
Simpleweb/University of Twente Traffic Traces

Data Repository

Rafael Ramos Regis Barbosa1, Ramin Sadre1, Aiko Pras1, and
Remco van de Meent2

1University of Twente
Design and Analysis of Communication Systems (DACS)

Enschede, The Netherlands
2Vodafone NL

April 29, 2010

Abstract

The computer networks research community lacks of shared measure-
ment information. As a consequence, most researchers need to expend
a considerable part of their time planning and executing measurements
before being able to perform their studies. The lack of shared data
also makes it hard to compare and validate results. This report de-
scribes our efforts to distribute a portion of our network data through
the Simpleweb/University of Twente Traffic Traces Data Repository.

1 Introduction

Performing useful network measurements can be a difficult task. Problems can
appear in different parts of the procedure, ranging from gaining permission to
start the measurements, to power failures causing the monitoring equipment
to fail. In addition, even when researchers succeed in their measurements, it
might be that they fail to observe the phenomena they want to study, e.g. a
SSH brute-force attack when studying intrusion detection or network congestion
when validating a new QoS scheme.

The difficulties to perform measurements alone is a valid reason to support
the distribution of such data, but there is another, arguably more important,
reason. Sharing data used in experiments enable researchers to validate results
and compare methods. This is one of the basis of well-grounded scientific work.

The request for sharing data is a constant in the computer networks re-
search community (e.g. [1–3]). This report describe our efforts to share our
traffic measurement data through the Simpleweb/University of Twente reposi-
tory. Currently it contains eight datasets consisting of packet headers, Netflow
version 5 data and a labeled dataset for flow-based intrusion detection. The
repository is available at this location: http://traces.simpleweb.org/.

Other databases of network measurement are available. DatCat [4], MOME
[5], Internet Traffic Archive [6] and MAWI Working Group Traffic Archive [7]

1

are examples of well-known network traffic repositories. The UMass Trace
Repository [8] contains other traces such as CPU and memory, and storage
traces, in addition to network traces. RIPE NCC Data Repository [9] contains
measurements collected by RIPE NCC projects, packet trace sets recovered from
the defunct NLANR website and, datasets collected and currently hosted by
other research institutions. Some of these datasets are described in [10]. Some
of these databases have specialised information, for instance, the CRAWDAD
[11] focuses on wireless and mobility data while PREDICT [12] focuses on data
for cyber security research.

This report updates the information provided in [13]. The remainder of this
report describes the situation of the repository as from April 2010. Section 2
presents the measurement procedure and the subsequent steps taken to pro-
tect the network users’ privacy. In Section 3 we describe datasets individually,
providing some contextual information of each of the data collection scenarios.

2 Measurements

In this section we detail some points of our approach for data collection and
anonymization for packet headers, Netflow version 5 data and the labeled
dataset for intrusion detecton.

2.1 Packet Headers

The measurements are performed by capturing the headers of all packets that are
transmitted over the (Ethernet) “uplink” of an access network to the Internet,
as outlined in Figure 1. The switch (or router) copies all traffic flowing in to
and out of the access network to the measurement PC. Even an ordinary PC
should have no problem in handling a load on the uplink up to several hundred
Mbit/s [14]. To capture packets the standard tcpdump [15] utility is used.

!""#$$
%#&'()* +,&#),#&

-'.&"/

0#1$2)#3#,&456

Figure 1: Packet Header measurement setup

The packets’ payload contain sensitive information, such as replies from
HTTP requests or content of Instant Messaging (IM) conversations, so, to pre-
serve the users’ privacy, this information is not included in our traces. We set
tcpdump to capture the first 64 octets of each Ethernet frame. Only headers
from the link up to the transport layer are captured, whilst the packet’s payload

2

is ignored. This information is dumped to a binary file that is stored on disk.
The resulting packet trace is a file of possibly several gigabytes, depending on
the load of uplink. In order to save resources, the traces are compressed. This
saves on average some 60% in disk space.

The headers in the packet trace include source and destination IP addresses
and port numbers. Although the payload of the IP packets is discarded, careful
analysis of the packet trace still may reveal possibly sensitive information, such
as which websites are visited by who, which threatens users’ privacy. On the
other hand, the removal of addresses from the packet traces would severely
reduce their usefulness. Thus, there is a trade-off to be made between protecting
privacy and usability of the traces.

