

Transformation Tool Contest 2010
1-2 July 2010, Malaga, Spain

Steffen Mazanek
Arend Rensink

Pieter Van Gorp

ii

(page intentionally left blank)

 iii

Contents

Model Migration case study..1

Model MigrationWith GReTL...7
Migrating Activity Diagrams with Epsilon Flock..30
Model Migration with MOLA ...38
A GrGen.NET solution of the Model Migration Case for the Transformation

Tool Contest 2010 ..61
Migrating UML Activity Models with COPE ...72
UML Model Migration with PETE..85
Abstract and Concrete Syntax Migration of Instance Models100

A Graph Transformation Case Study for the Topology Analysis of Dynamic
Communication Systems..107

Solving the Topology Analysis Case Study with GROOVE.................................119
Abstract topology analysis of the join phase of the merge protocol......................127
Topology Analysis of Car Platoons Merge with FujabaRT &

TimedStoryCharts - a Case Study ..134
Ecore to GenModel Case Study ..149

Modeling the “Ecore to GenModel” Transformation with EMF Henshin.............153
ECore2GenModel with Mitra and GEF3D ..166
Ecore to Genmodel case study solution using the Viatra2 framework187

iv

(page intentionally left blank)

Model Migration Case for TTC 2010

Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack

Department of Computer Science, University of York, UK.
[louis,dkolovos,paige,fiona]@cs.york.ac.uk

Abstract. Using an example from the Unified Modelling Language,
we invite submissions to explore the ways in which model transforma-
tion languages can be used to update models in response to metamodel
changes.

1 Introduction

MDE introduces additional challenges for controlling and managing software
evolution [8]. For example, when a metamodel evolves, instance models might
no longer conform to the structures and rules defined by the metamodel. When
an instance model does not conform to its metamodel, it cannot be manipulated
with metamodel-specific editors, cannot be managed with model management
operations and, in some cases, cannot be loaded with modelling tools. Model
migration is a development activity in which instance models are updated to
re-establish conformance in response to metamodel evolution.

Several approaches to automating model migration have been proposed.
Sprinkle et al. [12] were the first to describe co-evolution as distinct from the
more general activity of model-to-model transformation. Presently, various lan-
guages are used for specifying model migration, such as the Atlas Transformation
Language (ATL) [6] in work by Cicchetti et al. [1], and the general-purpose pro-
gramming language Groovy [7] in COPE [5]. There is little work, however, that
compares the languages used for specifying model migration.

To explore and compare ways in which model migration can be specified,
we propose a case from the evolution of the UML. The way in which activity
diagrams are modelled in the UML has changed significantly between versions
1.4 and 2.1 of the specification. In the former, activities were defined as a special
case of state machines, while in the latter they are defined atop a more general
semantic base1 [11].

2 Activity Diagrams in UML

Activity diagrams are used for modelling lower-level behaviours, emphasising
sequencing and co-ordination conditions. They are used to model business pro-
cesses and logic [10]. Figure 1 shows an activity diagram for filling orders. The

1 A variant of generalised coloured Petri nets.

Model Migration

1

diagrams is partitioned into three swimlanes, representing different organisa-
tional units. Activities are represented with rounded rectangles and transitions
with directed arrows. Fork and join nodes are specified using a solid black rect-
angle. Decision nodes are represented with a diamond. Guards on transitions
are specified using square brackets. For example, in Figure 1 the transition to
the restock activity is guarded by the condition [not in stock]. Text on
transitions that is not enclosed in square brackets represents a trigger event.
In Figure 1, the transition from the restock activity occurs on receipt of the
asynchronous signal called receive stock. Finally, the transitions between
activities might involve interaction with objects. In Figure 1, the Fill Order
activity leads to an interaction with an object called Filled Object.

Between versions 1.4 and 2.2 of the UML specification, the metamodel for
activity diagrams has changed significantly. The sequel summarises most of the
changes. For full details, refer to [9] and [10].

3 Evolution of Activity Diagrams

Figures 2 and 3 are simplifications of the activity diagram metamodels from
versions 1.4 and 2.2 of the UML specification, respectively. In the interest of
clarity, some features and abstract classes have been removed from Figures 2
and 3.

Some differences between Figures 2 and 3 are: activities have been changed
such that they comprise nodes and edges, actions replace states in UML 2.2, and
the subtypes of control node replace pseudostates. For full details of the changes
made between UML 1.4 and 2.2, refer to [9] and [10].

The model to be migrated is shown in Figure 1, and is based on [9, pg3-
165]. A migrating transformation should migrate the activity diagram shown in
Figure 1 from UML 1.4 to UML 2.2. The UML 1.4 model, the migrated, UML
2.2 model, and the UML 1.4 and 2.2 metamodels are available from2.

Submissions will be evaluated based on the following three criteria:

– Correctness: Does the transformation produce a model equivalent to the
migrated UML 2.2. model included in the case resources?

– Conciseness: How much code is required to specify the transformation? (In
[12] et al. propose that the amount of effort required to codify migration
should be directly proportional to the number of changes between original
and evolved metamodel).

– Clarity: How easy is it to read and understand the transformation? (For
example, is a well-known or standardised language?)

Submissions might also consider the three extensions discussed below, in
Sections 3.1, 3.2 and 3.3.

2 http://www.cs.york.ac.uk/˜louis/ttc/

Model Migration

2

CustomerCustomer

Request service

Sales

Take order

Placed Order

Stockroom

Fill order

order

Entered Order

Filled Order

Pay

Deliver order

Collect order

Deliv

t d

Delivered Order

 [in stock]

Restock

 [not in stock]

receive stock

Fig. 1. Activity model to be migrated.

Model Migration

3

Fig. 2. UML 1.4 Activity Graphs (based on [9]).

Fig. 3. UML 2.2 Activity Diagrams (based on [10]).

Model Migration

4

3.1 Alternative Object Flow State Migration Semantics

Following the submission of this case, much discussion on the TTC forums3

revealed an ambiguity in the UML 2.2 specification. Consequently, the migration
semantics for the ObjectFlowState UML 1.4 concept are not clear from the UML
2.2. specification.

In the core task described above, instances of ObjectFlowState should be
migrated to instances of ObjectNode. Any instances of Transition that have an
ObjectFlowState as their source or target should be migrated to instances of
ObjectFlow. Listing 1.1 shows an example application of this migration seman-
tics. The top line of Listing 1.1 shows instances of UML 1.4 metaclasses, include
an instance of ObjectFlowState. The bottom line of Listing 1.1 shows the equiv-
alent UML 2.2. instances according to this migration semantics. Note that the
Transitions, t1 and t2, is migrated to an instance of ObjectFlow. Likewise, the
instance of ObjectFlowState, s2, is migrated to an instance of ObjectFlow.

s1:State <- t1:Transition -> s2:ObjectFlowState <- t2:Transition -> s3:State

s1:ActivityNode <- t1:ObjectFlow -> s2:ObjectNode <- t2:ObjectFlow -> s3:
ActivityNode

Listing 1.1. Migrating Actions

This extension consider an alternative migration semantics for Object-
FlowState. For this extension, instances of ObjectFlowState (and any connected
Transitions) should be migrated to instances ObjectFlow, as shown by the ex-
ample in Listing 1.2. Note that the UML 2.2 ObjectFlow, f1, replaces t1, t2 and
s2.

s1:State <- t1:Transition -> s2:ObjectFlowState <- t2:Transition -> s3:State

s1:ActivityNode <- f1:ObjectFlow -> s3:ActivityNode

Listing 1.2. Migrating Actions

3.2 Concrete Syntax

The UML specifications provide no formally defined metamodel for the concrete
syntax of UML diagrams. However, some UML tools store diagrammatic infor-
mation in a structured manner using XML or a modelling tool. For example, the
Eclipse UML 2 tools [4] store diagrams as GMF [3] diagram models. As such,
submissions might explore the feasibility of migrating the concrete syntax of the
activity diagram shown in Figure 1 to the concrete syntax in their chosen UML
2 tool. To facilitate this, the case resources include an ArgoUML [2] project
containing the activity diagram shown in Figure 1.

3 http://planet-research20.org/ttc2010/index.php?option=com_
community&view=groups&task=viewgroup&groupid=4&Itemid=150 (regis-
tration required)

Model Migration

5

3.3 XMI

Because XMI has evolved at the same time as UML, UML 1.4 tools most likely
produce XMI of a different version to UML 2.2 tools. For instance, ArgoUML
produces XMI 1.2 for UML 1.4 models, while the Eclipse UML2 tools produce
XMI 2.1 for UML 2.2. As an extension to the case outline above, submissions
might consider how to migrate a UML 1.4 model represented in XMI 1.x to a
UML 2.1. model represented in XMI 2.x. To facilitate this, the UML 1.4 model
shown in Figure 1 is available in XMI 1.2 as part of the case resources.

Acknowledgement. The work in this paper was supported by the European
Commission via the MADES project, co-funded by the European Commission
under the “Information Society Technologies” Seventh Framework Programme
(2009-2012).

References

1. A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Automating co-evolution
in MDE. In Proc. EDOC, pages 222–231. IEEE Computer Society, 2008.

2. CollabNet. ArgoUML [online]. [Accessed 5 March 2010] Available at: http:
//argouml.tigris.org/, 2008.

3. Eclipse. Graphical Modelling Framework project [online]. [Accessed 19 September
2008] Available at: http://www.eclipse.org/modeling/gmf/, 2008.

4. Eclipse. UML2 Model Development Tools project [online]. [Accessed 5 March
2010] Available at: http://www.eclipse.org/modeling/mdt/uml2, 2009.

5. M. Herrmannsdoerfer, S. Benz, and E. Juergens. COPE - automating coupled
evolution of metamodels and models. In Proc. ECOOP, volume 5653 of LNCS,
pages 52–76. Springer, 2009.

6. F. Jouault and I. Kurtev. Transforming models with ATL. In Proc. Satellite Events
at MoDELS, volume 3844 of LNCS, pages 128–138. Springer, 2005.

7. Glover A. King P. Laforge G. Koenig, D. and J. Skeet. Groovy in Action. Manning
Publications, Greenwich, CT, USA, 2007.

8. T. Mens and S. Demeyer. Software Evolution. Springer-Verlag, 2007.
9. OMG. Unified Modelling Language 1.4 Specification [online]. [Accessed 5 March

2010] Available at: http://www.omg.org/spec/UML/1.4/, 2001.
10. OMG. Unified Modelling Language 2.2 Specification [online]. [Accessed 5 March

2010] Available at: http://www.omg.org/spec/UML/2.2/, 2007.
11. Bran Selic. Whats new in UML 2.0? IBM Rational software, 2005.
12. Jonathan Sprinkle and Gábor Karsai. A domain-specific visual language for domain

model evolution. Journal of Visual Languages and Computing, 15(3-4):291–307,
2004.

Model Migration

6

Model Migration With GReTL

Tassilo Horn
horn@uni-koblenz.de

Institute for Software Technology
University Koblenz-Landau

May 10, 2010

Abstract

This paper briefly introduces the GReTL transformation language by presenting a
solution to the TTC 2010’s Model Migration case study, which handles both the core as
well as the object flow extension task.

1 Introduction

The GReTL transformation language is implemented on the foundations of a technological
space [7] called the TGraph approach [3]. In this approach, models are represented as TGraphs:
typed, attributed, ordered, directed graphs. Edges are not only references but first-class
objects that have a type, can have attributes and can always be traversed in both directions.
The Java library JGraLab1 implements the framework of that approach. For a more detailed
introduction, have a look at appendix A.

The transformation language GReTL (Graph Repository Transformation Language, [6]) is a
Java framework for programming transformations on TGraphs. A transformation is a Java
strategy object [5] that operationally transforms a given model using a small set of operations
provided by the GReTL API. A GReTL transformation constructs the target metamodel (a
schema, consisting of vertex and edge classes with attributes) programatically2, and thereby it
declaratively specifies how to migrate the source model elements into the newly constructed
schema using the GReQL query language [4] (see appendix A.1).

Instead of specifying rules relating source and target metamodel elements, GReTL uses
a mathematical, set-oriented approach. For each type created in the target schema, a GReQL
query is provided and evaluated on the source graph, which calculates a set of arbitrary
archetypes. For each member in this archetype set, a new element of that new type is instan-
tiated in the target graph. Those new elements are called the images of their archetypes, and
the traceability information is saved. Note that archetypes can be arbitrary objects: source
model vertices or edges, strings, numbers, or tuples, sets, maps and lists thereof.

1http://jgralab.uni-koblenz.de
2It is also possible to transform to an existing target schema, but this is only a special case.

1

Model Migration

7

2 The Case Study’s Transformation

In the following, GReTL is explained using parts of the Activity1ToActivity2 migration trans-
formation solving the Model Migration case’s core and object flow extension tasks. This
transformation uses the UML 1.4 activity diagram shown in figure 1 as input.

v21 Transition

name = "Request Service->pk_fork1"

v22 Transition

name = "pk_fork1->Placed Order"

e30: ContainsTransition

v27 Transition

name = "pk_fork1->Pay"

e65: ContainsTransition

v4 ActionState

isDynamic = false
name = "Request Service"

v5 Pseudostate

kind = fork
name = "pk_fork1"

v7 ObjectFlowState

name = "Placed Order"

v12 ActionState

isDynamic = false
name = "Pay"

e22: ComesFrom

e25: ComesFrom e40: ComesFrom

e23: GoesTo

e26: GoesTo e41: GoesTo

e79: ContainsElement

tainsElement

Figure 1: A visualization of a small part of the UML 1.4 source model

The schema the source model conforms to is shown in figure 2.

Figure 2: The UML 1.4 activity diagram source schema

2

Model Migration

8

The Activity1ToActivity2 transformation creates the UML 2.2 activity diagram schema de-
picted in figure 3, and it migrates the UML 1.4 model from figure 1 to an instance of the new
schema.

Figure 3: The target UML 2.2 activity diagram schema the tranformation constructs

All GReTL transformation have a common template, which is presented in the following
listing.

1 public class Ac t i v i t y 1ToAc t i v i t y 2 extends Transformat ion {
2 @Override
3 protected void t rans form () {
4 / / Here go a l l c a l l s to t rans fo rma t i on opera t ions . . .
5 }
6 }

The Activity1ToActivity2 transformation extends the abstract Transformation class provided by the
framework, and it overrides its transform() method. Inside that, calls to the basic transforma-
tion operations inherited from Transformation are placed, which realize the transformation’s
behavior. Those are presented in the following.

2.1 Creating Vertex Classes and Vertices

To create a vertex class in the target schema and to create vertices in the target graph, the
Transformation class provides the following two methods.
protected f i n a l VertexClass crea teAbs t rac tVer texClass (S t r i ng qName)
protected f i n a l VertexClass createVer texClass (S t r i ng qName, S t r i ng semanticExpression)

The first method is used for creating an abstract vertex class in the target schema. Because
an abstract class cannot have instances, only the qualified name has to be given.

The second method creates a concrete vertex class with the given qualified name. The
second parameter semanticExpression specifies the instances of the newly created vertex type

3

Model Migration

9

that have to be created in the target graph. It is a GReQL query, which is evaluated on the
source graph and has to result in a set. For each member of this set, a new vertex of type
qName is created in the target graph. The mappings from members of this set (archetypes)
to target graph vertices created in response (images) is saved as a function imgqName. The
inverse function archqName is also saved for performance reasons. The GReTL framework
makes both functions accessible in following semantic expressions and enforces their bijec-
tivity in order to allow for bidirectional navigation between images and archetypes. These
functions are used later on when creating edges, which need to refer the vertices they start
and end at and when creating attributes.

Turning to the Activity1ToActivity2 transformation, here is an operation invocation to create
the vertex class InitialNode in the target schema and to instantiate InitialNode vertices.

1 createVer texClass (" I n i t i a l Node " ,
2 " from ps : V{ Pseudostate } with ps . k ind = \ " i n i t i a l \ " reportSet ps end ") ;

The semantic expression results the set of all source graph Pseudostate vertices, that have
their kind attribute set to the enum literal initial. For each of those pseudostates, a new Ini-
tialNode vertex is created in the target graph, and the mappings from source model pseu-
dostates to target model initial nodes is saved in a function imgInitialNode (and its reverse
archInitialNode).

Other pseudostates have to be mapped to other target model vertices of different types.
Because they only vary in the value of their kind attribute, this can be factored out in a simple
loop over an array of target schema type names and source model kind values. The fact that
GReTL transformations are POJOs comes in handy here.

1 for (S t r i ng [] s : new St r i ng [] [] { { " I n i t i a l Node " , " i n i t i a l " } , { " ForkNode " , " f o r k " } ,
2 { " JoinNode " , " j o i n " } , { " DecisionNode " , " j u n c t i o n " } }) {
3 createVer texClass (s [0] ,
4 " from ps : V{ Pseudostate } with ps . k ind = \ " " + s [1] + " \ " reportSet ps end ") ; }

So these few lines create the vertex classes Initial-, Fork-, Join- and DecisionNode in the target
schema. On the instance level, they populate the target graph with new instances of these
four classes, one instance per source model pseudostate of a given kind. The mappings are
saved in four corresponding image (and archetype) functions.

There are several other source metamodel vertex classes which have a one-to-one rela-
tionship with target metamodel vertex classes.

1 for (S t r i ng [] s : new St r i ng [] [] { { " A c t i v i t y " , " Ac t i v i t yGraph " } ,
2 { " A c t i v i t y P a r t i t i o n " , " P a r t i t i o n " } , { " Ac t i v i t yF ina lNode " , " F ina lS ta te " } ,
3 { " OpaqueAction " , " Ac t ionSta te " } , { " ObjectNode " , " ObjectFlowState " } ,
4 { " OpaqueExpression " , "Guard " } }) {
5 createVer texClass (s [0] , "V { " + s [1] + " } ") ; }

Again, these “renames” can be easily implemented by iterating over the elements of an array,
which contains pairs of the form (NewVertexClass, OldVertexClass). The semantic expression
V{OldVertexClass} returns the set of all source model vertices of type OldVertexClass, and for
each member in this set, a target graph vertex of type NewVertexClass is created in the target
graph. Six image and archetype functions providing bidirectional navigation between old
and new vertices are created implicitly.

4

Model Migration

10

2.2 Creating Edge Classes and Edges

To create an edge class and edge instances, the following operations are provided by the
Transformation class.
protected f i n a l EdgeClass createAbstractEdgeClass (S t r i ng qName,

IncidenceClassSpec fromSpec , IncidenceClassSpec toSpec)
protected f i n a l EdgeClass createEdgeClass (S t r i ng qName,

IncidenceClassSpec fromSpec , IncidenceClassSpec toSpec , S t r i ng semanticExpression)

The class IncidenceClassSpec is only a convenience wrapper encapsulating the properties
of an edge class end like the connected vertex class, multiplicities, a role name and the ag-
gregation kind. Any property except the connected vertex class is optional, and appropriate
default values are used for the omitted ones.

Because abstract edge classes cannot be instatiated, there is no semantic expression in
the createAbstractEdgeClass() signature. But for concrete edge classes, this parameter is again
a GReQL query, which is evaluated on the source model. In contrast to vertices, an edge can-
not be created on its own, but a start and an end vertex have to be provided. Therefore, the
semantic expression has to evaluate to a set of triples. The first element in each triple defines
the archetype of the new edge. The second element specifies the archetype of the desired
start vertex in the target graph. The third element specifies the desired end vertex archetype.
Again, the image and archetype functions are exported as imgqName and archqName.

Turning to the Activity1ToActivity2 transformation, here is the operation invocation to create
the ActivityContainsGroup edge class in the target schema and to populate the target graph with
instances assigning ActivityPartition vertices to the Activity vertex containing this partition.

1 createEdgeClass (" Ac t i v i t yConta insGroup " ,
2 new IncidenceClassSpec (vc (" A c t i v i t y ")) ,
3 new IncidenceClassSpec (vc (" A c t i v i t y P a r t i t i o n ") , Aggregat ionKind .COMPOSITE) ,
4 " from e : E{ HasPar t i t i on } reportSet e , s t a r t V e r t e x (e) , endVertex (e) end ") ;

The incidence class specs specify that this edge type starts at the vertex class Activity and
ends at the vertex class ActivityPartition. It has composition semantics, where Activity is the
whole and ActivityPartition is the part (see figure 3).

The semantic expression specifies a set of triples. There is one triple for each source
model HasPartition edge, and because these edges are the first component of each triple, they
are the archetypes for the new ActivityContainsGroup edges in the target model. The second
and third compontent of each result set triple specify the archetypes of the start and end
vertex in the target graph. The new ActivityContainsGroup edges’s start and end vertices are
exactly the images of the source and target vertices of the source model HasPartition edges,
i.e. images of ActivityGraph and Partition. Those were already transformed to Activities and
ActivityPartitions in the last operation call of section 2.1.

2.3 Adding Type Hierarchies

Till now, the specialization relationships in the target schema have not been established. The
Transformation class provides the following two methods for this purpose.
protected f i n a l void addSubClasses (VertexClass superClass , VertexClass . . . subClasses)
protected f i n a l void addSubClasses (EdgeClass superClass , EdgeClass . . . subClasses)

Both make the vertex or edge classes given as second to last parameters specializations of
the vertex or edge class given as first parameter. Calling these methods has no direct effect

5

Model Migration

11

on the instance level. But there is an effect on the image and archetype functions of the super
vertex or edge class. After estabishing a specialization, the image and archetype functions
of the superclass contain all former mappings plus all the mappings of the given subclasses’
image and archetype functions. Therefore, in any type hierarchy, the archetypes have to be
disjoint in order to ensure bijectivity.

From the Activity1ToActivity2 transformation, one example invocation is presented here.
1 addSubClasses (ac t i v i t yNode , vc (" OpaqueAction ") , vc (" I n i t i a l Node ") ,
2 vc (" Ac t i v i t yF ina lNode ") , vc (" DecisionNode ") , vc (" JoinNode ") ,
3 vc (" ForkNode ") , vc (" ObjectNode ")) ;

The vertex classes OpaqueAction, InitialNode, ActivityFinalNode, DecisionNode, JoinNode, ForkNode
and ObjectNode are made subclasses of the vertex class ActivityNode, which is referenced the
variable activityNode here. As a result, the image and archetype functions imgActivityNode and
archActivityNode contain all mappings of the corresponding subclass functions.

2.4 Creating Attributes and Setting Attribute Values

The following listing shows the method for creating an attribute and setting its values.
protected f i n a l A t t r i b u t e c r e a t eA t t r i b u t e (A t t r i bu teSpec at t rSpec , S t r i ng semanticExpression)

The class AttributeSpec encapsulates the class the attribute belongs to, its name and domain
and an optional default value.

The semantic expression is again a GReQL query, but here it has to evaluate to a map,
which maps attrElemClass-archetypes to the value that should be set for their target graph
images.

The following operation call of the Activity1ToActivity2 transformation creates the name at-
tribute of the UML 2.2 ModelElement class, and it sets the value for all target ModelElement
vertices excluding ActivityEdges.

1 c r ea t eA t t r i b u t e (new At t r i bu teSpec (modelElement , "name" , getStr ingDomain ()) ,
2 " from me : d i f f e r e n c e (keySet (img_ModelElement) , keySet (img_Act iv i tyEdge)) "
3 + " reportMap me, me.name end ") ;

The given attribute spec specifies the schema properties. The attribute belongs to the vertex
class ModelElement referenced by a variable. Its name is name, and its domain is String.

The semantic expression specifies a function (reportMap). All source model ModelElements,
which are the archetyes of target graph ModelElements excluding the archetypes of Activi-
tyEdges are iterated3. The keys are the archetypes, and the values are the values of their
name attribute. So the operation call basically copies the old model elements’ name values
over to the corresponding target graph model elements, but it skips the setting of the values
for target model ActivityEdges, which are handled separately by the transformation.

2.5 Variation Between Core and Object Flow Extension Task

In this section, the variation in the transformation needed for creating a target UML 2.2
activity diagram according to the core or the object flow extension task are discussed. The
variation is about how source model ObjectFlowStates are transformed into the target model.

A visualization of such an object flow state in the source model is given in figure 4.
3The GReQL function keySet() returns the set of keys of a map, that is the domain of the imgModelElement

function. In GReQL all map access functions are named according to the method names of the java.util.Map
interface.

6

Model Migration

12

v22 Transition

name = "pk_fork1->Placed Order"

v23 Transition

name = "Placed Order->Take order"

e65: Conta

v43 Partition

name = "Sales"

v5 Pseudostate

kind = fork
name = "pk_fork1"

v6 ActionState

isDynamic = false
name = "Take order"

v7 ObjectFlowState

name = "Placed Order"

e25: ComesFrom

e28: ComesFrom

e26: GoesTo

e29: GoesTo

e83: ContainsElement

e84: ContainsElement

Figure 4: An source model object flow state and its surrounding

From the fork pseudostate v5, an object named “Placed Order” represented by the Ob-
jectFlowState v7 is transfered to the ActionState v6 via the two Transition vertices v22 and v23
and their connecting ComesFrom (e25, e28) and GoesTo (e26, e29) edges. In the core task, the
transformed model is pretty isomorphic but uses different types, whereas in the object flow
extension task, the structure is quite different.

The variation is placed into a simple Java switch statement, which dispatches according
to the value of a field task, which can be set with a usual setter method. First, the preceeding

1 / / preceeding shared pa r t . . .
2 switch (task) {
3 case CORE:
4 / / core pa r t . . .
5 break ;
6 case OBJECT_FLOW_EXTENSION:
7 / / ob jec t f l ow extens ion pa r t . . .
8 break ;
9 defaul t : throw new GReTLException (context , "Unknown task ’ " + task + " ’ ! ") ;

10 }
11 / / f o l l o w i n g shared pa r t . . .

shared part is discussed. Thereafter, the object flow extension part is explained. Due to its higher
complexity, an appropriate selection of archetypes for the varying target graph elements is
done here. Then, the core part is discussed which obeys the archetype selection schema of
the extension part. Finally, the following shared part is discussed, which is again completely
identical for both tasks and gets along without any distinction.

7

Model Migration

13

Preceeding Shared Part. The metamodel of both tasks is identical, so the creation of meta-
model elements whose instances are affected by the variation can be done in the preceeding
shared part of the transformation, which also includes the operations already presented.

1 VertexClass objectF low = createVer texClass (" ObjectFlow ") ;
2 EdgeClass hasObject = createEdgeClass (" HasObject " ,
3 new IncidenceClassSpec (objectFlow , 0 , 1) ,
4 new IncidenceClassSpec (vc (" ObjectNode ") , 0 , 1 , Aggregat ionKind .COMPOSITE)) ;

These two operation invocations create the ObjectFlow vertex class and the HasObject compo-
sition edge class according to the target schema (figure 3). But both of them don’t specify a
semantic expression, and no instances of these types are created in the target model at that
time.

Object Flow Extension Task. The target graph snippet corresponding to the source part
of figure 4 when transformed according to the object flow extension task is shown in fig-
ure 5. The source fork pseudostate v5 was transformed to the ForkNode v20, and the action
state v6 has become the OpaqueAction v7. Also, the structure is not isomorphic to the source
model. The transferred “Placed Order” object is represented by the ObjectNode v13, but it
is not source and target of two individual ObjectFlows. Instead, it is connected to one sin-
gle ObjectFlow v24 with an HasObject edge, and the single object flow directly leads from the
ForkNode v20 to the OpaqueAction v7.

v3 ActivityPartition

name = "Sales"

v20 ForkNode

name = "pk_fork1"

v24 ObjectFlow

name = "pk_fork1 -> Take order"

v7 OpaqueAction

name = "Take order"

e39: ContainsNode

v13 ObjectNode

name = "Placed Order"

e40: ContainsNode

e60: ContainsEdge

e68: ContainsEdge

e14: ComesFromComesFrom

e28: GoesToe1: HasObject

Figure 5: The source model part of figure 4 transformed according to the object flow exten-
sion task

To create this target graph structure, instances of the vertex class ObjectFlow and the edge
class HasObject have to be created. Both classes are already created in the schema and only
need to be instantiated. Therefore, the Transformation class provides the operations instantiat-
eVertices() and instantiateEdges(), which only work on the instance level4.

1 i n s t a n t i a t eVe r t i c e s (objectFlow ,
2 " from t1 : V{ T r ans i t i o n } , t2 : V{ T r ans i t i o n } "
3 + " with t1 −−>{GoesTo } & { ObjectFlowState } <−−{ComesFrom} t2 "
4 + " reportSet t1 , t2 end ") ;
5

6 i ns tan t i a teEdges (hasObject ,
7 " from t : keySet (img_ObjectFlow) "
8 + " reportSet t , t , theElement (t [0] −−>{GoesTo }) end ") ;

4If the transformation used an existing target schema instead of creating it programmatically, only these
operations would be used.

8

Model Migration

14

One target model ObjectFlow vertex is created for any pair of source graph Transitions that
have an ObjectFlowState in between them. Here, it is interesting that the archetypes of the
new vertices are no source model elements, but tuples of source model vertices. As already
said, GReTL enforces no restriction on what can be used as archetypes. Choosing good
archetypes is the main point in abstracting away special handling.

The next operation call creates one HasObject edge for each of those ObjectFlow archetype
tuples. The tuple is also chosen as archetype for the new edges. The edges have to start
at the images of the tuples, and those are the ObjectFlow vertices created in the previous
operation. They should end at the images of the tuple’s first Transitions target vertex. This is a
source model ObjectFlowState, and for those ObjectNode vertices were created before (see end
of section 2.1).

The ComesFrom and GoesTo edges will be instantiated uniformly for core and extension
part in the following shared part.

Core Task. The small source model part around the ObjectFlowState for “Placed Order” (fig-
ure 4) transformed according to the core task is depicted in figure 6. The source and target
structure are isomorphic, here. Transitions are transformed to ObjectFlows, and the ObjectFlow-
State v7 is represented by the ObjectNode v13.

v3 ActivityPartition

name = "Sales"

v20 ForkNode

name = "pk_fork1"

v24 ObjectFlow

name = "pk_fork1 -> Placed Order"

v35 ControlFlow

name = "Pay -> pk_join1"

v7 OpaqueAction

name = "Take order"

v13 ObjectNode

name = "Placed Order"

e44: ContainsNode

e74: ContainsEdge

v25 ObjectFlow

name = "Placed Order -> Take order"

e68: Cont

e57: ContainsEdge

e76: ContainsEdge

From e15: ComesFrom

e19: ComesFromComesFrom

e37: GoesTo

e33: GoesTo

Figure 6: The source model part of figure 4 transformed according to the core task

In the core task, there is no need to create any HasObject edges, because the objects passed
between actions are again modeled as ObjectNodes, but they are connected to the actions with
one incoming and one outgoing ObjectFlow and usual ComesFrom and GoesTo edges, quite
equivalent to the source model.

1 i n s t a n t i a t eVe r t i c e s (objectFlow ,
2 " from t : V{ T r ans i t i o n } "
3 + " with not isEmpty (t −−>{GoesTo , ComesFrom} & { ObjectFlowState }) "
4 + " reportSet t , t end ") ;

Here, one target ObjectFlow vertex is instantiated for each Transition either coming from or
going to an ObjectFlowState vertex. Note that this are twice as many ObjectFlows as the exten-
sion task part creates. In order to have the same archetype structure as the extension part

9

Model Migration

15

and thus allowing the following shared operations to work for both of them, again a set of
transition tuples is chosen as archetype set. Each tuple contains the Transition t twice.

These three invocations are the only variations needed to make the Activity1ToActivity2
transformation handle both the core and object flow extension part. As already said, the
ComesFrom and GoesTo edges will be instantiated uniformly in the following shared part.

Following Shared Part. In this paragraph, the two invocations for creating the GoesTo and
ComesFrom edge classes including instances thereof are presented, because they are also af-
fected by the variation. But it has to be emphasized, that due to the selection of transition
tuples as archetypes for ObjectFlow vertices, this variation is completely abstracted away.

The abstract edge class ActivityEdge and the ControlFlow edge class are created, and Activi-
tyEdge is set as superclass of both ControlFlow and ObjectFlow.

1 VertexClass con t ro lF low = createVer texClass (" Contro lF low " ,
2 " from t : V{ T r ans i t i o n } "
3 + " with isEmpty (t −−>{ComesFrom, GoesTo } & { ObjectFlowState }) "
4 + " reportSet t , t end ") ;
5 VertexClass ac t i v i t yEdge = crea teAbs t rac tVer texClass (" Ac t i v i t yEdge ") ;
6 addSubClasses (ac t i v i t yEdge , cont ro lF low , objectF low) ;

For ControlFlow, Transition tuples containing the same transition twice are again used as arche-
types, similar to the object flows in the core task part. This ensures that all archetypes in the
domain of imgActivityEdge can be handled uniformly, no matter which task the transformation
is currently handling.

With this setup, the creation of the ComesFrom and GoesTo edge classes and their instances
in the target model is straight forward.

1 createEdgeClass ("ComesFrom" ,
2 new IncidenceClassSpec (ac t i v i t yEdge) ,
3 new IncidenceClassSpec (vc (" Ac t i v i t yNode ") , 1 , 1) ,
4 " from t : keySet (img_Act iv i tyEdge) "
5 + " reportSet t , t , theElement (t [0] −−>{ComesFrom }) end ") ;
6

7 createEdgeClass (" GoesTo " ,
8 new IncidenceClassSpec (ac t i v i t yEdge) ,
9 new IncidenceClassSpec (vc (" Ac t i v i t yNode ") , 1 , 1) ,

10 " from t : keySet (img_Act iv i tyEdge) "
11 + " reportSet t , t , theElement (t [1] −−>{GoesTo }) end ") ;

Both edge classes start at the ActivityEdge vertex class and lead to the ActivityNode edge class.
At ActivityEdge, the default (0,*) multiplicity is used and (1,1) on the opposite side.

The semantic expressions iterate over the Transition tuples used as ActivityEdge archetypes,
i. e. as archetypes of the concrete subclasses ControlFlow and ObjectFlow. Each ComesFrom /
GoesTo edge has to start at the image of the tuple in imgActivityEdge, which is either a Con-
trolFlow or an ObjectFlow vertex. Each ComesFrom edge has to end at the image of the source
of the tuple’s first Transition, and each GoesTo has to end at the target of the tuple’s second
Transition. If the tuples contain the same Transition twice like it is the case for all ControlFlow
archetypes and the archetypes of ObjectFlows in the core task, then the resulting structure is
similar to the source model. But in the object flow extension task, a chain of two Transitions
with on ObjectFlowState in between is transformed to exactly one ObjectFlow with connected
ObjectNode.

10

Model Migration

16

3 Conclusion

In this paper, the GReTL transformation language was briefly introduced using the imple-
mentation of an UML 1.4 to UML 2.2 activity diagram transformation. This transformation
creates the target metamodel on its own, instead of requiring an existing one. It is capable of
performing the Model Migration case study’s core as well as the object flow extension task. The
variation between the two tasks could be narrowed down to the instantiation of two target
metamodel types. By using tuples of source model transitions as archetypes for target model
activity edges, it was possible to abstract away the differences, and all other operations are
shared no matter which task is run.

It should be noted, that the transformation presented here is quite easy and doesn’t show
many of GReTL’s benefits. In general, those show up when arbitrary complex, non-local
structures have to be matched in the source graph. For example, in a reengineering project
a GReTL transformation is used to extract state machines out of graphs conforming to a
fine-granular Java schema. These graphs contain millions of vertices and edges and are
syntaxgraph representations of the complete Java source code of the software system to be
reengineered. To achieve its task, the transformation has to capture elements in method
bodies in an arbitrary nesting depth, and also method call chains have to be followed transi-
tively. Using GReQL’s regular path expressions, which can also express transitive closures (see
appendix A.1), the semantic expressions of that transformation are still very consise and
specify the correlation between elements in a very natural, declarative manner.

11

Model Migration

17

A The TGraph Approach

In the TGraph approach approach, models are represented as TGraphs. Those are directed
graphs with typed, attributed and ordered vertices and edges. Edges are first-class objects,
which implies that they have an identity, they are typed, may have attributes, and they can
always be traversed in both directions.

