
ients in the SSPRK method. Applying (17) to thetest equation (16), the ampli�
ation operator Ms

ssp of an s-stage SSPRK method is
Mk

ssp =
k−1
∑

l=1

BklMl−1
ssp with Bkl = αkl

(

1 0
0 1

)

+ βkl

(

0 1
z2

λ −zγ

)

, (18)where, again, k = 1, . . . , s and M0
ssp is the identity. We show the stability regions of several SSPRKs
hemes in Figure 2, where we refer to an s-stage pth-order SSPRK method as SSPRK(s,p). It isimportant to emphasise that any (standard as well as `nonstandard' su
h as SSP) expli
it s-stage pth-order RK methods with s = p has the same ampli�
ation matrix. In those 
ases the 
hoi
e of 
oe�
ientsonly determines the SSP property and not the shape of the stability region. For the 
ases when s = p+1,we display the stability regions of the methods that were derived and analysed in [28, 29, 30℄. Theplots suggest that in
reasing the number of stages, while keeping the polynomial order �xed, results in2The preservation of symple
ti
ity is important be
ause it is related to energy. More pre
isely, for symple
ti
 integratorsthe error in total energy will remain within a 
ertain margin throughout the entire time integration.3These values appear in a natural way in the ampli�
ation matri
es of most time-integration methods des
ribed later inthis se
tion. 8



a more favourable time-step restri
tion for the 
ondu
tion part � one that more than o�sets the 
ostof introdu
ing an additional stage at ea
h time step. This is in line with known results for the linearadve
tion equation [28, 29℄. Nevertheless, expli
it SSPRK methods treat the 
ondu
tion term, as well asthe wave term, expli
itly, whi
h entails a time-step 
ondition that is too restri
tive even for moderately
ondu
tive materials (see next se
tion). Note that the se
ond-order methods are only stable for zγ > 0,i.e. for σ > 0.4.2. Composition methodsComposition methods [31, 32, 33℄ are espe
ially suitable for geometri
 integration [18℄ and thus forthe time integration of �rst-order Hamiltonian systems. Our des
ription of the 
omposition methods herestri
tly follows that in [17℄ and we refer to that work for more details.The se
ond-order 
omposition method for (11) is de�ned as
un+1/2 − un

τ
=

1

2
vn,

Mε
vn+1 − vn

τ
= −Sµun+1/2 −

1

2
Mσ(vn + vn+1) +

1

2
(j(tn) + j(tn+1)) ,

un+1 − un+1/2

τ
=

1

2
vn+1,

(19)whi
h is akin to the ubiquitous leapfrog s
heme, with the only di�eren
e being in the treatment of thesour
e term (
f. [34℄). If applied to the test model (16), it has the ampli�
ation matrix
Mco2 =

(

1 − 1
2z2

λ + 1
2zγ 1 − 1

4z2
λ

−z2
λ 1 − 1

2z2
λ − 1

2zγ

)

, (20)whi
h entails the stability properties: zλ ≤ 2 if zγ = 0 and zλ < 2 if zγ > 0. An attra
tive feature ofthis method over expli
it RK methods is that it is un
onditionally stable with respe
t to the 
ondu
tionterm.In prin
iple, it is possible to 
onstru
t an arbitrary high-order 
omposition method [31℄. In this arti
le,however, we are only interested in at most fourth-order a

urate methods so we will now only dis
uss thefourth-order 
omposition method. We de�ne the initial values for the inner time step as U0 = un and
V0 = vn, time levels tu, tv for u, v and 
oe�
ients

β0 = α0 = 0, β1 = α5 = 14−
√

19
108 , β2 = α4 = −23−20

√
19

270 ,

β3 = α3 = 1
5 , β4 = α2 = −2+10

√
19

135 , β5 = α1 = 146+5
√

19
540 .The fourth-order 
omposition method [31, 32, 17℄ for (11) now reads

Uk − Uk−1

τ
= (βk + αk−1)Vk−1,

Mε
Vk − Vk−1

τ
= βk

(

−SµUk − MσVk−1 + j(tvk−1)
)

+ αk (−SµUk − MσVk + j(tvk)) ,

vn+1 = Vs,

un+1 = Us + αsτVs,

(21)where k = 1, . . . , s, s = 5 is the number of internal time levels, and tvk = tn + (α̃k + β̃k)τ and tuk =

tn + (α̃k−1 + β̃k)τ with the 
oe�
ients α̃k = α1 + · · · + αk and β̃k = β1 + · · · + βk.The ampli�
ation operator of (21) when applied to (16) is then
1