To protect users’ privacy, the packet headers are made anonymous by scram-
bling the source and destination IP addresses. Other information, such as
transport port numbers and the timestamps at which packets arrive are left
unchanged. To this end we used the tcpdpriv [16] utility with following options:

tcpdpriv -A50 -P99 -r original-packet-trace -w anonymized-packet-trace

The “-A50” option enables the prefix-preserving anonymization. This means
that, within a single packet trace, if two of the original addresses are equal in the
most significant n bits, then these two addresses will map to scrambled addresses
that are similarly equal in the most significant n bits. For example, if source
address a.b.c.p is mapped to x.y.z.k, then a.b.c.q is mapped to x.y.z.l. A possible
drawback of this approach, however, is that some topological information might
be revealed, whereas strict random mapping would not.

The effect of the “-P99” option is that transport port numbers are un-
changed, e.g., if an original packet was sent from TCP port 1025 to port 80
(i.e., web-browsing), the same port numbers will be stored in the anonymized
packet trace.

2.2 Netflow Version 5

The measurement setup for Netflow version 5 data is depicted on Figure 2. The
Netflow data is recorded in the access router that connects a university to its
Internet Service Provider (ISP). Most of the university’s traffic incoming and
outgoing traffic is routed through this link. Also some internal traffic is recorded,
as this access router also interconnects some of the university’s subnets. No
sampling was performed in the measurement i.e., all packet are processed in the
access router to compute the Netflow data.

The data recorded at the access router is sent to a Netflow collector, that
stores the data for further analysis. The data we make available is a tcpdump
capture of the packets sent from the access router to the Netflow collector.

Following the same reasoning from Section 2.1, we decide to protect users’
privacy by anonymizing the IP addresses present in the Netflow data, while
leaving transport port numbers and timestamps unchanged. Remember that
the Netflow data is stored in tcpdump/libpcap format, therefore, besides the
three IP addresses present in the Netflow each record (source, destination and
next hop fields), we have to anonymize the source and destination IP addresses
present in each packet.

To this end we use the AnonTool, an open-source implementation of
Anonymization API [17]. AnonTool contains two separate applications to

3

!"#$%"$#&
'$%()*$
+%,()-$%

.")($%/)#0&1$#2,%3
'45"$#/

1$#67,2
8,77$*#,%

9**$//
:,4#$%

Figure 2: Netflow measurement setup

anonymize information in the packet headers and in the Netflow records. This
means that, for anonymizing all IP addresses it would be necessary to process
the data twice, one with each application. To avoid that, we decided to code a
small application that makes use of the Anonymization API directly, anonymiz-
ing all IP addresses in one pass.

The main functions used are showed in the C code snippet in Figure 3. The
function ”PREFIX PRESERVING”, which is based on the Crypto-PAn imple-
mentation [18], is used in all IP addresses. This function performs a prefix-
preserving anonymization based on a cryptographic key. An advantage of this
method over the tcpdpriv method, is that the mapping is consistent across mul-
tiple traces, as long as the same key is used. As this function changes values
in the IP header and payload, the checksum calculation needs to be corrected.
This is done using the function ”CHECKSUM ADJUST”, showed on the last
lines of the code snippet.

2.3 Labeled Dataset for Intrusion Detection

For the construction of this dataset a single host, referred to as honeypot, is
monitored. A honeypot can be defined as an ”environment where vulnerabilities
have been deliberately introduced to observe attacks and intrusions” [19]. The
honeypot was installed on a virtual machine running on Citrix XenServer 5
[20], running a Linux distribution (Debian Etch 4.0). In particular it had the
following services installed:

• ssh: OpenSSH service [21]. Beside the traditional service logs, the
OpenSSH service running on Debian has been patched in order to log
sessions: for each login, the transcript (user typed commands) and the
timing of the session have been recorded. This patch is particularly im-
portant to track active hacking activities.

4

• Apache web server: a simple webpage with a log in form has been
deployed. We relied on the service logging capabilities for checking the
content of the incoming http connections.

• ftp: The chosen service was proftp [22]. As for http, we relied on the
ftp logs for monitoring attempted and successful connections. proftp uses
the auth/ident service running on port 113 for additional authentication
information about incoming connections.

As the other scenarios, the privacy sensitive information is also anonymized.
Here the Crypto-PAn [18] application was used. It is important to note that
this method does not preserve the ordering of the addresses, so the flows of the
scans may not appear sequentially in the database.

The labeled dataset is provided as a gzipped SQL script, generated from a
MySQL database. Further information on the data collection and labelling can
be found in [23].

3 Repository

The Simpleweb/University of Twente Traffic Traces Data Repository is available
at this location:

http://traces.simpleweb.org/

In the remainder of this section we describe the eight scenarios present in
the repository as from April 2010, to give the context of the traces.