A visualization of a small part of the model migration case study’s source TGraph is
depicted in figure 7. There is an ActionState vertex with ID v4 and name “Request Service”,

v21 Transition

name = "Request Service->pk_fork1"

v22 Transition

name = "pk_fork1->Placed Order"

e30: ContainsTransition

v27 Transition

name = "pk_fork1->Pay"

e65: ContainsTransition

v4 ActionState

isDynamic = false
name = "Request Service"

v5 Pseudostate

kind = fork
name = "pk_fork1"

v7 ObjectFlowState

name = "Placed Order"

v12 ActionState

isDynamic = false
name = "Pay"

e22: ComesFrom

e25: ComesFrom e40: ComesFrom

e23: GoesTo

e26: GoesTo e41: GoesTo

e79: ContainsElement

tainsElement

Figure 7: A visualization of a small part of the UML 1.4 source model

and a Pseudostate vertex v5 with kind set to “fork” and name set to “pk_fork1”. The state v4
changes to the state v5 via the Transition vertex v21. That vertex is connected to v4 with the
ComesFrom edge e22, and it is connected to the vertex v5 with the GoesTo edge e23. After
the fork v5, control flow is split into two branches leading to the ObjectFlowState v7 via the
Transition v22 and in parallel to the ActionState v12 via the Transition v27.

Each TGraph conforms to a TGraph schema, which is the metamodel of a class of TGraphs.
Schemas are usually created using a profile of UML 2 class diagrams called grUML (Graph
UML, [2]). Figure 8 shows the schema the UML 1.4 activity graph from figure 7 conforms to.

This schema was directly derived from the minimal UML 1.4 activity diagram Ecore
model. The main difference is that all associations and compositions have an added name,
which is the name of the edge type.

The schema specifies a graph class ADGraph. Such a graph may contain vertices of all
the vertex types specified as UML classes. For example, an ADGraph may have vertices of

12

Model Migration

18

Figure 8: The UML 1.4 activity diagram source schema

type Transition, ActionState and Pseudostate, and it may contain edges of type ComesFrom and
GoesTo, which run from Transition to StateVertex.

Each TGraph schema itself conforms to the grUML metaschema, which is the metameta-
model of the TGraph approach. The metaschema is a valid schema describing itself. Its core
is depicted in figure 9.

Figure 9: The grUML metaschema

13

Model Migration

19

Each Schema defines exactly one GraphClass, like the ADGraph in figure 8. Inside such
a GraphClass, there are packages (hidden in the diagram) that contain GraphElementClasses.
The two concrete forms are VertexClass and EdgeClass. Between both vertex as well as edge
classes, there is support for specialization including multiple inheritance.

Association ends are modeled with IncidenceClasses. Each IncidenceClass belongs to ex-
actly one VertexClass and to exactly one EdgeClass, and each EdgeClass has exactly one source
and one target IncidenceClass, which hold this end’s properties like multiplicities, role names,
and the aggregation kind. There is also support for subsetting and redefinition of incidence
classes [1], but the relevant associations are hidden in the figure.

The GraphClass and all Vertex- and EdgeClasses are AttributedElementClasses which may
have Attributes. Each Attribute has a name, and the Domain specifies the type of its value. Sup-
ported are all primitive types known from Java, enumerations, and composite types like
homogeneous sets, lists, tuples, maps and user-definable records.

The Java library JGraLab5 provides a highly efficient API for accessing and manipulat-
ing TGraphs and TGraph schemas, code generation facilities, and many more components.
Thus, it provides a seamless framework for model-based development.

A.1 Querying TGraphs With GReQL

The Graph Repository Query Language (GReQL, [4]) is a powerful model querying language
for querying TGraphs. For GReTL, GReQL is what OCL [8] and its extensions is for most
other model transformation languages.

One of the most commonly used language elements is the from-with-report (FWR) clause.
The from part is used to declare variables and bind them to domains. In the with part, constraints
can be imposed on the values of these variables. The report part is used to define the structure
of the query result. A sample GReQL query is given in listing 1.

1 from elem : V{ ModelElement }
2 with elem .name =~ " .∗ Serv ice .∗ "
3 reportSet elem end

Listing 1: A simple GReQL query

Conceptually6, the variable elem is bound to any vertex of type ModelElement or any sub-
class thereof one after the other. For each of those vertices, the constraint in the with part is
checked. Here, it is checked if the value of the name attribute matches the regular expres-
sion7 “.*Service.*”. All vertices, for which this constraint evaluates to true are added to the
result, which is a set (reportSet) in this case. When evaluated on the UML 1.4 source model
from figure 7, it returns a set containing the vertices v4: ActionState, v20: Transition and v21:
Transition. The vertices v4 and v21 are visible in that figure.

One of GReQL’s unique and powerful features are regular path expressions, which can be
used to formulate queries that utilize the structure of relationships between vertices. There-
fore, symbols for edges (path descriptions) are introduced: −−> and <−− for directed edges,

5http://jgralab.uni-koblenz.de
6Query optimization is not considered here.
7Java regular expressions are used here, see java.util.regex.

14

Model Migration

20

<−> if the direction is not considered, and <>−− and −−<> for edges with aggregation or com-
position semantics. Additionally, an edge type or role name written in curly braces the edge
symbol to restrict the search to certain edge types. These symbols can be combined using
regular operators: sequence, iteration (*, +, and ˆn), alternative (|), and transposition (ˆT).

The query in listing 2 uses such a regular path expression to calculate all successor states
of the ActionState v4 from figure 7. Using the let expression, the variable requestService is

1 l e t requestServ ice := getVer tex (4) in
2 from succState : requestServ ice (<−−{ComesFrom} −−>{GoesTo })+ & { State }
3 reportSet succState , succState . name end

Listing 2: Retrieving all successor states of ActionState v4

bound to the vertex with ID 4. Comparing with figure 7, this is the ActionState “Request Ser-
vice”. Then, the variable succState is bound to all successor states one after the other. Those
are calculated using a forward vertex set. The anchor is the vertex bound to requestService.
From that vertex, one or many (+) sequences of a ComesFrom followed by a GoesTo edge may
be traversed. The goal restriction & State restricts the result vertices to the type State or any
subtype thereof. For each successor state, the state itself and the value of its name attribute
is reported.

When evaluated on the source graph from figure 7, the query retrieves the following
result:

1 (v7 : ObjectFlowState , Placed Order) | (v17 : Act ionState , Restock)
2 (v12 : Act ionState , Pay) | (v14 : Act ionState , Co l l e c t order)
3 (v6 : Act ionState , Take order) | (v8 : Act ionState , F i l l Order)
4 (v9 : ObjectFlowState , Entered Order) | (v19 : F ina lS ta te , F in ished)
5 (v13 : Act ionState , De l i ve r order) | (v11 : ObjectFlowState , F i l l e d Order)
6 (v15 : ObjectFlowState , De l ivered Order) |

Comparing with the source graph of figure 7, starting form vertex v4 the first vertex
reachable via traversing a sequence of incoming ComesFrom and then outgoing GoesTo edges
leads to the Pseudostate v5. But according to the source schema in figure 8, a Pseudostate is not
a State, and so v5 is not in the result set. But with one more ComesFrom/GoesTo edge sequence
traversal, the ObjectFlowState v7 and the ActionState v12 are reached. Both ObjectFlowState an
ActionState are subtypes of State, and so both vertices are contained in the result set. The
following result set elements can be reached with further iterations, but they are not visible
anymore in figure 7.

15

Model Migration

21

B References

[1] Daniel Bildhauer. On the Relationships Between Subsetting, Redefinition and Asso-
ciation Specialization. In Communications of the Ninth International Baltic Conference on
Databases and Information Systems. To Appear, 2010.

[2] Daniel Bildhauer, Tassilo Horn, Volker Riediger, Hannes Schwarz, and Sascha Strauß.
grUML - A UML based modeling language for TGraphs, 2010. unpublished.

[3] J. Ebert, V. Riediger, and A. Winter. Graph Technology in Reverse Engineering, The
TGraph Approach. In R. Gimnich, U. Kaiser, J. Quante, and A. Winter, editors, 10th
Workshop Software Reengineering (WSR 2008), volume 126 of GI Lecture Notes in Informatics,
pages 67–81. GI, 2008.

[4] Jürgen Ebert and Daniel Bildhauer. Reverse Engineering Using Graph Queries. In Andy
Schürr, Claus Lewerentz, Gregor Engels, Wilhelm Schäfer, and Bernhard Westfechtel,
editors, Graph Transformations and Model Driven Engineering, LNCS 5765. Springer, 2010.
to appear.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley, Boston, MA, 1995.

[6] Tassilo Horn and Jürgen Ebert. The GReTL Transformation Language. Technical report,
University Koblenz-Landau, Institute for Software Technology, 2010. unpublished, draft
at http://www.uni-koblenz.de/~horn/gretl.pdf.

[7] Ivan Kurtev, Jean Bézivin, and Mehmet Aksit. Technological spaces: An initial appraisal.
In CoopIS, DOA’2002 Federated Conferences, Industrial track, 2002.

[8] OMG. Object Constraint Language Version 2.0, 2006.

16

Model Migration

22

C The Transformation Source Code

The following listing shows the complete source code of the Activity1ToActivity2 transforma-
tion. When only counting the transformation code, i.e. no comments, empty lines and the
main() method, the whole transformation takes about 120 lines of code to create the target
UML 2.2 activity schema and migrate arbitrary source models conforming to the UML 1.4
activity schema to the new metamodel.

1 public c lass Ac t i v i t y 1ToAc t i v i t y 2 extends Transformat ion {
2 public enum Task { CORE, OBJECT_FLOW_EXTENSION } ;
3 private Task task ;
4 public void setTask (Task task) { t h i s . task = task ; }
5 public Ac t i v i t y 1ToAc t i v i t y 2 (Context c) { super (c) ; }
6

7 @Override protected void t rans form () {
8 / / This ar ray conta ins pa i r s {NewType , OldType } .
9 / /

10 / / Schema Level : For each OldType ver tex class , a new ver tex c lass w i th q u a l i f i e d
11 / / name NewType i s created i n the t a r g e t schema .
12 / /
13 / / Ins tance Level : For each source graph OldType ver tex , a new NewType ver tex i s
14 / / created i n the t a r g e t graph .
15 for (S t r i ng [] s : new St r i ng [] [] { { " A c t i v i t y " , " Ac t i v i t yGraph " } ,
16 { " A c t i v i t y P a r t i t i o n " , " P a r t i t i o n " } , { " Ac t i v i t yF ina lNode " , " F ina lS ta te " } ,
17 { " OpaqueAction " , " Ac t ionSta te " } , { " ObjectNode " , " ObjectFlowState " } ,
18 { " OpaqueExpression " , "Guard " } }) {
19 createVer texClass (s [0] , "V { " + s [1] + " } ") ;
20 }
21

22 / / I n i t i a l −, Fork−, Join−, DecisionNodes are a l l Pseudostates i n UML1.4 , on ly
23 / / d i s t i n g u i s h a b l e by t h e i r k ind a t t r i b u t e . So t h i s ar ray conta ins pa i r s {NewType ,
24 / / k i ndA t t rVa lue } .
25 / /
26 / / Schema Level : For each ar ray element , c reate a ver tex c lass wi th q u a l i f i e d name
27 / / NewType i n the t a r g e t metamodel .
28 / /
29 / / Ins tance Level : For each source model Pseudostate w i th k ind = k indAt t rVa lue ,
30 / / c reate one t a r g e t model ver tex o f type NewType .
31 for (S t r i ng [] s : new St r i ng [] [] { { " I n i t i a l Node " , " i n i t i a l " } ,
32 { " ForkNode " , " f o r k " } , { " JoinNode " , " j o i n " } ,
33 { " DecisionNode " , " j u n c t i o n " } }) {
34 createVer texClass (s [0] ,
35 " from ps : V{ Pseudostate } "
36 + " with ps . k ind = \ " " + s [1] + " \ " "
37 + " reportSet ps end ") ;
38 }
39

40 / / Schema Level : Create an abs t r ac t ver tex c lass Ac t i v i t yNode in the t a r g e t schema .
41 / /
42 / / Ins tance Level : Abs t rac t c lasses don ’ t have instances , so t h i s opera t ion doesn ’ t
43 / / a f f e c t the ins tance l e v e l .
44 VertexClass ac t i v i t yNode = crea teAbs t rac tVer texClass (" Ac t i v i t yNode ") ;
45

46 / / Schema Level : Make Ac t i v i t yNode the superc lass o f a l l the f o l l o w i n g 6 ver tex
47 / / c lasses t h a t were a l ready created by the prev ious opera t ion c a l l s . The method
48 / / vc (S t r i n g) s imply r e t r i e v e s the t a r g e t metamodel ver tex c lass wi th the given
49 / / q u a l i f i e d name .

17

Model Migration

23

50 / /
51 / / Ins tance Level : No e f f e c t .
52 addSubClasses (ac t i v i t yNode , vc (" OpaqueAction ") , vc (" I n i t i a l Node ") ,
53 vc (" Ac t i v i t yF ina lNode ") , vc (" DecisionNode ") , vc (" JoinNode ") ,
54 vc (" ForkNode ") , vc (" ObjectNode ")) ;
55

56 / / Schema Level : Create the ver tex c lass ObjectFlow i n the t a r g e t schema .
57 / /
58 / / Ins tance Level : D i f f e r e n t i n CORE and OBJECT_FLOW_EXTENSION task , so the ins tance
59 / / c r ea t i on handl ing i s done below i n the switch , and here no ins tances are created
60 / / a t a l l .
61 VertexClass objectF low = createVer texClass (" ObjectFlow ") ;
62

63 / / Schema Level : Create a new edge c lass HasObject w i th composi t ion semantics from
64 / / ObjectFlow to ObjectNode i n the t a r g e t schema . ObjectFlow i s the whole and
65 / / ObjectNode i s on the pa r t s ide .
66 / /
67 / / ObjectFlow (0 ,1) <>−HasObject−−> (0 ,1) ObjectNode
68 / /
69 / / Ins tance Level : Ins tances are only needed i n the extens ion task , but not i n the
70 / / core task .
71 EdgeClass hasObject = createEdgeClass (" HasObject " ,
72 new IncidenceClassSpec (objectFlow , 0 , 1) ,
73 new IncidenceClassSpec (vc (" ObjectNode ") , 0 , 1 , Aggregat ionKind .COMPOSITE)) ;
74

75 / / The f o l l o w i n g opera t ion c a l l s vary between CORE and OBJECT_FLOW_EXTENSION task .
76 switch (task) {
77 case CORE:
78 / / Schema Level : a l ready done above , so noth ing to to here .
79 / /
80 / / Ins tance Level : For each T r a n s i t i o n ver tex t , which goes to or comes from an
81 / / ObjectFlowState , c reate one ObjectFlow ver tex i n the t a r g e t graph . As
82 / / archetype , we use a tup le where both components are the t r a n s i t i o n t , because
83 / / t h i s makes the s t r u c t u r e uni form to the OBJECT_FLOW_EXTENSION task .
84 i n s t a n t i a t eVe r t i c e s (objectFlow ,
85 " from t : V{ T r ans i t i o n } "
86 + " with not isEmpty (t −−>{GoesTo , ComesFrom} & { ObjectFlowState }) "
87 + " reportSet t , t end ") ;
88 break ;
89 case OBJECT_FLOW_EXTENSION:
90 / / Schema Level : a l ready done above , so noth ing to to here .
91 / /
92 / / Ins tance Level : For each p a i r o f T r a n s i t i o n v e r t i c e s (t1 , t2) , which b u i l d up
93 / / a source model s t r u c t u r e l i k e
94 / /
95 / / t1 −−>{GoesTo } & { ObjectFlowState } <−−{ComesFrom} t2
96 / /
97 / / c reate one ObjectFlow ver tex i n the t a r g e t graph . Use the tup l e (t1 , t2) as
98 / / archetype f o r the new ob jec t f l ow .
99 i n s t a n t i a t eVe r t i c e s (objectFlow ,

100 " from t1 : V{ T r ans i t i o n } , t2 : V{ T r ans i t i o n } "
101 + " with t1 −−>{GoesTo } & { ObjectFlowState } <−−{ComesFrom} t2 "
102 + " reportSet t1 , t2 end ") ;
103

104 / / Schema Level : a l ready done above , so noth ing to to here .
105 / /
106 / / Ins tance Level : For each T r a n s i t i o n t up l e t i n the domain o f img_ObjectFlow

18

Model Migration

24

107 / / c reate one HasObject edge . I t s t a r t s a t the image of the tup l e t which i s an
108 / / ObjectFlow , and i t ends a t the image of the tup le ’ s f i r s t T rans i t i on ’ s
109 / / GoesTo−t a rge t , which i s some ObjectFlowState f o r which we ’ ve al ready created
110 / / an ObjectNode .
111 i ns tan t i a teEdges (hasObject ,
112 " from t : keySet (img_ObjectFlow) "
113 + " reportSet t , t , theElement (t [0] −−>{GoesTo }) end ") ;
114 break ;
115 defaul t :
116 throw new GReTLException (context , "Unknown task ’ " + task + " ’ ! ") ;
117 }
118 / / That was the whole task−s p e c i f i c pa r t . Due to the uni form s e l e c t i o n o f archetypes ,
119 / / the r e s t can be handled un i f o rm ly .
120

121 / / Schema Level : Create a ver tex c lass Contro lF low i n the t a r g e t schema .
122 / /
123 / / Ins tance Level : For each source model T r a n s i t i o n which doesn ’ t s t a r t or end at an
124 / / ObjectFlowState create one Contro lFlow ver tex i n the t a r g e t graph . Nevertheless ,
125 / / we use t r a n s i t i o n tup les as archetypes , so t h a t img_ControlFlow ’ s domain i s
126 / / s t r u c t u r a l l y equal to the domain o f img_ObjectFlow , t h a t i s (T r a n s i t i o n x
127 / / T r a n s i t i o n) .
128 VertexClass con t ro lF low = createVer texClass (" Contro lF low " ,
129 " from t : V{ T r ans i t i o n } "
130 + " with isEmpty (t −−>{ComesFrom , GoesTo } & { ObjectFlowState }) "
131 + " reportSet t , t end ") ;
132

133 / / Schema Level : Create the abs t rac t ve r tex c lass Ac t i v i t yEdge .
134 / /
135 / / Ins tance Level : No e f f e c t .
136 VertexClass ac t i v i t yEdge = crea teAbs t rac tVer texClass (" Ac t i v i t yEdge ") ;
137

138 / / Schema Level : Make Contro lF low and ObjectFlow s p e c i a l i z a t i o n s o f Ac t i v i t yEdge .
139 / /
140 / / Ins tance Level : No e f f e c t .
141 addSubClasses (ac t i v i t yEdge , cont ro lF low , objectF low) ;
142

143 / / Schema Level : Creates the composi t ion edge c lass HasGuard .
144 / /
145 / / Ac t i v i t yEdge (0 ,1) <>−HasGuard−−> (0 ,1) OpaqueExpression
146 / /
147 / / Ins tance Level : For each HasGuard edge i n the source model create a HasGuard edge
148 / / i n the t a r g e t model . The s t a r t ve r tex i s the image of a tu p l e
149 / / (connectedTrans i t ion , connectedTrans i t ion) , and tha t ’ s exac t l y the archetype we
150 / / chose f o r Ac t i v i t yEdges . The end ver tex i s the image of the edge ’ s end ver tex ,
151 / / which i s a Guard . Above , we created one OpaqueExpression f o r each Guard .
152 createEdgeClass (" HasGuard " ,
153 new IncidenceClassSpec (ac t i v i t yEdge , 0 , 1) ,
154 new IncidenceClassSpec (vc (" OpaqueExpression ") , 0 , 1 , Aggregat ionKind .COMPOSITE) ,
155 " from e : E{ HasGuard } "
156 + " reportSet e , tup (s t a r t V e r t e x (e) , s t a r t V e r t e x (e)) , endVertex (e) end ") ;
157

158 / / Schema Level : Create the body a t t r i b u t e o f type S t r i n g f o r the ver tex c lass
159 / / OpaqueExpression .
160 / /
161 / / Ins tance Level : Simply set the value according the Guard g ’ s source model
162 / / c o n d i t i o n body , which i s some BooleanExpression .
163 c r ea t eA t t r i b u t e (new At t r i bu teSpec (vc (" OpaqueExpression ") , " body " , getStr ingDomain ()) ,

19

Model Migration

25

164 " from g : V{ Guard } "
165 + " reportMap g , theElement (g−−>{HasCondit ion }) . body end ") ;
166

167 / / Schema Level : Create the language a t t r i b u t e o f type S t r i n g f o r the ver tex c lass
168 / / OpaqueExpression . Use the s t r i n g " n a t u r a l " as d e f a u l t value . (In the i npu t model ,
169 / / the language a t t r i b u t e isn ’ t se t f o r any element .)
170 / /
171 / / Ins tance Level : Simply set the value according the Guard g ’ s source model
172 / / c o n d i t i o n language unless t h a t i s not set . In t h a t case , s t i c k w i th the d e f a u l t
173 / / value .
174 / /
175 / / In our source model , there ’ s no value set f o r any BooleanExpression ’ s language
176 / / a t t r i b u t e , so here we also handle a case which doesn ’ t r e a l l y occur . . .
177 c r ea t eA t t r i b u t e (new At t r i bu teSpec (vc (" OpaqueExpression ") , " language " ,
178 getStr ingDomain () , " \ " na tu ra l \ " ") ,
179 " from g : V{ Guard } "
180 + " with oldValue <> nul l "
181 + " reportMap g , oldValue end "
182 + "where oldValue := theElement (g−−>{HasCondit ion }) . language ") ;
183

184 / / Schema Level : Create an edge c lass ComesFrom .
185 / /
186 / / Ac t i v i t yEdge (0 ,∗) −−ComesFrom−> (1 ,1) Ac t i v i t yNode
187 / /
188 / / Ins tance Level : For each tup le t w i th contents (t0 : T rans i t i on , t1 : T r a n s i t i o n) i n
189 / / the domain o f img_Act iv i tyEdge create one ComesFrom edge . This edge s t a r t s a t the
190 / / image of the tup l e (some Ac t i v i t yEdge) , and i t ends a t the image of the T r a n s i t i o n
191 / / t0 ’ s neighbor ver tex connected wi th a ComesFrom edge .
192 createEdgeClass ("ComesFrom" ,
193 new IncidenceClassSpec (ac t i v i t yEdge) ,
194 new IncidenceClassSpec (vc (" Ac t i v i t yNode ") , 1 , 1) ,
195 " from t : keySet (img_Act iv i tyEdge) "
196 + " reportSet t , t , theElement (t [0] −−>{ComesFrom }) end ") ;
197

198 / / Schema Level : Create an edge c lass GoesTo .
199 / /
200 / / Ac t i v i t yEdge (0 ,∗) −−GoesTo−> (1 ,1) Ac t i v i t yNode
201 / /
202 / / Ins tance Level : For each tup le t w i th contents (t0 : T rans i t i on , t1 : T r a n s i t i o n) i n
203 / / the domain o f img_Act iv i tyEdge create one GoesTo edge . This edge s t a r t s a t the
204 / / image of the tup l e (some Ac t i v i t yEdge) , and i t ends a t the image of the T r a n s i t i o n
205 / / t1 ’ s neighbor ver tex connected wi th a GoesTo edge .
206 createEdgeClass (" GoesTo " ,
207 new IncidenceClassSpec (ac t i v i t yEdge) ,
208 new IncidenceClassSpec (vc (" Ac t i v i t yNode ") , 1 , 1) ,
209 " from t : keySet (img_Act iv i tyEdge) "
210 + " reportSet t , t , theElement (t [1] −−>{GoesTo }) end ") ;
211

212 / / Schema Level : Create a composi t ion edge c lass ContainsNode .
213 / /
214 / / A c t i v i t y P a r t i t i o n (0 ,1) <>−ContainsNode−− (0 ,∗) Ac t i v i t yNode
215 / /
216 / / Ins tance Level : For each source model ContainsElement edge , which i s t a r g e t i n g
217 / / some ModelElement which was transformed to some Act iv i tyNode , create a
218 / / ContainsNode edge . I t s t a r t s and ends at the images of the edge e ’ s s t a r t and end
219 / / v e r t i c e s .
220 createEdgeClass (" ContainsNode " ,

20

Model Migration

26

221 new IncidenceClassSpec (vc (" A c t i v i t y P a r t i t i o n ") , 0 , 1) ,
222 new IncidenceClassSpec (vc (" Ac t i v i t yNode ") , Aggregat ionKind .COMPOSITE) ,
223 " from e : E{ ContainsElement } "
224 + " with containsKey (img_Act iv i tyNode , endVertex (e)) "
225 + " reportSet endVertex (e) , s t a r t V e r t e x (e) , endVertex (e) end ") ;
226

227 / / Schema Level : Create a composi t ion edge c lass ContainsEdge .
228 / /
229 / / A c t i v i t y P a r t i t i o n (0 ,1) <>−ContainsEdge−− (0 ,∗) Ac t i v i t yEdge
230 / /
231 / / Ins tance Level : The source model has no ContainsElement edges from P a r t i t i o n s to
232 / / T rans i t i ons , so we add some h e u r i s t i c s here . Each Ac t i v i t yEdge w i l l be conta ined
233 / / i n a l l A c t i v i t y P a r t i t i o n s o f i t s source and t a r g e t Ac t i v i t yNode .
234 createEdgeClass (" ContainsEdge " ,
235 new IncidenceClassSpec (vc (" A c t i v i t y P a r t i t i o n ") , 0 , 1) ,
236 new IncidenceClassSpec (ac t i v i t yEdge , Aggregat ionKind .COMPOSITE) ,
237 " from t : keySet (img_Act iv i tyEdge) , "
238 + " p : f l a t t e n (from s : union (t [0]−−>{ComesFrom} , t [1]−−>{GoesTo }) "
239 + " reportSet s <−−{ContainsElement } end) "
240 + " reportSet tup (t , p) , p , t end ") ;
241

242 / / Schema Level : Create a composi t ion edge c lass Ac t i v i t yConta insGroup .
243 / /
244 / / A c t i v i t y (1 ,1) <>−Act iv i tyConta insGroup−− (0 ,∗) A c t i v i t y P a r t i t i o n
245 / /
246 / / Ins tance Level : For each source model HasPar t i t i on edge , create an
247 / / Ac t i v i t yConta insGroup edge s t a r t i n g a t the image of t h i s edges s t a r t ve r tex (an
248 / / Ac t i v i t yGraph) to the image of t h i s edge ’ s end ver tex (a P a r t i t i o n) .
249 createEdgeClass (" Ac t i v i t yConta insGroup " ,
250 new IncidenceClassSpec (vc (" A c t i v i t y ")) ,
251 new IncidenceClassSpec (vc (" A c t i v i t y P a r t i t i o n ") , Aggregat ionKind .COMPOSITE) ,
252 " from e : E{ HasPar t i t i on } "
253 + " reportSet e , s t a r t V e r t e x (e) , endVertex (e) end ") ;
254

255 / / Schema Level : Create a composi t ion edge c lass Act iv i tyConta insNode .
256 / /
257 / / A c t i v i t y (0 ,1) <>−Act iv i tyConta insNode−− (0 ,∗) Ac t i v i t yNode
258 / /
259 / / Ins tance Level : For each Ac t i v i t yNode archetype (some StateVer tex) which i s
260 / / connected to no ContainsElement edge , c reate one Act iv i tyConta insNode from the
261 / / image of the nearest Ac t i v i t yGraph con ta in ing t h i s archetype to i t s own image .
262 / /
263 / / The c o n s t r a i n t ensures t h a t no Act iv i tyConta insNode edges are created f o r
264 / / Ac t i v i t yNodes which are a l ready conta ined i n an A c t i v i t y P a r t i t i o n which i n tu rn i s
265 / / conta ined i n an A c t i v i t y .
266 createEdgeClass (" Ac t iv i tyConta insNode " ,
267 new IncidenceClassSpec (vc (" A c t i v i t y ") , 0 , 1) ,
268 new IncidenceClassSpec (ac t i v i t yNode , Aggregat ionKind .COMPOSITE) ,
269 " from a : keySet (img_Act iv i tyNode) "
270 + " with degree { ContainsElement } (a) = 0 "
271 + " reportSet a , theElement (a −−<>∗ & { Ac t i v i t yGraph }) , a end ") ;
272

273 / / Schema Level : Create a composi t ion edge c lass Act iv i t yConta insEdge .
274 / /
275 / / A c t i v i t y (0 ,1) <>−Act iv i tyConta insEdge−− (0 ,∗) Ac t i v i t yEdge
276 / /
277 / / Ins tance Level : For each Ac t i v i t yEdge archetype (those are (T rans i t i on ,

21

Model Migration

27

278 / / T r a n s i t i o n) tup les) , f o r which no ContainsEdge has a l ready been created , create
279 / / one Act iv i t yConta insEdge from the image of the nearest Ac t i v i t yGraph con ta in ing
280 / / the t r a n s i t i o n t [0] to the image of the tu p l e i t s e l f , which i s an Ac t i v i t yEdge .
281 / /
282 / / Again , the c o n d i t i o n i n the with−clause ensures t h a t no Act iv i t yConta insEdge edges
283 / / are created f o r Ac t i v i t yEdes which are a l ready conta ined i n an A c t i v i t y P a r t i t i o n
284 / / which i n tu rn i s conta ined i n an A c t i v i t y .
285 createEdgeClass (" Ac t i v i t yConta insEdge " ,
286 new IncidenceClassSpec (vc (" A c t i v i t y ") , 0 , 1) ,
287 new IncidenceClassSpec (ac t i v i t yEdge , Aggregat ionKind .COMPOSITE) ,
288 " from t : keySet (img_Act iv i tyEdge) "
289 + " with isEmpty (from x : keySet (img_ContainsEdge) "
290 + " with x [0] = t "
291 + " reportSet x end) "
292 + " reportSet t , theElement (t [0] −−<>∗ & { Ac t i v i t yGraph }) , t end ") ;
293

294 / / Schema Level : Create the abs t rac t ve r tex c lass ModelElement .
295 / /
296 / / Ins tance Level : No e f f e c t .
297 VertexClass modelElement = crea teAbs t rac tVer texClass (" ModelElement ") ;
298

299 / / Schema Level : Make ModelElement the superc lass o f Ac t iv i t yEdge , A c t i v i t y ,
300 / / A c t i v i t y P a r t i t i o n , Ac t i v i t yNode and ObjectNode .
301 / /
302 / / Ins tance Level : No e f f e c t .
303 addSubClasses (modelElement , ac t i v i t yEdge , vc (" A c t i v i t y ") ,
304 vc (" A c t i v i t y P a r t i t i o n ") , vc (" Ac t i v i t yNode ")) ;
305

306 / / Schema Level : Create a name a t t r i b u t e o f type S t r i n g a t the ModelElement ver tex
307 / / c lass .
308 / /
309 / / Ins tance Level : For each t a r g e t ModelElement exc lud ing Act iv i tyEdges , se t the
310 / / value o f the a t t r i b u t e according to the value o f the archetype .
311 A t t r i b u t e name = c r ea t eA t t r i b u t e (
312 new At t r i bu teSpec (modelElement , "name" , getStr ingDomain ()) ,
313 " from me : d i f f e r e n c e (keySet (img_ModelElement) , "
314 + " keySet (img_Act iv i tyEdge)) "
315 + " reportMap me, me.name end ") ;
316

317 / / Schema Level : No e f f e c t .
318 / /
319 / / Ins tance Level : For each Ac t i v i t yEdge archetype , set the name of the image
320 / / accord ing t h e i r predecessor / successor−Act i v i t yNode . So i f an a c t i v i t y edge s t a r t s
321 / / a t an "A" ac t i on and goes to a "B" act ion , the Act iv i t yEdge ’ s name w i l l be "A −>
322 / / B " . The GReQL opera tor ++ i s used to concatenate two s t r i n g s .
323 i n s t a n t i a t eA t t r i b u t eVa l u e s (name,
324 " from t : keySet (img_Act iv i tyEdge) "
325 + " reportMap t , theElement (t [0]−−>{ComesFrom }) . name "
326 + " ++ \ " −> \ " "
327 + " ++ theElement (t [1]−−>{GoesTo }) . name end ") ;
328 }
329

330 public s t a t i c void main (S t r i ng [] args) throws GraphIOException {
331 / / Create a new Context ob jec t ho ld ing the s ta te o f the t rans fo rma t i on . The name of
332 / / the t a r g e t schema to be created by the t rans fo rma t i on i s
333 / / de . uni_koblenz . uml2 . Act iv i tySchema , and i t w i l l de f ine the graph c lass
334 / / Ac t i v i t yGraph .

22

Model Migration

28

335 Context c = new Context (" de . uni_koblenz . uml2 . Act iv i tySchema " , " Ac t i v i t yGraph ") ;
336

337 / / Set the source model f o r the t rans fo rma t i on . The source graph i s created
338 / / p rogrammat ica l ly by the CreateUML1Activi tyGraph c lass i n the u t i l package . You
339 / / might want to have a look .
340 c . setSourceGraph (CreateUML1Activi tyGraph . getUml1ADGraph ()) ;
341

342 / / I n s t a n t i a t e our t rans fo rma t i on .
343 Ac t i v i t y 1ToAc t i v i t y 2 ac t i 1ToAc t i2 = new Ac t i v i t y 1ToAc t i v i t y 2 (c) ;
344

345 / / Run the t rans fo rma t i on once wi th CORE and the second t ime wi th
346 / / OBJECT_FLOW_EXTENSION task . I t w i l l c reate the UML2 t a r g e t metamodel / schema and i n
347 / / the same t ime migrate the UML1.4 model to a t a r g e t model conforming to the j u s t
348 / / created UML2.2 schema .
349 for (Task task : new Task [] { Task .CORE, Task .OBJECT_FLOW_EXTENSION }) {
350 / / Reset the contex t (t h a t won ’ t f o r g e t the t a r g e t schema , so t h a t the
351 / / t r ans fo rma t i on w i l l reuse the schema created i n the f i r s t run) .
352 c . rese t (fa lse) ;
353 / / Set the cu r ren t task .
354 ac t i 1ToAc t i2 . setTask (task) ;
355 / / Execute the t rans fo rma t i on .
356 ac t i 1ToAc t i2 . execute () ;
357 / / Ret r ieve the t a r g e t model .
358 Graph targetGraph = c . getTargetGraph () ;
359 / / Save the t a r g e t model i n the na t i ve TG format .
360 GraphIO . saveGraphToFile (" uml2model_ " + task . t o S t r i n g () . toLowerCase () + " . tg " ,
361 targetGraph , new ProgressFunct ionImpl ()) ;
362 / / Also save a v i s u a l i z a t i o n o f the t a r g e t model i n the GraphViz DOT format . You
363 / / can view t h a t using GraphViz ’ do t t y program .
364 Tg2Dot . pr intGraphAsDot (targetGraph , false , " uml2model_ " + task . t o S t r i n g ()
365 . toLowerCase () + " . dot " , targetGraph . getSchema ()
366 . ge tA t t r ibu tedElementC lass ("ComesFrom ") . getM1Class ()) ;
367 }
368 }
369 }

23

Model Migration

29

Migrating Activity Diagrams with Epsilon Flock

Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack

Department of Computer Science, University of York, UK.
[louis,dkolovos,paige,fiona]@cs.york.ac.uk

Abstract. The Transformation Tools Contest 2010 workshop invites
solutions to a model migration case in which UML activity diagrams are
to be migrated from UML 1.4 to UML 2.2. This paper presents a solution
to this case, which uses Epsilon Flock, a model transformation language
tailored for model migration.

1 Introduction

In [4], we propose a case for exploring and comparing the ways in which model
migration can be specified, using an example from the evolution of UML. The
way in which activity diagrams are modelled in the UML has changed signifi-
cantly between versions 1.4 and 2.2 of the specification. In this paper, we briefly
introduce Epsilon Flock [5], a model transformation language tailored for model
migration, and present our solutions to the case described in [4].

2 Epsilon Flock

Epsilon Flock [5] (subsequently referred to as Flock) is a model transformation
language tailored for model migration. In particular, Flock automatically copies
from original to migrated model all model elements that have not been affected
by metamodel evolution. The user need only specify the migration strategy for
those model elements that do not conform to the evolved metamodel. Flock is
built atop Epsilon1 [1], an extensible platform providing inter-operable program-
ming languages for model-driven development. Epsilon, and hence Flock, can be
used with a range of modelling technologies, such as EMF [6], MDR, Z and
XML.

3 Core Task

The core task described by [4] requires submissions to migrate an activity dia-
gram that conforms to a (minimal) UML 1.4 metamodel to an equivalent activity
diagram conforming to the UML 2.2 metamodel provided by the Eclipse UML
2 tools project. We approached this problem in an iterative and incremental
manner, using the following process:
1 http://www.eclipse.org/gmt/epsilon

Model Migration

30

1. Change the Flock migration strategy.
2. Execute Flock on the original model, producing a migrated model.
3. Compare the migrated model with the reference model provided in [4].
4. Repeat until the migrated and reference models were the same.