∏

k=5

1

1 + αkzγ

(

1 + αkzγ (1 + αkzγ) (αk−1 + βk)
− (αk + βk) z2

λ 1 − βkzγ − (βk + αk−1) (βk + αk) z2
λ

)

. (22)An important property of any fourth-order 
omposition method is that it inevitably 
ontains a negative
oe�
ient, whi
h in our 
ase is α4 = β2. This entails a stability restri
tion that is 
onditional even foran impli
itly treated 
ondu
tion term. This is illustrated in Figure 3, where parts of the upper right9
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(f) SSPRK(5,4)Figure 2: Stability regions (shaded areas) for several expli
it SSPRK(s,p) methods, where s is the numberof stages and p is the order of the method. Note that all expli
it RK methods with s = p have the samestability regions as SSPRK(s,p) with s = p (left 
olumn).half of the stability region for (21) is shown. Stability is guaranteed as long as zγ < 2.4 and zλ < 3, orequivalently, if τ < 2.4/γ and τ < 3/
√

λ. 10
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Figure 3: Stability region (shaded area) of the fourth-order 
omposition method. The right plot zoomsin on the region where stability is guaranteed. (Cf. Figure 5.1 in [17℄.)4.3. Fourth-order global Ri
hardson extrapolationAs already mentioned in the previous se
tion, when σ > 0 the stability 
ondition may be veryrestri
tive even for moderately 
ondu
tive materials. In these 
ases, high-order 
omposition methodsand SSPRK methods are not 
ompetitive. Instead, one would prefer to use expli
it methods whi
h treatthe 
ondu
tion term in an un
onditionally stable manner. Sin
e the se
ond-order 
omposition method issu
h a method, extending it to higher order through Ri
hardson extrapolation is an obvious alternative.We refer to [17℄ for a detailed dis
ussion on the stability properties of the fourth-order lo
al and globalversions of the Ri
hardson extrapolation. Here we �rst re
all the 
onstru
tion of the fourth-order globalRi
hardson extrapolation (GEX4)
ugex4

τ =
4

3
uco2

τ
2

− 1

3
uco2

τ , (23)where uco2
τ
2

and uco2
τ denote the results at �nal time 
omputed by the se
ond-order 
omposition methodwith time steps τ

2 and τ , respe
tively. Sin
e extrapolation only takes pla
e on
e at the �nal time of theintegration, this method has the same stability properties as the se
ond-order 
omposition method. Notethat it only needs three times as mu
h 
omputational work per time step.For long time integration and in the absen
e of damping, global extrapolation may not be su�
ientlye�e
tive in annihilating leading error terms. In these 
ases, the lo
al version of Ri
hardson extrapolation� when the extrapolation is performed at ea
h time step � is usually more bene�
ial. The lo
al versionof (23) is, however, not un
onditionally stable with respe
t to zγ . Instead, we 
an use the fourth-orderlo
al extrapolation (LEX4) de�ned as
ulex4

τ =
9

8
uco2

τ/3 −
1

8
uco2

τ , (24)where the work per time step is approximately four times as mu
h as that of CO2. The ampli�
ationoperator of LEX4 for the test model (16) reads
9