//anonymize IP addresses

add_function(sd, "ANONYMIZE",

IP, SRC_IP, PREFIX_PRESERVING);

add_function(sd, "ANONYMIZE",

IP, DST_IP, PREFIX_PRESERVING);

//anonimize IP addresses in Netflow

add_function(sd,"ANONYMIZE",NETFLOW_V5,

NF5_SRCADDR,PREFIX_PRESERVING);

add_function(sd,"ANONYMIZE",NETFLOW_V5,

NF5_DSTADDR,PREFIX_PRESERVING);

add_function(sd,"ANONYMIZE",NETFLOW_V5,

NF5_NEXTHOP,PREFIX_PRESERVING);

//fix checksums

add_function(sd, "ANONYMIZE",

IP, CHECKSUM, CHECKSUM_ADJUST);

add_function(sd, "ANONYMIZE",

UDP, CHECKSUM, CHECKSUM_ADJUST);

Figure 3: Anonymization code snippet using Anonymization API

5

3.1 Trace 1 - Packet Headers

In scenario 1, the 300 Mbit/s (a trunk of 3 x 100 Mbit/s) ethernet link has
been measured, which connects a residential network of a university to the core
network of this university. On the residential network, about 2000 students
are connected, each having a 100 Mbit/s ethernet access link. The residential
network itself consists of 100 and 300 Mbit/s links to the various switches,
depending on the aggregation level. The measured link has an average load of
about 60%. Measurements have taken place in July 2002.

3.2 Trace 2 - Packet Headers

In the second scenario, the 1 Gbit/s ethernet link connecting a research institute
to the Dutch academic and research network has been measured. There are
about 200 researchers and support staff working at this institute. They all have
a 100 Mbit/s access link, and the core network of the institute consists of 1
Gbit/s links. The measured link is only mildly loaded, usually around 1%. The
measurements are from May - August 2003.

3.3 Trace 3 - Packet Headers

This dataset was collected in a large college. Their 1 Gbit/s link (i.e., the link
that has been measured) to the Dutch academic and research network carries
traffic for over 1000 students and staff concurrently, during busy hours. The
access link speed on this network is, in general, 100 Mbit/s. The average load
on the 1 Gbit/s link usually is around 10-15%. These measurements have been
done from September - December 2003.

3.4 Trace 4 - Packet Headers

In scenario 4, the 1 Gbit/s aggregated uplink of an ADSL access network has
been monitored. A couple of hundred ADSL customers, mostly student dorms,
are connected to this access network. Access link speeds vary from 256 kbit/s
(down and up) to 8 Mbit/s (down) and 1 Mbit/s (up). The average load on
the aggregated uplink is around 150 Mbit/s. These measurements are from
February - July 2004.

3.5 Trace 5 - Packet Headers

The dataset Packet Headers 5 was collected in a hosting-provider, i.e. a com-
mercial party that offers floor- and rack-space to clients who want to connect,
for example, their WWW-servers to the Internet. At this hosting-provider,
these servers are connected at (in most cases) 100 Mbit/s to the core network
of the provider. The bandwidth capacity level of this hosting-provider’s uplink
(that we have measured) is around 50 Mbit/s. These measurements are from
December 2003 - February 2004.

3.6 Trace 6 - Packet Headers

In scenario 6, a 100 Mbit/s Ethernet link connecting an educational organiza-
tion to the internet has been measured. This is a relatively small organization

6

with around 35 employees and a ittle over 100 students working and studying
at this site (the headquarter location of this organization). All workstations at
this location (100 in total) have a 100Mbit/s Lan connection. The core net-
work consists of a 1 Gbit/s connection. The recordings took place between the
external optical fiber modem and the first firewall. The measured link was only
mildly loaded during this period. These measurements are from May - June
2007.

3.7 Trace 7 - Netflow Data

The Netflow version 5 data was recorded in the access router connecting a
university to its ISP. It contains flow information about most of the incoming
and outgoing university’s traffic and some internal traffic as well. The traces
cover a period of time of two working days, namely between Wednesday August
1st 2007, 00:00 and Thursday August 2nd 2007, 23:59. The university has
/16 network providing connectivity to the employees and the students on its
buildings and the campus. The university is connected to its ISP through a 10
Gbps optical link with an average load of 650 Mbps and peaks up to 1.0 Gbps.