The remainder of this section presents our Flock solution in an incremen-
tal manner. The code listings in this section show only those rules relevant to
the iteration being discussed. The complete migration strategy is shown in Ap-
pendix B.

3.1 Actions, Transitions and Final States

We started by executing Flock on the original model with an empty migration
strategy. The resulting model contained Pseudostatess and Transitions,
but none of the ActionStates from the original model. In UML 2.2 activities,
OpaqueActions replace ActionStates. Listing 1.1 shows the Flock code for
changing ActionStates to corresponding OpaqueActions.

1 migrate ActionState to OpaqueAction

Listing 1.1. Migrating Actions

Listing 1.1 contains a single migration rule, the fundamental building block of
a Flock migration strategy. Each rule specifies an original type (ActionState)
and an optional evolved type (OpaqueAction). Rules can also specify an op-
tional guard (a boolean expression preceded with the when keyword). Flock will
execute the rule in Listing 1.1 once for each ActionState in the original model,
producing one OpaqueAction in the migrated model.

We added similar rules to the Flock migration strategy to migrate instances
of FinalState to instances of ActivityFinalNode and to migrate instances
of Transition to ControlFlow, as shown in Listing 1.2.

1 migrate FinalState to ActivityFinalNode
2 migrate Transition to ControlFlow

Listing 1.2. Migrating FinalStates and Transitions

3.2 Pseudostates

Next, we codified migration for Pseudostatess, which are no longer used in
UML 2.2 activities. Instead, UML 2.2 activities use specialised Nodes, such as
InitialNode. Listing 1.3 shows the Flock code for changing Pseudostates
to corresponding Nodes.

1 migrate Pseudostate to InitialNode when: original.kind = Original!
PseudostateKind#initial

2 migrate Pseudostate to DecisionNode when: original.kind = Original!
PseudostateKind#junction

3 migrate Pseudostate to ForkNode when: original.kind = Original!
PseudostateKind#fork

4 migrate Pseudostate to JoinNode when: original.kind = Original!
PseudostateKind#join

Listing 1.3. Migrating Pseudostates

Model Migration

31

Listing 1.3 contains four migration rules, which migrate Pseudostates to
some subtype of Node (InitialNode, DecisionNode, etc) based on the value
of the original model element’s kind feature. For example, the first migration rule
in Listing 1.3 states that a Pseudostate with kind equal to to the initial
element of the PseudostateKind enumeration will be migrated by producing
an InitialNode.

For each element of the original model, Flock will execute at most one applica-
ble migration rule. For example, the rule show on line 1 of Listing 1.3 is applicable
to every original model element that is an instance of Pseudostate and whose
kind attribute is equal to the initial element of the PseudostateKind
enumeration. The way in which Flock selects applicable rules is discussed more
thoroughly in [5].

3.3 Activities

In UML 2.2, Activitys no longer inherit from state machines. As such, some
of the features defined by Activity have been renamed. Specifically, transi-
tions has become edges and paritions has become group. Furthermore,
the states (or nodes in UML 2.2 parlance) of an Activity are now contained
in a feature called nodes, rather than in the subvertex feature of a composite
state accessed via the top feature of Activity. The Flock migration rule shown
in Listing 1.4 captures these changes.

1 migrate ActivityGraph to Activity {
2 migrated.edge = original.transitions.equivalent();
3 migrated.group = original.partition.equivalent();
4 migrated.node = original.top.subvertex.equivalent();
5 }

Listing 1.4. Migrating ActivityGraphs

Listing 1.4 contains one migration rule, which produces an instance of Ac-
tivity from an instance of ActivityGraph. The rule specifies no guard, and
so is applicable to all instances of ActivityGraph. The body of the rule (lines
2-4) is executed for each ActivityGraph in the original model. The Epsilon
Object Language (EOL) [2] is used to specify the body of Flock migration rules.
EOL is a reworking and extension of OCL that includes the ability to update
models, conditional and loop statements, statement sequencing, and access to
standard I/O streams.

Flock makes available two variables for use in the body of rules: original
and migrated which can be used to access the original and migrated model ele-
ments. Here, the body of the rule copies values from the original to the migrated
model element. For instance, line 2 copies the contents of the transitions feature
to the edge feature. Because original.transitions will return a collection
of original model elements, the built-in equivalent operation is used to find
the equivalent migrated model elements. The equivalent operation invokes
other migration rules where necessary, caching results where possible to improve
performance.

Model Migration

32

We added a similar rule for migrating Guards. In UML 1.4, the the guard
feature of Transition references a Guard, which in turn references an Ex-
pression via its expression feature. In UML 2.2, the guard feature of
Transition references an OpaqueExpression directly. Listing 1.5 captures
this in Flock.

1 migrate Guard to OpaqueExpression {
2 migrated.body.add(original.expression.body);
3 }

Listing 1.5. Migrating Guards

3.4 Partitions

In UML 1.4 activity diagrams, Partition specifies a single containment ref-
erence for it contents. In UML 2.2 activity diagrams, partitions (termed
ActivityPartitions) specify two containment features for their contents,
edges and nodes. Listing 1.6 captures this change in Flock. The body of the
rule shown in Listing 1.6 uses the collect operation to segregate the contents
feature of the original model element into two parts.

1 migrate Partition to ActivityPartition {
2 migrated.edges = original.contents.collect(e:Transition | e.equivalent());
3 migrated.nodes = original.contents.collect(n:StateVertex | n.equivalent());
4 }

Listing 1.6. Migrating Partitions

3.5 ObjectFlows

Finally, we codified migration for object flows. In UML 1.4 activity diagrams,
object flows (used to model activities that effect a change to an object) are
specified using ObjectFlowState, a subtype of StateVertex. In UML 2.2
activity diagrams, object flows are modelled using a subtype of ObjectNode.
In UML 2.2 flows that connect to and from ObjectNodes must be represented
with ObjectFlows rather than ControlFlows.

Listing 1.7 shows the Flock source code used to migrate Transitons to
ObjectFlows. The rule applies for Transitions whose source or target St-
ateVertex is of type ObjectFlowState.

1 migrate ObjectFlowState to ActivityParameterNode
2

3 migrate Transition to ObjectFlow when: original.source.isTypeOf(
ObjectFlowState) or original.target.isTypeOf(ObjectFlowState)

Listing 1.7. Migrating ObjectFlows

Extensions to the core task are discussed in Appendix A. The complete Flock
code listing for the core task is shown in Appendix B.

Model Migration

33

4 Discussion

Application of Flock to the UML activity diagram example has highlighted
strengths and weakness of the approach. Flock provides a compact and familiar
syntax for expressing migration, For the body of migration rules, Flock re-uses
the Epsilon Object Language (EOL) [2], a re-working and extension of OCL. Ap-
plying Flock to this example has highlighted duplication caused by the current
syntax (e.g. see Listing 1.10), which could be simplified.

Because Flock automatically copies model elements that are unaffected by
evolution, Flock supports iterative and incremental development of migration
strategies. For analysing metamodel changes, the Flock development tools could
be enhanced, for example with a metamodel differencing view.

Flock works with an extensible range of modelling technologies in a transpar-
ent manner. In Section A.2, we demonstrated this claim by re-using a migration
strategy built for EMF models for migrating an MDR model.

Acknowledgement. The work in this paper was supported by the European
Commission via the MADES project under the “Information Society Technolo-
gies” Seventh Framework Programme (2009-2012).

References

1. D.S. Kolovos. An Extensible Platform for Specification of Integrated Languages for
Model Management. PhD thesis, University of York, United Kingdom, 2009.

2. D.S. Kolovos, R.F. Paige, and F.A.C Polack. The Epsilon Object Language (EOL).
In Proc. ECMDA-FA, volume 4066 of LNCS, pages 128–142. Springer, 2006.

3. OMG. Unified Modelling Language 1.4 Specification [online]. [Accessed 5 March
2010] Available at: http://www.omg.org/spec/UML/1.4/, 2001.

4. L.M. Rose, D.S. Kolovos, R.F. Paige, and F.A.C. Polack. Model migration case for
TTC 2010. In Proc. TTC Workshop [accepted and to appear], 2010.

5. L.M. Rose, D.S. Kolovos, R.F. Paige, and F.A.C. Polack. Model migration with
Epsilon Flock. In Proc. ICMT [accepted and to appear], 2010.

6. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, 2008.

Model Migration

34

A Extensions

In the case description [4], three extensions are discussed. Solutions for two of
the extensions are described in this appendix.

A.1 Alternative ObjectFlowState Migration Semantics

The first extension described in [4] requires submissions to consider an alternative
migration semantics for ObjectFlowState, in which a single ObjectFlow replaces
each ObjectFlowState and any connected Transitions.

Listing 1.8 shows the Flock source code used to migrate ObjectFlowStates
(and connecting Transitions) to a single ObjectFlow. This rule replaces the
two rules defined in Listing 1.7. In the body of the rule, the source of the
Transition is copied directly to the source of the ObjectFlow. The target
of the ObjectFlow is set to the target of the first outgoing Transition from
the ObjectFlowState.

1 migrate Transition to ObjectFlow when: original.target.isTypeOf(
ObjectFlowState) {

2 migrated.source = original.source.equivalent();
3 migrated.target = original.target.outgoing.first.target.equivalent();
4 }

Listing 1.8. Migrating ObjectFlowStates to a single ObjectFlow

Because ObjectFlowStates are represented as edges rather than nodes,
the partition migration rule was changed such that ObjectFlowStates were
not copied to the nodes feature of Partitions, as shown on line 12 of List-
ing 1.9 which replaces the migration rule shown in Listing 1.6.

1 migrate Partition to ActivityPartition {
2 migrated.edges = original.contents.collect(e:Transition | e.equivalent());
3 migrated.nodes = original.contents.reject(ofs:ObjectFlowState | true).

collect(n:Original!StateVertex | n.equivalent());
4 }

Listing 1.9. Migrating Partitions without ObjectFlowStates

A.2 XMI

The second extension described in [4] requires submissions to migrate an activity
graph conforming to the UML 1.4 metamodel provided by the OMG [3] to an
equivalent activity diagram conforming to the UML 2.2 metamodel provided by
the Eclipse UML 2 tools project. Crucially for this task, UML 1.4 models are
specified in XMI 1.2, while UML 2.2 models are specified in XMI 2.1.

Flock is built atop Epsilon, which includes a model connectivity layer (EMC).
EMC provides a common interface for accessing and persisting models. Cur-
rently, EMC provides drivers for several modelling frameworks, permitting man-
agement of models defined with EMF, the Metadata Repository (MDR), Z or
XML. To support migration between metamodels defined in heterogenous mod-
elling frameworks, EMC was extended during the development of Flock to pro-
vide a conformance checking service.

Model Migration

35

In theory then, the migration strategy described above works for both EMF
(XMI 2.1) and MDR (XMI 1.2) models. In practice, we found that the way in
which enumerations are encoded differs slightly between EMF and MDR, and
so we had to make a slight change to the guards of the migration rules shown in
Listing 1.3, producing the corresponding rules shown in Listing 1.10. In future
work, we will modify the MDR driver for EMC such that the changes shown in
Listing 1.10 are no longer necessary.

1 migrate Pseudostate to InitialNode when: original.kind.toString() = ’
pk_initial’

2 migrate Pseudostate to DecisionNode when: original.kind.toString() = ’
pk_junction’

3 migrate Pseudostate to ForkNode when: original.kind.toString() = ’pk_fork’
4 migrate Pseudostate to JoinNode when: original.kind.toString() = ’pk_join’

Listing 1.10. Migration using MDR enumerations

Model Migration

36

B Source Code

The following listing includes the entire Flock source code used in solving the
core task.

1 migrate ActivityGraph to Activity {
2 var pkg := new Migrated!Package;
3 pkg.packagedElement.add(migrated);
4

5 migrated.node := original.top.subvertex.equivalent();
6 migrated.edge := original.transitions.equivalent();
7 migrated.‘group‘ := original.partition.equivalent();
8 }
9

10 migrate Partition to ActivityPartition {
11 migrated.edges := original.contents.collect(e : Transition | e.equivalent()

);
12 migrated.nodes := original.contents.collect(n : Original!StateVertex | n.

equivalent());
13 }
14

15 migrate ActionState to OpaqueAction
16

17 migrate Pseudostate to InitialNode when: original.kind = Original!
PseudostateKind#initial

18 migrate Pseudostate to DecisionNode when: original.kind = Original!
PseudostateKind#junction

19 migrate Pseudostate to ForkNode when: original.kind = Original!
PseudostateKind#fork

20 migrate Pseudostate to JoinNode when: original.kind = Original!
PseudostateKind#join

21

22 migrate FinalState to ActivityFinalNode
23

24 migrate ObjectFlowState to ActivityParameterNode
25

26 migrate Transition to ObjectFlow when: original.source.isTypeOf(Original!
ObjectFlowState) or original.target.isTypeOf(Original!ObjectFlowState)

27

28 migrate Transition to ControlFlow
29

30 migrate Guard to OpaqueExpression {
31 migrated.body.add(original.expression.body);
32 }

Listing 1.11. Complete Epsilon Flock listing for the core task

Model Migration

37

Model Migration with MOLA

Elina Kalnina, Audris Kalnins, Janis Iraids, Agris Sostaks, Edgars Celms

University of Latvia, IMCS, Raina bulvaris 29, LV-1459 Riga, Latvia
Elina.Kalnina@lumii.lv, Audris.Kalnins@lumii.lv, Edgars.Celms@lumii.lv,

Agris.Sostaks@lumii.lv, Janis Iraids@lumii.lv

Abstract. This paper describes the activity diagram migration from UML 1.4 to
UML 2.2 in MOLA transformation language. Transformations implementing
the migration task are relatively straightforward and easily inferable from the
task specification. The required additional steps related to model import and
export are also described.

 1 Introduction

In this paper we describe the solution to Model migration case [1] for TTC 20101

contest, as implemented in MOLA model transformation language. The core
migration task is implemented. We take as input the UML 1.4 activity models built
according to the provided minimal UML 1.4 metamodel (original minimal
metamodel). The target models are created according to the provided (complete)
UML 2.2 metamodel.

The main point of discussion in this task is how to migrate object flows, where the
best semantics preserving transformation is not so unique. We have chosen to
substitute object flow states in UML 1.4 by pins in UML 2.2. This seems to be the
most natural choice according to UML 2.2 specifications [2], used also in several
commercial UML tools. Thus, we convert an object flow state together with incoming
and outgoing transitions into a pin with incoming and outgoing object flows
respectively.

We build the target model in a way that it can be imported into Eclipse with the
UML 2 plug-in and visualized as a diagram, in order to check the transformation
correctness more easily. This feature requires some classes to be added to the model,
therefore we have chosen the complete evolved metamodel for the target, but not the
minimal one.

The migration task can be implemented in MOLA in a very straightforward way
once the correspondence between metamodel elements is well understood. We
describe in the paper the basic principles of the solution. Before that, the situation
with metamodels is described in some details, namely, how the metamodels are
imported and extended and what implications this creates for source model import
and target model export. The whole migration process using MOLA is briefly
described as well.

1 http://planet-research20.org/ttc2010/

Model Migration

38

 2 MOLA Environment

MOLA [3] is a graphical transformation language developed at the University of
Latvia. It is based on traditional concepts among transformation languages: pattern
matching and rules defining how the matched pattern elements should be transformed.
The formal description of MOLA and also MOLA tool can be downloaded in [4].

A MOLA program transforms an instance of a source metamodel (defined in the
MOLA metamodelling language – MOLA MOF, close to EMOF) into an instance of
a target metamodel.

Rule contains a declarative pattern that specifies instances of which classes must be
selected and how they must be linked. Pattern in a rule is matched only once. The
action part of a rule specifies which matched instances must be changed and what
new instances must be created. The instances to be included in the search or to be
created are specified using class elements in the MOLA rule. The traditional UML
instance notation (instance_name:class_name) is used to identify a particular class
element. Class elements may contain constraints and attribute assignments defined
using simple OCL like expressions. Additionally, the rule contains association links
between class elements. Class elements matched in one rule may be referenced in
another one using the reference element (prefixed with ”@“ symbol).

In order to iterate through a set of the instances MOLA provides the foreach loop
statement. The loophead is a special kind of a rule that is used to specify the set of
instances to be iterated over. The pattern of the loophead is given using the same
pattern mechanism used by an ordinary rule, but with an additional important
construct. It is the loop variable—the class element that determines the execution of
the loop. The foreach loop is executed for each distinct instance that corresponds to
the loop variable and satisfies the constraints of the pattern. In fact, the loop variable
plays the same role as an iterator in classical programming languages. The execution
order in MOLA is specified in a way similar to UML activity diagrams.

MOLA has an Eclipse-based graphical development environment (MOLA tool
[4]), incorporating all the required development support. A transformation in MOLA
is compiled via the low-level transformation language L3 [5] into an executable Java
code which can be run against a runtime repository containing the source model. For
this case study Eclipse EMF is used as such a runtime repository, but some other
repositories can be used as well (e.g. JGraLab [6]).

 3 General Principles of Migration Case Solution with MOLA

The transformation development in MOLA starts with the development of
metamodels. The MOLA tool has a facility for importing existing metamodels, in
particular, in EMF (Ecore) format. Though MOLA metamodelling language (MOLA
MOF) is very close to EMOF, and consequently Ecore, there are some issues to be
solved. The current version of MOLA requires all metamodel associations to be
navigable both ways (this permits to perform an efficient pattern matching using
simple matching algorithms). Since a typical Ecore metamodel has many associations
navigable one way, the import facility has to extend the metamodel. Another issue is

Model Migration

39

the variable coding of references to primitive data types (in this case the coding
within source and target metamodels was also different).

Metamodel import facilities in MOLA are able to perform all these adjustments
automatically. This way both the source (original minimal) and target (evolved)
metamodels were imported into MOLA tool. Efficient transformation development in
MOLA for model mapping related tasks, as the current one is, requires additional
metamodel elements for storing the mapping between the source and target model
elements. These elements have to be added manually. In the given case, one
association between the top classes (in the inheritance hierarchy) of both metamodels
is sufficient. Now the transformation itself (MOLA procedures) can be developed.
The key features of transformations are described in the next section. The
development ends with MOLA compilation.

Since the metamodels have been modified during import, the original source model
does not conform directly to the metamodel in the repository, mainly due to added
association navigability. Therefore a source model import facility is required. MOLA
execution environment (MOLA runner) includes a generic model import facility,
which automatically adjusts the imported model to the modified metamodel. Now the
migration transformation can be run on the model. Similarly, a generic export facility
automatically strips all elements of the transformed model which does not correspond
to the original target metamodel. Thus a transformation result is obtained which
directly conforms to the target metamodel. The transformation user is not aware of
these generic import and export facilities, he directly sees the selected source model
transformed.

 4 MOLA Transformations for the Migration

The given migration task is very adequate for implementation in MOLA. The key
issue in the transformation design is to find out which source model elements must be
converted to which target model elements. The best way is to define an informal
mapping, such as:

ActivityGraph/CompositeState -> Activity
ActionState -> OpaqueAction
ObjectFlowState -> Pin
Pseudostate (kind=initial) -> InitialNode
…
Transition -> ObjectFlow (when connected to ObjectFlowState)
Transition -> ControlFlow (otherwise)
and so on.
Now simple MOLA procedures can be built which directly implement the

mappings. The transformation process has to be started from the top elements in the
containment hierarchy, in the given case from ActivityGraph. All elements of a
container, here CompositeState, are transformed using a MOLA foreach loop, running
over these elements (see Fig. 1). Certainly, we assume here that an activity graph
contains just one CompositeState. Further, the procedure State is just a “dispatcher”

Model Migration

40

which finds out what kind of state is really represented by the current StateVertex and
invokes the corresponding transformation.

Fig. 1. MOLA loop iterating over all states in the source model

The transformation of an individual state according to the selected mapping is very
straightforward, for example, the transformation of ActionState is shown in Fig. 2.
Note that along with the target element (OpaqueAction) its mapping to the
corresponding source element (the link sourceElement/targetElement) is built.

Fig. 2. Transformation of ActionState into OpaqueAction

When the nodes have been transformed, edges can be processed. Finding of end
points of an edge to be created is based directly on mappings from the end points of
the source edge. Finally, the partitions are created and transformed nodes are attached
to the corresponding partitions (again using the mappings).

The complete set of transformation procedures is given in the appendix.

Model Migration

41

 5 Conclusions

This migration case study has been very appropriate to be implemented in MOLA.
The hierarchical model structure and relatively simple mappings from source to target
model permitted a quite straightforward implementation by transformations in
MOLA. The most complicated task was to define precisely this source-target element
mapping, because of possible variations in understanding the correspondence between
UML 1.4 and 2.2. Once defined, the mapping fits well into MOLA capabilities, the
structure of the complete transformation given in the appendix corresponds directly to
that mapping. The effort for transformation development was quite low. The required
infrastructure for model management within the MOLA tool also was sufficient for
the case though some less typical situations revealed a couple of deficiencies.

Certainly, a question can be raised whether such model migration task, easily to be
specified by appropriate mappings, couldn’t be solved more formally on the basis of
these mappings. There exist some mapping based approaches (see e.g. [7, 8]) where
ATL transformations can be generated by higher order transformations from a sort of
mappings. However, it seems that expressiveness of these approaches could be
insufficient for natural and complete specification of mappings for this case.
Therefore we preferred an informal definition of the mapping with manual
implementation in MOLA.

References

1. L.M. Rose, D.S. Kolovos, R.F. Paige, F.A.C. Polack: Model Migration Case for TTC 2010.
Transformation Tool Contest 2010 Case studies, 2010 http://planet-
research20.org/ttc2010/index.php?option=com_content&view=article&id=76&Itemid=131

2. OMG, Unified Modeling Language: Superstructure, version 2.2, formal/09-02-02, 2009
3. A. Kalnins, J. Barzdins, E. Celms. Model Transformation Language MOLA. Proceedings of

MDAFA 2004, Vol. 3599, Springer LNCS, 2005, pp. 62-76.
4. UL IMCS, MOLA pages, http://mola.mii.lu.lv/.
5. J. Barzdins, A. Kalnins, E. Rencis, S. Rikacovs. Model Transformation Languages and Their

Implementation by Bootstrapping Method. In Avron, A., Dershowitz, N., Rabinovich, A.,
eds.: Pillars of Computer Science. Vol. 4800, Springer LNCS, 2008, pp. 130–145.

6. Universität Koblenz-Landau, Institute for Software Technology, Graph Laboratory
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IST/AGEbert/MainResearch/
Graphentechnologie/graph-laboratory-gralab

7. M. Didonet Del Fabro, P. Valduriez. Towards the efficient development of model
transformations using model weaving and matching transformations. SoSyM, Vol. 8, N3,
2009, pp. 305-324, Springer-Verlag.

8. D. Lopes, S. Hammoudi, J. Bézivin and F. Jouault. Generating Transformation Definition
from Mapping Specification: Application to Web Service Platform. CAiSE’05, Vol. 3520,
Springer LNCS, 2005, pp. 309-325.

Model Migration

42

Appendix A: Transformation sources.

In this appendix transformation sources will be described.
In Figure 3 the main transformation procedure is demonstrated. Since in the source

(minuml1) metamodel there is no Package hierarchy we simply created one “root”
package in the target metamodel. To include a possibility to copy the source Package
hierarchy we should change this procedure by adding a support for hierarchy.

This procedure calls the procedure Activity (see Fig. 4). It iterates through all
ActivityGraphs (though most probably the source model will contain just one graph).
For each ActivityGraph one UML 2.2 Activity in the root package is created. Then
the transformation finds the Composite state with top association. This state contains
all states of the Activity diagram. The first step is to copy all states (see Fig. 5.) The
second step is to copy all Transitions (see Fig. 11.). Finally Partitions are created and
states are added to appropriate Partitions (see Fig. 13.).

Fig. 3. Main transformation procedure. Root package is created and activity
cloning is invoked.

Model Migration

43

Fig. 4. Procedure Activity iterating through all ActivityGraphs in UML 1.4 and
creating Activities in UML 2.2.

Copying of States is done rather special way. A general state processing
mechanism is used for implementing the specified mapping between state kinds in
UML 1.4 and 2.2. At first the state kind is determined (see Fig. 5.). The type of the
top node is CompositeState. For it the procedure processing composite states is called
(Fig. 6.). In this example it is assumed that a composite state can be used only as a top
node. Therefore all nodes within a composite state are copied and placed directly in
the Activity. For each node its type is determined (see Fig. 5) and the appropriate
copier is called. While copying nodes the mapping association between the old and
new nodes is created. The FinalState corresponds to ActivityFinalNode (Fig. 7.). The
ActionState corresponds to OpaqueAction (Fig. 8.).

Model Migration

44

Fig. 5. Procedure State performing the state cloning. The state type is determined
and the appropriate transformation is called.

Model Migration

45

Fig. 6. Procedure CompositeState. The transformation copies all nodes contained
in a Composite state and places them in the Activity.

Fig. 7. Procedure FinalState transforming final state to ActivityFinalNode.

Model Migration

46

Fig. 8. Procedure Action transforming ActionState to Opaque Action.

In Figure 9 the processing of Pseudostates is described. Depending on Pseudostate
kind the Node type to be created is determined. If the kind is initial an InitialNode is
created. If the kind is join a JoinNode is created. If the kind is fork a ForkNode is
created. If the kind is junction a DecisionNode is created. UML 2.2 has also a
MergeNode but since the role of a junction is not differentiated in UML 1.4 always a
DecisionNode is created for a Junction.

An ObjectFlowState is transformed to a Pin (see Fig. 10). In the updated task
specification it was recommended to transform an ObjectFlowState to an
ActivityParameterNode. As it was already stated in the introduction a Pin represents
the semantics of ObjectFlow state more precisely. Visualization in the Eclipse UML
tool is also much better.

Model Migration

47

Fig. 9. Procedure PseudoState. Type of the node created depends on the Peudostate
kind. If kind is initial an InitialNode is created. If kind is join a JoinNode is created. If

kind is fork a ForkNode is created. If kind is junction a DecisionNode is created.

Model Migration

48

Fig. 10. Procedure ObjectFlow transforming an ObjectFlowState to a Pin.

When all states are copied the transitions are processed. The transformation iterates
through all transitions in an activity graph (see Fig. 11.). It processes each transition
and determines the Edge type which should be created (see Fig. 12 for transition
processing). If source or target of a Transiton is an ObjectFlowState then an
ObjectFlow is created. Otherwise a ControlFlow is created. Source and target nodes
of the new edge are determined using the mapping association between nodes in UML
1.4 model and UML 2.2 model. The same mapping association is created between
transitions and edges. Edges are also linked to the Activity.

If the transition has a guard the appropriate guard is added also to the edge in UML
2.2 (see the final rule in Fig. 12.).

Model Migration

49

Fig. 11. Procedure Transitions finds all transitions in an ActivityGraph and
processes them.

Model Migration

50

Fig. 12. Procedure transition processing one Transition. If one end of the Transition
is ObjectFlow state an ObjectFlow is created. Otherwise a ControlFlow is created.

The final step of the transformation is to process partitions. The procedure in Fig.
13 iterates trough all Partitions in the ActivityGraph and creates a new
ActivityPartition in the Activity for each. In Fig. 14 a loop iterates through all
StateVertex (and Transitions) instances in this Partition, finds the appropriate Node
(Edge) in the target model and adds it to the new ActivityPartition.

Model Migration

51

Fig. 13. Procedure Partition iterates through all partitions in the UML 1.4 model and
creates an appropriate ActivityPartition in UML 2.2.

Model Migration

52

Fig. 14. Procedure PartitionState adding States and Transitions to appropriate
Partitions.

Model Migration

53

UML1.4 to 2.1 Activity Diagram Model Migration with
Fujaba - a Case Study

Andreas Koch
SE, Kassel University

Wilhelmshöher Allee 73
34121 Kassel

email@andreaskoch.net

Ruben Jubeh
SE, Kassel University

Wilhelmshöher Allee 73
34121 Kassel

ruben.jubeh@uni-
kassel.de

Albert Zündorf
SE, Kassel University

Wilhelmshöher Allee 73
34121 Kassel

albert.zuendorf@uni-
kassel.de

ABSTRACT
We have modeled a UML1.4 to UML2.2 Activity Diagram
model transformation for the TTC2010 Transformation Tool
Contest with the Fujaba Tool Suite. The solution uses core
fujaba feature: the whole application is modeled using Story
Driven Modelling [4].

1. INTRODUCTION
This paper reports on our case study with the Fujaba en-
vironment, cf. [www.fujaba.de], on building a UML1.4 to
UML2.2 migration transformation for the TTC2010 Trans-
formation Tool Contest.The transformation reads XMI files
as input and can write a corresponding XMI2 file. The trans-
formation is specified using Story Driven Modeling (SDM).
It is similar to last years BPMN2BPEL transformation so-
lution, see [1].

A common task in model driven software development is
to migrate models when their corresponding meta models
evolve. In this case study, Activity Diagrams specified in
UML1.4 are migrated to the equivalent ones specified in
UML2.2. This is a very exciting task, as Fujabas metamodel
itself is heavily based on UML1.4 and Story Diagrams rely
on activity diagram constructs. We want to migrate Fujaba
to an up-to-date UML2.x metamodel in the future, so this
case study will examine one possible approach to do that.

2. META MODELS AND FRAMEWORK
For getting started with the Meta Models, one solution within
our Tool Suite is to import existing class binaries as .class-
files (preferably available as EMF-conforming model), which
would have been possible for the Eclipse UML2 plugins. As
the Case Study gives .ecore-Files as reference, we imported
those with the roundtrip/reverse engineering Tool UMLLab
1, which has an adapter to Fujaba. As the given models
were simplified not very comprehensive, minor extensions
like container classes were applied by hand. Figure 1 and
2 show the used models within the class diagram editor of
Fujaba.

3. STORY DRIVEN MODELING
Story diagrams are graph rewrite rules embedded in activity
diagrams that allow to query and modify the application’s
object graph on a high level of abstraction. Each Story di-
agram is associated with a method, so Story diagrams call

1http://www.umllab.de/

Void : JUNCTION
Void : JOIN

Void : INITIAL
Void : FORK

PseudoStateKind

«enum»

«static»

0..*

subvertex

CompositeState

0..1

expression

String : body
String : language

BooleanExpression

guard Guard

FinalState

0..*

transitions

1

top StateMachine

0..1 0..*

incoming

0..*1

outgoing
Transition

0..*

partition

0..*

contents

Partition

Boolean : isDynamic

ActionState

PseudoStateKind : kind

PseudoState

StateVertex

ActivityGraph

1

type

ObjectFlowState

State

String : name

ModelElement

Figure 1: UML1.4 Metamodel

each other by invoking other Story diagram methods. A
graph rewrite rule consists of an object graph that is used
as a query pattern to be matched in the current runtime
object graph. It is similar to an object diagram, but adds
also graph/object modifications. Our graph pattern distin-
guish bound objects and unbound objects. Bound objects
are already matched to runtime objects and need not to
be searched any more. In our notation, bound objects show
only their name and omit their type. At execution time, un-
bound objects are matched onto runtime objects such that
the overall match conforms to the search pattern graph.
In addition to querying the runtime graph with a pattern
graph, a graph rewrite rule also allows to model modifica-
tions of the matched elements.

Figure 3 shows a story diagram method. It’s the Constructor
method of the class ModelMigration taking an Activity-

Graph instance (from UML1.4) as parameter (see Figure 4
for associations of this class).

This method contains three graph rewrite steps. The first
one looks for a state instance associated with the Activ-
ityGraph (UML1.4) parameter, and creates, when found,
an (UML2.2) Activity instance. Object or link creation
is denoted by the �create� stereotype and green color.
Furthermore, it assigns the same name via an attribute as-
signment expression and sets all required links between the

Model Migration

54

0..*

group
partition

0..*

edges

0..*0..1

nodes

type

String : name

ModelElement

0..*

edge

guard
0..*

incoming

0..*

outgoing

0..*

node

ActivityNode

ForkNode

ActivityFinalNode DecisionNode JoinNode OpaqueAction InitialNode

ObjectNode
ActivityEdge

ActivityPartitionObjectFlow

ControlFlow

String : body
String : language

OpaqueExpression

Activity

Figure 2: UML2.2 Metamodel

]end[

]each time[

create»
oMigrate

«create»
activityGraph

top

«create»migrationResult
this

«create»

activityGraph.getName():=name

Activity:mainActivity

activityGraphState:state

partition

activityGraph

Partition:partition

ModelMigration::ModelMigration (activityGraph: ActivityGraph): constructor

«create»
group

mainActivity

«create»

partition.getName():=name

ActivityPartition:activityPartition

Figure 3: migration entry point: the constructor

migration and the other object. This is a preparation step of
the migration transformation, creating the parent instance
(Activity) of the migrated model. The second rewrite rule
just looks for all partitions associated with the input activ-
ity graph and creates, for each found (that is indicated by
the double outer box) partition, an ActivityPartition in-
stance (UML2.2).

Graph rewrite rules are an excellent means to model an ap-
plications behavior in terms of operations on its underlying
object graph. The graph patterns allow to express complex
graph queries that are (with some exercise) easy to read and
to understand. Thereby, the programs are easier to extend
and to maintain.

4. THE TRANSFORMATION
Figure 4 shows the class diagram of our transformation.
The central class ModelMigration refers to both the input
graph as UML1.4 AcivityGraph and the output graph ref-

0..*

0..1
visitedStates

0..1

0..1

activityGraph

0..1

0..1
migrationResult

0..10..1stateHandler

0..1
0..1

node
0..1

0..1
state

ActivityNode :)ActivityNode:sourceNode, ObjectFlowState:sourceState (migrateState

ActivityNode :)ActionState:sourceState (migrateState

ActivityNode :)FinalState:sourceState (migrateState
ActivityNode :)CompositeState:sourceState (migrateState

ActivityNode :)Pseudostate:sourceState (migrateState

StateHandler

ActivityNode :)ActivityNode:sourceNode, ObjectFlowState:sourceState (migrateState

ExtensionStateHandler

OpaqueExpression :)Guard:sourceGuard (migrateGuard

Void :)ActivityEdge:targetElement, ModelElement:sourceElement (addEdgeToPartition
)ActivityGraph:activityGraph, CompositeState:compositeState (ModelMigration

)ActivityGraph:activityGraph (ModelMigration

Void :)ActivityNode:targetElement, ModelElement:sourceElement (addNodeToPartition

ActivityEdge :)Boolean:isObjectFlow, ActivityNode:sourceNode, Transition:transition (migrateTransition

Activity :)StateHandler:handler (migrate

ModelMigration

<< from minuml1>>
ActivityGraph

<< from minuml2>>
Activity

<< from minuml1>>
StateVertex

<< from minuml2>>
ActivityNode

StateMapping

Figure 4: Migration Engine class diagram

erenced by it’s parent class Activity. To distinguish be-
tween the different operation modes, as required by the ex-
tension discussed in 5.1, it delegates some migration work
to a StateHandler. Furthermore, it remembers already mi-
grated states via a StateMapping pointing to elements of
both meta models.

Figure 5: Sample input model/graph as eDOBS
view

Figure 5 shows the input model, either constructed as sepa-
rate graph construction rule or imported via XML1.2 file, as
object model in the heap memory, visualized by the eDOBS
runtime debugger tool. Figure 6 in the appendix shows the
same model with partitions, equal to the model given in
the case study. In the following, we will show some of the
methods performing the migration transformation, and the
corresponding runtime object graphs. We start the transfor-
mation by calling migrate(StateHandler) (cf. figure 7) on
a model migration instance. As a result of it’s constructor

Model Migration

55

]end[

]failure[

]success[

ModelMigration::migrate (handler: StateHandler): Activity

«create»
stateHandler

this

handler

toMigrate

subvertex

this

PseudoStateKind.INITIAL==kind

Pseudostate:initialState

CompositeState:mainState

outgoing

initialState

1: migrateTransition(transition,initialNode, false)

this
Transition:transition

mainActivity

migrationResult
this

«create»node

Activity:mainActivity

«create»
handler.migrateState(initialState):= ActivityNode:initialNode

Figure 7: main migration method: find initial node
and continue

method, it is already connected to an Activity instance. Fig-
ure 7 shows the story diagram of this method. It searches for
the Pseudostate declared as initial state and creates a corre-
sponding UML2.2 InitialNode instance. The transforma-
tion continues after that by invoking another story pattern:
migrateTransition(trans, node, boolean) is called via a
collaboration statement on the ModelMigration instance it-
self (this).