8
M3

co2(zλ/3, zγ/3) − 1

8
Mco2(zλ, zγ), (25)where Mco2(zλ, zγ) denotes the ampli�
ation operator (20) of CO2. Figure 4 shows the asso
iatedstability region S, whi
h indi
ates an approximate stability interval 0 ≤ zλ ≤ 2.85 and un
onditionalstability for zγ .5. Numeri
al experimentsIn this se
tion, we perform numeri
al tests to establish the 
onvergen
e rates of the fully dis
retesystems that result from the spatial and time dis
retisations des
ribed in the previous two se
tions. We11
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Figure 4: Stability region (shaded area) of the fourth-order lo
al Ri
hardson extrapolation (24). The rightplot zooms in on the region where stability for wave term zλ is guaranteed. Stability for the 
ondu
tionterm zγ is un
onditional.also 
arry out a numeri
al dispersion analysis of the semi- and fully dis
rete system with DG spatialdis
retisation. This is done in the following way: i) solve the time-harmoni
 eigenvalue problem, whi
h
orresponds to the semi-dis
rete system with Fourier mode initial 
onditions; ii) apply a 
hosen time-integration method to the test model (16) with the 
omputed semi-dis
rete numeri
al frequen
y. Thisapproa
h has two main advantages over simply solving the eigenvalue problem that results from applyingthe ampli�
ation matrix dire
tly to (11). First, it is more e�
ient be
ause we solve an eigenvalueproblem that is smaller and always symmetri
. Se
ond, it makes it possible to study the dispersion (anddissipation) properties of the time-integration s
heme separately from those of the semi-dis
rete s
heme.5.1. Convergen
e and 
omparison of performan
eWe use a simple test example to illustrate the numeri
al performan
e of the two spatial dis
retisationte
hniques des
ribed in Se
tion 2. For both methods, the predi
ted 
onvergen
e rate of the semi-dis
retesystem is O(hp+1) in the L2(Ω) norm and O(hp) in the energy norm for smooth solutions; see for example[12, 35, 25, 13, 14℄. It is thus natural to 
hoose the time-integration method su
h that it guarantees atleast the same order of 
onvergen
e. Therefore, if the polynomial order in the FEM is at most one weuse the se
ond-order 
omposition method; if the polynomial order is two or three we apply one of thepossible fourth-order methods des
ribed in Se
tion 4.The numeri
al tests are implemented in hpGEM4 [36℄, a general �nite element pa
kage suitable forsolving a variety of physi
al problems in �uid dynami
s and ele
tromagnetism. To integrate the semi-dis
rete system in time we use PETS
 [37℄, whi
h is parti
ularly e�
ient in 
omputing matrix-ve
tormultipli
ations and solving linear systems for large sparse matri
es. As a stopping 
riterion in the linearsolver for the H(curl)-
onforming method, we set the toleran
e at tol = 10−8.In the example, we 
onsider (1) in the 
ubi
 domain Ω = (0, 1)3. We de�ne the time-independent �eld
Ē(x, y, z) =





sin(πy) sin(πz)
sin(πz) sin(πx)
sin(πx) sin(πy)



and 
hoose the sour
e term to be
−∂J

∂t
=

(

εrη
′′(t) + ση′(t) + 2π2η(t)

)

Ē(x, y, z).4The software is free to download and available at http://wwwhome.math.utwente.nl/~hpgemdev/download.php.12



Thus the exa
t solution reads
E(t, x, y, z) = η(t)Ē(x, y, z), η(t) =

3
∑

k=1

cosωkt, (26)with ω1 = 1, ω2 = 1/2, ω3 = 1/3, εr = 1. We either set σ = 0 or σ = 60π, and we integrate until �naltime Tend = 12π (exa
tly one time period).When the globally H(curl)-
onforming dis
retisation [12, 11℄ is used, we need to solve a linear systemat ea
h time step. Sin
e the matrix Mε is positive de�nite, a natural 
hoi
e of linear solver is thepre
onditioned 
onjugate gradient (PCG) method. For simpli
ity, we apply the in
omplete Choleskypre
onditioner for all meshes and polynomial orders. We emphasise that pre
onditioning is not an issuefor the DG method sin
e we 
an simply invert the blo
k-diagonal mass matrix at negligible 
ost.As a �rst example, we run (26) with σ = 0 and �nal time Tend = 12π, on a sequen
e of stru
turedmeshes with Nel = 5, 40, 320, 2560, 20480, 163840 elements. In ea
h mesh the largest fa
e diameter h isexa
tly half that of the previous mesh. We plot the 
onvergen
e rates in Figure 5 in both the L2(Ω)-normand the energy norm for polynomial orders p = 1, 2, 3. Note that the 
onvergen
e is shown as a fun
tionof degrees of freedom, whi
h is equivalent to showing the 
onvergen
e as fun
tion of 1/h in the DG
ase. However, in the H(curl)-
onforming 
ase there is some di�eren
e between the two, as the numberof degrees of freedom generally in
rease slightly more than eightfold when h is halved. Nevertheless,we 
an see that the expe
ted 
onvergen
e rates are a
hieved asymptoti
ally for both the DG and the
H(curl)-
onforming methods. We 
an also observe that it takes fewer degrees of freedom for the H(curl)-
onforming dis
retisation to rea
h a given a

ura
y. Furthermore, we 
an 
on�rm the well-establishedobservation that the use of high-order approximations pays o� (at least for smooth solutions) in terms ofa

ura
y per degrees of freedom.To gain further insight into the 
omputational 
osts of the time integration, we show the performan
eof the DG method in Tables I and III; and that of the H(curl)-
onforming method in Tables II andIV. In this parti
ular example, we use a stru
tured mesh with 320 elements and an unstru
tured onewith 432 elements.5 Although the a