3.8 Trace 8 - Labeled Dataset for Intrusion Detection

In this scenario, a honeypot (running in a virtual machine) was monitored for 6
days, from Tuesday 23 September 2008 12:40:00 GMT to Monday 29 September
2008 22:40:00 GMT. The honeypot was hosted in the University of Twente
network and directly connected to the Internet. The monitoring window is
comprehensive of both working days and weekend days. The data collection
resulted in a 24 GB dump file containing 155.2 million packets. The processing
of the dumped data and logs, collected over a period of 6 days, resulted in 14.2M
flows and 7.6M alerts.

Acknowledgements

This research work has been supported by the EC IST-EMANICS
Network of Excellence (#26854) and by the Istrice research program
(http://www.ctit.utwente.nl/research/sro/istrice/).

References

[1] M. Alllman and V. Paxson. Issues and Etiquette Concerning Use of Shared
Measurement Data. In Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement, page 140. ACM, 2007.

[2] V. Paxson. Strategies for Sound Internet Measurement. In Proceedings
of the 4th ACM SIGCOMM Conference on Internet Measurement, pages
263–271. ACM New York, NY, USA, 2004.

[3] KC Claffy, M. Crovella, T. Friedman, C. Shannon, and N. Spring.
Community-Oriented Network Measurement Infrastructure (CONMI)
Workshop Report. ACM Computer Communication Review, 32(2):41–48,
April 2006.

7

[4] C. Shannon, D. Moore, K. Keys, M. Fomenkov, and B. Huffaker.
The Internet Measurement Data Catalog. ACM SIGCOMM Computer
Communication Review, 35(5):100, 2005.

[5] Cluster of European Projects aimed at Monitoring and Measurent
(MOME). http://www.ist-mome.org/.

[6] V. Paxson. Internet Traffic Archive. http://ita.ee.lbl.gov/.

[7] MAWI Working Group Traffic Archive. http://tracer.csl.sony.co.jp/mawi/.

[8] UMass Trace Repository. http://traces.cs.umass.edu/.

[9] RIPE NCC Data Repository. https://data-repository.ripe.net/.

[10] Tony McGregor, Shane Alcock, and Daniel Karrenberg. The RIPE NCC
Internet Measurement Data Repository. Passive and Active Measurement,
pages 111–120, 2010///.

[11] Community Resource for Archiving Wireless Data At Dartmouth
(CRAWDAD). http://crawdad.cs.dartmouth.edu/.

[12] Protected Repository for the Defense of Infrastructure against Cyber
Threats (PREDICT). http://www.predict.org/.

[13] R. van de Meent. M2C Measurement Data Repository. University of
Twente, Enschede, The Netherlands, M2C Deliverable D15, 1, 2003.

[14] R. Poortinga, R. van de Meent, and A. Pras. Analysing Campus Traffic
Using the Meter-MIB. In Proceedings of Passive and Active Measurement
Workshop 2002, pages 192–201. Citeseer, 2002.

[15] tcpdump/libpcap. http://www.tcpdump.org/, .

[16] tcpdpriv. http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html, .

[17] D. Koukis, S. Antonatos, D. Antoniades, E. Markatos, and P. Trimintzios.
A Generic Anonymization Framework for Network Traffic. In Proceedings
of the IEEE International Conference on Communications (ICC 2006).
Citeseer, 2006.

[18] J. Fan, J. Xu, M.H. Ammar, and S.B. Moon. Prefix-preserving IP
Address Anonymization: Measurement-based Security Evaluation and a
New Cryptography-based Scheme. Computer Networks, 46(2):253–272,
2004.

[19] F. Pouget and M. Dacier. Honeypot-based Forensics. In AusCERT Asia
Pacific Information Technology Security Conference, 2004.

[20] Citrix. http://www.citrix.com/.

[21] OpenSSH. http://www.openssh.com/.

[22] proftp. http://www.proftpd.org/.

8

http://crawdad.cs.dartmouth.edu/
http://www.tcpdump.org/
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html

[23] A. Sperotto, R. Sadre, D. F. van Vliet, and A. Pras. A Labeled Data
Set For Flow-based Intrusion Detection. In Proceedings of the 9th IEEE
International Workshop on IP Operations and Management, IPOM 2009,
Venice, Italy, volume 5843 of Lecture Notes in Computer Science, pages
39–50. Springer Verlag, October 2009.

9

	Introduction
	Measurements
	Packet Headers
	Netflow Version 5
	Labeled Dataset for Intrusion Detection

	Repository
	Trace 1 - Packet Headers
	Trace 2 - Packet Headers
	Trace 3 - Packet Headers
	Trace 4 - Packet Headers
	Trace 5 - Packet Headers
	Trace 6 - Packet Headers
	Trace 7 - Netflow Data
	Trace 8 - Labeled Dataset for Intrusion Detection