Figure 8: Runtime objects during transformation:
first recursion

The migrateTransition(trans, node, boolean) method
is shown in Figure 10. Figure 8 shows an excerpt of the
object graph for the sample model just before the method
gets executed the first time. It will now transform the Ac-
tionstate a16.

Figure 9: Runtime objects during transformation:
second recursion

As a16 still has successor(s) (cf. figure 5), the algorithm will
continue and transform the next action state a11. Figure 9
shows the object graph when entering migrateTransition(-

trans, node, boolean) the second time. A state mapping
remembers that a16 has been transformed already.

In the following, the input graph is now traversed following
all transitions between state vertices in a depth-first man-
ner. We remember already transformed states with state
mapping instances, so a path joining an already traversed
path will terminate the transformation for that branch. Of
course, this approach relies on valid input models with ex-
actly one initial node, but checking the input model before-
hand was out of scope of this work.

Figure 10 shows the central transformation rule: the left
part determines the concrete instance type of the state and
calls the corresponding migrateState(...) method of the
handler. Furthermore, the method creates the additional
flow instance and links it to it’s source and target node. It
converts also the transition guard. Finally it creates a state
mapping. Transformations for the individual UML1.4 state
types are handled in separate methods of the handler. As
an example, figure 11 shows the transformation of an object
flow.

StateHandler::migrateState (sourceState: ObjectFlowState, sourceNode: ActivityNode): ActivityNode

«create»

sourceState.getName():=name

ActivityParameterNode:node

stateHandler

this 1: addNodeToPartition(sourceState, node)

ModelMigration:modelMigration

node

Figure 11: migrate an object flow state

Figure 12 shows a more complex graph rewrite rule: It’s
responsible for migrating the different Pseudostate kinds to
a corresponding activity node.

5. EXTENSIONS

Model Migration

56

5.1 Alternative Object Flow State Migration

]end[

ExtensionStateHandler::migrateState (sourceState: ObjectFlowState, sourceNode: ActivityNode): ActivityNode

stateHandler
ModelMigration:modelMigration

this

«create»
type

«create»
(ObjectFlow)modelMigration.migrateTransition(outTransition, sourceNode, true):= edge

outgoing

«create»

sourceState.getName():=name

ActivityParameterNode:objectNode
modelMigration

1: addNodeToPartition(sourceState, objectNode)

Transition:outTransitionsourceState

null

Figure 13: alternative migration of an object flow
state

o0 : ObjectFlowState sourceState
"Delivered Order"

t1 : Transition
"uml1.Transition@182ef6b"

t3 : Transition
"uml1.Transition@1f02b85"

o4 : OpaqueAction sourceNode

a9 : ActionState
"Collect order"

a8 : ActionState
"Deliver order"

s10 : StateMapping

Figure 14: Object graph before an alternative ex-
tended migration

In contrast to the behavior specified in the StateHandler.-

migrateState(ObjectFlow...) method (cf. figure 11), our
algorithm can also be run with the ExtendedStateHandler,
which overrides this method and specifies a different trans-
formation: Figure 13 shows the Story diagram of the alter-
native method. Figure 14 shows the object graph surround-
ing the ”Delivered Order” object flow state. When executing
the alternative transformation, o0 is mapped to the sourceS-
tate ’variable’. Its predecessor is the action state a8. The ob-
ject graph shows that this state has been migrated already,
indicated by the state mapping s10 to o4, the correspond-
ing source UML2.2 opaque action. In this method, a new
object flow edge instance gets created. The method skips
the transition t1 by invoking migrateTransition(trans,

node, true) directly, so the algorithm will continue with
transition t3. Furthermore, the edge gets an new activity
parameter node as type, preserving the source state’s name.
The result of this method can be seen in figure 15. As you
can see by the mapping links, that the ’middle’ object o0 is
migrated by a typed object flow edge.

5.2 XMI Import and Export
Importing and exporting XML was implemented by hand
using the JDOM library. The import/export code adapts
to the Fujaba generated model elements and is as small as
about 100 LOC each. Besides these classes, everything else
was modeled using Fujaba Story diagrams. The Importer
for XMI1.2 and XMI2.0 uses a reflective mechanism and
is independent of the meta model to be loaded, although
schema checking etc. has not been implemented. By using
reflective mechanisms, it is able in instantiate both UML1.4
and UML2.2 models without introducing a compile time de-
pendency to those. The XMLExporter simply traverses the

o0 : ObjectFlowState sourceState
"Delivered Order"

t1 : Transition
"uml1.Transition@182ef6b"

t3 : Transition outTransition
"uml1.Transition@1f02b85"

o4 : OpaqueAction sourceNode

a8 : ActionState
"Deliver order"

a9 : ActionState
"Collect order"

s10 : StateMapping

o11 : ObjectFlow edge

a12 : ActivityParameterNode objectNode

o13 : OpaqueAction

s14 : StateMapping

Figure 15: Object graph after an alternative ex-
tended migration

activity graph structure and writes the corresponding XML
tree to disk. See the online solution via SHARE [3] for full
listing of the XMI import/export source code.

6. SUMMARY AND OUTLOOK
This case study was a nice exercise for our Fujaba Case
Tool. The transformation rules are intuitive and the itera-
tive approach is easy to understand. Our approach reduces
the problem down to eight graph transformation rules (not
counting helper methods), which take an input structure
fragment and create the corresponding output. The Im-
porter and additional object graph creators show that the
migration transformation works correctly. The development
of the transformation was greatly supported by the eDOBS
[2] eclipse plugin in combination with the Design Level De-
bugging functionality, which visualizes the runtime object
graphs, so one can follow the execution of the transforma-
tion in detail by stepping with the debugger and watch how
the graph is modified.

7. REFERENCES
[1] R. Jubeh. BPMN to BPEL transformation with Fujaba

- a Case Study. In GraBaTs 2009, 5th International
Workshop on Graph-Based Tools, Zurich, Switzerland,
2009.

[2] The EDobs Dynamic Object Browser.
http://www.se.eecs.uni-
kassel.de/typo3/index.php?edobs,
2006.

[3] Fujaba Model Migration SHARE Online Solution.
http://is.tm.tue.nl/staff/pvgorp/share/, 2010.

[4] A. Zündorf. Rigorous object oriented software
development. Habilitation Thesis, University of
Paderborn, 2001.

Model Migration

57

Figure 6: Sample input model/graph as eDOBS view

Model Migration

58

]else[
«create»

state
create»

node
create»
itedStates

targetNodestate

«create»
StateMapping:mapping

this

]visited[

flow

]success[

«create»guard
flow

guard
Guard:guard

transition

«create»
migrateGuard(guard):= OpaqueExpression:newGuard

]success[

]end[

flow

outgoing incoming StateVertex:state

1: migrateTransition(outTransition,targetNode, targetIsObjectFlow)this

Transition:outTransitiontransition

]success[

]success[

]success[

]else[

]isObjectFlow[

]success[

1: Boolean targetIsObjectFlow := false

stateHandler
StateHandler:handlerthis

]failure[

null

]failure[

incoming
ObjectFlowState:objectFlowState

2: isObjectFlow := true

1: targetIsObjectFlow := true

«create»
handler.migrateState(objectFlowState, sourceNode):= ActivityNode:targetNode

transition

]failure[

incoming
ActionState:actionState

«create»
handler.migrateState(actionState):= ActivityNode:targetNode

transition

]failure[

incoming
FinalState:finalState

«create»
handler.migrateState(finalState):= ActivityNode:targetNode

transition

]failure[

incoming
CompositeState:compState

«create»
handler.migrateState(compState):= ActivityNode:targetNode

transition

1: addEdgeToPartition(transition, flow)

«create»incoming

migrationResult
this

«create»

node

targetNode

«create»
edge

Activity:activity

«create»outgoing
sourceNode

transition.getName():=name

flow

«create»
new ObjectFlow():= ActivityEdge:flow

«create»
new ControlFlow():= ActivityEdge:flow

incoming
Pseudostate:pseudoState

«create»
handler.migrateState(pseudoState):= ActivityNode:targetNode

transition

ModelMigration::migrateTransition (transition: Transition, sourceNode: ActivityNode, isObjectFlow: Boolean): ActivityEdge

1: Boolean visited := true

node
ActivityNode:targetNode

state

visitedStates

StateMapping:mapping

this

state

incoming
StateVertex:state

transition

]failure[

Figure 10: Migration transition method

Model Migration

59

]success[

]success[

]success[

]success[

]failure[

null

]failure[

]failure[

]failure[

StateHandler::migrateState (sourceState: Pseudostate): ActivityNode

PseudoStateKind.INITIAL==kind

sourceState

PseudoStateKind.FORK==kind

sourceState

PseudoStateKind.JOIN==kind

sourceState

PseudoStateKind.JUNCTION==kind

sourceState

«create»
new InitialNode():= ActivityNode:node

«create»
new DecisionNode():= ActivityNode:node

«create»
new JoinNode():= ActivityNode:node

«create»
new ForkNode():= ActivityNode:node

sourceState.getName():=name

node

1: addNodeToPartition(sourceState, node)
teHandler

ModelMigration:modelMigration

this

node

Figure 12: Migration of an pseudo state: mapping an enum to different instances

Model Migration

60

A GrGen.NET solution of the Model Migration

Case for the Transformation Tool Contest 2010

Sebastian Buchwald Edgar Jakumeit

June 3, 2010

1 Introduction

The challenge of the Model Migration Case [1] is to migrate an activity
diagram from UML 1.4 to UML 2.2. We employ the general purpose graph
rewrite system GrGen.NET (www.grgen.net) to tackle this task. After a
short description of the GrGen.NET system, we give an introduction into
our solution of the core assignment, followed by a discussion of the various
extensions proposed by the case authors. Finally, we conclude.

2 What is GrGen.NET?

GrGen.NET is an application domain neutral graph rewrite system devel-
oped at the IPD Goos of Universität Karlsruhe (TH), Germany [2]. The
feature highlights of GrGen.NET regarding practical relevance are:

Fully Featured Meta Model: GrGen.NET uses attributed and typed
multigraphs with multiple inheritance on node/edge types. Attributes
may be typed with one of several basic types, user defined enums, or
generic set and map types.

Expressive Rules, Fast Execution: The expressive and easy to learn
rule specification language allows straightforward formulation of even
complex problems, with an optimized implementation yielding high
execution speed at modest memory consumption.

Programmed Rule Application: GrGen.NET supports a high-level rule
application control language, Graph Rewrite Sequences (GRS), offer-
ing logical, sequential and iterative control plus variables and storages
for the communication of processing locations between rules.

Graphical Debugging: GrShell, GrGen.NET’s command line shell,
offers interactive execution of rules, visualising together with yComp
the current graph and the rewrite process. This way you can see what
the graph looks like at a given step of a complex transformation and
develop the next step accordingly. Or you can debug your rules.

1

Model Migration

61

Activity
(XMI)

UML 1.4 model
(Ecore)

Activity
(GrGen)

UML 1.4 model
(GrGen)

Activity
(GrGen)

UML 2.2 model
(GrGen)

Activity
(XMI)

UML 2.2 model
(Ecore)

conformsTo import transformation export

Figure 1: Processing steps of the model migration. The transformation and
the XMI export are written in GrGen.NET languages. Import is handled by
a supplied import filter, which generates .gm files as an intermediate step.

3 The Core Assignment

The task of the core assignment is to migrate an activity diagram conforming
to an UML 1.4 metamodel to a semantically equivalent activity diagram
conforming to an UML 2.2 metamodel. The aim of the task is to evaluate the
solutions regarding correctness, conciseness and clarity, or better to evaluate
the participating tools in how far they allow for such solutions. Before the
transformation can take place, the activity diagram needs to be imported
from an Ecore file describing the source model and an XMI file specifying
the graph. Afterwards the resulting activity diagram has to be exported into
an XMI file conforming to a given Ecore file describing the target model.

3.1 Importing the Graph

As GrGen.NET is a general purpose graph rewrite system and not a model
transformation tool, we do not support importing Ecore metamodels di-
rectly (we directly support GXL and GRS files). Instead we offer an import
filter generating an equivalent GrGen.NET-specific graph model (.gm file)
from a given Ecore file by mapping classes to GrGen node classes, their at-
tributes to corresponding GrGen attributes, and their references to GrGen
edge classes. Inheritance is transferred one-to-one, and enumerations are
mapped to GrGen enums. Class names are prefixed by the names of the
packages they are contained in to prevent name clashes. Afterwards the
instance graph XMI adhering to the Ecore model thus adhering to the just
generated equivalent GrGen graph model is imported by the filter into the
system to serve as the host graph for the following transformations. The
entire process is shown in Figure 1 above.

3.2 Transformation

The transformation is done in several passes, one pass for each node type
and edge type, respectively. Each pass consists of the iterated application

2

Model Migration

62

of one single rule which matches a node or edge of an UML 1.4 type to
process and rewrites it to its corresponding UML 2.2 target type. Instead of
handling the edges together with the nodes we process them separately. This
relieves us from taking care of the multiplicities of the incoming or outgoing
edges, which allows for a simple solution built from very simple rules. This
approach is possible because of the availability of a retype operator which
allows to change the type of a node (edge) keeping all incident edges (nodes).

We start the detailed presentation of the solution with the following
example rule:

rule t rans fo rm Act ionState {
s t a t e : minuml1 ActionState ;

modify {
opaque : uml OpaqueAction<s ta te >;

eval { opaque . name = s t a t e . name ; }
}

}
Rules in GrGen consist of a pattern part specifying the graph pattern to
match and a nested rewrite part specifying the changes to be made. The
pattern part is built up of node and edge declarations or references with an
intuitive1 syntax: Nodes are declared by n:t, where n is an optional node
identifier, and t its type. An edge e with source x and target y is declared
by x -e:t-> y, whereas --> introduces an anonymous edge of type Edge.
Nodes and edges are referenced outside their declaration by n and -e->,
respectively. The rewrite part is specified by a modify block nested within
the rule. Usually, here you would add new graph elements or delete old
ones, but in this case we only want to retype them (also known as relabeling
in the graph rewriting community). Retyping is specified with the syntax
y:t<x>: this defines y to be a retyped version of the original node x, retyped
to the new type t; for edges the syntax is -y:t<x>->. These and a lot more
language elements are described in more detail in the extensive GrGen.NET
user manual [2].

In the example a node state of type ActionState (mind the package
name mangling) is specified in the pattern part to get matched. In the
rewrite part it is specified to get retyped to a node opaque of type Opaque-
Action. Furthermore the name attribute of the original node is assigned
to the name attribute of the new, retyped node in the attribute evaluation
eval.

1it was used in the discussion forum for this case as textual notation to describe the
patterns

3

Model Migration

63

Most of the rules are as easy as this one. Only for a few types, the rewriting
additionally depends on further local information or the context where the
graph element appears in. An example for further local information to be
taken into account is the rule for the transformation of the Pseudostate

nodes. An alternative construct is used here (namespace prefixes were
removed due to space constraints):

rule t rans form PseudoState {
s t a t e : Pseudostate ;

alternative {
I n i t i a l {

i f { s t a t e . k ind == PseudostateKind : : i n i t i a l ; }
modify {

i n i t i a l : In i t i a lNode<s ta te >;
eval { i n i t i a l . name = s t a t e . name ; }

}
}
Join {

i f { s t a t e . k ind == PseudostateKind : : j o i n ; }
modify {

j o i n : JoinNode<s ta te >;
eval { j o i n . name = s t a t e . name ; }

}
}
Fork { /∗ s im i l a r to the cases above ∗/ }
Junct ion { /∗ s im i l a r to the cases above ∗/ }

}

modify {
}

}
There are four possible target types for the source type, so four different
alternative cases are specified, each relabeling to one of the types in their
nested rewrite part. The correct type depends on the kind value of the source
node; this condition is checked by an attribute condition given within the
if-clause (fitting to the rewrite).

An example for context dependency is the rewriting of the Transition

nodes. If they are linked to a node of ObjectFlowState (rewritten to Pin),
they get retyped to nodes of type ObjectFlow, otherwise to nodes of type
ControlFlow. This is expressed again with an alternative statement as
you can see below, with a case for the transformation to control flow, pre-
venting by negative patterns that it matches on the object flow situation,
and two almost identical cases for the incoming and outgoing object flow.

4

Model Migration

64

rule t r an s f o rm Trans i t i on {
t r a n s i t i o n : Trans i t i on ;

alternative {
contro lFlow {

negative {
t r a n s i t i o n <−:StateVertex incoming− : uml Pin ;

}
negative {

t r a n s i t i o n <−:StateVertex outgo ing− : uml Pin ;
}
modify {

c f : uml ControlFlow<t r an s i t i o n >;
eval { c f . name = t r a n s i t i o n . name ; }

}
}
incomingObjectFlow {

t r a n s i t i o n <−:StateVertex incoming− : uml Pin ;
modify {

o f : uml ObjectFlow<t r an s i t i o n >;
eval { o f . name = t r a n s i t i o n . name ; }

}
}
outgoingObjectFlow { /∗ s im i l a r to case above ∗/ }

}

modify {
}

}

As a final example for the transformation core let us have a look at one of
the rules for the retyping of the edges – they follow the GrGen design target
of handling nodes and edges as uniform as possible: they are nearly identical
to the rules for the retyping of the nodes:

rule t r an s f o rm Sta t eMach ine t r an s i t i on s {
−e : minuml1 StateMachine trans i t ions−>;

modify {
−: uml Act iv i ty edge<e>−>;

}
}

5

Model Migration

65

The four shown rules are applied from within the graph rewrite script for
the core solution executed by the GrShell:

import or ig ina l min imal metamode l . e co re
evolved metamodel . e co re
o r i g i n a l mode l . xmi core . grg

Transform nodes
xgrs . . . | t rans fo rm Act ionState ∗ | t rans form PseudoState ∗

| t r an s f o rm Trans i t i on ∗ | . . .
Transform edges
debug xgrs . . . | t r an s f o rm Sta t eMach ine t r an s i t i on s ∗ | . . .

The xgrs keyword starts an extended graph rewrite sequence, which is
the rule application control language of GrGen (prepending debug before
xgrs allows you to debug the sequence execution in GrShell). The single
rules are applied iteratively by the star operator until no match is found.
They are linked by eager ors which get executed from left to right, yielding
the disjunction of the truth values emanating from iteration execution (a rule
which can get applied because a match is found in the graph succeeds(true),
whereas a rule for which no match is found fails(false); the star operator
always succeeds).

Overall our solution complies to the following scheme:

• For each node or edge type there is one rule relabeling an element of
this type, often containing nothing more than this relabeling, some-
times using alternatives to decide between possible target types de-
pending on the context.

• Each of this rules gets applied exhaustively, one rule after the other;
first handling all node types, then handling all edge types (thus a few
context dependent rules match against nodes/edges of types from the
source and target model).

The modulare nature of this approach facilitates extensions regarding the
support of additional UML elements and the realization of alternative se-
mantics (see section 4). (Please note that it would be possible to shrink the
number of rules down to one to be applied iteratively using an alternative
with a lot of cases; or by using strings instead of types to encode the model
types, transforming them by string replacement using map types and map
lookup. But we prefer to give straight forward real-world solutions.)

3.3 Exporting the Graph

Our XMI exporter consists of several graph transformation rules that tra-
verse the graph hierarchically while emitting the corresponding XMI tags.
The following rule exports an activity:

6

Model Migration

66

rule em i t a c t i v i t y {
a c t i v i t y : uml Act iv i ty ;
a c t i v i t y −:DumpEdge−> d :DumpNode ;

modify {
emit (” <packagedElement xmi : type=\”uml : Ac t i v i t y \””) ;
emit (” xmi : id=\”” + d . id + ”\””) ;
emit (” name=\”” + a c t i v i t y . name + ”\”>\n”) ;
exec (em i t a c t i v i t y nod e s (a c t i v i t y)) ;
exec (em i t a c t i v i t y e d g e s (a c t i v i t y)) ;
exec (em i t a c t i v i t y g r oup s (a c t i v i t y)) ;
emit (” </packagedElement>\n”) ;

}
}
Since we need a unique ID for each node, we connect each node to a DumpNode
node that provides such an ID. The emit statements emit the given strings;
here they fill up the template of the XMI tag with node attributes. The
rules executed by the exec statement are responsible for emitting all nodes,
edges, and groups of the current activity, respectively.

4 The Extensions

In addition to the core task three extensions were proposed:

• Alternative Object Flow State Migration Semantics

• Concrete Syntax

• XMI

We will discuss them and our solutions to them in the following sections.

4.1 Alternative Object Flow State Migration Semantics

The goal of this extension is to transform a node of type ObjectFlowState
linked to nodes of type Transition to a node of type ObjectFlow only,
instead of transforming them to a node of type Pin linked to nodes of type
ObjectFlow. The purpose of this task is to evaluate how well the trans-
formation tools can cope with transformations which do not map source
pattern elements injectively to target pattern elements. Or to put it in an-
other way: require real graph rewriting instead of only graph relabeling. As
GrGen.NET is a graph rewrite system in the first place, this does not cause
any problems:

7

Model Migration

67

rule trans form ObjectFlowState2 {
s t a t e : ObjectFlowState ;
s1 : StateVertex <−:T rans i t i on sour c e− t1 : Trans i t i on ;
t1 −: T ran s i t i on t a r g e t−> s t a t e ;
s t a t e <−:T rans i t i on sour c e− t2 : Trans i t i on ;
−: T ran s i t i on t a r g e t−> s2 : StateVertex ;
s t a t e <−:Pa r t i t i on con t en t s− p : Pa r t i t i on ;

modify {
delete (s ta te , t2) ;

f low : ObjectFlow<t1>;
f l ow −: Act iv i tyEdge targe t−> s2 ;
f low <−:Act ivityNode incoming− s2 ;
f low −: Ac t i v i tyEdge inPar t i t i on−> p ;
f low <−:Ac t i v i t yPa r t i t i on edge− p ;

eval { f l ow . name = s t a t e . name ; }
}

}

4.2 Concrete Syntax

The goal of this extension is to transform the concrete syntax, i.e. the user
drawn diagram layout, from the given diagram to the concrete syntax of
the tool under consideration. As GrGen.NET was originally developed for
handling compiler intermediate language graphs which do not possess a user
drawn layout we do not offer a concrete visual syntax showing user editing.
So we cannot transform any concrete syntax — but as the ultimate goal of a
concrete syntax is a nice layout, we want to present a solution of a different
kind: we offer a highly customizable graph viewer with automatic layout –
which comes near to the concrete syntax of the activity diagram given as
you may see in Figure 2.

In a lot of situations an automatic layout is the better choice as it delivers
a very nice presentation without user interaction (besides a few lines of
configuration code). You can configure the graph viewer named yComp
which gets executed from GrShell to use one of several available layout
algorithms – with hierarchic, compilergraph and organic being the most
useful ones. You can configure for every available node or edge type in
which colour with what node shape or edge style it should be shown, with
what attribute values or fixed text as element labels or tags it is to be
displayed, or if it should be shown at all. Further on you can configure
graph nesting by registering edges at certain nodes to define a containment
hierarchy, causing the nodes to become displayed as subgraphs containing

8

Model Migration

68

Figure 2: The transformed UML 2.2 activity diagram as displayed by yComp

the elements to which they are linked by the given edges. Additionally it
offers automatic cutting of hierarchy crossing edges, marking the begin and
end by fat dots, allowing to jump to either one by clicking on the other.
You can easily define a layout matching your graph class by a few dozen
lines of configuration information and afterwards you get a fully automatic,
high-quality layout of your instance graphs.

In the following listing, we show an excerpt from our configuration file
for customizing the graph layout of the UML 2.2 diagram (the first two
lines ensure that each ActivityPartition node contains all nodes that are
connected by an outgoing uml ActivityPartition node edge):

dump add node uml Ac t i v i t yPar t i t i on group by
hidden outgoing uml Act i v i tyPar t i t i on node

dump set node uml Ac t i v i t yPar t i t i on labels o f f
dump add node uml Ac t i v i t yPar t i t i on shortinfotag name

dump add edge uml Act iv i tyNode inPar t i t i on exclude

dump set node uml DecisionNode shape rhomb
dump set node uml DecisionNode labels o f f
dump set node uml DecisionNode color white

9

Model Migration

69

4.3 XMI

The goal of this extension is to import an activity diagram given in XMI
1.x instead of XMI 2.x. The task is to write an import filter for an outdated
format used in the model transformation community. While we did write an
import filter for XMI 2.x (a slightly extended version of the filter originally
introduced for the GraBaTs 2009 Reverse Engineering case [3]), we will not
write a filter for XMI 1.x. The XMI 2.x filter allows to use the transformation
capabilities of GrGen.NET with data in the Ecore/XMI format common
to the model transformation community briding the graph rewriting and
the model transformation communities; but supplying another Ecore/XMI
filter just for the sake of this contest is beyond our scope. And we think
it is out of scope even for the TTC as such: we doubt writing an import
filter is a worthwhile challenge for a transformation tool contest comparing
the transformation capabilities of the competing tools in order to foster the
progress in software engineering. If it really were, we would like to propose to
the authors from the model transformation community to follow our example
bridging both worlds by writing an import filter for GXL, the standard in
the graph rewriting community.

5 Conclusion

In this paper we presented a GrGen.NET solution to the Model Migration
challenge of the Transformation Tool Contest 2010. The activity diagram
conforming to the UML 1.4 metamodel was imported by an import filter
under remapping to the graph concepts supported by GrGen. It was trans-
formed to a semantically equivalent activity diagram conforming to an UML
2.2 metamodel using graph relabeling : this ability of retyping nodes (edges)
while keeping their incident edges (nodes) allowed us to give a very con-
cise and simple solution to the core task of the Model Migration challenge,
exhaustively relabeling nodes then edges with very simple rules until the
entire graph was transformed. Retyping of elements from the source model
to different target types depending on further, context information was pos-
sible by using alternatives in our patterns. The first extension requiring
real graph rewriting was solved easily with one additional declarative graph
rewrite rule, in an intuitive syntax similar to the one specified by the authors.
The second extension was not tackled directly due to the lack of a concrete
syntax; but we presented an alternative solution (performing even better in
a lot of cases) regarding the ultimate goal of a concrete syntax with our
graph viewer yComp, delivering an excellent automatic layout of arbitrary
data from a few lines of configuration information. The third extension was
not tackled at all as we regard it off-topic at least for us.

10

Model Migration

70

References

[1] Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.: Model Migration
Case for TTC 2010. http://is.ieis.tue.nl/staff/pvgorp/events/

TTC2010/cases/ttc2010_submission_2_v2010-04-22.pdf (2010)

[2] Blomer, J., Geiß, R., Jakumeit, E.: The GrGen.NET User Manual.
http://www.grgen.net (2010)

[3] Buchwald, S., Jakumeit, E., Kroll, M.: A GrGen.NET so-
lution of the Program Comprehension case for the GraBaTs
2009 Contest (2009) http://is.tm.tue.nl/staff/pvgorp/events/

grabats2009/submissions/grabats2009_submission_13-final.pdf.

11

Model Migration

71

Migrating UML Activity Models with COPE

Markus Herrmannsdoerfer

Institut für Informatik, Technische Universität München
Boltzmannstr. 3, 85748 Garching b. München, Germany

herrmama@in.tum.de

Abstract. When a metamodel is adapted, the intention behind the
metamodel adaptation is usually lost. To not lose the intention, COPE
records the coupled evolution of metamodels and models, i. e. the model
migration together with the metamodel adaptation. The coupled evo-
lution is recorded as a sequence of coupled operations, each of which
encapsulates a combination of metamodel adaptation and model mi-
gration. To further reduce the effort for building a model migration,
recurring coupled operations can be reused. The recorded sequence of
coupled operations can be used to migrate existing models. COPE is
implemented based on the Eclipse Modeling Framework (EMF). In this
paper, we apply COPE to migrate Activity models from UML 1.4 to 2.1.

1 COPE in a Nutshell

This paper explains the application of COPE to the model migration case [1]
of the Transformation Tool Contest (TTC) 2010. As is depicted in Figure 1,
COPE records the metamodel adaptation as a sequence of primitive changes
in an explicit history model [2]. COPE supports two methods to form coupled
operations, i.e. to attach a model migration to a sequence of primitive changes [3].

Reuse of recurring migration specifications allows to reduce the effort associ-
ated with building a model migration [4]. COPE thus provides reusable coupled
operations which encapsulate metamodel adaptation and model migration in a
metamodel-independent way. Reusable coupled operations are organized in a li-
brary which can be extended by declarations of new operations. The declaration
is made independent of a specific metamodel through parameters, and may pro-
vide constraints to restrict the applicability of the operation. Listing 1 shows
the interface and implementation of the operation Unfold Class which is required
for the case study and whose semantics is informally explained in Section 4.
Currently, COPE comes with over 60 reusable coupled operations. By means
of studying real-life metamodel histories [3–5], we have shown that, in practice,
most of the coupled evolution can be covered by reusable coupled operations.
The case study also confirms these results, since only 1 of the 40 applied coupled
operations is not reusable (see Table 1).

Specifications of model migration can become so specific to a certain meta-
model that reuse makes no sense [4]. To be able to cover these specifications,
COPE allows the user to manually define a custom coupled operation. In order

Model Migration

72

COPE

Migrator

generate

Meta-
model

record

Metamodel
Adaptation

apply

Custom
Coupled
Operation

Model
Migration

user

Reusable
Coupled

Operations

adapt

Li
br

ar
y

H
is

to
ry

Fig. 1. Overview of COPE

to do so, the user has to manually encode a model migration for a recorded
metamodel adaptation. To encode a model migration, COPE provides a lan-
guage expressive enough to cater for complex model migrations. This language—
which is also used to implement reusable coupled operations—is embedded into
Groovy1 to take advantage of its expressiveness. By softening the conformance
of the model to the metamodel within a coupled operation, both metamodel
adaptation and model migration can be specified as in-place transformation. A
transaction mechanism ensures conformance at the boundaries of the coupled
operation. Due to the in-place transformation, the language requires to specify
only the difference for both metamodel and model. In the case study, only 1
coupled operation could not be covered by reusable coupled operations and thus
required the implementation of a custom migration (see Table 1). This custom
coupled operation is shown as part of Listing 2.

A migrator can be generated from the history model that allows for the batch
migration of existing models. The migrator packages the sequence of coupled
operations which can be executed to automatically migrate existing models.
Listing 2 shows the generated migrator for the case study.

2 Forward Engineering the Coupled Evolution

To not lose the intention behind the metamodel adaptation, COPE is intended
to be used already when adapting the metamodel. Therefore, COPE’s user in-
terface which is depicted in Figure 2 is directly integrated into the existing EMF
metamodel editor. The user interface provides access to the history model in
which COPE records the sequence of coupled operations. An initial history can
be created for an existing metamodel by invoking Create History in the operation
browser which also allows the user to Release the metamodel.

1 http://groovy.codehaus.org/

Model Migration

73

m
ig

ra
tio

n
ed

ito
r

m
et

am
od

el
 e

di
to

r

op
er

at
io

n
br

ow
se

r

hi
st

or
y

m
od

el

Fig. 2. User Interface of COPE (Shaded lines mean that elements have been cut out
to fit the important information onto the paper)

The user can adapt the metamodel by applying reusable coupled operations
through the operation browser. The operation browser allows to set the param-
eters of a reusable coupled operation, and gives feedback on its applicability
based on the constraints. When a reusable coupled operation is executed, its
application is automatically recorded in the history model. Figure 2 shows the
operation Unfold Class being selected in the operation browser and recorded to
the history model.

The user needs to perform a custom coupled operation only, in case no
reusable coupled operation is available for the change at hand. First, the meta-
model is directly adapted in the metamodel editor, in response to which the
changes are automatically recorded in the history. A migration can later be at-

Model Migration

74

tached to the sequence of metamodel changes. Figure 2 shows the migration
editor to encode the custom migration required for the case study.

3 Reverse Engineering the Coupled Evolution

If COPE was not used for adapting the metamodel, the intention behind the
metamodel adaptation is already lost. In the case study, we only have access to
the version of the metamodel before and after adaptation. Therefore, the history
model needs to be recovered from the two metamodel versions.

COPE provides tool support to reverse engineer the history model. Figure 3
depicts the user interface to let a source metamodel version converge to a target
metamodel version. As a prerequisite, the source metamodel version is loaded
directly in the metamodel editor, together with its initial history. The target
metamodel is displayed in a separate view which can be obtained by invoking
Converge in the operation browser (see Figure 2) and selecting the file containing
the target metamodel. This so-called Convergence View also displays the current
difference model which results from the comparison between the source and tar-
get metamodel. The differences are linked to the metamodel elements from both
source and target version to which they apply. Breaking changes [6] in the dif-
ference model—i. e. metamodel changes which necessitate a model migration—
are highlighted in red. By means of the operation browser, the user can apply
reusable coupled operations to bring the source metamodel nearer to the target
metamodel. After an operation is executed on the source metamodel, the differ-
ence is automatically updated to reflect the changes. Changes in the difference
model which are not breaking can be easily applied to the source metamodel by
double-clicking on them.

4 Library of Reusable Coupled Operations

In this section, we list and explain all coupled operations that are needed for
the case study. The coupled operations are classified according to their effect on
existing models [7]. This allows to reason about the coupled evolution. Table 1
provides an overview over the coupled operations, their type, effect and number
of occurrences.

4.1 Refactorings

Refactorings preserve the set of models that can be built. Consequently, the
information contained in models is preserved in response to a refactoring.

Rename: A class or feature is renamed. Renaming is propagated to the model.
In the case study, Rename is used to map the state diagram classes and features
to activity diagram classes and features, respectively.

Inline Super Class: An abstract super class is inlined into its sub classes. On
the metamodel level, the class is removed and its features are pushed down to the

Model Migration

75

Fig. 3. Metamodel Convergence (Due to lack of space, the operation browser is not
shown in this figure.)

sub classes. On the model level, the values of these features have to be moved
accordingly. In the case study, Inline Super Class is used to remove classes for
which there is no corresponding class in the new metamodel—e. g. Statemachine
(line 3 in Listing 2) and Pseudostate (line 31).

Unfold Class: A single-valued containment reference is replaced by the fea-
tures defined by its target class. On the metamodel level, the reference is deleted
and the features of its target class are copied to its source class. On the model
level, the values of these features are moved accordingly. Listing 1 shows the
implementation of Unfold Class. In the case study, Unfold Class is e. g. used to
replace the containment reference top in Statemachine with the features of the
sub class CompositeState of its target class (line 10).

Model Migration

76

Table 1. Coupled Operations required for the case study

Coupled Operation Type Effect #

Rename Reusable Refactoring 21
Inline Super Class Reusable Refactoring 3
Unfold Class Reusable Refactoring 2
Enumeration to Sub Classes Reusable Refactoring 1
Partition Reference Reusable Refactoring 1

Delete Feature Reusable Destructor 8
Make Class Abstract Reusable Destructor 2
Specialize Reference Reusable Destructor 1

Split Class Custom Constructor 1

Enumeration to Sub Classes: An enumeration attribute of a class is replaced
by subclasses. On the metamodel level, the class is made abstract, and a sub-
class is created for each literal of the enumeration. The enumeration attribute
is deleted and also the enumeration, if not used otherwise. On the model level,
instances of the class are migrated to the appropriate subclass according to the
value of the enumeration attribute. In the case study, Enumeration to Sub Classes
is used to split PseudoState into a sub class for each literal of the enumeration
PseusoStateKind (line 25).

Partition Reference: A reference is partitioned into a number of references
according to its type. On the metamodel level, a sub reference is created for each
subclass of the reference’s type which needs to be abstract. Finally, the original
reference is deleted. On the model level, the value of the reference is partitioned
accordingly. In the case study, Partition Reference is used to partition the ref-
erence contents of Partition into references for each subclass of ModelElement
(line 34).

4.2 Destructors

Destructors decrease the set of models that can be built. Consequently, infor-
mation may be lost in models in response to a destructor.

Delete Feature: On the metamodel level, a feature is deleted. If the feature
is a reference that has an opposite reference, then the opposite is also deleted.
On the model level, the values of the features are deleted. In the case study,
Delete Feature is used to delete features that are no longer available in the target
metamodel, e.g. isDynamic of ActionState. Delete Feature is often applied to
delete features that are created by earlier applications of other operations. For
instance, the application of Unfold Class leads to more features than are actually
part of the new metamodel (lines 11, 13 and 14).

Make Class Abstract: On the metamodel level, a class is made abstract. On
the model level, instances of this class are migrated to a selected subclass. In the
case study, classes are made abstract to be able to apply Inline Super Class. For
instance, State is made abstract, and its instances are migrated to ActionState
which is renamed to OpaqueAction (line 7).