ura
y of the two methods is 
omparable, the 
omputational 
ostsare not and the pattern 
hanges dramati
ally as the order in
reases. The total number of matrix-ve
tormultipli
ations (matve
s) needed to integrate until Tend is always higher for the H(curl)-
onforming 
asethan for the DG method. This is not surprising given that at ea
h time step a linear system has to besolved. However, this seemingly unfavourable property does not manifests itself in longer 
omputationaltime for p = 1 and p = 2 on stru
tured meshes, thanks in part to the smaller size of the system andin part to a weaker time-step restri
tion in the H(curl)-
onforming FEM. The situation is di�erent for
p = 3. Here, the in
reased number of matve
s translates readily into more CPU time on both stru
turedand unstru
tured meshes. This is partly be
ause of a trade-o� between the 
onditioning of the massmatrix and the use of the hierar
hi
 basis. Mass matri
es based on hierar
hi
 bases tend to be relativelybadly 
onditioned. This does not in�uen
e the performan
e of the DG method. But it renders the
H(curl)-
onforming method less e�e
tive be
ause the number of iterations in solving the linear systemat ea
h time step grows signi�
antly with the polynomial order. This e�e
t is even more pronoun
edon unstru
tured meshes, where DG performs slightly better for p = 2 already and where the H(curl)-
onforming 
omputation for p = 3 is ex
essively long � whi
h is one reason why we only 
ompleted oneof them.The 
hoi
e of the time-integration method does not in�uen
e the 
omputational results mu
h in thisexample. Nevertheless, LEX4 appears to be the most e�
ient thanks to the balan
e between the allowabletime-step size and the 
omputational work needed per time step. We also note that for this parti
ularmesh the use of fourth-order time-integration methods may not be ne
essary even for p = 2, 3. This issolely be
ause the spatial error is not yet in the asymptoti
 regime and therefore dominates. We take a
loser look at this shortly in terms of numeri
al dispersion and dissipation.On stru
tured meshes, we repeat example (26) with 
ondu
tivity σ = 60π, whi
h 
orresponds to thedimensional value σ̃ = 0.5 S m−1, typi
al of the human abdomen. The 
onvergen
e results are shown in5A mesh of 320 or 432 tetrahedra is su�
ient to 
ompare the di�erent methods from the point of view of a

ura
yand 
omputational work. A �ner mesh would naturally give a more a

urate solution but the relative performan
e of themethods would remain the same. 13



Table I: Computational 
osts of the DG method for example (26) with σ = 0. A stru
tured mesh of 320elements is used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matve
s τ CPU time
p = 1 CO2 3840 1.2174e-01 4526 0.0167 8s
p = 2 CO2 9600 1.1696e-02 7542 0.0100 114s
p = 2 GEX4 9600 1.2303e-02 22624 0.0100 342s
p = 3 CO4 19200 7.0432e-04 35192 0.0107 2013s
p = 3 GEX4 19200 9.0148e-04 31672 0.0071 1863s
p = 3 LEX4 19200 6.1762e-04 28154 0.0107 1623sTable II: Computational 
osts of the H(curl)-
onforming method for example (26) with σ = 0. Astru
tured mesh of 320 elements is used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matve
s τ CPU time
p = 1 CO2 504 2.7283e-01 7783 0.0417 2s
p = 2 CO2 2388 1.3642e-02 59201 0.0250 87s
p = 2 GEX4 2388 1.2942e-02 180067 0.0250 264s
p = 3 CO4 6640 7.4117e-04 817880 0.0268 19683s
p = 3 GEX4 6640 7.7523e-04 736276 0.0179 17492s
p = 3 LEX4 6640 8.5234e-04 653611 0.0268 15510sTable III: Computational 
osts of the DG method for example (26) with σ = 0. An unstru
tured meshof 432 elements is used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matve
s τ CPU time
p = 1 CO2 5184 1.9583e-01 11878 0.00635 41s
p = 2 CO2 12960 1.3396e-02 19796 0.00381 429s
p = 2 GEX4 12960 1.4316e-02 59384 0.00381 1263s
p = 3 CO4 25920 1.4311e-03 92372 0.00408 7585s
p = 3 GEX4 25920 1.5558e-03 83134 0.00272 6749s
p = 3 LEX4 25920 1.4038e-03 73898 0.00408 5909sTable IV: Computational 
osts of the H(curl)-
onforming method for example (26) with σ = 0. Anunstru
tured mesh of 432 elements is used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matve
s τ CPU time
p = 1 CO2 744 1.9113e-01 33691 0.02380 18s
p = 2 CO2 3420 1.7294e-02 169129 0.01429 963s
p = 2 GEX4 3420 1.8860e-02 406784 0.01429 2778s
p = 3 CO4 9360 � >1e+07 0.01530 >5e+05s
p = 3 GEX4 9360 1.9676e-03 21337490 0.01020 782647s
p = 3 LEX4 9360 � >1e+07 0.01530 >5e+05sFigure 6, from whi
h it appears that they are similar to the non
ondu
tive 
ase ex
ept that optimal ratesof 
onvergen
e are rea
hed sooner. On unstru
tured meshes, the example is repeated with 
ondu
tivity
σ = 450π, a value more typi
al of seawater. See Table V for the 
ondu
tivity of a small sele
tion ofmaterials (sour
e: en.wikipedia.org/wiki/Ele
tri
al_
ondu
tivity).The 
omputational work, depi
ted in Tables VI�IX, also shows a similar pattern to the 
ondu
tion-free 
ase, ex
ept when the fourth-order 
omposition method is used. In that 
ase, the 
ondu
tion termposes a stri
ter time-step size than the wave term and in
reases the number of time steps and thusthe 
omputational 
ost. On the stru
tured mesh with 320 elements and σ = 60π, this only a�e
ts the14
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Figure 5: Convergen
e plots in the L2-norm (left 
olumn) and in the energy norm (right 
olumn) fortest example (26) with σ = 0. In ea
h plot the 
onvergen
e rates of the DG method and the H(curl)-
onforming method are shown along with the expe
ted order of 
onvergen
e.
H(curl)-
onforming dis
retisation be
ause the sti�ness matrix in the DG method has a signi�
antly largerspe
tral radius (and therefore it still determines the stability 
ondition). On the unstru
tured mesh with15