Model Migration

77

Specialize Reference: A reference is specialized by restricting its type and/or
multiplicity. On the model level, values no longer conforming to the new type
or multiplicity are removed. In the case study, the type of top is specialized
to CompositeState so that we are able to unfold its features into StateMachine
(line 8).

4.3 Constructors

Constructors increase the set of models that can be built. Consequently, no
information is lost in models due to a constructor, but new information can be
added to models.

Split Class: A class is split into several sub classes. On the metamodel level,
the class is made abstract and the sub classes are created. On the model level,
instances of the class have to be migrated to one of the sub classes. Custom
code is necessary to implement the logic to decide to which sub class a certain
instance is migrated. In the case study, Split Class is used to split Transition—
which is renamed to ActivityEdge—into ControlFlow and ObjectFlow (lines 41
to 56). If source or target of an ActivityEdge is an ObjectNode, then we migrate
to ObjectFlow, otherwise to ControlFlow.

5 Discussion

The solution is discussed along the evaluation criteria of the case [1].
Correctness. The reverse engineered coupled evolution is correct in the sense

that it produces the same model as the one provided with the case. Additionally,
by classifying coupled operations, one can reason about their effect on exist-
ing models. To adapt the provided minimal original metamodel to the evolved
metamodel, a number of coupled operations were necessary that may lead to
information loss in existing models. This is however not the case for the pro-
vided original model, but may be the case for other models conforming to the
original metamodel. To not lose information in these other models, additional
metamodel elements of the complete metamodels may have to be added to the
minimal metamodels.

Conciseness. We showed that most of the coupled evolution can be auto-
mated by reusable coupled operations, while only a very small amount (9 lines)
of migration code needs to be handcoded. Therefore, the solution can be con-
sidered as very concise. However, to profit from reusable coupled operations,
the user needs to have knowledge about the operations in the library. COPE
supports the user to select an operation by only showing those operations in the
operation browser that are applicable based on the currently selected element in
the metamodel editor.

Clarity. For users familiar with typical model transformation languages, the
coupled evolution may be difficult to understand. This is probably due to the fact
that the model migration is modularized along the metamodel adaptation. How-
ever, the modularization allows to understand and reason about each coupled

Model Migration

78

operation separately. COPE provides additional tool support to interactively
reconstruct the different metamodel versions, when browsing the metamodel
history. To understand the model migration induced by the employed reusable
coupled operations, knowledge about the library is helpful, though not necessary,
as COPE provides a view that interactively shows the documentation for each
reusable coupled operation.

6 Conclusion

In this paper, we presented the application of COPE to reverse engineer the cou-
pled evolution of the provided case study. Even with the tool support for reverse
engineering, effort was required to select the appropriate reusable coupled oper-
ations. To ease reverse engineering the coupled evolution, we envision a function
that automatically proposes reusable coupled operations based on the difference
between two metamodel versions. COPE is open source and can be obtained
from its website2. The website also provides a screencast, documentation and
several examples (including the case study from this paper). Moreover, COPE
is about to be made available via the newly created Eclipse Project Edapt3.

The presented case study is not a typical case study for model migration. In
a typical metamodel adaptation scenario, only a rather small part of the meta-
model is adapted. In model transformation languages which are not tailored for
model migration, identity mappings need to be specified for metamodel elements
that have not changed. Due to the minimality of the provided metamodel ver-
sions, nearly all the metamodel was adapted. Consequently, nearly no identity
mappings are necessary in conventional model transformation languages which
is rather untypical for model migration. Note that COPE does not require to
specify identity mappings either in a typical metamodel adaptation scenario due
to the in-place nature of the transformation.

Acknowledgments. This work was funded by the German Federal Ministry of Ed-
ucation and Research (BMBF), grants “SPES2020, 01IS08045A” and “Quamoco,
01IS08023B”.

References

1. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.: Model migration case for ttc
2010. In: TTC 2010: Proc. Transformation Tool Contest Workshop. (2010)

2. Herrmannsdoerfer, M.: Operation-based versioning of metamodels with cope. In:
CVSM ’09: Proceedings of the 2009 ICSE Workshop on Comparison and Versioning
of Software Models, Washington, DC, USA, IEEE Computer Society (2009) 49–54

3. Herrmannsdoerfer, M., Benz, S., Juergens, E.: COPE - automating coupled evolu-
tion of metamodels and models. In: ECOOP 2009 - Object-Oriented Programming.
Volume 5653 of Lecture Notes in Computer Science., Springer Berlin / Heidelberg
(2009) 52–76

2 http://cope.in.tum.de
3 http://www.eclipse.org/proposals/edapt/

Model Migration

79

4. Herrmannsdoerfer, M., Benz, S., Juergens, E.: Automatability of coupled evolution
of metamodels and models in practice. In Czarnecki, K., Ober, I., Bruel, J.M., Uhl,
A., Völter, M., eds.: Model Driven Engineering Languages and Systems (MODELS
2008). Volume 5301/2008 of Lecture Notes in Computer Science., Springer Berlin /
Heidelberg (October 2008) 645–659

5. Herrmannsdoerfer, M., Ratiu, D., Wachsmuth, G.: Language evolution in practice:
The history of GMF. In: Software Language Engineering. Volume 5969 of Lecture
Notes in Computer Science., Springer Berlin / Heidelberg (2010) 3–22

6. Becker, S., Goldschmidt, T., Gruschko, B., Koziolek, H.: A process model and clas-
sification scheme for semi-automatic meta-model evolution. In: Proc. 1st Workshop
MDD, SOA und IT-Management (MSI’07), GiTO-Verlag (2007) 35–46

7. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: ECOOP 2007
- Object-Oriented Programming. Volume 4609/2007 of Lecture Notes in Computer
Science., Springer Berlin / Heidelberg (2007) 600–624

A Extensions

The appendix discusses the extensions of the case [1]. The solution addresses
both variants of the core migration task, but does not address the ArgoUML
extensions.

A.1 Alternative Object Flow State Migration Semantics

COPE provides tool support to refactor the history model for the core model
migration to integrate the semantic extension. Listing 3 shows the replacement
for the custom coupled operation in Listing 2 (lines 41 to 56). First, a custom
migration can be removed and another one can be attached. In the case study,
we replaced the custom migration to split the class ActivityEdge by a custom mi-
gration to build instances for the subclass ObjectFlow (lines 2 to 19 in Listing 3).
In this custom migration, edges incoming to and outgoing from ObjectNodes are
replaced by direct ObjectFlows. So this leaves us with two primitive changes
(make class ActivityEdge abstract, create subclass ControlFlow) that have no
longer a custom migration attached. Making the class ActivityEdge abstract is
breaking and thus requires a migration. Second, metamodel changes can be re-
ordered, as long as they respect dependencies between the changes. In the case
study, we moved the changes to make class ActivityEdge abstract and to create
its concrete subclass ControlFlow to after the new custom coupled operation.
Third, primitive metamodel changes can be replaced by reusable coupled opera-
tions which perform the same change on the metamodel level. In the case study,
we replaced the primitive change to make class ActivityEdge abstract with the
reusable coupled operation Make Class Abstract. However, the semantics exten-
sion leads to more loss of information than the core migration, as instances of
ObjectNode are deleted by the custom coupled operation.

A.2 XMI

COPE is not intended to bridge several technological spaces, but to provide
support for incrementally adapting EMF metamodels. If we had a bridge that

Model Migration

80

generically migrates metamodels and models from XMI 1.2 to EMF, then COPE
could be used on the result in a straightforward manner.

A.3 Concrete Syntax

The provided concrete syntax is also from a different technological space and
hence its migration is currently not supported.

Model Migration

81

Listing 1. Reusable coupled operation Unfold Class
1 @description("In the metamodel, a class reachable through a single−valued " +
2 "containment reference is unfolded. More specifically, its features are " +
3 "copied to the source class of the reference which is deleted. In the "
4 "model, the values of these features are moved accordingly.")
5 @label("Unfold Class")
6 unfoldClass = {
7 @description("The reference to the class to be unfolded")
8 EReference reference −>
9

10 // variables
11 def EClass unfoldedClass = reference.eReferenceType
12 def EClass contextClass = reference.eContainingClass
13 def List<EStructuralFeature> features =
14 new ArrayList(unfoldedClass.eAllStructuralFeatures)
15

16 // constraints
17 assert reference.eOpposite == null :
18 "The reference must not have an opposite"
19 assert reference.upperBound == 1 :
20 "The multiplicity of the reference must be single−valued"
21 assert reference.containment :
22 "The reference must be containment"
23 assert unfoldedClass.eSubTypes.isEmpty() :
24 "The class to be unfolded must not have sub classes"
25

26 // metamodel adaptation
27 def unfoldedFeatures = []
28 for(feature in features) {
29 def unfoldedFeature = feature.clone()
30 unfoldedFeatures.add(unfoldedFeature)
31 // ensure uniqueness of the name of the unfolded feature
32 if(contextClass.getEStructuralFeature(feature.name) != null) {
33 unfoldedFeature.name = unfoldedFeature.name + " " + unfoldedClass.name
34 }
35 contextClass.eStructuralFeatures.add(unfoldedFeature)
36 if(feature instanceof EReference && feature.eOpposite != null) {
37 def foldedOpposite = feature.eOpposite.clone()
38 foldedOpposite.eType = contextClass
39 // ensure uniqueness of the name of the opposite feature
40 foldedOpposite.name = foldedOpposite.name + " " + contextClass.name
41 feature.eType.eStructuralFeatures.add(foldedOpposite)
42 foldedOpposite.eOpposite = unfoldedFeature
43 }
44 }
45 reference.delete()
46

47 // model migration
48 for(contextElement in contextClass.allInstances) {
49 unfoldedElement = contextElement.unset(reference)
50 if(unfoldedElement != null) {
51 int i = 0;
52 for(feature in features) {
53 contextElement.set(unfoldedFeatures[i],
54 unfoldedElement.unset(feature))
55 i++;
56 }
57 unfoldedElement.delete()
58 }
59 }
60 }

Model Migration

82

Listing 2. Migrator code generated from the reverse engineered history model
1 // reusable coupled operations
2 makeAbstract(minuml1.StateMachine, minuml1.ActivityGraph)
3 inlineSuperClass(minuml1.StateMachine)
4 rename(minuml1.ActivityGraph, "Activity")
5 rename(minuml1.Activity.partition, "group")
6 rename(minuml1.StateVertex, "ActivityNode")
7 makeAbstract(minuml1.State, minuml1.ActionState)
8 specializeReference(minuml1.Activity.top, minuml1.CompositeState, 1, 1)
9 inlineSuperClass(minuml1.State)

10 unfoldClass(minuml1.Activity.top)
11 deleteFeature(minuml1.Activity.name CompositeState)
12 rename(minuml1.Activity.transitions, "edge")
13 deleteFeature(minuml1.Activity.incoming)
14 deleteFeature(minuml1.Activity.outgoing)
15 rename(minuml1.Activity.subvertex, "node")
16 rename(minuml1.Partition, "ActivityPartition")
17 rename(minuml1.CompositeState, "StructuredActivityNode")
18 rename(minuml1.StructuredActivityNode.subvertex, "node")
19 rename(minuml1.Transition, "ActivityEdge")
20 unfoldClass(minuml1.ActivityEdge.guard)
21 deleteFeature(minuml1.ActivityEdge.name Guard)
22 rename(minuml1.BooleanExpression, "OpaqueExpression")
23 rename(minuml1.ActionState, "OpaqueAction")
24 deleteFeature(minuml1.OpaqueAction.isDynamic)
25 enumerationToSubClasses(minuml1.Pseudostate.kind, minuml1)
26 rename(minuml1.initial, "InitialNode")
27 rename(minuml1.join, "JoinNode")
28 rename(minuml1.fork, "ForkNode")
29 rename(minuml1.junction, "DecisionNode")
30 rename(minuml1.ActivityEdge.expression, "guard")
31 inlineSuperClass(minuml1.Pseudostate)
32 rename(minuml1.ObjectFlowState, "ObjectNode")
33 rename(minuml1.FinalState, "ActivityFinalNode")
34 partitionReference(minuml1.ActivityPartition.contents)
35 rename(minuml1.ActivityPartition.activityEdge, "edges")
36 rename(minuml1.ActivityPartition.activityNode, "nodes")
37 deleteFeature(minuml1.ActivityPartition.guard)
38 deleteFeature(minuml1.ActivityPartition.activity)
39 deleteFeature(minuml1.ActivityPartition.activityPartition)
40

41 // custom coupled operation: Split Class
42 // metamodel adaptation
43 activityEdgeClass = minuml1.ActivityEdge
44 activityEdgeClass.’abstract’ = true
45 newClass(minuml1, "ControlFlow", [minuml1.ActivityEdge], false)
46 newClass(minuml1, "ObjectFlow", [minuml1.ActivityEdge], false)
47

48 // model migration
49 for(edge in activityEdgeClass.allInstances) {
50 if(edge.source.instanceOf(minuml1.ObjectNode) | |
51 edge.target.instanceOf(minuml1.ObjectNode)) {
52 edge.migrate(minuml1.ObjectFlow)
53 } else {
54 edge.migrate(minuml1.ControlFlow)
55 }
56 }
57

58 // reusable coupled operations
59 rename(minuml1Package, "minuml2")
60 minuml1Package = minuml1
61 minuml1Package.nsPrefix = "minuml2"
62 minuml1Package.nsURI = "minuml2"

Model Migration

83

Listing 3. Update for the extension of the migration semantics
1 ...
2 // custom coupled operation
3 // metamodel adaptation
4 newClass(minuml1, "ObjectFlow", [minuml1.ActivityEdge], false)
5

6 //model migration
7 for(on in minuml1.ObjectNode.allInstances) {
8 for(i in on.incoming) {
9 for(o in on.outgoing) {

10 def of = minuml1.ObjectFlow.newInstance()
11 on.container.edge.add(of)
12 of.source = i.source
13 of.target = o.target
14 }
15 }
16 for(i in on.incoming) i.delete()
17 for(o in on.outgoing) o.delete()
18 on.delete()
19 }
20

21 // reusable coupled operations
22 newClass(minuml1, "ControlFlow", [minuml1.ActivityEdge], false)
23 makeAbstract(minuml1.ActivityEdge, minuml1.ControlFlow)
24 ...

Model Migration

84

UML Model Migration with PETE

Bernhard Schätz

fortiss GmbH
Guerickestr. 25, 80805 München, Germany

schaetz@fortiss.org

Abstract. With models becoming a common-place in software and sys-
tems development, the support of automatic transformations of those
models is an important asset to increase the efficiency and improve the
quality of the development process. However, the definition of transfor-
mations still is quite complex. Several approaches – from more imperative
to more declarative styles – have been introduced to support the defini-
tion of such transformations. Here, we show how a completely declarative
relational style based on the interpretation of a model as single structured
term can be used to provide a transformation mechanism allowing a sim-
ple, precise, and modular specification of transformations for the EMF
Ecore platform, using a Prolog rule-based mechanism. The approach is
demonstrated ion tex context of migrating Activity models from UML
1.4 to 2.1.

1 PETE in a Nutshell

To construct formalized descriptions of a system under development, a ‘syntactic
vocabulary’ is needed. This conceptual model1 characterizes all possible system
models built from the modeling concepts and their relations used to construct a
description of a system; typically, class diagrams are used to describe them.

1.1 Structure of the Model

The transformation framework provides mechanisms for a pure (i.e., side-effect
free) declarative, rule-based approach to model transformation, accessing EMF
Ecore-based models [SBPM07]. Based on the conceptual model, a system model
consists of sets of elements (each described as a conceptual entity and its at-
tribute values) and relations (each described as a pair of conceptual entities),
syntactically represented as a Prolog term. Since these elements and relations
are instances of classes and associations taken from an EMF Ecore model, the
structure of the Prolog term – representing an instance model – is inferred from
the structure of that model. The structure of the model is built using only simple

1 In the context of technologies like the Meta Object Facility, the class diagram-like
definition of a conceptual model is generally called meta model.

Model Migration

85

ModelTerm ::= PackageTerm

PackageTerm ::= Functor(PackagesTerm,ClassesTerm,AssociationsTerm)

PackagesTerm ::= [] | [PackageTerm (,PackageTerm)*]

ClassesTerm ::= [] | [ClassTerm (,ClassTerm)*]

ClassTerm ::= Functor(ElementsTerm)

ElementsTerm ::= [] | [ElementTerm (,ElementTerm)*]

ElementTerm ::= Functor(Entity(,AttributeValue)*)

Entity ::= Atom

AttributeValue ::= Atom

AssociationsTerm ::= [] | [AssociationTerm(,AssociationTerm)*]

AssociationTerm ::= Functor(RelationsTerm)

RelationsTerm ::= [] | [RelationTerm(,RelationTerm)*]

RelationTerm ::= Functor(Entity,Entity)

Table 1. The Prolog Structure of a Model Term

elementary Prolog constructs, namely compound functor terms and list terms.
To access a model, the framework provides predicates to deconstruct and recon-
struct a term representing a model. [Sch08] describes the model in more detail.

A model term describes an instance of a EMF Ecore model. Each model term
is a list of package terms, one for each packages of the EMF Ecore model. Each
package term, in turn, describes the content of the package instance. It consists
of a functor, identifying the package, with a sub-packages term, a classes terms,
and an associations term as its argument. The sub-packages term describes the
sub-packages of the package; it is a list of package terms.

The classes term describes the EClasses of the corresponding package. It is
a list of class terms, one for each EClass. Each class term consists of a functor,
identifying the class, and an elements term. An elements term describes the
collection of objects instantiating this class, and thus is a list of element terms.
Finally, an element term consists of a functor, identifying the class this object
belongs to, with an entity identifying the element and attributes as arguments.
Each of the attributes are atomic representations of the corresponding values of
the attributes of the represented object. The entity is a regular atom, unique for
each element term.

Similarly to an elements term, each associations term describes the associa-
tions, i.e., the instances of the EReferences of the EClasses, for the correspond-
ing package. Again, it is a list of association terms, with each association term
consisting of a functor, identifying the association, and an relations term, de-
scribing the content of the association. The relations term is a list of relation
terms, each relation term consisting of a functor, identifying the relation, and
the entity identificators of the related objects. In detail, the Prolog model term
has the structure shown in Table 1 in the BNF notation with corresponding
non-terminals and terminals.2

2 While actually aModelTerm consists of a set of PackageTerms, here for simplification
purposes only one PackageTerm is assumed.

Model Migration

86

The functors of the compound terms are deduced from the EMF Ecore model:
The functor of a PackageTerm from the name of the EPackage; the functor of
a ClassTerm from the name of the EClass; the functor of an AssociationTerm
from the name of the EReference. Similarly, the atoms of the attributes are
deduced from the instance of the EMF Ecore model, which the model term
is representing: The entity atom corresponds to the object identificator of an
instance of a EClass, while the attribute corresponds to the attribute value of
an instance of an EClass.

1.2 Construction Predicates

In a strictly declarative rule-based approach, the transformation is described in
terms of a predicate, relating the models before and after the transformation.
Therefore, mechanisms are needed in form of predicates to deconstruct a model
into its parts as well as to construct a model from its parts. As the structure
of the model is defined using only compound functor terms and list terms, only
two forms of predicates are needed: union and composition operations.

List Construction The(de)construction of lists is managed by means of the
union predicate union/3 with template3 union(?Left,?Right,?All) such that
union(Left,Right,All) is true if all elements of list All are either elements of
Left or Right, and vice versa.

Compound Construction Since the compound structures used to build the
model instances depend on the actual structure of the EMF Ecore model,
only the general schemata used are described. In all three schemata – pack-
age, class/element, or association/relation – the name of the package, class, or
relation is used as the name of the predicate for the compound construction.

Packages For (de)construction of packages, package predicates of the form
package/4 are used with template package(?Package,?Subpackages, ?Clas-

ses,?Associations) where package is the name of the package (de)constructed.

Classes and Elements For (de)construction of – non-abstract –
classes/elements, class/element predicates of the form class/2 and
class/N+2 are used where N is the number of the attributes of the
corresponding class, with templates class(?Class, ?Elements) and
class(?Element,?Entity,?Attr1,...,?AttrN) where class is the name
of the class and element (de)constructed. The class predicate is true if Class

is the list of Objects; it is used to deconstruct a class into its list of objects,
and vice versa. Similarly, the element predicate is true if Element is an Entity

with attributes Attr1,. . . ,AttrN; it can be used to deconstruct an element into

3 According to standard convention, arbitrary/input/output arguments of predicates
are indicated by ?/+/-.

Model Migration

87

its entity and attributes, to construct an element from an entity and attributes
(e.g. to change the attributes of an element), or to construct a new element
including its entity from the attributes.

Association and Relation Compounds For (de)construction
of associations and relations, association and relation predi-
cate of the form association/2 and association/3 are used
with templates association(?Association,?Relations) and
association(?Relation,?Entity1,?Entity2) where association is the
name of the association and relation constructed/deconstructed. The relation
predicate is true if Association is the list of Relations; it is generally used
to deconstruct an association into its list of relations, and vice versa. Similarly,
the relation predicate is true if Relation associates Entity1 and Entity2; it is
used to deconstruct a relation into its associated entities and vice versa.

2 Transformation Definition

The conceptual model and its structure defined in Section 1 was introduced
to define transformations of system models. In a relational approach to model
transformations, a transformation – like the migrating from UML1.4 Activity
Diagrams to UML 2.1 Activity Diagrams – is described as a relation between the
model prior to the transformation (e.g., the UML 1.4 Diagram) and the model
after the transformation (e.g., the UML 2.1 Activity Diagram). In this section,
the basic principles of describing transformations as relations are described.

2.1 Transformations as Relations

In case of the migration operation, the relation describing the transformation
has the interface migrate(UML1,UML2) with parameter UML1 for the UML1.4
model and parameter UML2 for the UML 2.1 model. In the relational approach
presented here, a transformation is basically described by breaking down the pre-
model into its constituents and build up the post-model from those constituents
using the relations from Section 1, potentially adding or removing elements and
relations. With UML1 taken from the conceptual domain for UML1 Activity di-
agrams and packaged in a single package minuml1 with no sub-packages, it can
be decomposed in contained classes (e.g., PseudoState) and associations (e.g.,
partition) as shown in Section B.2 Note that the relation is bidirectional: Be-
sides migrating a UML 1.4 model into a UML 2.1 model, it can also be used to
migrate back from the UML 2.1 to the UML 1.4 model.

Besides using the basic relations to construct and deconstruct models (and
add or remove elements and relations, as shown in the next subsection), new
relations can be defined to support a modular description of transformation,
decomposing rules into sub-rules. E.g., in the migrate relation, the transforma-
tion can be decomposed into the migration of classes and associations; for the
latter, then, e.g., a sub-relation migratePseudoState with corresponding rules
is introduced, as shown in Subsection A.2.

Model Migration

88

2.2 Transformations as Rules

To define the transformation steps for migrating classes and associations, re-
lations like migrateActionState(UML1ActionStates,UML2OpaqueActions) or
migratepartition(UML1partition,UML2group) are used. To define these rules
as shown in Sections A.2 and A.3, the conceptual models of the source and
the target models and their structured representation introduced in Section
1 are used. Note that this rule-based description allows to compose complex
transformations by simple application of rules in the body of another rule (like
migrateActionState in migrate).

3 Conclusion and Outlook

The PETE transformation framework – provided as an Eclipse PlugIn [Sch09] –
supports the transformation of EMF Ecore models using a declarative relational
style and allows a simple, precise, and modular specification of transformation
relations on the problem- rather than the implementation-level. By including
operational aspects, this form of specification can be tuned to ensure an efficient
execution. The migration case study has shown that the use of purely declara-
tive relational transformations is applicable to practical problems. Less than 150
LOCs are necessary to specify the migration. Even though in general a declara-
tive specification is less efficient than a imperative form, the approach is feasible
for medium-sized problems (i.e., up to several 10K of modeling elements).

Some specific advantages visible in the case study concern the direct expres-
siveness of the transformation language. E.g., the migration does not involve the
construction of correspondence graph to control the migration. Furthermore,
rules in general follow a very simple recursion scheme, possible involving struc-
tural rules for distinction of structural cases. Even complex tasks – like the migra-
tion of ObjectFlowStates to ObjectFlows and the corresponding elimination of
Transitions – can be managed with these scheme. By implementing higher-order
predicates for these schemes – like the renameElements and renameRelations

predicates shown in B – migration operators for these standard tasks can be pro-
vided, drastically simplifying the migration complexity. To support the effective
development, furthermore debugging can actually performed on the level of the
specification language.

Further advantages of a declarative relational approach not applied here
include the bidirectional transformations. Furthermore, this style of transfor-
mations is helpful for the formal verification of correctness conditions of these
transformations. Using tools like Isabelle/HOL, the verification process can be
automized to a large extent. Finally, the declarative relational style can also be
used to support a search-based design-space exploration involving backtracking,
e.g., in the case of multiple migration solutions for a specific model. As the major
drawback of the approach, PETE is not specifically targeting model migration or
metamodel/mode co-evolution, as e.g., tools like COPE. Therefore, it requires
to handcraft the transformations and does not support the generation of the
transformation rules.

Model Migration

89

References

[SBPM07] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework. Addison Wesley Professional, 2007.
Second Edition.

[Sch08] Bernhard Schätz. Formalization and Rule-Based Transformation of EMF
Ecore-Based Models. In Eric Van Wyk Dragan Gasevic, Ralf Laemmel,
editor, Software Language Engineering, LNCS. Springer, 2008.

[Sch09] Bernhard Schätz. Prolog EMF Trans-
formation Eclipse-PlugIn. www4.in.tum.de/

~schaetz/PETE, 2009.

A PETE Code Listing

A.1 (De-)Constructing The UML Models

1 migrate(UML1,UML2) :−
2 minuml1(UML1Pack,[],UML1Class,UML1Assoc), union([UML1Pack],[],UML1),
3 Pseudostate(UML1Pseudostate,UML1Pseudostates), FinalState(UML1FinalState,

UML1FinalStates),
4 ActionState(UML1ActionState,UML1ActionStates), Transition(UML1Transition,

UML1Transitions),
5 Guard(UML1Guard,UML1Guards), BooleanExpression(UML1Expression,

UML1Expressions),
6 ObjectFlowState(UML1ObjectFlowState,UML1ObjectFlowStates), Partition(

UML1Paritition,UML1Partitions),
7 ActivityGraph(UML1ActivityGraph,UML1ActivityGraphs),
8 union([UML1Pseudostate,UML1FinalState,UML1ActionState,UML1Transition,

UML1Guard,UML1Expression,UML1ObjectFlowState,UML1Paritition,
UML1ActivityGraph],RestUML1Class,UML1Class),

9 incoming(UML1incoming,UML1incomings), outgoing(UML1outgoing,
UML1outgoings),

10 expression(UML1expression,UML1expressions), subvertex(UML1subvertex,
UML1subvertices),

11 contents(UML1content,UML1contents), transitions(UML1transition,
UML1transitions),

12 guard(UML1guard,UML1guards), type(UML1type,UML1types),
13 partition(UML1partition,UML1partitions),
14 union([UML1incoming,UML1outgoing,UML1expression,UML1subvertex,

UML1content,UML1transition,UML1guard,UML1type,UML1partition],
RestUML1Assoc,UML1Assoc),

15 migrateActivityGraph(UML1ActivityGraphs,Activity,UML2Activities),
16 migratePseudostate(UML1Pseudostates,UML2InitialNodes,UML2ForkNodes,

UML2JoinNodes,UML2DecisionNodes),
17 migrateFinalState(UML1FinalStates,UML2ActivityFinalNodes),
18 migrateActionState(UML1ActionStates,UML2OpaqueActions),
19 migrateTransition(UML1Transitions,UML2ActivityEdges),

Model Migration

90

20 migrateGuard(UML1Guards,UML1Expressions,UML1expressions,
UML2OpaqueExpressions),

21 migrateActivityEdge(UML1ObjectFlowStates,UML2ActivityEdges,UML1incomings
,UML1outgoings,UML2incomings,UML2outgoings,UML2ObjectFlows,
UML2ControlFlows),

22 migratePartition(UML1Partitions,UML2ActivityPartitions),
23 migratesubvertex(UML1subvertices,UML1contents,Activity,UML2ObjectFlows,

UML2nodes,UML2Partnodes,UML2subvertexEdges,UML2Partedges),
24 migratetransitions(UML1transitions,UML2ControlFlows,UML2transitionEdges),
25 migratepartition(UML1partitions,UML2groups),
26 Activity(UML2Activity,UML2Activities), ObjectFlow(UML2ObjectFlow,

UML2ObjectFlows), ControlFlow(UML2ControlFlow,UML2ControlFlows),
InitialNode(UML2InitialNode,UML2InitialNodes),

27 ForkNode(UML2ForkNode,UML2ForkNodes), JoinNode(UML2JoinNode,
UML2JoinNodes), DecisionNode(UML2DecisionNode,UML2DecisionNodes),

28 ActivityFinalNode(UML2FinalNode,UML2ActivityFinalNodes), ActivityPartition(
UML2Partition,UML2ActivityPartitions),

29 OpaqueExpression(UML2OpaqueExpression,UML2OpaqueExpressions),
OpaqueAction(UML2OpaqueAction,UML2OpaqueActions),

30 union([UML2Activity,UML2ObjectFlow,UML2ControlFlow,UML2InitialNode,
UML2ForkNode,UML2JoinNode,UML2DecisionNode,UML2FinalNode,
UML2Partition,UML2OpaqueExpression,UML2OpaqueAction],[],UML2Class),

31 node(UML2node,UML2nodes), union(UML2subvertexEdges,UML2transitionEdges,
UML2edges), edge(UML2edge,UML2edges), group(UML2group,UML2groups),
nodes(UML2Partnode,UML2Partnodes),

32 edges(UML2Partedge,UML2Partedges), outgoing(UML2outgoing,UML2outgoings),
incoming(UML2incoming,UML2incomings),

33 guard(UML2guard,UML1guards), type(UML2type,UML1types),
34 union([UML2node,UML2edge,UML2group,UML2Partnode,UML2Partedge,

UML2outgoing,UML2incoming,UML2guard,UML2type],[],UML2Assoc),
35 minuml2(UML2Pack,[],UML2Class,UML2Assoc), union([UML2Pack],[],UML2).

A.2 Migrating Classes

1 migrateActivityGraph(UML1ActivityGraphs,Elem,UML2Activities) :−
2 ActivityGraph(ActivityGraph,Elem,Name), union([ActivityGraph],[],

UML1ActivityGraphs),
3 Activity(Activity,Elem,Name), union([Activity],[],UML2Activities).
4

5 migratePseudostate(UML1Pseudostates,UML2InitialNodes,UML2ForkNodes,
UML2JoinNodes,UML2DecisionNodes) :−

6 Pseudostate(Pseudostate,Elem,Name,initial), union([Pseudostate],RestStates,
UML1Pseudostates),

7 migratePseudostate(RestStates,RestNodes,UML2ForkNodes,UML2JoinNodes,
UML2DecisionNodes),

8 InitialNode(InitialNode,Elem,Name), union([InitialNode],RestNodes,
UML2InitialNodes).

9 migratePseudostate(UML1Pseudostates,UML2InitialNodes,UML2ForkNodes,
UML2JoinNodes,UML2DecisionNodes) :−

Model Migration

91

10 Pseudostate(Pseudostate,Elem,Name,fork), union([Pseudostate],RestStates,
UML1Pseudostates),

11 migratePseudostate(RestStates,UML2InitialNodes,RestNodes,UML2JoinNodes,
UML2DecisionNodes),

12 ForkNode(ForkNode,Elem,Name), union([ForkNode],RestNodes,UML2ForkNodes).
13 migratePseudostate(UML1Pseudostates,UML2InitialNodes,UML2ForkNodes,

UML2JoinNodes,UML2DecisionNodes) :−
14 Pseudostate(Pseudostate,Elem,Name,join), union([Pseudostate],RestStates,

UML1Pseudostates),
15 migratePseudostate(RestStates,UML2InitialNodes,UML2ForkNodes,RestNodes,

UML2DecisionNodes),
16 JoinNode(JoinNode,Elem,Name), union([JoinNode],RestNodes,UML2JoinNodes).
17 migratePseudostate(UML1Pseudostates,UML2InitialNodes,UML2ForkNodes,

UML2JoinNodes,UML2DecisionNodes) :−
18 Pseudostate(Pseudostate,Elem,Name,junction), union([Pseudostate],RestStates,

UML1Pseudostates),
19 migratePseudostate(RestStates,UML2InitialNodes,UML2ForkNodes,

UML2JoinNodes,RestNodes),
20 DecisionNode(DecisionNode,Elem,Name), union([DecisionNode],RestNodes,

UML2DecisionNodes).
21 migratePseudostate([],[],[],[],[]).
22

23

24 migrateFinalState(UML1FinalStates,UML2ActivityFinalNodes) :−
25 FinalState(FinalState,Elem,Name), union([FinalState],RestStates,

UML1FinalStates),
26 migrateFinalState(RestStates,RestNodes),
27 ActivityFinalNode(ActivityFinalNode,Elem,Name), union([ActivityFinalNode],

RestNodes,UML2ActivityFinalNodes).
28 migrateFinalState([],[]).
29

30 migrateActionState(UML1ActionStates,UML2OpaqueActions) :−
31 ActionState(ActionState,Elem,Name,Dynamics), union([ActionState],RestStates,

UML1ActionStates),
32 migrateActionState(RestStates,RestNodes),
33 OpaqueAction(OpaqueAction,Elem,Name), union([OpaqueAction],RestNodes,

UML2OpaqueActions).
34 migrateActionState([],[]).
35

36 migrateTransition(UML1Transitions,UML2ActivityEdges) :−
37 Transition(Transition,Elem,Name), union([Transition],RestTransitions,

UML1Transitions),
38 migrateTransition(RestTransitions,RestEdges),
39 ActivityEdge(ActivityEdge,Elem,Name), union([ActivityEdge],RestEdges,

UML2ActivityEdges).
40 migrateTransition([],[]).
41

42

43 migrateGuard(UML1Guards,UML1Expressions,UML1expressions,
UML2OpaqueExpressions) :−

Model Migration

92

44 Guard(Guard,GuardElem,Name), union([Guard],RestGuards,UML1Guards),
45 BooleanExpression(BooleanExpression,ExpressionElem,Language,Body), union([

BooleanExpression],RestBooleanExpressions,UML1Expressions),
46 expression(ExpressionRel,GuardElem,ExpressionElem), union([ExpressionRel],

RestExpressions,UML1expressions),
47 migrateGuard(RestGuards,RestBooleanExpressions,RestExpressions,

RestOpaqueExpressions),
48 OpaqueExpression(OpaqueExpression,GuardElem,Language,Body), union([

OpaqueExpression],RestOpaqueExpressions,UML2OpaqueExpressions).
49 migrateGuard([],[],[],[]).
50

51 migrateActivityEdge(UML1ObjectFlowStates,UML2ActivityEdges,UML1incoming,
UML1outgoing,UML2incoming,UML2outgoing,UML2ObjectFlows,
UML2ControlFlows) :−

52 ObjectFlowState(ObjectFlowState,StateElem,Name), union([ObjectFlowState],
RestObjectFlowStates,UML1ObjectFlowStates),

53 incoming(IncomingFlowState,StateElem,Incoming), union([IncomingFlowState],
Restincoming,UML1incoming),

54 outgoing(FlowStateOutgoing,StateElem,Outgoing), union([FlowStateOutgoing],
Restoutgoing,UML1outgoing),

55 incoming(OutgoingTarget,Target,Outgoing), union([OutgoingTarget],
RestUML1incoming,Restincoming),

56 outgoing(SourceIncoming,Source,Incoming), union([SourceIncoming],
RestUML1outgoing,Restoutgoing),

57 ActivityEdge(IncomingEdge,Incoming,IncomingName), ActivityEdge(OutgoingEdge
,Outgoing,OutgoingName),

58 union([IncomingEdge,OutgoingEdge],RestActivityEdges,UML2ActivityEdges),
59 migrateActivityEdge(RestObjectFlowStates,RestActivityEdges,RestUML1incoming,

RestUML1outgoing,RestUML2incoming,RestUML2outgoing,
UML2RestObjectFlows,UML2ControlFlows),

60 ObjectFlow(ObjectFlow,StateElem,Name), union([ObjectFlow],
UML2RestObjectFlows,UML2ObjectFlows),

61 outgoing(SourceStateElem,Source,StateElem), union([SourceStateElem],
RestUML2outgoing,UML2outgoing),

62 incoming(StateElemTarget,Target,StateElem), union([StateElemTarget],
RestUML2incoming,UML2incoming).

63 migrateActivityEdge([],UML2ActivityEdges,UML1incoming,UML1outgoing,
UML2incoming,UML2outgoing,[],UML2ControlFlows) :−

64 ActivityEdge(ActivityEdge,Elem,Name), union([ActivityEdge],RestActivityEdges,
UML2ActivityEdges),

65 migrateActivityEdge([],RestActivityEdges,UML1incoming,UML1outgoing,
UML2incoming,UML2outgoing,[],RestControlFlows),

66 ControlFlow(ControlFlow,Elem,Name), union([ControlFlow],RestControlFlows,
UML2ControlFlows).

67 migrateActivityEdge([],[],Incoming,Outgoing,Incoming,Outgoing,[],[]).
68

69 migratePartition(UML1Partitions,UML2ActivityPartitions) :−
70 Partition(Partition,Elem,Name), union([Partition],RestPartitions,UML1Partitions

),
71 migratePartition(RestPartitions,RestActivityPartitions),

Model Migration

93

72 ActivityPartition(ActivityPartition,Elem,Name), union([ActivityPartition],
RestActivityPartitions,UML2ActivityPartitions).

73 migratePartition([],[]).

A.3 Migrating Associations

1 migratesubvertex(UML1subvertex,UML1contents,Activity,UML2ObjectFlows,
UML2node,UML2nodes,UML2edge,UML2edges) :−

2 subvertex(Subvertex,State,Vertex), union([Subvertex],RestSubvertex,UML1subvertex
),

3 ObjectFlow(StateVertex,Vertex,Name), union([StateVertex],RestObjectFlows,
UML2ObjectFlows),

4 contents(Content,Partition,Vertex), union([Content],RestContents,UML1contents),
5 migratesubvertex(RestSubvertex,RestContents,Activity,RestObjectFlows,UML2node

,UML2nodes,UML2edge,RestEdges),
6 edges(Edges,Partition,Vertex), union([Edges],RestEdges,UML2edges).
7 migratesubvertex(UML1subvertex,UML1contents,Activity,UML2ObjectFlows,

UML2node,UML2nodes,UML2edge,UML2edges) :−
8 subvertex(Subvertex,State,Vertex), union([Subvertex],RestSubvertex,UML1subvertex

),
9 contents(Content,Partition,Vertex), union([Content],RestContents,UML1contents),

10 migratesubvertex(RestSubvertex,RestContents,Activity,UML2ObjectFlows,
UML2node,RestNodes,UML2edge,UML2edges),

11 nodes(Nodes,Partition,Vertex), union([Nodes],RestNodes,UML2nodes).
12 migratesubvertex(UML1subvertex,[],Activity,UML2ObjectFlows,UML2node,

UML2nodes,UML2edge,UML2edges) :−
13 subvertex(Subvertex,State,Vertex), union([Subvertex],RestSubvertex,UML1subvertex

),
14 ObjectFlow(StateVertex,Vertex,Name), union([StateVertex],RestObjectFlows,

UML2ObjectFlows),
15 migratesubvertex(RestSubvertex,[],Activity,RestObjectFlows,UML2node,

UML2nodes,RestEdge,UML2edges),
16 edge(Edge,Activity,Vertex), union([Edge],RestEdge,UML2edge).
17 migratesubvertex(UML1subvertex,[],Activity,UML2ObjectFlows,UML2node,

UML2nodes,UML2edge,UML2edges) :−
18 subvertex(Subvertex,State,Vertex), union([Subvertex],RestSubvertex,UML1subvertex

),
19 migratesubvertex(RestSubvertex,[],Activity,UML2ObjectFlows,RestNode,

UML2nodes,UML2edge,UML2edges),
20 node(Node,Activity,Vertex), union([Node],RestNode,UML2node).
21 migratesubvertex([],[],Activity,UML2ObjectFlows,[],[],[],[]).
22

23 migratetransitions(UML1transitions,UML2ControlFlows,UML2edge) :−
24 transitions(TransitionAssoc,StateMachine,Transition), union([TransitionAssoc],

RestTransitions,UML1transitions),
25 ControlFlow(ControlFlow,Transition,Name), union([ControlFlow],

RestControlFlows,UML2ControlFlows),
26 migratetransitions(RestTransitions,RestControlFlows,RestEdges),
27 edge(EdgeAssoc,StateMachine,Transition), union([EdgeAssoc],RestEdges,

UML2edge).

Model Migration

94

28 migratetransitions(UML1transitions,UML2ControlFlows,UML2edge) :−
29 transitions(TransitionAssoc,StateMachine,Transition), union([TransitionAssoc],

RestTransitions,UML1transitions),
30 migratetransitions(RestTransitions,UML2ControlFlows,UML2edge).
31 migratetransitions([],UML2ControlFlows,[]).;
32

33 migratepartition(UML1partition,UML2group) :−
34 partition(PartitionAssoc,StateVertex,Partition), union([PartitionAssoc],

RestPartitions,UML1partition),
35 migratepartition(RestPartitions,RestGroup),
36 group(GroupAssoc,StateVertex,Partition), union([GroupAssoc],RestGroup,

UML2group).
37 migratepartition([],[]).

B PETE Code Listing - Higher Order Predicates

B.1 Using Higher-Order Predicates: Rename

1 renameElements(OldClassName,[],[],NewClassName).
2 renameElements(OldClassName,[PreElement|PreRest],[PostElement|PostRest],

NewClassName) :−
3 ’=..’(PreElement,[OldClassName|Arguments]),
4 renameElements(OldClassName,PreRest,PostRest,NewClassName),
5 ’=..’(PostElement,[NewClassName|Arguments]).
6

7 renameRelations(OldAssocName,[],[],NewAssocName).
8 renameRelations(OldAssocName,[PreRelation|PreRest],[PostRelation|PostRest],

NewAssocName) :−
9 ’=..’(PreRelation,[OldCAssocName|Arguments]),

10 renameElements(OldClassName,PreRest,PostRest,NewAssocName),
11 ’=..’(PostRelation,[NewAssocName|Arguments]).

B.2 (De-)Constructing The UML Models

1 migrate(UML1,UML2) :−
2 minuml1(UML1Pack,[],UML1Class,UML1Assoc), union([UML1Pack],[],UML1),
3 ’Pseudostate’(UML1Pseudostate,UML1Pseudostates), ’FinalState’(

UML1FinalState,UML1FinalStates),
4 ’ActionState’(UML1ActionState,UML1ActionStates), ’Transition’(

UML1Transition,UML1Transitions),
5 ’Guard’(UML1Guard,UML1Guards), ’BooleanExpression’(UML1Expression,

UML1Expressions),
6 ’ObjectFlowState’(UML1ObjectFlowState,UML1ObjectFlowStates), ’Partition’

(UML1Paritition,UML1Partitions),
7 ’ActivityGraph’(UML1ActivityGraph,UML1ActivityGraphs),
8 union([UML1Pseudostate,UML1FinalState,UML1ActionState,UML1Transition,

UML1Guard,UML1Expression,UML1ObjectFlowState,UML1Paritition,
UML1ActivityGraph],RestUML1Class,UML1Class),

9 incoming(UML1incoming,UML1incomings), outgoing(UML1outgoing,
UML1outgoings),

Model Migration

95

10 expression(UML1expression,UML1expressions), subvertex(UML1subvertex,
UML1subvertices),

11 contents(UML1content,UML1contents), transitions(UML1transition,
UML1transitions),

12 guard(UML1guard,UML1guards), type(UML1type,UML1types),
13 partition(UML1partition,UML1partitions),
14 union([UML1incoming,UML1outgoing,UML1expression,UML1subvertex,

UML1content,UML1transition,UML1guard,UML1type,UML1partition],
RestUML1Assoc,UML1Assoc),

15

16 migrateActivityGraph(UML1ActivityGraphs,Activity,UML2Activities),
17 migratePseudostate(UML1Pseudostates,UML2InitialNodes,UML2ForkNodes,

UML2JoinNodes,UML2DecisionNodes),
18 renameElements(’FinalState’,UML1FinalStates,UML2ActivityFinalNodes,’

ActivityFinalNode’),
19 renameElements(’ActionState’,UML1ActionStates,UML2OpaqueActions,’

OpaqueAction’),
20 renameElements(’ObjectFlowState’,UML1ObjectFlowStates,UML2ObjectNodes,’

ObjectNode’),
21 migrateTransition(UML1Transitions,UML1ObjectFlowStates,UML1incomings,

UML1outgoings,UML2ObjectFlows,UML2ControlFlows),
22 migrateGuard(UML1Guards,UML1Expressions,UML1expressions,

UML2OpaqueExpressions),
23 renameElements(’Partition’,UML1Partitions,UML2ActivityPartitions,’

ActivityPartition’),
24 migratesubvertex(UML1subvertices,UML1contents,Activity,UML2nodes,

UML2Partnodes),
25 renameRelations(transitions,UML1transitions,UML2edges,edge),
26 renameRelations(partition,UML1partitions,UML2groups,group),
27

28 ’Activity’(UML2Activity,UML2Activities), ’ObjectFlow’(UML2ObjectFlow,
UML2ObjectFlows), ’ControlFlow’(UML2ControlFlow,UML2ControlFlows),
’InitialNode’(UML2InitialNode,UML2InitialNodes),

29 ’ForkNode’(UML2ForkNode,UML2ForkNodes), ’JoinNode’(UML2JoinNode,
UML2JoinNodes), ’DecisionNode’(UML2DecisionNode,UML2DecisionNodes
),

30 ’ActivityFinalNode’(UML2FinalNode,UML2ActivityFinalNodes), ’
ActivityPartition’(UML2Partition,UML2ActivityPartitions),

31 ’OpaqueExpression’(UML2OpaqueExpression,UML2OpaqueExpressions), ’
OpaqueAction’(UML2OpaqueAction,UML2OpaqueActions), ’ObjectNode’(
UML2ObjectNode,UML2ObjectNodes),

32 union([UML2Activity,UML2ObjectFlow,UML2ControlFlow,UML2InitialNode,
UML2ForkNode,UML2JoinNode,UML2DecisionNode,UML2FinalNode,
UML2Partition,UML2OpaqueExpression,UML2OpaqueAction,
UML2ObjectNode],[],UML2Class),

33 node(UML2node,UML2nodes), edge(UML2edge,UML2edges), group(UML2group,
UML2groups), nodes(UML2Partnode,UML2Partnodes),

34 edges(UML2Partedge,[]), outgoing(UML2outgoing,UML1outgoings), incoming(
UML2incoming,UML1incomings),

35 guard(UML2guard,UML1guards), type(UML2type,UML1types),

Model Migration

96

36 union([UML2node,UML2edge,UML2group,UML2Partnode,UML2Partedge,
UML2outgoing,UML2incoming,UML2guard,UML2type],[],UML2Assoc),

37 minuml2(UML2Pack,[],UML2Class,UML2Assoc), union([UML2Pack],[],UML2).

B.3 Migrating Classes - Using Rename

1 migrateActivityGraph(UML1ActivityGraphs,Elem,UML2Activities) :−
2 ’ActivityGraph’(ActivityGraph,Elem,Name), union([ActivityGraph],[],

UML1ActivityGraphs),
3 ’Activity’(Activity,Elem,Name), union([Activity],[],UML2Activities).
4

5 migratePseudostate(UML1Pseudostates,UML2InitialNodes,UML2ForkNodes,
UML2JoinNodes,UML2DecisionNodes) :−

6 ’Pseudostate’(Pseudostate,Elem,Name,initial), union([Pseudostate],RestStates,
UML1Pseudostates),

7 migratePseudostate(RestStates,RestNodes,UML2ForkNodes,UML2JoinNodes,
UML2DecisionNodes),

8 ’InitialNode’(InitialNode,Elem,Name), union([InitialNode],RestNodes,
UML2InitialNodes).

9 migratePseudostate(UML1Pseudostates,UML2InitialNodes,UML2ForkNodes,
UML2JoinNodes,UML2DecisionNodes) :−

10 ’Pseudostate’(Pseudostate,Elem,Name,fork), union([Pseudostate],RestStates,
UML1Pseudostates),

11 migratePseudostate(RestStates,UML2InitialNodes,RestNodes,UML2JoinNodes,
UML2DecisionNodes),

12 ’ForkNode’(ForkNode,Elem,Name), union([ForkNode],RestNodes,UML2ForkNodes
).

13 migratePseudostate(UML1Pseudostates,UML2InitialNodes,UML2ForkNodes,
UML2JoinNodes,UML2DecisionNodes) :−

14 ’Pseudostate’(Pseudostate,Elem,Name,join), union([Pseudostate],RestStates,
UML1Pseudostates),

15 migratePseudostate(RestStates,UML2InitialNodes,UML2ForkNodes,RestNodes,
UML2DecisionNodes),

16 ’JoinNode’(JoinNode,Elem,Name), union([JoinNode],RestNodes,UML2JoinNodes)
.

17 migratePseudostate(UML1Pseudostates,UML2InitialNodes,UML2ForkNodes,
UML2JoinNodes,UML2DecisionNodes) :−

18 ’Pseudostate’(Pseudostate,Elem,Name,junction), union([Pseudostate],RestStates,
UML1Pseudostates),

19 migratePseudostate(RestStates,UML2InitialNodes,UML2ForkNodes,
UML2JoinNodes,RestNodes),

20 ’DecisionNode’(DecisionNode,Elem,Name), union([DecisionNode],RestNodes,
UML2DecisionNodes).

21 migratePseudostate([],[],[],[],[]).
22

23 migrateGuard(UML1Guards,UML1Expressions,UML1expressions,
UML2OpaqueExpressions) :−

24 ’Guard’(Guard,GuardElem,Name), union([Guard],RestGuards,UML1Guards),
25 ’BooleanExpression’(BooleanExpression,ExpressionElem,Language,Body),

union([BooleanExpression],RestBooleanExpressions,UML1Expressions),

Model Migration

97

26 expression(ExpressionRel,GuardElem,ExpressionElem), union([ExpressionRel],
RestExpressions,UML1expressions),

27 migrateGuard(RestGuards,RestBooleanExpressions,RestExpressions,
RestOpaqueExpressions),

28 ’OpaqueExpression’(OpaqueExpression,GuardElem,Language,Body), union([
OpaqueExpression],RestOpaqueExpressions,UML2OpaqueExpressions).

29 migrateGuard([],[],[],[]).
30

31 migrateTransition(UML1Transitions,UML1ObjectFlowStates,UML1incoming,
UML1outgoing,UML2ObjectFlows,UML2ControlFlows) :−

32 ’Transition’(Transition,Elem,Name), union([Transition],RestTransitions,
UML1Transitions),

33 incoming(TargetElem,Target,Elem), union([TargetElem],Restincoming,
UML1incoming),

34 ’ObjectFlowState’(ObjectFlowState,Target,), union([ObjectFlowState],
RestObjectFlowStates,UML1ObjectFlowStates),

35 migrateTransition(RestTransitions,UML1ObjectFlowStates,Restincoming,
UML1outgoing,UML2RestObjectFlows,UML2ControlFlows),

36 ’ObjectFlow’(ObjectFlow,Elem,Name), union([ObjectFlow],UML2RestObjectFlows
,UML2ObjectFlows).

37 migrateTransition(UML1Transitions,UML1ObjectFlowStates,UML1incoming,
UML1outgoing,UML2ObjectFlows,UML2ControlFlows) :−

38 ’Transition’(Transition,Elem,Name), union([Transition],RestTransitions,
UML1Transitions),

39 outgoing(SourceElem,Source,Elem), union([SourceElem],Restoutgoing,
UML1outgoing),

40 ’ObjectFlowState’(ObjectFlowState,Source,), union([ObjectFlowState],
RestObjectFlowStates,UML1ObjectFlowStates),

41 migrateTransition(RestTransitions,UML1ObjectFlowStates,UML1incoming,
Restoutgoing,UML2RestObjectFlows,UML2ControlFlows),

42 ’ObjectFlow’(ObjectFlow,Elem,Name), union([ObjectFlow],UML2RestObjectFlows
,UML2ObjectFlows).

43 migrateTransition(UML1Transitions,UML1ObjectFlowStates,UML1incoming,
UML1outgoing,UML2ObjectFlows,UML2ControlFlows) :−

44 ’Transition’(Transition,Elem,Name), union([Transition],RestTransitions,
UML1Transitions),

45 migrateTransition(RestTransitions,UML1ObjectFlowStates,UML1incoming,
UML1outgoing,UML2ObjectFlows,RestControlFlows),

46 ’ControlFlow’(ControlFlow,Elem,Name), union([ControlFlow],RestControlFlows,
UML2ControlFlows).

47 migrateTransition([],UML1ObjectFlowStates,Incoming,Outgoing,[],[]).

B.4 Migrating Associations - Using Rename

1 migratesubvertex(UML1subvertex,UML1contents,Activity,UML2node,UML2nodes) :−
2 subvertex(Subvertex,State,Vertex), union([Subvertex],RestSubvertex,UML1subvertex

),
3 contents(Content,Partition,Vertex), union([Content],RestContents,UML1contents),
4 migratesubvertex(RestSubvertex,RestContents,Activity,UML2node,RestNodes),
5 nodes(Nodes,Partition,Vertex), union([Nodes],RestNodes,UML2nodes).

Model Migration

98

6 migratesubvertex(UML1subvertex,[],Activity,UML2node,UML2nodes) :−
7 subvertex(Subvertex,State,Vertex), union([Subvertex],RestSubvertex,UML1subvertex

),
8 migratesubvertex(RestSubvertex,[],Activity,RestNode,UML2nodes),
9 node(Node,Activity,Vertex), union([Node],RestNode,UML2node).

10 migratesubvertex([],[],Activity,[],[]).

Model Migration

99

Abstract and Concrete Syntax Migration of
Instance Models

Antonio Cicchetti1, Bart Meyers2, and Manuel Wimmer3

1 Mälardalen University, MRTC, Väster̊as, Sweden
antonio.cicchetti@mdh.se

2 University of Antwerp, Belgium
bart.meyers@ua.ac.be

3 Vienna University of Technology, Austria
wimmer@big.tuwien.ac.at

Abstract. In this paper, we present a solution for the TTC 2010 model
migration case study. Firstly, we present a modular approach to mi-
grate the instance models’ abstract syntax. Secondly, the problem of
co-evolution of diagrammatical information such as icon positions and
bend points of edges is identified and a solution specific to this case
study is presented. Our solution implemented using ATL and Java.

Key words: Metamodel evolution, model co-evolution, inplace model
transformations, model merging

1 Goal and approach

This paper presents a solution to the TTC 20104 model migration case study.
This case study explores the consequences an evolution of a modelling language
can have with respect to its instance models. In particular, these models must be
migrated so that (i) they conform to the new language, and (ii) their semantics
are preserved. The presented language evolution is UML 1.4 Activity Graphs to
UML Activity Diagrams 2.2. The main goal of the case study is shown in the
diagram of Figure 1. In our approach, a structured migration process is pursued
by first modelling the evolution Δ itself into manageable parts, followed by a
migration of each part resulting in a migration transformation M . The explicit
breakdown of Δ helps us in understanding the evolution and finding a correct,
semantically preserving migration M .

After migrating a model m using M , the diagrammatical information of m is
lost. Specific to this case study, this results in a model m′ for which the original
positions of the icons are lost. This makes the migrated models less readable,
as people tend to arrange the model icons in a way that is natural to them.
Therefore, we decided to migrate the concrete syntax information or diagram
model as well. Figure 2 shows the new diagram that includes this second goal.
Apart from migrating models m as in Figure 1, the diagram model mCS must
4 http://planet-research20.org/ttc2010/

Model Migration

100

2 A. Cicchetti, B. Meyers, and M. Wimmer

��

�

��� ��

��

���

�

��������	� ��������	�

�

Fig. 1: The model migration case study with the evolution Δ and the migration
M .

also be migrated by a migration transformation MCSinst. The concrete syntax
can be obtained by so-called rendering, which can be considered a transformation
in which the user adds diagrammatical information, such as icons (at the level of
the language concepts) and positions of these icons (at the level of the language
concept instances). As suggested in Figure 2, we can make some assumptions for
this case study: (i) the metamodels of the diagram model mCS and its migrated
counterpart m′

CS are the same: MMGMF−notation – GMF notation 1.0.2, and (ii)
the rendering transformation itself must not be migrated, as in this case study, it
is part of the GMF-based graphical editor which has evolved itself too (captured
as the evolution ΔCS , from render1.4 to render2.2). So in this case study, the
migration of the concrete syntax MMCSinst can be derived from the evolution
Δ and ΔCS (which in practice evolved together), and does not have to take a
change of the metamodel MMGMF−notations into account. In conclusion, in this
case study the concrete syntax co-evolution is simplified. However, this solution
can start a discussion about the general topic of concrete syntax co-evolution.

���������	�
��

� ��

� ��
� ����

��������	� ��������	�

������
�� ���������

��

�

�� ��

��

���

�

��������	� ��������	�

�

��������������	

�
������������	

��
	��

Fig. 2: MMCSinst, The co-evolution of the concrete syntax instances.

Model Migration

101

Abstract and Concrete Syntax Migration 3

2 Solution

In this section, we present an overview of our solution for the case study, con-
sisting of the two parts: migration of instance models and migration of diagram
models.

2.1 Instance Model Migration

As stated before, we structurally tackle the problem of instance model migration
by starting off from the metamodel evolution and model co-evolution, as in the
following:

metamodel evolution detection that is the old and new versions of the meta-
model are compared in order to synthesise the evolution it has been subject
to. This will result in a breakdown into manageable evolutionary steps;

modular migration creation for every evolutionary step, a migration activ-
ity is created (typically in the form of a transformation rule).

Our solution is based on the manual declaration of evolutionary steps; such
choice guarantees that the intentions of the metamodel developer are fully cap-
tured. It is worth noting that the same result could be obtained by a tool record-
ing the changes made by the user. In any case, in general the metamodels are
remarkably smaller and more manageable than model instances, which makes
even the manual specification of the evolution an acceptable effort if compared
to verifying the migration correctness of existing instances.

We broke down the evolution into eleven evolutionary steps. For each step,
the ATL migration rule is given. In the first two steps, a short explanation
is given for the migration action; for the other rules, the migration is just a
straightforward replacement of corresponding instances:

1. ActivityGraph, StateMachine, and CompositeState are merged into Activity.
Subvertex and partition containers are merged into groups container to the
new class ActivityGroup;
migrate TopCompositeState, migrate SubCompositeStates

2. Transition becomes ActivityEdge with two subclasses, ControlFlow and Ob-
jectFlow. In case of a surrounding ObjectFlowState, the transition becomes
ObjectFlow, otherwise ControlFlow;
migrate Transition ControlFlow, migrate Transition ObjectFlow

3. StateVertex and State are merged into ActivityNode;
migrate State

4. Pseudostate(kind:initial) becomes InitialNode;
migrate PseudoState Initial

5. Pseudostate(kind:join) becomes JoinNode;
migrate PseudoState Join

6. Pseudostate(kind:fork) becomes ForkNode;
migrate PseudoState Fork

Model Migration

102

4 A. Cicchetti, B. Meyers, and M. Wimmer

7. Pseudostate(kind:junction) is split into DecisionNode and MergeNode;
migrate PseudoState Junction

8. FinalState becomes ActivityFinalNode;
migrate FinalState

9. ActionState becomes OpaqueAction;
migrate ActionState

10. Partition becomes ActivityPartition as subclass of ActivityGroup;
migrate Partitions

11. Guard becomes ValueSpecification and the contained BooleanExpression be-
comes the subclass of ValueSpecification called OpaqueExpression.
migrate Guard

2.2 Concrete Syntax Migration

The concrete syntax of UML models is not standardized like the abstract syntax.
In our solution we used the Eclipse UML 2 tool suite5, which includes a graphical
editor for UML 2 models. The diagrammatical information this editor can read
and write will be the target platform for migrating the concrete syntax of a
model. On the other hand however, the Activity Graph 1.4 source models cannot
be read by the UML 2 tool. Because we only want to use Eclipse, we built a
simple UML 1.4 editor using GMF, that allows creating a model and position
icons. The Activity Graph 1.4 example visualized by our simple editor is shown
in Figure 3. After migration, the diagram model should be visualized in Eclipse
as in Figure 4.

In order to obtain the correct result, the icon positions and bend points of
edges must be preserved after migrating the abstract syntax as explained in
Section 2.2. This requires a simple copying of the coordinates and bend points.
However, it must be made sure that the copying of this information is done to
the right element, a not obvious task given the exploitation of UUIDs. In other
words, the graphical arrangement is saved in a XMI-like document by referring
to model elements through UUIDs, whereas the ATL transformation is agnostic
of them as working at the metamodel level. Therefore, trace information has to
be created in order to link elements of the old diagram and the corresponding
migrated ones of the new diagram. In particular, when the co-adapting ATL
transformation is executed, a simple trace model is filled in with a list of (source,
target) pairs storing the links between elements of the old and new metamodel
instances.

In our solution, this is done by simply adding the code that creates the
trace model in the ATL transformation. In fact, the addition of such code can
also be done automatically, by using a transformation that adapts the ATL
transformation. Because the input and output models of this transformation
are transformations themselves, such a transformation is called a higher order
transformation. Due to time limitations, we did not implement this higher order

5 http://www.eclipse.org/projects/project_summary.php?projectid=modeling.

emf

Model Migration

103

Abstract and Concrete Syntax Migration 5

Fig. 3: The original model visualized by the simple GMF editor.

Fig. 4: The migrated model visualized by Eclipse UML 2.

Model Migration

104

6 A. Cicchetti, B. Meyers, and M. Wimmer

transformation yet. It would improve automation, as well as clearly separating
the code for creating the traceability model from the code for creating the mi-
grated model. This lowers accidental complexity, increasing the overall quality
(readability, maintainability, etc.) if the transformation models.

From the migrated instance model, the original instance model, the original
diagram model and the trace model, the new diagram model can be automati-
cally generated. For each element in the migrated instance model, its concrete
syntax is generated by tracing back to the original element(s) using the trace
model. The corresponding concrete syntax information which is obtained by us-
ing the href fields that point to the instance model elements are copied in the
migrated diagram model. This approach is shown in Figure 5, where the links
from the original diagram model to the migrated diagram model are shown from
top to bottom.

3 Conclusion and Discussion

In our solution we presented a structured way of migrating the instance model
by splitting up the evolution into manual parts. For every evolution step that
emerges, (a) simple migration rule(s) can be created. The total migration trans-
formation is implemented in ATL.

In order to keep the concrete syntax information of a model, the diagram
model is also migrated. For this case study, this includes the preservation of
icon positions and bend points. These can be simply preserved by copying them.
However, in order to find the right elements for the copied information, a trace
model is needed that links elements from the original instance model to the
migrated instance model. This trace model is created by a part of the migration
transformation.

The complexity of concrete syntax migration When looking at Figure 2,
in this case study the concrete syntax migration was simplified in two ways: the
concrete syntax metamodel remains the same (i.e., MMGMF−notation) and the
evolution of the editor does not have to be taken into account, as it is done
manually. In the more general case of concrete syntax migration however, these
assumptions cannot be made. In general, the migration of concrete syntax will
entail two migration actions:

– the migration of the concrete instance models. We have done this for this
case study. In the more general case however, the metamodels need not
be the same. As a result, the diagram model will have to migrated across
two dimensions: the conformance with the abstract syntax model, and the
conformance with its metamodel;

– the migration of the rendering transformation. This can be considered the
migration of the “editor”.

Model Migration

105

Abstract and Concrete Syntax Migration 7

�
���������	
����
��	�����
������	�����������	
	�
������������ !"��#$�!��%������
�����&
�������'(��������	
����
��	�����
)��������������	
	�
�������*���� !"��#$�!��%��
�����������������
�����������+�	�+
����!�,����� !"��#$�!��%�-&
�������'(��������	
����
��	�����
./�	�����������	
	�
����!01����� !"��#$�!��%��
�����������������
�2�3��������(/�������	�	��
����#$0����� !"��#$�!��%��
����������������+�	�+
����!�,����� !"��#$�!��%��	�/��	�+
����!�,����� !"��#$�!��%�-&

���
�������/�����������	
���
���
�
���	����������	��
��
4�5�$6��� #+"�2�%'�%+��
���
�7668�����
9���
���+����:�&
���������/�����������	
���
���
�
���	4�/���
���9��������	��
��
4�5��6��� #+"�2�%'�%+��
���
�;66��-&
���������������
����	
���
��������	./
����
�
�������
����+����������<�������=���!01����� !"��#$�!��%�-&
��������������
����
����
����	
���
���
�
���	,����������	��
��
4�5��6��� #+"�2�%'�%+���
�1;���
�71�-&
�������-/�������&

���
��/�	>��/�?��*�����9���
���+��
��./
����
�
��&
���������/�������
������
����+����-���+����������<���=���!01����� !"��#$�!��%�-&
�����
��+�
������
������
�>��><���=�:$#�60>��� ��'�@��04/A�-&
���-
��/�	>��/�?��*&

�����

����

����

�������������	
���
����	:��
���9��������	��
��:$�#�0>��� ��'�@��04/A��
���������������
��
��
����
+���+
��:$'.10>��� ��'�@��04/A�-&
�������������	
���
����	B��3��./
��������	��
��:$#�60>��� ��'�@��04/A��
���������������
�2�3���
����(�/�����)��
�
���
��:$#?AC>��� ��'�@��04/A�
�������������
+���+
��:$'.1C>��� ��'�@��04/A����/����+
��:$'.10>��� ��'�@��04/A�-&

��

����

�������/�����������	
���
���
�
���	����������	��
���DA� ��;�� �E���
'*,;A��
���
�7668�����
9���
���+����:�&
���������/�����������	
���
���
�
���	4�/���
���9��������	��
���DA��$�;�� �E���
'*,;A��
���
�;66��-&
���������������
����	
���
��������	./
����
�
�������
�>��><���=�:$#�60>��� ��'�@��04/A�-&
��������������
����
����
����	
���
���
�
���	,����������	��
���DA��5�;�� �E���
'*,;A���
�1;���
�71�-&
�������-/�������&

����

����

	�

�
��

�

��
�

�
	

��

	�

�
��

�
��
��
��

�
	

��

��
�
��
��

���
��

�
	

��

��
�
��
��

�

��
��

�
��
��
��

�
	

��

��
��
��
��

�

��
��

�

��
�

�
	

��

Fig. 5: The models are linked through trace links.

Model Migration

106

A Graph Transformation Case Study for the
Topology Analysis of

Dynamic Communication Systems�

Peter Backes1 and Jan Reineke2

1 Universität des Saarlandes, Saarbrücken, Germany
rtc@cs.uni-sb.de

2 University of California, Berkeley
reineke@eecs.berkeley.edu

Abstract. We propose a case study for the Transformation Tool Con-
test 2010 that concerns dynamic communication systems (DCS). DCS
are systems of autonomous processes that interact to achieve their goals.
For this purpose, the processes exchange messages with each other. In
contrast to distributed algorithms, the number of processes of the system
is unbounded. The specific dynamic communication systems we want to
investigate are so-called platoons. Platoons are groups of cars that drive
on a highway with constant speed and constant distance to conserve
energy. To form such platoons, each car follows the so-called merge pro-
tocol, which guides its local behaviour. We are interested in properties of
the communication topologies that may emerge in this platoon scenario.
Hence, we ask you to analyze a graph transformation system that gen-
erates the possible topologies of the merge protocol. The goal is to do
this with as many processes as possible. The case study aims to improve
understanding of how useful existing tools are for state space exploration
and topology analysis.

1 Introduction

1.1 Context of the case

Dynamic communication systems are systems that have an unbounded and dy-
namically changing number of processes. Those processes communicate with each
other in order to establish and transform communication topologies (see [2] for
a more detailed description). In this case study, we want you to compute the
topologies that may occur for the merge protocol, a communication protocol
which is used in car platooning. Car platooning [4] concerns cars that drive on a
highway with constant speed and constant distance from each other, to conserve
energy.
� This work was partly supported by the German Research Council (DFG) as part

of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See http://www.avacs.org/

for more information.

Topology

107

platoon

leader car follower cars

communication topology

free agent car

flw
s

ldr ldr

Fig. 1. Car platooning

The cars are equipped with wireless technology that allows them to com-
municate via messages. These messages are used to coordinate actions of the
platoon, such as have new cars join the platoon or have the platoon change the
lane. For this to work, one car per platoon acts as a leader of the platoon and the
other cars—the followers—receive command messages from the leader so that
the platoon as a whole acts in the desired manner. Accordingly, the platoon
leader has to remember all its followers and each follower has to remember the
leader. We call these relations among the cars the communication topology of
the platoon.

The merge protocol describes how the cars use communication to join existing
platoons and how two platoons manage to merge, so that only one platoon with
one platoon leader is left once the merge has finished.

1.2 Purpose from a larger perspective

Our case study is supposed to shed light on how useful existing graph trans-
formation tools are for network protocol and other concurrent systems analysis.
We think that it has two major benefits:

1. It shows us how well existing graph transformation can do reachability analy-
sis of network protocols, and to what number of processes they scale. Reach-
ability analysis explores the state space of a network protocol and checks
each state that is reachable for undesired properties; or, put differently, it

Topology

108

searches for bugs in the protocol. While more sophisticated tools are avail-
able for reachability analysis, they often require specialist knowledge about
the inner workings of the respective algorithm. Graph transformation, on
the other hand, is an intuitive and general approach that can be understood
and used easily.

2. Reachability analysis of unbounded systems can only be partial, since it com-
putes only a finite subset of a finite set of states. We still hope that results
from such an analysis provide a good heuristic for the construction and evalu-
ation of abstraction techniques for network protocol topology analysis like [3].
Such analyses serve two purposes: To directly verify safety properties—for
example that two followers never assume each other to be their leader—and
to provide invariants of the protocol that improve precision and efficiency of
related analyses like [5].

1.3 Challenges that are involved

As the state space of the entire system grows rapidly with the number of pro-
cesses, it is your goal to show that your analysis can scale well in that respect.
This means that runtime and memory consumption should be kept as low as pos-
sible. How many processes can your tool handle? We suspect that it is possible
only for a small single-digit number of processes.

The graph transformation system that implements the protocol to be ana-
lyzed uses rules with simple left hand sides (at most three nodes). During the
state space exploration, many similar graphs arise that are matched by the same
rules. Can your tool handle such cases efficiently?

2 The subject to be modelled

In this section, we describe the background of dynamic communication systems
and the intuition behind the merge protocol. It is not necessary to understand
all the details for the challenge—we will provide you with a set of graph trans-
formation rules modelling the merge protocol.

2.1 Dynamic communication systems

Dynamic communication systems [1] consist of a finite but arbitrary number of
processes that are in one of a finite set of states. Each process has a separate
FIFO queue of unbounded length for messages from each of the other processes.
Each message can optionally carry the identity of another process as a parameter,
so processes can refer to other processes in their communication. Further, each
process has a special queue for environment messages. Environment messages
may be sent unconditionally by the environment, that is, they may be added to
the queue at any time. They are necessary because they are the only way for
disconnected parts of the system to get known to each other. In car platooning,
for example, a sensor that is built in each of the cars might notice that another

Topology

109

car is in its communication range. As we abstract from the physical locations of
cars, we model such sensors by the nondeterministic environment. Finally, each
process locally maintains a finite set of channels. Each such channel holds a sub-
set of the process identities of the entire system. Channels are a logical construct,
not a physical one; they are rather like local address tables (if you assume that
the cars use IPv6 to communicate and their identities are IP addresses), not like
global wave frequencies shared by all processes; ie., Channels : Id → 2Id , not
Channels ⊆ 2Id . So two different processes may store different identities in the
channels of the same name at the same time. A process communicates with other
processes by sending a message to all processes in one of its channels. From a
global view, the channels make up the communication topology.

processstate
environment message

message
message type

message
queue

p q

p

m1 m2

m1

m
2

m
1

m
3

m4

m
5

m
6

message
parameter

env

m
2

c2

c1

channel name
channel connection

c2

c2

Fig. 2. Concepts of dynamic communication systems

A protocol specifies the behaviour of a process of a dynamic communication
system. It consists of the states that the processes can be in and of the transitions
among these states. Transitions are annotated with statements:

– ?(m, c, op) and ?(m) are guard statements and cause the respective transition
to be executed only if a message of type m is at the front of one of the queues.

Topology

110

For the first version, the parameter of the message is to be combined with
channel c by the set operation op. In both cases, the message that has been
received is consumed from the respective queue. For example, ?(ca, ldr, =)
consumes a ca (“car ahead”) message from the queue, clears all process
identities from its channel ldr (“leader”) and stores the identity that was
attached to the consumed ca message into that channel.