Table V: Ele
tri
al 
ondu
tivity of some materials measured in Siemens per metre(S m−1). For the dimensionless value a multipli
ation by 120π is needed. Sour
e:en.wikipedia.org/wiki/Ele
tri
al_
ondu
tivity.Material Condu
tivity (S m−1) NoteSilver 63.0e+06 Best ele
tri
al 
ondu
torCopper 59.6e+06Gold 45.2e+06 Commonly used in ele
tri
al 
onta
tsAluminium 37.8e+06Seawater 4.8 For average salinity of 35 g/kgHuman Body 0.006�1.5 Varies from bone to 
erebrospinal �uidsDrinking water 0.0005�0.05Deionised water 5.5e-06 Lowest value, with monoatomi
 gases presentAir 5e-15 Varies slightly depending on humidity432 elements and σ = 450π, however, it already a�e
ts the DG dis
retisation too. This indi
ates thatlarge values of σ prohibit the use of fourth-order (or, indeed, any high-order) 
omposition methods, as wellas expli
it RK methods, su
h as SSPRK. Instead, Ri
hardson extrapolation based on the se
ond-order
omposition method may be used sin
e they are un
onditionally stable with respe
t to the 
ondu
tivityterm. Similarly to the 
ondu
tion-free 
ase we killed the H(curl)-
onforming 
omputations after almostsix days � already signi�
antly more than what the DG 
omputations take.Table VI: Computational 
osts of the DG method for example (26) with σ = 60π. A mesh of 320 elementsis used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matve
s τ CPU time
p = 1 CO2 3840 6.6817e-02 4526 0.0167 8s
p = 2 CO2 9600 8.4244e-03 7542 0.0100 113s
p = 2 GEX4 9600 8.4243e-03 22624 0.0100 341s
p = 3 CO4 19200 5.5619e-04 35192 0.0107 2012s
p = 3 GEX4 19200 5.5612e-04 31672 0.0071 1864s
p = 3 LEX4 19200 5.5612e-04 28154 0.0107 1623sTable VII: Computational 
osts of the H(curl)-
onforming method for example (26) with σ = 60π. Amesh of 320 elements is used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matve
s τ CPU time
p = 1 CO2 504 1.1789e-01 6253 0.0417 1s
p = 2 CO2 2388 1.2315e-02 56301 0.0250 82s
p = 2 GEX4 2388 1.2314e-02 166303 0.0250 247s
p = 3 CO4 6640 7.3357e-04 1717157 0.0127 40862s
p = 3 GEX4 6640 7.3358e-04 734732 0.0179 17472s
p = 3 LEX4 6640 7.3358e-04 653024 0.0268 15498s5.2. Numeri
al dispersion analysisTo investigate the dispersion and dissipation properties of the fully dis
rete s
hemes, we 
onsider thesemi-dis
rete system (11) with σ = 0 and j = 0,

(

u′

v′

)

= A
(

u
v

) with A =

(

0 I
−M−1

ε Sµ 0

)

, (27)16



10
2

10
4

10
6

10
−2

10
−1

p = 1, convergence in the L2 norm

Degrees of Freedom

L2  e
rr

or

 

 

DG
H(curl)
order 2

10
2

10
4

10
6

10
0

p = 1, convergence in the energy norm

Degrees of Freedom

H
(c

ur
l, 

Ω
) 

/ D
G

 e
rr

or

 

 

DG
H(curl)
order 1

10
2

10
4

10
−3

10
−2

10
−1

10
0

p = 2, convergence in the L2 norm

Degrees of Freedom

L2  e
rr

or

 

 

DG
H(curl)
order 3

10
2

10
4

10
−1

10
0

10
1

p = 2, convergence in the energy norm

Degrees of Freedom

H
(c

ur
l, 

Ω
) 

/ D
G

 e
rr

or

 

 

DG
H(curl)
order 2

10
2

10
3

10
4

10
−1

10
0

p = 3, convergence in the energy norm

Degrees of Freedom

H
(c

ur
l, 

Ω
) 

/ D
G

 e
rr

or

 

 

DG
H(curl)
order 4

10
2

10
3

10
4

10
−3

10
−2

10
−1

p = 3, convergence in the L2 norm

Degrees of Freedom

L2  e
rr

or

 

 

DG
H(curl)
order 3

Figure 6: Convergen
e plots in the L2-norm (left 
olumn) and in the energy norm (right 
olumn) fortest example (26) with σ = 60π. In ea
h plot the 
onvergen
e rates of the DG method and the H(curl)-
onforming method are shown along with the expe
ted order of 
onvergen
e.and assume a plane wave exa
t solution
E(x, t) = Ê exp(−iωt) exp(ik · x) (28)17



Table VIII: Computational 
osts of the DG method for example (26) with σ = 450π. An unstru
turedmesh of 432 elements is used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matve
s τ CPU time
p = 1 CO2 5184 4.6168e-02 11878 0.00635 41s
p = 2 CO2 12960 8.1650e-03 19796 0.00381 422s
p = 2 GEX4 12960 8.1650e-03 59384 0.00381 1240s
p = 3 CO4 25920 8.5690e-04 222072 0.00170 17606s
p = 3 GEX4 25920 8.5671e-04 83134 0.00272 6618s
p = 3 LEX4 25920 8.5690e-04 73898 0.00136 5906sTable IX: Computational 
osts of the H(curl)-
onforming method for example (26) with σ = 450π. Anunstru
tured mesh of 432 elements is used with spatial polynomial orders p = 1, 2, 3.method # DoF L2(Ω) error # matve
s τ CPU time
p = 1 CO2 744 1.2498e-01 32049 0.02380 17s
p = 2 CO2 3420 1.3102e-02 163451 0.01429 938s
p = 2 GEX4 3420 1.3102e-02 490287 0.01429 2677s
p = 3 CO4 9360 � >1e+07 0.01530 >5e+05s
p = 3 GEX4 9360 � >1e+07 0.01020 >5e+05s
p = 3 LEX4 9360 � >1e+07 0.01530 >5e+05swith periodi
 boundary 
onditions and Ê = 1. In (28), i2 = −1, ω denotes the angular frequen
y,
k = (kx, ky , kz)

T is the wave number. Between these quantities the (exa
t) dispersion relation ω2 = k2/c2holds with k2 = k2
x + k2

y + k2
z and with c = 1/ (εrµr)

1/2, whi
h is the speed of light.As a �rst step, we proje
t the exa
t initial 
onditions E(x, 0) and ∂tE(x, 0) onto the �nite-elementspa
e
Ej

h(0) =
(

E(x, 0),ψj

)

Ω
, j = 1 . . .N,

d

dt
Ej

h(0) =
(

∂tE(x, 0),ψj

)

Ω
, j = 1 . . .N.