– c = ∅ is a guard, too, and allows a transition to be taken only if the channel
c is empty.

– !(m, c1, c2) sends a message of type m to all processes on channel c1 and
attaches the identity of one randomly chosen process on c2 as a param-
eter. In case of c2 being the special channel id (“identity”), the process
attaches its own identity. For example, !(req , ldr , id) sends a req message
to the process(es) in channel ldr (the processes using the merge protocol
happen to never store more than one identity in their ldr channel) and at-
taches the identity of the sending process itself attached as a parameter.
!(newf , ldr ,flws) picks one of the identities from channel flws (“followers”),
attaches it to a newf (“new follower”) message and sends it to the process(es)
from channel ldr .

– (c1, op, c2) combines c1 and c2 with the set operation op and saves the result
in c1 again. For example, (bldr , \, bldr) removes all identities from the channel
bldr (“back leader”).

A subset of the states, the initial states, specify in which states a new process
may come into existence (initially with empty queues and channels).

2.2 The merge protocol

The merge protocol implements three tasks: Building a platoon out of two pro-
cesses so that one of them becomes a leader and the other a follower; having a
process join an existing platoon; and merging two platoons into one.

The merge protocol specifies that each process starts in the only initial state
fa (“free agent”) (denoted in 3 by the triangle). As can be seen in Figure 3, from
this state, a process may essentially take two different routes: The upper one, to
become a leader, or the lower one, to become a follower. The decision between
these two options is made based on whether the process receives the environment
message ca (“car ahead”) with another process as a parameter, or whether it is
the other way around and it is attached as a parameter to a car ahead message
received by a different process. Let us assume the former happens. That means
that it takes the lower route: It stores the attached process identity in its ldr
(“leader”) channel, sends back a req (“request”) message to that process with its
own identity as parameter and changes its state to hon (“hand over nothing”).
The process that receives the request message will then take the upper route: It
will receive the message in state fa and so add the identity of the process that
sent the message, which it knows from the parameter of the req message, to its
flws (“followers”) channel and send back an ack (“acknowledgement”) message
with its own process identity. It then changes to state ldb (“leader”). As soon

Topology

111

fa

ldb ld ho

hob pass

hodhon flw

ann

?(ca, ldr ,=)
!(req , ldr , id)

?(req , bldr , =)
!(ack , bldr , id)

?(newf , aux , =)
!(newl , aux , id)
(aux , \, aux)

?(ack , aux , =)
!(ack , bldr , aux)
(flws,∪, aux)
(aux , \, aux)

?(a
ck

,fl
ws

,∪)

(bl
dr

, \,
bld

r)

?(req , bldr , =)
!(ack , bldr , id)

?(c
a,

ldr
,=

)

!(r
eq

, ld
r ,
id
)

?(ack)

!(newf , ldr ,flws)

?(ack ,flws, \)

!(a
ck

, ld
r ,
id
)

?(a
ck

)

!(a
ck

, ld
r ,
id
)

?(newl , ldr , =)
!(ack , ldr , id)

flws = ∅

Fig. 3. Transition system of the merge protocol

as the other process, assuming it is still in state hon, receives the message, it
changes to state flw (“follower”) and returns another acknowledgement, which
causes the other process to switch to state ld (“leader”). Once that has been
done, the two cars have formed a platoon: The car that initially received the
car ahead message has become a follower and the car that was attached as a
parameter to that message has become the platoon leader. Here is a graphical
representation of this evolution of the platoon:

fa fa → fa fa

env

ca

→ fa honreq

ldr

Topology

112

→ ldb honack

bldr

ldr

→ ldb flwack

ldr

bldr

→ ld flw

ldr

flws

The second task, having a car join an already existing platoon, is mostly sim-
ilar to the first one, except that the process attached to the car ahead message
as a parameter is initially in state ld instead of fa. For merging (the third task),
we have both the recipient of the car ahead message and the parameter process
in state ld . Both enter a transmission loop to hand over the followers from the
one leader to the other: The new platoon leader—the front leader—repeatedly
switches between ldb (leader, expecting follower identities) and ann (waiting for
acknowledgement after announcing itself as a new leader to a follower), the back
leader repeatedly switches between hob (during handover, transmitting a fol-
lower identity) and pass (waiting for acknowledgement after passing a follower
to the new leader), after having been temporarily in state in state ho (start of
handover). Finally, the back leader goes to hod (“handover done”) before becom-
ing a follower itself. The auxiliary channel aux allows processes to temporarily
store identites during transitions.

3 Implementation remarks

We provide a set of graph transformation rules (single pushout):

fa
u1

x
u2

hon
u1

x
u2ldr

req
free agent requesting to
join a platoon

x
u1

fa
u2

x
u1

ldb
u2

req
bldr

ack

free agent
acknowledging a join
request

hon
u1

x
u2

flw
u1

x
u2

ack ack

new follower receiveing
acknowledgement to
join the platoon

x
u1

ldb
u2

x
u1

ld
u2

flws

ack

bldr

leader adding new
follower after its
acknowledgement

ld
u1

x
u2

ho
u1

x
u2ldr

req leader requesting merge

Topology

113

x
u1

ld
u2

x
u1

ldb
u2

req
bldr

ack
leader receiving merge
or join request

ho
u1

x
u2

hob
u1

x
u2

ack

back leader entering
transmission loop after
acknowlegement of
requested merge

hob
u1

x
u2

yu3

pass
u1

x
u2

yu3

ldr

flws

ldr

flws
newf

back leader notifying
one of its followers
about new leader

ldb
u1

y
u2

ann
u1

y
u2

newf newl

front leader
announcing itself to
follower as the new
leader

y
u1

x
u2

flwu3

y
u1

x
u2

flw
u3ldr newl ack ldr

follower changing
leader and
acknowledging

x
u1

ann
u2

y
u3

x
u1

ldb
u2

yu3

bldr
ack

bldr

ack
flws

front leader
acknowledging
handover of follower

pass
u1

yu3

hob
u1

y
u3

ack

flws

back leader deleting
link to follower just
handed over

hob
u1

no outgoing flws edge

hod
u1

back leader finished
transmission loop

hod
u1

x
u2

flw
u1

x
u2

ldr

ldr

ack

back leader
acknowledging
handover as completed
and becoming a
follower

Topology

114

These rules model the merge protocol in the following way:

– The configurations of the dynamic communication systems are modelled as
graphs with node and edge labels
• The node labels represent the state of the processes.
• The edge labels represent the channels that make up the communication

topology.
– The state transitions are modelled as graph transformation rules.
– Queues are represented as edges, and message types by edge labels (that are

different from the labels used for the communication topology). Note that
this is a simplification of the original system, as we disregard the order and
exact number of messages in queues.

– x and y are variables. That mean that the corresponding nodes of the rule’s
left hand side should match nodes with arbitrary labels. All left hand side
nodes with such variables in the rules above have corresponding right hand
side nodes with exactly the same variable, which means that the rule appli-
cation should not change the label of these nodes.

– The second to last rule, which implements the flws = ∅ transition, uses a
negative application condition. The rule should only be applied to nodes
with the label hob that do not have any outgoing edge with the label flws.

The rules use the following tricks:

– We do not model environment messages. Because they can be sent at any
time, they can also be received at any time.

– We do as many things as possible in one graph transformation rule.

In short, your tool should first read the transformation rules and the start graph.
The start graph should consist of nodes that represent the processes, all in
their initial state, i.e. fa, and with no edges. Then, the tool should compute
by fixpoint iteration all reachable graphs of the graph transformation system.
In each iteration, it has to find all matches of rules to any of the new graphs,
apply the corresponding rule and add the result as a new graph (but only if no
isomorphic graph has been computed before).

4 Example topologies

Here are some topologies that will emerge from the graph transformation system
rules described above that model the merge protocol (assuming sufficiently many
processes):

ld

flw

flw

flw

flws
ldrflw

sld
r

flws
ldr

Topology

115

ldb

flw

flw

flw

hob

flw

flw

flw
flw

sldr

flws

ldr

flws

ldr flw
s

ldr

flws

ldr
flws

ldr

ldr

bldr

hon

hon

hon

hon

hon

hon

hon

honreq
ldr

req

ldr

req

ldr

req

ldr

req

ldr

req

ldr

req

ldr

req

ldr

5 Goals

5.1 Core characteristics

– Output the topologies your tool computed. You may choose the output for-
mat freely.

– Feel free to cut down the problem to a reasonable size and ignore everything
that you consider as an obstacle, even if you only analyze a small part of the
protocol. The description of the DCS protocol in Section 2 should help you
to adjust the graph transformation rules to your needs.

5.2 How the model should be used

– The graphs from the result are used for evaluating structural predicates on
them, like “is there a node with label a and a node with label b such that
an edge with label c points from the one to the other.” Here is a list of
properties that should be satisfied by the merge protocol:

Topology

116

• No two nodes labelled flw are connected to each other with an edge
labelled ldr .

• A node labelled pass or ld always has at least one node labelled flw
connected via some edge labelled flws.

• If a node labelled flw has outgoing edges labelled ldr and newf , respec-
tively, to two different nodes, then those two nodes are connected via an
edge labelled bldr .

How easy is it to evaluate such properties in your framework?
– The result should also be used for graphically displaying and exploring the

topology structure of the platoons admitted by the protocol. Is it easy for the
user to filter the displayed topology to eg. not include edges corresponding
to messages?

5.3 Extensions

– We are also interested in a transition metagraph that models the evolution
of the graph transformation system. It should have the graphs resulting from
the analysis as nodes. Edges should be labelled with the respective rules that
caused the transformation. This allows the inspection of traces.

– The graph transformation system we provide does not accurately reflect the
DCS protocol with respect to message queues. Are you able to perform a
queue analysis, either as part of the system analysis, or in a separate step,
using graph transformation?

– Can you analyze the protocol in a general way using abstraction techniques
such that the number of processes is not limited?

5.4 Evaluation criteria

We propose the following evaluation criteria:

– Completeness of the used transformation system: Less, same, more precise
than reference transformation system? (more is better)

– Completeness of analysis: Systems with how many processes (2 . . .∞) were
you able to analyze? (more is better)

– Performance: What is the memory consumption and runtime of the analysis
for the largest analyzable system? (less is better)

– Flexibility of output: Do you merely allow output of topologies as they are,
or do you allow filtering of edges/nodes according to labels, or even according
to more complex filter specifications? (more is better)

– Flexibility of property evaluation: How powerful is your check for desired
properties of topologies? Merely subgraph matching? More complex expres-
sions over graphs with node and edge labels? (more is better)

Topology

117

References

1. Jörg Bauer, Ina Schaefer, Tobe Toben, and Bernd Westphal. Specification and
verification of dynamic communication systems. In Sixth International Conference
on Application of Concurrency to System Design, 2006.

2. Jörg Bauer and Reinhard Wilhelm. Static analysis of dynamic communication sys-
tems. In 14th International Static Analysis Symposium, 2007.

3. Iovka Boneva, Arend Rensink, Marcos E. Kurban, and Jörg Bauer. Graph ab-
straction and abstract graph transformation. Technical Report TR-CTIT-07-50,
Enschede, July 2007.

4. PATH Project. Vehicle platooning and automated highways. http://www.path.

berkeley.edu/PATH/Publications/Media/FactSheet/VPlatooning.pdf, 1998.
5. Tobe Toben. Counterexample guided spotlight abstraction refinement. In K. Suzuki,

T. Higashino, K. Yasumoto, and K. El-Fakih, editors, Proceedings of the 28th IFIP
WG6.1 International Conference on Formal Techniques for Networked and Dis-
tributed Systems (FORTE 2008), volume 5048 of LNCS, pages 21–36, Tokyo, Japan,
June 2008. Springer-Verlag.

Topology

118

Solving the Topology Analysis Case Study with GROOVE

Amir Hossein Ghamarian Maarten de Mol Arend Rensink Eduardo Zambon

Department of Computer Science
University of Twente, The Netherlands

{ghamarian, molm, rensink, zambon}@cs.utwente.nl

1 Introduction

In this report we present our solution for the Topology Analysis case study of the Transformation
Tool Contest (TTC) 2010 using the groove tool set [4]. The case study is well within the scope
of groove, which allowed us to properly meet and sometimes surpass the goals set in the case
description.

The case study addresses the problem of car platooning as an example of a dynamic commu-
nication system. The requested analysis concerns the so called merge protocol and the various
communication topologies that may arise from it.

We begin by giving a brief explanation of the characteristics of the tool set in Section 2. In
Section 3 we explain how the communication protocol was modelled in groove and we present
the experiments performed and the results obtained. An evaluation of the solution against the
criteria given in the case description is presented in Section 4 and some concluding remarks are
discussed in Section 5.

2 GROOVE

groove is a general purpose graph transformation tool set that uses simple labelled graphs and
single push-out (SPO) transformation rules. The core functionality of groove is to recursively
apply all rules from a predefined set (the graph production system – GPS) to a given start
graph, and to all graphs generated by such applications. This results in a state space consisting
of the generated graphs.

In this section we only present the features of groove that are relevant for understanding the
solution of the case study. For a more detailed description of groove we refer the interested
reader to [2] and the tool web site: http://groove.cs.utwente.nl. The entire tool set is
written in Java and therefore it can be executed in any platform with a Java 6 virtual machine.

2.1 Tool Set

The groove tool set has four components:

• Editor. An editor with a graphical interface for creating rules and host graphs.

• Generator. A command line tool that generates the state space of a GPS. The state
space is stored as a Labelled Transition System (LTS), where each state is a graph and
transitions are labelled by the rule applications. The strategy according to which the state
space is explored (e.g., depth-first, breadth-first, etc) can be set as a parameter.

1

Topology

119

C

P P

A

parentparent

child

Legend:

A Ab Matched and preserved

A Ab Forbidden

A Ab Matched and deleted

A Ab Created

Figure 1: Example groove rule and legend

• Model Checker. A command line tool that checks if properties expressed in temporal
logic (CTL) hold in a LTS produced by the Generator. If a property does not hold, a
counter-example is given.

• Simulator. A graphical interface tool that integrates the functionalities of the Editor,
Generator, and Model Checker. In addition, the Simulator allows the user to interactive
explore the LTS, by manually applying rules to a host graph.

2.2 Host Graphs

In groove, the host graphs, i.e., the graphs to be transformed, are simple graphs with labelled
nodes and edges. In simple graphs, edges do not have an identity, and therefore parallel edges
(i.e., edges with same label, and source and target nodes) are not allowed.

In the graphical representation, nodes are depicted as rectangles and edges as binary arrows
between two nodes. Node labels can either be node types or flags; the former is not used in the
solution and will not be discussed further. Flags are used to model a boolean condition, which
is true for a node if the flag is there and false if it is absent. Flags are displayed in italic inside
a node rectangle.

2.3 Rules

The transformation rules in groove use the single push-out approach. The left and right hand
side of a rule are combined in a single graph and colours and shapes are used to distinguish
different elements. Fig. 1 shows a small example rule.

• Readers. The black (continuous thin) nodes and edges must be present in the host graph
for the rule to be applicable and are preserved by the rule application;

• Embargoes. The red (dashed fat) nodes and edges must be absent in the host graph for
the rule to be applicable;

• Erasers. The blue (dashed thin) nodes and edges must be present in the host graph for
the rule to be applicable and are deleted by the rule application;

• Creators. The green (continuous fat) nodes and edges are created by the rule application.

Embargo elements are usually called Negative Application Conditions (NACs). When a flag
is used in a non-reader element but the node itself is not modified, the flag is prefixed with
a character to indicate its role. The characters used are +, −, and !, respectively for creator,
eraser, and embargo elements.

2

Topology

120

− fa
+ hon req

ldr − ld
+ ho

ldr
req

− hob
+ hod

flws

(a) Rule fa-hon (b) Rule ld-ho (c) Rule hob-hod

Figure 2: Sample rules of the solution with injective matching

3 Solution

The reference transformation system given in the case description was simple to model in
groove. Each node of the host graph represents a car, and a flag indicates the car state
in the protocol. Labelled edges represent the communication topology between cars. All the
cars in a host graph start at the fa (free agent) state.

There is a trivial one-to-one mapping from the 14 rules given in the reference transformation
system and the rules implemented in groove. Since the reference rules are also in the SPO
approach, the only translation necessary was to merge the left and right hand side of the
reference rules into the single graph format of groove. As expected, elements occurring only in
the left [right] hand side of a reference rule became eraser [creator] elements in the corresponding
groove rule; and the intersection of left and right hand side of a reference rule defines the reader
elements in the groove rule.

Fig. 2 show the corresponding groove rules of reference rules 1, 5 and 13, respectively. To
give them a more meaningful identifier, groove rules are named by the modification in the
node state, e.g., fa-hon. The matching of nodes with arbitrary labels, described in the case
description with x and y variables, is done in groove with unlabelled nodes, e.g., Fig. 2(a).

An interesting point to note is that the default rule matching in groove is non-injective
whereas in the reference system the rules are clearly injective. This default behaviour in groove
can be changed by setting the option “Match Injective” to “true” in the grammar properties.
Another possibility is to add explicit injectivity constrains (as NACs) to rules when necessary.
We performed experiments with both variations.

3.1 Structural predicates on graphs

As explained in the case description, the point of computing the communication topologies
of the protocol is to allow the evaluation of structural predicates on the topologies. These
structural predicates express properties that should be satisfied by the merge protocol.

The case study describes three structural predicates. These can be modelled in groove
using inspection rules, i.e., rules with just reader and embargo elements. Fig. 3 shows the three
inspection rules used in our solution. In the verification of the protocol we are interested in
checking for the absence of an undesired property, therefore the inspection rules are the negation
of the structural predicates described in the case study. Take, for example, the first predicate
that states that “no two nodes labelled flw are connected to each other with an edge labelled
ldr”. Rule flw-ldr matches any two nodes labelled flw that are connected by an edge labelled
ldr. Therefore, if we ever find a match for this rule then the original predicate was violated.

3.2 Experiments

We created host graphs from two to twelve cars. The exploration of the state space for graphs
with at most six cars can be comfortably performed in the Simulator. For seven cars or more
the state space becomes too large and the use of a GUI is no longer adequate.

In order to analyse the scalability of the solution we performed experiments that used only
the command line tools, i.e., the Generator and the Model Checker. After producing the state

3

Topology

121

flwflw ldr flwld flws

flw

newf
bldr

bldr

ldr

(a) Rule flw-ldr (b) Rule ld-flw (c) Rule no-bldr

Figure 3: Inspection rules for evaluating structural predicates

Table 1: Results for the first experiments performed. Breadth-first exploration with injective
rule matching and isomorphism reduction on.

Cars States Transitions Time (s) Space (MB)
2 7 7 < 1 1
3 32 53 < 1 1
4 154 353 < 1 1
5 705 2,102 < 1 2
6 3,329 12,135 2 2
7 15,473 67,244 7 6
8 72,434 364,987 30 26
9 338,130 1,942,808 137 1,221
10 1,580,449 10,200,436 703 1,737

space with the Generator, we used the Model Checker to analyse the following CTL formula:
AG(!flw-ldr & !ld-flw & !no-bldr). This formula expresses the property that on all generated
states no match for any of the inspection rules is found. In all our experiments the Model
Checker gave a pass verdict, meaning that the desired structural properties are satisfied.

The experiments were performed in a Dual Quad-Core Intel Xeon X5365 3.0 GHz machine
with 32 GB of RAM, running Linux 2.6.31 and Java VM 1.6.13, both 64-bit versions. The
initial results obtained are given in Table 1. The exploration strategy used was breadth-first,
the rule matching was injective and the reduction of the LTS modulo isomorphism was on. The
time given in Table 1 is the total running time of the Generator plus Model Checker. Less than
1% of this time is used for checking the formula; as expected the bulk of the running time is
spent on generating the state space. The column Space shows the amount of memory used at
the end of execution. Note that during execution the memory consumption may be higher.

There are several options and modelling choices that may affect the performance of groove
for a certain GPS. The first point that we investigated was the matching of rules. The initial ex-
periments used injective matching and in order to revert back to the default groove behaviour,
i.e., non-injective matching, we had to modify two rules, namely fa-hon and ld-ho. The nodes
in the left-hand side of these rules are not connected by any edge, so it was necessary to add
a constraint indicating that the nodes must be distinct. This is done in groove with a NAC
edge labelled “=”. Fig. 4 shows the modified rules. The memory consumption was unaltered
by this change and the execution time decreased, but only slightly (less than 5%).

We also analysed how different exploration strategies may affect performance. We considered
breadth-first (BFS) and depth-first (DFS) exploration. The final results are given in Table 2.

− fa
+ hon

ldr

=

req
− ld
+ ho

ldr

=

req

(a) Rule fa-hon (b) Rule ld-ho

Figure 4: Modified rules of the solution with non-injective matching

4

Topology

122

Table 2: Final results of the experiments performed with non-injective rule matching and iso-
morphism reduction on.

BFS DFS
Cars States Transitions Time (s) Space (MB) Time (s) Space (MB)
2 7 7 < 1 1 < 1 1
3 32 53 < 1 1 < 1 1
4 154 353 < 1 1 < 1 1
5 705 2,102 < 1 2 < 1 2
6 3,329 12,135 2 2 2 2
7 15,473 67,244 6 6 6 6
8 72,434 364,987 30 26 26 25
9 338,130 1,942,808 132 1,221 166 125
10 1,580,449 10,200,436 692 1,748 7,629 623
11 7,383,773 52,931,771 29,270 4,359 79,835 4,269
12 out of memory aborted

Table 3: Comparison of state space sizes with and without isomorphism reduction.

Cars
2 3 4 5 6 7 8 9 10 11 12

States
Iso On 7 32 154 705 3,329 15,473 72,434 338,130 1,580,449 7,383,773 †
Iso Off 12 174 3,104 68,900 1,838,052 ‡

† Out of memory after exploring 10,154,872 states and 95,745,200 transitions.
‡ Out of memory after exploring 6,278,576 states and 28,651,500 transitions.

It was possible to verify the protocol for graphs with up to eleven cars, which is more than the
small single-digit number expected by the authors of the case study. The differences between
the exploration strategies become more apparent for systems with nine or more cars. BFS
is faster than DFS but consumes more memory. This shows the standard trade-off between
memory consumption and execution time. In any case, it was not possible to fully explore the
state space of the system with twelve cars. BFS exploration ran out of memory and DFS was
aborted after running for several hours.

One interesting point to note is that the collapsing of states under isomorphism leads to a
big reduction of the state space. We performed tests with and without isomorphism reduction to
compare the size of the state spaces. The results are given in Table 3 and in the accompanying
plot in Fig. 5. Despite being a computationally expensive operation, isomorphism checking
pays-off when used in cases with a lot of symmetry, such as this one. In this case study, nearly
90% of the execution time is spent in isomorphism checking. Nevertheless, the reduction on
the state space provided by this analysis still outweights the cost of performing isomorphism
checks and allows us to increase the size of the systems that are verified. This is one advantage
of groove over non-graph based exploration tools that cannot benefit from this method of
symmetry reduction [1].

4 Evaluation

In this section we go through the goals described in the case study and evaluate how groove
and our solution fare with respect to these points.

Core characteristics.
It was not necessary to simplify the proposed problem. groove has all the features necessary
to model the solution. All the states in the state space of the transformation system (i.e., the
topologies) can be generated and stored using the option “Export Simulation” in the Simulator.
Of course, saving the entire state space becomes unfeasible for larger inputs. The output state

5

Topology

123

� � � � � � � 	
�

�

��

����

�����

������

��������

���������

�����

������

����

�
��

��
�

Figure 5: A log-plot of the state space size versus the numbers of cars

ldbflw ldb flwhon

hon

ldr, req

ldr, req

ack, ldr

bldrbldr

ack, ldr

ack, ldr

ldr, req

ldr, req

ack, ldr

Figure 6: An example topology graph with some edges grayed out

graphs are saved in the GXL format.

How the model should be used.
The structural properties described in the case study were properly modelled by inspection
rules. It is very simple to evaluate such properties in groove. In Section 3 we described the
non-interactive way of doing this evaluation using the Model Checker and CTL formulae. There
is also an interactive way by means of the Simulator, which allows for a graphically visualisation
of the topologies and an interactive application of rules. The Simulator has several visualisation
capabilities, such as zooming and filtering of nodes and edges based on labels. Fig. 6 shows an
example of a topology with six cars where message edges are grayed out. Alternatively, any
element can be removed altogether from the view.

Extensions.
The so-called “transition meta-graph” described in the case study corresponds to the LTS in
groove terminology. Again, the Simulator has several interactive capabilities that allow the
inspection of traces. Fig. 7 presents the LTS for a system with three cars. States marked in red
correspond to dead-locked topologies.

The extension regarding the analysis of message queues was not considered in our solution.
The extension regarding the use of abstraction to allow the analysis of systems with an

unlimited number of cars was not considered in our solution.

5 Conclusion

To conclude and to ease the comparison between solutions we sum up the evaluation criteria
given in the case description.

6

Topology

124

s0

s1

s2 s3s4 s5

s6 s7s8s9 s10

s11s12 s13

s14s15 s16 s17

s18 s19s20 s21s22 s23

s24

s25

s26

s27

s28

s29

s30

s31

fa-hon, fa-hon, fa-hon, fa-hon, fa-hon, fa-honfa-hon, fa-hon, fa-hon, fa-hon, fa-hon, fa-honfa-hon, fa-hon, fa-hon, fa-hon, fa-hon, fa-honfa-hon, fa-hon, fa-hon, fa-hon, fa-hon, fa-honfa-hon, fa-hon, fa-hon, fa-hon, fa-hon, fa-honfa-hon, fa-hon, fa-hon, fa-hon, fa-hon, fa-hon

fa-hon fa-hon, fa-honfa-hon, fa-honfa-hon fa-ldb

fa-hon, fa-honfa-hon, fa-hon fa-honfa-hon fa-ldbfa-hon, fa-honfa-hon, fa-honfa-ldb, fa-ldbfa-ldb, fa-ldb fa-honfa-hon hon-flw

hon-flwhon-flw fa-honfa-hon ldb-ld

ldb-ldldb-ld fa-honfa-hon ld-ho ld-ho

ld-ho ld-hold-ho ld-hold-ldb fa-honfa-hon fa-honfa-hon fa-ldbhon-flw

ho-hob

ldb-ld

hob-pass

ld-ho, ld-hold-ho, ld-ho

ldb-ann

flw-flw

ann-ldb

Figure 7: The LTS for a system with three cars

• Completeness of the used transformation system. We implemented the same ref-
erence transformation system.

• Completeness of analysis. We were able to analyse systems with up to 11 processes.

• Performance. For the largest analysable system the run-time was 8.1 hours and the
memory consumption was 4.4 GB (using BFS exploration).

• Flexibility of output. Node and edges can be filtered according to labels.

• Flexibility of property evaluation. groove allows nested quantification of rules,
which has the same expressivity as First-Order Logic [3]. Furthermore, wildcards and
regular expressions can be used to express more complex matching conditions of inspection
rules.

The solution for the case study could be properly developed in groove with very little effort
and time. Since this case stresses performance aspects of the tool, it is interesting to highlight
the points of improvements planned.

While profiling the Generator to identify performance bottle-necks in this case study, we
established that roughly 90% of the execution time is spent in isomorphism checking. To
address this we are currently investigating the use of canonical forms of graphs for isomorphism
comparison. In large state spaces this is expected to yield better performance results.

Another important point for improvement is rule matching. We are working on the imple-
mentation of a RETE algorithm that allows for the use of incremental pattern matching of rules
into the host graph. Since the rules are simple and small, this new algorithm is expected to
give a performance boost.

The GPS of this case study has one interesting characteristic: it does not delete or create
nodes. All algorithms in groove are designed to handle addition and removal of nodes and
thus cannot explore this particular characteristic of the case to improve the performance. It
would be interesting to check how much can be gained with a dedicated solution to this case.

7

Topology

125

References

[1] P. Crouzen, J. C. van de Pol, and A. Rensink. Applying formal methods to gossiping
networks with mCRL and groove. ACM SIGMETRICS performance evaluation review,
36(3):7–16, December 2008.

[2] Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Eduardo Zambon, and Maria
Zimakova. Modelling and analysis using groove. To appear, June 2010.

[3] A. Rensink. Representing first-order logic using graphs. In H. Ehrig, G. Engels, F. Parisi-
Presicce, and G. Rozenberg, editors, International Conference on Graph Transformations
(ICGT), volume 3256 of Lecture Notes in Computer Science, pages 319–335, Berlin, 2004.
Springer Verlag.

[4] Arend Rensink. The groove simulator: A tool for state space generation. In John L.
Pfaltz, Manfred Nagl, and Boris Böhlen, editors, Applications of Graph Transformations
with Industrial Relevance, (AGTIVE), volume 3062 of LNCS, pages 479–485. Springer, 2004.
See http://sourceforge.net/projects/groove.

8

Topology

126

Abstract topology analysis of the join phase of
the merge protocol�

Peter Backes1 and Jan Reineke2

1 Universität des Saarlandes, Saarbrücken, Germany
rtc@cs.uni-sb.de

2 University of California, Berkeley
reineke@eecs.berkeley.edu

Abstract. We present a partial solution to the TTC2010 topology anal-
ysis case study. We pick a small part of the merge protocol, namely the
part where cars join a leader to form a platoon. Using abstract interpre-
tation, we compute an approximation of the arising topologies, without
limiting the number of cars.

1 Introduction

In our case study, we ask “Can you analyze the protocol in a general way using
abstraction techniques such that the number of processes is not limited?” In
this solution to the case study, we achieve this goal for a part of the protocol.
Section 2.2 of the case study mentions that the protocol implements three tasks.
The part that we analyze consists of the first and the second task: Building a
platoon out of two processes so that one of them becomes a leader and the other
a follower, and having a process join an existing platoon.

If we apply the merge protocol graph transformation rules from the case
study to a start graph with finitely many nodes, then they produce a finite set
of graphs. This is so because none of the rules adds new nodes. If, on the other
hand, we use an empty start graph, and add a new rule that merely creates
free agent nodes, the result will be an infinite set of graphs. Accordingly, such a
system cannot be analyzed using classic graph transformation tools.

Abstract interpretation allows us to compute approximations of such systems.
The state of the art technique using this paradigm is partner abstraction [2,3],
implemented in the tool hiralysis. However, partner abstraction was designed

� This work was supported by the DFG as part of the Transregional Collaborative
Research Center SFB/TR 14 AVACS. In addition, it was supported in part by
the Center for Hybrid and Embedded Software Systems (CHESS) at UC Berke-
ley, which receives support from the National Science Foundation (NSF awards
#0720882 (CSR-EHS: PRET) and #0931843 (ActionWebs), the U. S. Army Re-
search Office (ARO #W911NF-07-2-0019), the U. S. Air Force Office of Scientific
Research (MURI #FA9550-06-0312 and AF-TRUST #FA9550-06-1-0244), the Air
Force Research Lab (AFRL), the Multiscale Systems Center (MuSyC) and the fol-
lowing companies: Bosch, National Instruments, Thales, and Toyota.

Topology

127

for simple topologies only and requires a human expert to supply additional
invariants—partner constraints—to cut off parts of the merge protocol that in-
volve more complicated topologies. Such more complicated topologies do occur
in the merge protocol [1]. Without cutting off these parts, partner abstraction
will suffer from state space explosion, and hiralysis will not terminate.

The more complicated topologies cut off for partner abstraction analysis al-
ready arise for the two mentioned tasks. We aim at an abstraction that does not
need manual intervention to cope with these topologies.

In section 2, we introduce our abstraction. Section 3 presents which parts of
the protocol we analyze and the abstract result that we get after running astra,
our analysis tool. We talk about the evaluation of properties on the abstract
result in section 4. Section 5 sums up our work and presents future research.

2 Star abstraction

ldbflw

flw

flw

flws

flw
s

flw
s

ldr

ldr

ld
r

hob
flw

flw

bldr

ldr

flws

flws
flws

flws

ldbflw

flw

flw

hob
flws

flw
s

flw
s

ldr

ldr

ld
r

bldr

ldr ldb hob
flw

flw

bldr

ldr

flws

flws
ldr

ldr

ldb

ldb

ldb

flw

flw

flw

flws

flws

flws

ldr

ldr

ldr

flw

flw

hob

hob

flws

flws

ldr

ldr

ldb hobflw flws bldr

ldr ldr ldb hob flwbldr flws

ldr ldr
flw

flw

flw

ldb

ldb

ldb

flws

flws

flws

ldr

ldr

ldr

flw

flw

hob

hob

flws

flws

ldr

ldr

ldb hobflw flws bldr

ldr ldr ldb hob flwbldr flws

ldr ldr
flw ldb

flws

ldr
flwhob

flws

ldr

concrete graph

split into concrete stars

abstract them into
abstract stars

remove duplicates

⇓

⇓

⇓

Fig. 1. Our abstraction applied step by step to a simple example

2

Topology

128

Our abstraction is sketched in Figure 1. We abstract graphs in three steps:
First, we build the corresponding star for all nodes v of the graph. We obtain
the star by removing all nodes from the graph except for v and its partner nodes,
and by removing all the edges that are not incident to v. We call v the core node
(displayed as a square in Figure 1) and the other nodes the outer nodes.

The next step is done for each star separately. We identify sets of outer
nodes that cannot be distinguished from each other with respect to their label
and the labels and directions of the edges incident to them. For each such set that
contains two or more indistinguishable nodes, we merge them all into a summary
node. We are then left with abstract stars. We represent the abstract stars as a
tuple (l, E, A, S) with l ∈ N being the label of the core node, E ⊆ E being the
self-loops of the core node, A ⊆ N ×2E×2E being the axes and S ⊆ A specifying
which of those axes have summary nodes. Each axis (l, in, out) represents an
outer node with label l and the edges incident to it. in contains those edges
that point from the core node to the outer node and out the remaining ones. By
construction, it follows that at least one connection must exist, that is, in∪out 	=
∅.

In the final step, we ensure that each abstract star is unique. This is ac-
complished by keeping at most one copy from each class of isomorphic abstract
stars.

There are |N | · 2|E| · 3|N |·(22·|E|−1) different stars: Each star can have |N |
different node labels for the core node and can have any subset of the |E| edge
labels for self-loops. Between the core node and each outer node, there can be
any edge with one of the |E| edge labels, either pointing from the core node to
the outer node, or the other way around; with the exception that in total, at
least one edge must be present. The outer node of an axis can have any of the
|N | node labels, and each axis is either present, absent or present as a summary
axis. We denote the set of all possible stars over a node label set N and an edge
label set E as S(N , E).

We do not yet have a result on the exact size of the star domain itself and
merely know that it is bounded by 2|S(N ,E)|. It is non-trivial, because not every
subset of the stars is a valid abstraction of an actually existing concrete graph.
For example, a set containing only the star

a b
c

is not a abstraction of any graph, since there is no corresponding star with a
core node that has label b.