(29)We 
an now obtain the initial 
onditions for (27) through the relations u0 = u(0) = M−1
εr

Eh(0) and
v0 = v(0) = u′(0) = M−1

εr

d
dt Eh(0). The time-exa
t dis
rete Fourier mode at time level nτ is then de�nedas

(

un

vn

)

= νn

(

u0

v0

) with νn = e−iωhnτ , (30)where νn is the exa
t ampli�
ation fa
tor and ωh is the semi-dis
rete numeri
al frequen
y.To �rst see the impa
t of the spa
e dis
retisation only, we 
onsider the semi-dis
rete equation
Mεu

′′ + Sµu = 0 (31)with periodi
 boundary 
onditions and a plane wave initial 
ondition (28). In this 
ase, (31) is equivalentto the dis
rete time-harmoni
 Maxwell eigenvalue problem
Sµu − ω2

hMεu = 0 (32)with periodi
 boundary 
onditions. All semi-dis
rete eigenvalues ω2
h of (32) are real and non-negative,whi
h entails that the spa
e dis
retisation imposes no dissipation. In Table X, we show the numeri
alfrequen
ies of the spatial DG dis
retisation for the Fourier mode with kx = 2π, ky = −2π, kz = 0, i.e. withexa
t angular frequen
y ωex =

√
8π. The number of elements for ea
h mesh is Nel = 5( 1

h )3 and in ea
helement the lo
al number of degrees of freedom is 1
2 (p + 1)(p + 2)(p + 3). To solve the eigenvalue dis
rete
18



problem (32) of this size the Matlab implementation6 of the Ja
obi-Davidson iterative method [38, 39℄is used. We note that for other Fourier modes the same approximation properties apply as long as ωhhis in the same region as shown in the tables. The frequen
y errors for the same meshes and polynomialorders are depi
ted in Table XI. Note that the frequen
y errors are signed, indi
ating phase advan
e.Table X: Semi-dis
rete frequen
ies ωh of the DG method that approximate the exa
t frequen
y ωex =
√

8π

h = 1
2 h = 1

4 h = 1
8 h = 1

16 ωex

p = 1 � 9.4286 9.0469 8.9271 8.8858
p = 2 9.4738 8.9276 8.8887 � 8.8858
p = 3 8.9146 8.8875 8.8858 � 8.8858Table XI: Frequen
y error ωh − ωex of the DG semi-dis
rete system with exa
t frequen
y ωex =

√
8π

h = 1
2 h = 1

4 h = 1
8 h = 1

16

p = 1 � 5.4283e-01 1.6117e-01 4.1380e-02
p = 2 5.8800e-01 4.1831e-02 2.9628e-03 �
p = 3 2.8869e-02 1.7173e-03 3.0850e-05 �To in
lude the time integration in the dispersion analysis it su�
es to apply a 
hosen time-integrationmethod to the test model (16) with γ = 0. We are allowed to do that be
ause the eigenvalues of S̃µ arethe same as the eigenvalues of M−1

ε Sµ, that is λ = ω2
h. Let M denote the ampli�
ation operator of anyof the time-integration methods des
ribed in Se
tion 4. So instead of (30) we now have the fully dis
reteFourier mode at time level nτ ,

νn+1
h

(

u0

v0

)

= Mνn
h

(

u0

v0

)

, (33)whi
h redu
es to the eigenvalue problem
νh

(

u0

v0

)

= M
(

u0

v0

)

. (34)Solving this eigenvalue problem will produ
e two eigenpairs, representing two waves with the same wavenumber but travelling in opposite dire
tions. Without loss of generality, we 
an dis
ard the one withnegative real part and establish the dispersive and dissipative properties of the fully dis
rete s
hemethrough the relation
νh = e−iωτ

hτ ,where ωτ
h represents the fully dis
rete numeri
al frequen
y. The real part of ωτ

h de�nes the a
tual an-gular frequen
y in the dis
rete dispersion relation, while a negative imaginary part indi
ates numeri
aldissipation. A non-negligible positive imaginary part would mean instability.We show the frequen
y errors of the time-integration s
hemes SSPRK(4, 3), CO2 and LEX4 inTables XII� XIV. They show that the frequen
y error of the time-integration method is at least an ordersmaller than the one of the DG method, as long as the order of the time-integration method is on apar with the order of the DG method. When this is not the 
ase, su
h as when CO2 is used for p = 2or p = 3, the frequen
y error of the time integration is 
ommensurate with, or ex
eeds that of the DGdis
retisation.Composition methods, su
h as CO2 and CO4, are known to be non-dissipative [31℄. Thus 
ombiningthem with a symmetri
 spatial dis
retisation results in an energy-
onservative fully-dis
rete dis
retisa-tion. Global Ri
hardson extrapolation based on a 
omposition method naturally inherits this property.However, lo
al Ri
hardson extrapolation may introdu
e a slight dissipation even when based on a non-dissipative s
heme su
h as CO2. We show this in Table XV and note that the error is generally too6The software is free to download and available at http://www.math.uu.nl/people/sleijpen.19



small to have a real impa
t on simulations arising in pra
ti
e. By 
omparison, the SSPRK(4, 3) s
hemeintrodu
es a mu
h more signi�
ant level of dissipation, shown in Table XVI.Finally, we note that if a time-dependent boundary 
ondition is used in (1) instead of a homogeneousone, order redu
tion may o

ur. See [17℄ for the possible e�e
ts of this.Table XII: Frequen
y error imposed only by the time integration, Re(ωτ
h) − ωh, of the SSPRK(4, 3)method for semi-dis
rete numeri
al frequen
ies ωh taken from Table X.

h = 1
2 h = 1

4 h = 1
8 h = 1

16

p = 1 � 7.1799e-05 3.6525e-06 2.1360e-07
p = 2 1.5242e-04 7.0867e-06 4.3347e-07 �
p = 3 2.9293e-05 1.8039e-06 1.1265e-07 �Table XIII: Frequen
y error imposed only by the time integration, Re(ωτ

h) − ωh, of the CO2 method forsemi-dis
rete numeri
al frequen
ies ωh taken from Table X.
h = 1

2 h = 1
4 h = 1

8 h = 1
16

p = 1 � 9.7283e-03 2.1439e-03 5.1472e-04
p = 2 1.4229e-02 2.9674e-03 7.3172e-04 �
p = 3 6.0353e-03 1.4930e-03 3.7292e-04 �Table XIV: Frequen
y error imposed only by the time integration, Re(ωτ

h) − ωh, of the LEX4 methodfor semi-dis
rete numeri
al frequen
ies ωh taken from Table X. The negative values indi
ate that thefrequen
y error 
aused by the time integration 
ountera
ts that of imposed by the spa
e dis
retisation.
h = 1

2 h = 1
4 h = 1

8 h = 1
16

p = 1 � -7.9554e-06 -4.0558e-07 -2.3730e-08
p = 2 -1.6866e-05 -7.8671e-07 -4.8152e-08 �
p = 3 -3.2488e-06 -2.0035e-07 -1.2516e-08 �Table XV: Imaginary part of the numeri
al frequen
y, Im(ωτ

h), for the LEX4 time-integration method,where the semi-dis
rete numeri
al frequen
ies ωh are taken from Table X. This term is responsible fornumeri
al dissipation.
h = 1

2 h = 1
4 h = 1

8 h = 1
16

p = 1 � -6.9642e-07 -1.6998e-08 -4.9043e-10
p = 2 -1.7825e-06 -3.9053e-08 -1.1891e-09 �
p = 3 -2.3027e-07 -7.0689e-09 -2.2071e-10 �Table XVI: Imaginary part of the numeri
al frequen
y, Im(ωτ

h), for the SSPRK(4, 3) time-integrationmethod, where the semi-dis
rete numeri
al frequen
ies ωh are taken from Table X. This term is respon-sible for numeri
al dissipation.
h = 1

2 h = 1
4 h = 1

8 h = 1
16

p = 1 � -7.5911e-04 -8.0688e-05 -9.5692e-06
p = 2 -1.3346e-03 -1.3217e-04 -1.6251e-05 �
p = 3 -3.8256e-04 -4.7337e-05 -5.9156e-06 �20



6. Con
luding remarksWe have investigated the time-dependent se
ond-order Maxwell equation in three spatial dimensions.A dire
t 
omparison between the high-order DG-FEM and the high-order H(curl)-
onforming FEM onboth stru
tured and unstru
tured meshes was provided when H(curl)-
onforming hierar
hi
 basis fun
-tions are used. It has revealed that, in 
ase hierar
hi
 basis fun
tions are used, the 
omputational 
ostis already lower for DG-FEM when p = 3, or even p = 2 on unstru
tured meshes. The 
omputationaltests have highlighted the fa
t that the in
lusion of moderate 
ondu
tivity renders many of the popu-lar time-integration methods un
ompetitive owing to a stringent time-step restri
tion. In these 
ases,global or lo
al Ri
hardson extrapolations based on the se
ond-order 
omposition method provide a viablealternative as they treat the 
ondu
tivity term impli
itly.Through a numeri
al dispersion and dissipation analysis, we have also shown that the spatial dis
reti-sation dominates the frequen
y error as long as the order of the time integration is at least the same asthe order of the spatial dis
retisation. Sin
e the semi-dis
rete system is symmetri
 and therefore 
on-serves (the dis
rete) energy, applying a 
omposition method to integrate in time results in a fully-dis
retes
heme that also 
onserves (the dis
rete) energy.A
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