3 Results

Our tool, astra, expects a file in hiralysis format as input. The file contains
a set of graph transformation rules and a start graph. We use the rules from
the case study, except for the ones that deal with platoon merging and follower
handover:

3

Topology

129

fa generate free agents

fa
u1

x
u2

hon
u1

x
u2ldr

req
free agent requesting
to join a platoon

x
u1

fa
u2

x
u1

ldb
u2

req
bldr

ack

free agent
acknowledging a join
request

hon
u1

x
u2

flw
u1

x
u2

ack ack

new follower receiveing
acknowledgement to
join the platoon

x
u1

ldb
u2

x
u1

ld
u2

flws

ack

bldr

leader adding new
follower after its
acknowledgement

x
u1

ld
u2

x
u1

ldb
u2

req
bldr

ack

leader receiving merge
or join request

astra computes an abstraction of all graphs that can be generated by the
system, resulting in the following set of stars:

fa hon fareq
ldr fa honreq

ldr

fa honreq
ldr

hon fahon req
ldrreq

ldr hon honreq
ldr

hon honhon
req
ldr req

ldr
hon honreq

ldr

req

ldr

ldb honbldr
ack

ldr

hon ldbldr
bldr

ack hon fahon req
ldrreq

ldr hon ldbreq
ldr

ldb honhon bldr
ack req

ldrldr
hon ldbhon req

ldrreq
ldr hon ldbhon req

ldrreq
ldr

hon ldbhon ldr
bldr

ack

req
ldr hon honhon

req
ldr req

ldr
req

ldr
hon honhon

req
ldr req

ldr

hon honhon
req
ldr req

ldr
req

ldr
ldb honhon bldr

ack req
ldrldr

ldb flwbldr
ack

ldr

flw ldback
ldr

bldr ldb flwhon bldr
ack

ldr

req
ldr hon flwreq

ldr

flw ldbhon ack
ldr

bldr

req
ldr hon flwhon req

ldrreq
ldr hon flwhon req

ldrreq
ldr

hon ldbhon ldr
bldr

ack

req
ldr ldb flwhon bldr

ack

ldr

req
ldr ld flwflws

ldr

4

Topology

130

flw ldldr
flws

hon ldreq
ldr

ld flwhon flws
ldrreq

ldr

hon ldhon req
ldrreq

ldr hon ldhon req
ldrreq

ldr flw ldhon ldr
flwsreq

ldr

flw ldbhon ack
ldr

bldr

req
ldr ld flwhon flws

ldrreq
ldr flw ldhon ldr

flwsreq
ldr

ldb flwhon flwsbldr
ack

ldrldr

ldb flw

hon

hon

flws
bl
d
r

a
ck

ldr

reqld
r

ld
r

ldb flw

hon

hon

flws

bl
d
r

a
ck

ldr

reqld
r

ld
r

flw ldbldr
flws

flw ldbhon ldr
flwsreq

ldr flw ldbhon ldr
flwsreq

ldr

ldb flw

flw

hon

bldr

fl
w
s

ack

ldr

ld
r

re
q

ld
r

ldb flw

flw

hon

bldr

fl
w
s

ack

ldr

ld
r

re
q

ld
r

ldb flwflw bldr
flws ack

ldrldr

ld flwflws
ldr

ld flwhon flws
ldrreq

ldr ld flwhon flws
ldrreq

ldr

ldb flwhon flwsbldr
ack

ldrldr

ldb flw

hon

hon

flws

bl
d
r

a
ck

ldr

reqld
r

ld
r

ldb flw

hon

hon

flws

bl
d
r

a
ck

ldr

reqld
r

ld
r

ldb flw

flw

hon

bldr

fl
w
s

ack

ldr

ld
r

re
q

ld
r

ldb flw

flw

hon

bldr

fl
w
s

ack

ldr

ld
r

re
q

ld
r

ldb flwflw bldr
flws ack

ldrldr

5

Topology

131

Our tool outputs the result in graphviz, GDL, XGDL, Tulip and METAPOST
format and such that it can be rendered/displayed with any tool capable of
processing these formats. The graphical representation above is the METAPOST
output.

4 Property evaluation

Star abstraction easily allows for evaluation of properties involving two nodes
and the connections among them, such as the first and second example given
in section 5.2 of the case study. This is because the stars contain each adjacent
node of each node and the the edges between them. That is the only thing that
the first two example properties talk about. Using the additional rules

flw flw err1
ldr

pass err2

no outgoing flws edge
to a flw node

ld err2

no outgoing flws edge
to a flw node

we mark parts of the graph with error labels where the properties are violated.
It is then easy to scan the result for such labels. We can verify any property that
can be expressed using such rules.

Our abstraction overapproximates the set of concrete topologies that might
arise. Thus, if a property of the mentioned kind (one that can be expressed
by a transformation rule adding an error node) is satisfied by all topologies
represented by our abstract result, we know that it is satisfied by all reachable
concrete topologies as well. However, if is not satisfied in the abstract result, it
might still be satisfied for the concrete result.

The computing time and memory consumption of our tool is negligible (< 1
MB, < 1 sec) on any reasonably modern machine.

5 Conclusion

Our analysis has proven powerful enough to analyze the join phase of the merge
protocol in a general way, without limit to the number of processes. The re-
sulting topologies are more complex than what can be analyzed with existing
approaches, since they are not limited with respect to path length.

On the other hand, the abstraction we employed is too weak to deal with
the characteristic topology structures occurring during handover. If we try to

6

Topology

132

analyze the full merge protocol, the abstraction runs into state space explosion.
This is caused by the inability of the abstraction to preserve the fact that the
topology has a triangular shape during handover. Accordingly, the abstraction
does not preserve enough information to verify the third example property from
the case study.

Since the results are still promising, we are currently implementing a new
tool with an extended abstraction that is able to cope with topologies involving
triangular shapes.

References

1. Peter Backes. Topology analysis of dynamic communication systems. Diploma
thesis, Universität des Saarlandes, March 2008.

2. Jörg Bauer. Analysis of Communication Topologies by Partner Abstraction. PhD
thesis, Universität des Saarlandes, 2006.

3. Jörg Bauer and Reinhard Wilhelm. Static analysis of dynamic communication sys-
tems. In 14th International Static Analysis Symposium, 2007.

7

Topology

133

Topology Analysis of Car Platoons Merge with FujabaRT &
TimedStoryCharts - a Case Study

Christian Heinzemann1, Julian Suck1, Ruben Jubeh2, Albert Zündorf2

1 University of Paderborn, Software Engineering Group,
Warburger Str. 100,
33098 Paderborn

chris227|jsuck@upb.de
2 Kassel University, Software Engineering Research Group,

Wilhelmshöher Allee 73,
34121 Kassel, Germany

ruben|zuendorf@cs.uni-kassel.de

Abstract. This paper addresses the topology analysis case study for the Transformation Tool Contest
2010. The case study presents a car platoon merge protocol with a dynamic number of participants.
The task is to compute a reachability graph for all system configurations generated by the graph rewrite
rules. Using the Fujaba Real-Time Tool Suite, we modeled the merge protocol as statechart in concrete
syntax as this is more intuitive and use a special generator to derive the corresponding graph rewrite
rules ([6, 5]). This has been combined with the hierarchical graphs library presented in [12], to compute
the reachable graph transition system.

1 Introduction

This paper addresses the topology analysis case study for the Transformation Tool Contest 2010. The case
study description introduces an example of a dynamic communication structure. Dynamic communication
structures occur whenever an arbitrary, at design time unknown number of participants have to coordinate
each other. The provided example is a group of cars that form a platoon of arbitrary length in which they
travel behind a leader car. The example is structurally similar to the dynamic convoy situations (cf. [7]) in
our RailCab project3.

Systems employing dynamic communication like the car platoon often operate in safety critical environ-
ments as it is the case for both, the car platooning example and the RailCab convoys. Therefore, verification
is of crucial importance for the safety of such systems to guarantee correct functionality. One inherent prob-
lem of such systems is that they often have an infinite reachable state space which makes the verification
impossible without suitable abstraction or verification approaches.

We used our Mechatronic UML (e.g. [3]) approach to model the provided car platooning case study.
Mechatronic UML is an adaptation of the UML allowing to model and verify systems with a dynamic com-
munication structure ([7]). The modeling process defined by Mechatronic UML [7] allows formal verification
of safety properties for arbitrary numbers of participants using inductive invariants [4]. However, inductive
invariants do not support verification of all kinds of properties that are important for such systems like
e.g. deadlock freedom. Since the case study explicitly requested solutions performing a reachability analysis
of the protocol specification, we will show a framework for reachability analysis on graph transformation
3 http://www.railcab.de/

Topology

134

2 Heinzemann, Suck, Jubeh, Zündorf

systems. This enables us to verify a larger set of properties, like e.g. deadlock freedom, for a given number
of instances.

We modeled the merge protocol of the car platooning case study with a statechart in concrete syntax as
this is more intuitive than a direct specification in terms of graphs rewrite rules. Then, we use a partially
automated generation of statecharts into our (Timed) Story Chart formalism ([6]) that allows an integrated
specification of state-based protocol behavior and dynamic graph transformation. (Timed) Story Charts
consist of graph transformation rules employing the behavior of the statechart and of the original graph
transformation rules describing the dynamic transformations in the system structure, e.g. adding new cars
to the system. We used the computation of reachability graphs as proposed in [12] to obtain the reachable
graph transition system. Our framework manages sets of graphs and provides functions for copying graphs,
computing hash codes for graphs, and checking isomorphisms of graphs. The resulting rules of our (Timed)
Story Charts identify all possible matches for the given rule, then copy the graph and finally apply the
transformation to the copy.

The concepts of the Mechatronic UML have been integrated into the Fujaba4Eclipse Real-Time Tool Suite
(Fujaba RT, [10])4 as an extension to the Fujaba4Eclipse CASE tool. The Mechatronic UML supports the
specification of real-time statecharts ([2]) that allow to model timing constraints for states and transitions.
We can also handle this using our Timed Story Charts and perform a reachability analysis including the
timing constraints using timed story diagrams, a dialect of timed graph transformation systems ([7]). In our
opinion, such timing constraints would be needed to obtain a realistic specification of the merge protocol as
it is needed for the convoy coordination in our RailCab project. As this case study did not contain real-time
requirements, we did not utilize the real-time capabilities of our framework.

2 Framework

This section introduces the framework which was used to model and perform the reachability analysis.
Section 2.1 describes the generation of Timed Story Charts out of statecharts. Section 2.2 introduces some
improvements that were made in contrast to the version described in [12].

2.1 Generating Timed Story Charts

In [6, 5], we introduced the Timed Story Chart formalism which allows to map real-time statecharts ([2])
to story diagrams extended with time. Timed Story Charts preserve the semantics of real-time statecharts
while real-time statecharts can be mapped to hierarchical timed automata ([1]) which are a proper input for
the Uppaal model checker ([9]) and preserve the semantics of Uppaal timed automata. Thus, Timed Story
Charts have a proper semantics defined over timed automata.

The general idea is to model protocol specifications as statecharts in concrete syntax and to transform
them automatically into graph rewrite rules for dynamic numbers of participants as in the car platooning case
study. For a fixed number of participants, a verification using standard model checking tools is much more
efficient. The first step of the transformation is to generate an object diagram for the statechart containing
an object for the statechart itself as well as one object for each state of the statechart. For multiple instances
of the same statechart, e.g. the statecharts of two car processes, we exploit the fact that all these instances
have the same structure by generating the state structure only once. The active state of each instance is
marked by an ActiveState object pointing to the object representing that state. Transitions of the statechart

4 http://www.fujaba.de/projects/real-time.html

Topology

135

Car Platoons Merge with FujabaRT 3

are mapped to Story Diagrams such that for each transition there exists one Story Diagram which executes
this transition. The execution includes changing the active state, consuming received messages, generating
sent messages, and performing side effects like writing local variables of the process, e.g. for storing the
leader.

Asynchronous, message based communication between different statechart instances is supported by the
EventQueue objects. There exists one event queue for each car process which buffers all incoming messages for
the statechart. Thus, for receiving a message, a statechart reads the head message of the queue and dequeues
it afterwards. For sending a message, the message is inserted into the queue of the receiving statechart by
invoking the enqueue method as shown in Figure 13.

The automated transformation can generate the whole statechart structure as well as the story dia-
grams executing the transitions. Currently, the generation of model dependent calls like the computation of
message recipients is not possible, but we are planning to extend the transformation to these aspects. The
transformation itself is implemented as a model-to-model transformation using story diagrams. An example
transformation rule is shown in Figure 16. It shows the top-level rule generating a class representing the
transformation rule which actually executes the transition (cf. Section 2.2).

2.2 Improvements of the HierarchicalGraphsLib

The solution presented in last year’s contest for the leader election protocol [12] provided a generic hierarchical
graph library and a problem specific model for the leader election protocol. The graph library used runtime
reflection mechanisms to provide generic copy and checkIsomorphism operations. This turned out to be
inefficient, as reflective code is several times slower than generated code. We adapted the template based
Fujaba code generator [8] to generate application specific copy and isomorphism check methods in the
subclasses of de.fujaba.Node and de.fujaba.Graph. To be included in the isomorphism check and caching
hash calculations, all associated classes have to be derived from de.fujaba.Node and associations have to be
marked with the usage stereotype.

In order to ease the use of the graphs lib, we introduced a framework executing the reachability analysis
which is shown in Figure 1. The core of the framework is specified in the class ReachabilityComputation. This
class maintains a list of StepGraphs that were reached during the analysis and a list of StepGraphs that have to
be expanded. StepGraph is a subclass of de.fujaba.Graph and denotes the graphs reached during the analysis.
Expanding graphs, merging isomorphic graphs, and maintaining the timing computations is implemented
independent from the concrete rule set. Rules are defined as subclasses of Rule. The class TransformationRule
is the super class for all rules executing transitions. As we have no timing constraints in the example, the
additional rules for the timing are omitted here. For specifying a reachability analysis, the user only has to
specify the rule set, an initial graph, and has to instantiate the rules for the reachability analysis.

3 Modeling the merge protocol

3.1 At design time: Modeling the protocol

The underlying structure of the case study is defined by the class diagram shown in Figure 2. We introduced
the class CarProcess representing the car processes. This class has four associations to itself representing
the channels leader, follower, aux, and bldr. We used four unidirectional transitions in our model to imitate
the behavior described in the case study. Our model would also allow to use bidirectional associations. This
would enable us to express the two channels leader and follower by one 1:n association.

Topology

136

4 Heinzemann, Suck, Jubeh, Zündorf

ReachabilityComputation

getApplicableInvariants (step:StepGraph, invariants:HashSet<ClockConstraint>)
initialize ():StepGraph
expand(step:StepGraph)
addAllClockInstances (step:StepGraph):HashSet<ClockInstance>
createRules ()
unifyGraphs (succ:StepGraph)
createInitialGraph ():StepGraph
processGraph(step:StepGraph, scc:HashSet<ClockConstraint> , resets:HashSet<Clock>)
computeReachableGraphs ()

Rule
bound: Integer
Rule (op:RelationalOperator , bound:Integer):constructor
addClockInstances (step:StepGraph, clockInstances:HashSet<ClockInstance>)

StepGraph
name: String
toString ():String

TransformationRule
reset: Boolean
TransformationRule (op:RelationalOperator , bound:Integer , reset:Boolean):constructor
apply (step:StepGraph, graphsAndCIs:HashMap<StepGraph, HashSet<ClockInstance>>)

cd Test

*
hasTransformationRule

*
graphs

*
todo

Fig. 1. Framework for the reachability analysis

The class Environment describes the environment in which the cars operate. The environment can generate
new cars using the CreateNewCarProcess rule as well as it generates the car ahead (ca) messages for the cars
such that they join a platoon or such that two platoons merge. There exist two additional rules for that
purpose. The application of the CreateNewCarProcess rule is limited by a constant providing the desired
number of cars.

The classes State, ActiveState, Parameter, EventQueue, and Statechart classes from the Timed Story Chart
model described in Section 2.1 are used for the mapping of the process statechart. The Carprocess is a special
parameter which can be used to attach a car process to an event. This is needed for the ca and req messages
as they contain process identities. The class Car Car Port1 represents the statechart of the car process shown
in Figure 3.

The statechart itself is directly adopted from the protocol specification contained in the case study
description and uses the same states and transitions. The concrete syntax of the transitions is adopted to
the syntax of our real-time statecharts. Received messages, called trigger events, are depicted in front of a
”/”, sent messages, called raised events, are depicted after the ”/”. Transition guards restrict the execution
of the transition, e.g. the transition from hob to hod should only be executed if the former leader does not
have any followers left. This is expressed by the guard in square brackets attached to this transition.

Topology

137

Car Platoons Merge with FujabaRT 5

CarParameter

Environment
maxNumOfCars: Integer = 5
toString ():String

Car_Car_Port1

«ComponentClass»
Carprocess

toString ():String

ActiveState

EventQueue
I

«Java...
Node

Parameter
S i

State

Statechart

cd Classes for Carprocess

0..1

0..*«usage»
carValue

*

«usage»
cars

0..1

*«usage»
statechart

0..1

«usage»
bldr

0..1
«usage»
aux

0..1
«usage»
curState

0..1

«usage»
queue

0..1
«usage»
leader

*

«usage»
follower

0..1 0..*

«usage»
active

0..1

1..*

«usage»
in

0..n

0..1

«usage»
has

0..1

«usage»
value

0..1

1..*

«usage»
in

Fig. 2. Class diagram for the merge protocol specification

InitialState
fa

hon

flw

hod

hob pass

ho

ld

ldb

ann

Carprocess.Carprocess.Port1 | clocks:

Port1.ca(leader:Carprocess) / Port1.req(follower:Carprocess)

Port1.req(follower:Carprocess) / Port1.ack()

Port1.ack() / Port1.ack()

Port1.newl(leader:Carprocess) / Port1.ack()

/ Port1.ack()

/ Port1.newf(follower:Carprocess)

Port1.ack() /

Port1.ack() /

Port1.ca(leader:Carprocess) / Port1.req(follower:Carprocess)

Port1.req(follower:Carprocess) / Port1.ack()

Port1.ack() /

Port1.newf(follower:Carprocess) / Port1.newl(leader:Carprocess)

Port1.ack() / Port1.ack()

Fig. 3. Statechart specifying the protocol

Topology

138

6 Heinzemann, Suck, Jubeh, Zündorf

3.2 At Runtime: computing the Reachability Graph

Fig. 4. Initial Graph

The runtime structure of our program is visualized by the eDOBS tool ([11]), a graphical object browser
attached to the debug interface. It shows the objects in the heap, their attributes and links to other objects
and helps visualizing the runtime state of our program. Figure 4 shows the initial graph we start with. There
is a single car process with active state pointing to the state fa, an event queue, an environment and objects
for each possible state a car process can be in.

Fig. 5. Simplest reachability graph

The core of our algorithm is the ReachabilityComputation class. It starts with the initial graph and
iteratively expands the graph by copying the graph and applying rules. After that, unifyGraphs (c.f. Figure
6) tries to identify isomorphic CarStepGraphs. Each step graph contains a certain state of the whole car
process model. Figure 5 shows the structure of a reachability analysis with maximum two car processes. Each
analysis state is represented as a CarStepGraph instance. These are ordered by an predecessor/successor-
relation. In that example, each car step graph has only a single successor, as isomorphic graphs are removed
after each expand step. The analysis ends with one process being the follower and the other one being the
leader, which is isomorphic to ld|flw.

Figure 7 shows the full reachability graph for an analysis with max processes = 3. Isomorphic states are
already removed, but the unify step also marks step graphs with same predecessor in the reachability graph.

Topology

139

Car Platoons Merge with FujabaRT 7

Fig. 6. unifyGraphs() rewrite rule

Topology

140

8 Heinzemann, Suck, Jubeh, Zündorf

Fig. 7. Reachability graph for max processes = 3

Topology

141

Car Platoons Merge with FujabaRT 9

For example, adding a new car process to the graph c4 results in the same successor step graph as applying
the rule StartPlatoon, which generates a ca environment message to c3, that is is the step graph c5.

Fig. 8. Final graph for max processes = 2

The eDOBS tool can be used to verify the generated topologies. Back to the simple example with just
two car processes, we inspect the final step graph, shown in figure 8. The states ld and flw associated with
the car processes are correct. There is a bidirectional link between c13 and c14, representing the ldr and
flws edges as expected. Also, note that the previous step graph, c22, is the one with a process in ldb and an
ack message in it’s queue.

Fig. 9. Platoon Merge

More complex examples can be inspected by setting breakpoints in the corresponding rule and inspecting
the step graph in eDOBS. Figure 9 shows the situation just before a platoon merge: one car process is
currently in the hod state, just the edges between the car processes are shown. By looking at the predecessors
of the current step graph, we can see previous states of the whole system.

Topology

142

10 Heinzemann, Suck, Jubeh, Zündorf

3.3 Modeling the constraints

The given constraints to be checked during analysis are modeled as rules having a LHS only. They are
derived from the Rule class, thus they are added to the chain of transformation rules to be checked on each
iteration. They simply print out any violation. Figure 10 shows the graph pattern match rule for checking
that no two processes in state flw are connected to each other with an ldr edge. Similar, figure 14 and 15 in
the appendix show the two remaining constraints.

Constraint1::apply(step: StepGraph, graphsAndCIs: HashMap<StepGraph, HashSet<ClockInstance>>): Void

specify situation in which the constraint is not fulfilled

as1: ActiveState

as2: ActiveState

step car1: Carprocess

car2: Carprocess

flw1: State
name == "flw"

flw2: State
name == "flw"

report the unsatisfied constraint

1: System.out.println("Constraint1 not fulfilled.")

this

adConstraint1::apply()

active

curState

active

curState

contains

contains

leader
[success]

[failure]

Fig. 10. Graph pattern match rule for constraint 1

Checking for deadlocks can easily performed by a post-processing searching for graphs having no successor
and the reached graph transition system.

4 Evaluation

Our system can analyze topologies with up to eight car processes. Runtime measurements are presented
in Table 1. Each line represents a full analysis with the maximum number of car processes limited to max
processes. Column two shows the number of non-isomorphic graphs resulting for that analysis run and

Topology

143

Car Platoons Merge with FujabaRT 11

column three shows the time needed for the computation. Column four denotes the number of nodes per
graph while Column five shows the memory consumption of the computation.

max processes graphs Runtime (s) graphsize memory

2 7 0 21 ?
3 26 0 26 ?
4 96 1 31 7MB
5 348 2 36 42MB
6 1317 12 41 163MB
7 5100 347 46 733MB
8 20353 14046 51 5.8GB

Table 1. Evaluation results

Figure 11 shows the nodes per graph. This grows linear as expected. In contrast to that, our analysis
runtime grows exponentially, as shown in figure 12. Analyzing the system with up to eight processes already
requires almost 4 hours runtime, so calculating nine seems to be impossible with the current approach, as
well as with the current memory requirements. The graph isomorphism check still seems to be inefficient
when many isomorphisms are expected.

Fig. 11. Number of nodes per graph

Fig. 12. Problem size versus runtime (in
seconds)

5 Conclusions

We have shown an approach to model the topology analysis case study by using concrete statechart syntax.
The statecharts are automatically transformed into Story Diagrams and executed by a framework computing
the set of reachable graphs. Our evaluation results have shown, that checking more than 8 car processes is
currently not possible using our tool regarding time and memory consumption for the computations with 8
cars. Although not requested in this case study, our framework is able to handle timing constraints which
would lead to a more realistic specification of the merge protocol.

In FujabaRT, we are now able to use a combination of real-time statecharts and real-time transformation
rules to specify the behavior of a system. Using our generators and the reachability graph framework, we

Topology

144

12 Heinzemann, Suck, Jubeh, Zündorf

are able to compute the reachability graph for the specified system. In addition, one may add constraint
checking rules to the reachability graph framework.

Currently, we use normal rules to specify our constraints that check for the existence or absence of certain
invariant structures. This enables us to check CTL formulas of the kind EFϕ and ¬AGϕ for some graph
invariant ϕ. We plan to extend our checking approach to a greater class of CTL formulas in future work. It
is also possible to extend our approach by using inductive invariants to verify properties for infinite state
systems ([4]).

The performance of our reachability analysis has been improved since last year. However, our framework
introduces a certain overhead due to the unused timing capabilities which require some additional search
operations in the graph. Additionally, our current Timed Story Chart approach uses one object for each state
of the statechart which increases the number of objects per graph by a constant and we plan to investigate
whether a more compact statechart encoding yields better results. Finally, this case study clearly identified
the isomorphism checks of our graph lib framework as a bottleneck and we have developed a number of ideas
for further improvements for the next year.

References

1. A. David, M. O. Möller, and W. Yi. Formal Verification of UML Statecharts with Real-Time Extensions. In
Fundamental Approaches to Software Engineering, volume 2306 of Lecture Notes in Computer Science, pages
208–241. Springer Berlin / Heidelberg, 2002.

2. H. Giese and S. Burmester. Real-time statechart semantics. Technical Report tr-ri-03-239, Lehrstuhl für Soft-
waretechnik, Universität Paderborn, Paderborn, Germany, June 2003.

3. H. Giese, S. Henkler, M. Hirsch, V. Roubin, and M. Tichy. Modeling techniques for software-intensive systems.
In D. P. F. Tiako, editor, Designing Software-Intensive Systems: Methods and Principles, pages 21–58. Langston
University, OK, 2008.

4. H. Giese and D. Schilling. Towards the Automatic Verification of Inductive Invariants for Infinite State UML
Models. Technical Report tr-ri-04-252, University of Paderborn, Paderborn, Germany, December 2004.

5. C. Heinzemann, S. Henkler, and M. Hirsch. Refinement checking of self-adaptive embedded component architec-
tures. Technical Report tr-ri-10-313, University of Paderborn, 2010.

6. C. Heinzemann, S. Henkler, and A. Zündorf. Specification and refinement checking of dynamic systems. In P. V.
Gorp, editor, Proceedings of the 7th International Fujaba Days, pages 6–10, Eindhoven University of Technology,
The Netherlands, November 2009.

7. S. Henkler, M. Hirsch, C. Priesterjahn, and W. Schäfer. Modeling and verifying dynamic communication struc-
tures based on graph transformations. In Proc. of the Software Engineering 2010 Conference, Paderborn, Ger-
many, 22.-26.2.2010, 2010. accepted.

8. L. Geiger, C. Schneider, C. Record. Template- and modelbased code generation for MDA-Tools. 3rd International
Fujaba Days 2005, Paderborn, Germany, September 2005.

9. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. International Journal on Software Tools for
Technology Transfer, 1(1-2):134–152, Oct. 1997.

10. C. Priesterjahn, M. Tichy, S. Henkler, M. Hirsch, and W. Schäfer. Fujaba4eclipse real-time tool suite. In Model-
Based Engineering of Embedded Real-Time Systems (MBEERTS), LNCS, pages 1–7. Springer, 2009. accepted.

11. The EDobs Dynamic Object Browser. http://www.se.eecs.uni-kassel.de/typo3/index.php?edobs, 2006.
12. A. Zündorf. Model Checking the Leader Election Protocol with Fujaba. In GraBaTs 2009, 5th International

Workshop on Graph-Based Tools, Zurich, Switzerland, 2009.

Topology

145

Car Platoons Merge with FujabaRT 13

A Appendix

Fig. 13. Example transformation rule rule: fa to ldb

Topology

146

14 Heinzemann, Suck, Jubeh, Zündorf

report the unsatisfied constraint

this

1: System.out.println("Constraint2 not fulfilled.")

specify situation in which the constraint is not fulfilled

as: ActiveState

step car: Carprocess

state: State

{ state.getName().equals("ld") || state.getName().equals("pass") }

{ car.sizeOfFollower() == 0 }

Constraint2::apply(step: StepGraph, graphsAndCIs: HashMap<StepGraph, HashSet<ClockInstance>>): Void

adConstraint2::apply()

[success]

active

curState

contains

[failure]

Fig. 14. Graph pattern match rule for constraint 2

constraint 3

step car: Carprocess

as: ActiveState

state: State
name == "flw"

ldr: Carprocess

oldLeader: Carprocess

queue: EventQueue

param: Parameter

event: Event
name == "newf"

report the unsatisfied constraint

1: System.out.println("Constraint3 not fulfilled.")

this

Constraint3::apply(step: StepGraph, graphsAndCIs: HashMap<StepGraph, HashSet<ClockInstance>>): Void

adConstraint3::apply()

contains

contains

curState

leader

value

active

bldr

queue

head

has

[failure]

[success]

Fig. 15. Graph pattern match rule for constraint 3

Topology

147

Car Platoons Merge with FujabaRT 15

i++;

create empty activity diagrams and fill them

applyActDiag := TransformationHelper.createEmptyActivityDiagram(applyMethod)

1: createTransRuleAddClockMethodBody(addClockActDiag, trans)

addClockActDiag := TransformationHelper.createEmptyActivityDiagram(addClockMethod

2: createTransRuleApplyMethodBody(applyActDiag, trans)

constructorActDiag := TransformationHelper.createEmptyActivityDiagram(constructor)

3: createTransRuleConstructor(constructorActDiag, trans)

4: this.transRules.put(transRuleClazz, trans)

bind source and target state of transition, not possible if start or stop state is involved

source: UMLComplexRealtimeState

trans

target: UMLComplexRealtimeState

create the class, increment counter if class already exists

transRuleClazz := this.createClassForTransformationRule(className + i, classDiag)

int i = 1;

Statechart2TSC::createRuleForTransition(trans: UMLRealtimeTransition, classDiag: FClassDiagram): Void

bind the methods

addClockMethod: FMethod
name == "addClockInstances"

applyMethod: FMethod
name == "apply"

transRuleClazz

constructor: FMethod
name == transRuleClazz.getName()

build name prefix

className := "Trans_" + source.getName() + "_" + target.getName() + "_"

check for self transition

trans

state: UMLComplexRealtimeState

build name prefix

className := "Trans_" + state.getName() + "_" + state.getName() + "_"

adStatechart2TSC::createRuleForTransition()

[else]

exit entry

[success]

[failure]

[transRuleClazz != null]

parent

parent

parent

[failure]

entry
exit

[success]

Fig. 16. Top-level Story Diagram translating a transition into a Story Diagram rule

Topology

148

Ecore to GenModel Case Study

Dimitrios S. Kolovos1, Louis M. Rose1,
Richard F. Paige1, Juan De Lara2

1 Department of Computer Science,
University of York, Y010 5DD, York, UK,

{dkolovos,louis,paige}@cs.york.ac.uk
2 Universidad Autónoma de Madrid,

Juan.deLara@uam.es

1 Introduction

Ecore is the metamodelling language of the Eclipse Modeling Framework (EMF)1,
which is arguably the most widely-used modelling framework today. EMF pro-
vides two ways for instantiating models that conform to an Ecore metamodel:
by reflection or by code generation. Of interest to our case study is the latter.
EMF provides a toolkit which can generate a set of Java classes as well as a
tree-based editor from an Ecore metamodel. This process is performed in two
steps. In the first step, the Ecore metamodel is transformed into a GenModel
model which can accommodate for additional implementation-specific informa-
tion. Such information includes the name of the Java package under which the
generated code will be placed, as well as presentation and persistence-related
options. Then a JET-based model-to-text transformation consumes the Gen-
Model in order to generate the functional Java code.

2 Proposed Case Study

Currently, the transformation that generates a GenModel model from an Ecore
metamodel is performed using Java. In this case study we propose using a
model-to-model transformation language for reimplementing the same transfor-
mation. This transformation has an interesting property: generated elements
in the GenModel refer back to elements in the original Ecore metamodel. For
instance, when a GenClass is generated from an EClass, the GenClass refers to
the original EClass through its ecoreClass property.

1http://www.eclipse.org/emf

1

Ecore to GenModel

149

3 Extension 1

As stated above, once the GenModel is generated, users can modify it in or-
der to configure low-level aspects of the resulting Java implementation. If the
Ecore model then changes, the built-in GenModel editor provides a reconcilia-
tion facility that can - in most cases - propagate changes from the Ecore to the
GenModel model while preserving any user-set attribute values. There are at
least two shortcomings in this approach. First, by inspecting a GenModel model
it is challenging to distinguish between user-set attributes and default/generated
ones. Also, in case of major changes in the Ecore metamodel, the reconciler can
fail and therefore the user needs to re-generate and re-customize the GenModel
from scratch.

To overcome these limitations, we propose specifying GenModel options as
annotations in the source Ecore metamodel itself and then populating these
options through the Ecore2GenModel transformation 2. For instance, consider
the following metamodel (in Emfatic3)

@namespace(uri="flowchartdsl", prefix="")
@emf.gen(basePackage="org.ttc10")
package flowchartdsl;

class Flowchart {
val Node[*] nodes;
val Transition[*] transitions;
}

abstract class Node {
attr String name;
}

class Transition {
attr String name;
ref Node source;
ref Node target;

}

class Action extends Node {

}

class Decision extends Node {

}

2An alternative would be to use a separate model to specify these annotations but we have
chosen the embedded annotations approach primarily for usability reasons.

3http://www.eclipse.org/gmt/epsilon/doc/articles/emfatic/

2

Ecore to GenModel

150

With the proposed extension, the value of the emf.gen basePackage annotation
on the root EPackage (flowchartdsl) would be set as the value of the basePackage
attribute of the generated flowchartdsl GenPackage.

4 Extension 2

The simplest way of propagating annotation values from the Ecore over to the re-
spective GenModel elements is to do this explicitly for each annotation/attribute
pair. However, if the transformation language supports reflection, this can also
be performed by a generic function reflectively as follows (in pseudocode):

function copyAnnotations(Ecore element, GenModel element) {
for (annotation in Ecore element annotations) {

if (GenModel element has an attribute called annotation.name) {
if (the type of the attribute is compatible

with the value of the annotation) {

do the conversion and assign the value;
}
else {

report a warning;
}

}
else {

ignore the annotation;
}

}
}

5 Rationale

This transformation tests two very useful features of a transformation language:
support for establishing cross-model references and support for reflection.

6 Availability of metamodels and sample mod-
els

Both the Ecore and the GenModel metamodels are built in EMF. Ecore models
can be constructed with the graphical Ecore diagram editor, the built-in tree-
based Ecore editor, the Emfatic textual syntax or otherwise. GenModels can
then be derived from them using the respective EMF wizard.

3

Ecore to GenModel

151

7 Implementation with ETL

The proposed transformation has been recently implemented with the Epsilon
Transformation Language (ETL)4 and is available here:

http://bit.ly/bmWbWQ
A screencast demonstrating the transformation in action is also available here:

http://bit.ly/cusuKd

4http://www.eclipse.org/gmt/epsilon/doc/etl

4

Ecore to GenModel

152

Modeling the “Ecore to GenModel” Transformation
with EMF Henshin

Enrico Biermann1, Claudia Ermel1, and Stefan Jurack2

1 Technische Universität Berlin, Germany
{enrico,lieske}@cs.tu-berlin.de
2 Universität Marburg, Germany

sjurack@informatik.uni-marburg.de

Abstract. Our recently developed tool Henshin is an Eclipse plug-in supporting visual
modeling and execution of rule-based EMF model transformations. In this paper we de-
scribe how we use Henshin to define visual EMF model transformation rules and control
structures transforming an Ecore meta-model to a GenModel (case study 3 of TTC 2010). For
validation, the model transformation is applied to the Ecore model of a flowchart language.

1 Introduction: Transforming Ecore to GenModel

The most important benefit of the Eclipse Modeling Framework EMF is its ability to generate
code automatically. Most of the data needed by the EMF generator for generating code is stored
in the Ecore model, e.g. the classes to be generated and their names, attributes, and references.
There is, however, more information that needs to be provided to the generator, such as where
to put the generated code and what prefix to use for the generated factory and package class
names, that is not stored in the core model. The EMF code generator uses a particular EMF
model, the generator model to get this information. The generator model provides access to all
data needed for generation, including the Ecore part, by wrapping the corresponding Ecore model.
For example, class GenClass wraps (or decorates) EClass, class GenFeature decorates EAttribute
and EReference, and so on. The EMF generator runs off of a generator model instead of a core
model; thus, when using the generator, there are two model resources (files) in the project: a
.ecore file and a .genmodel file. The .ecore file is an XMI serialization of the Ecore model and
the .genmodel file is a serialized generator model with cross-document references to the .ecore file.

Separating the generator model from the Ecore model like this has the advantage that the actual
Ecore meta-model can remain pure and independent of any information that is only relevant for
code generation. The disadvantage of not storing all the information right in the core model is that
a generator model may get out of sync if the referenced core model changes. To handle this, the
generator model plug-in offers a facility to reconcile a generator model according to changes made
in its corresponding core model without loosing generator-related information.

2 Transformation Concepts of Henshin

The transformation approach we use in this paper is based on graph transformation concepts
which are lifted to EMF model transformation by also taking containment relations in meta-
models into account. Our recently developed tool Henshin3 is an Eclipse plug-in supporting visual

3 http://www.eclipse.org/modeling/emft/henshin/, originating from EMF Tiger [1,2,3]

Ecore to GenModel

153

modeling and execution of EMF model transformations based on structured data models and graph
transformation concepts.

In our approach, we use the original EMF meta-models Ecore and GenModel as source and
target language. In order to support our transformation rules, relations between source and target
EMF models are given in a self-provided EMF model Ecore2Gen, the so-called mapping model.
Apart from defining rules, we made use of the control structures offered by Henshin (called
transformation units), e.g. constructs for non-deterministic rule choices, rule sequences or rule
priority. Those constructs may be nested arbitrarily to define more complex control structures.
Passing of model elements and parameters from one rule to another is also possible by using input
and output ports. EMF transformation rule applications in Henshin change an EMF instance
model in-place, i.e. an EMF instance model is modified directly. Moreover, the pre-definition of
(parts of) the match is also supported by Henshin. Henshin currently consists of a graphical
editor for visually defining EMF model transformation rules and units, and a transformation engine
for executing rules and units on EMF models. The transformation engine provides classes which
can freely be integrated into existing Java projects which rely on EMF models. Currently there
exist two implementations of the transformation engine. One is written in Java while the other
translates the transformation rules to Agg [4]. This is useful for validation of consistent EMF
model transformations which behave like algebraic graph transformations, e.g. to show functional
behavior and correctness [5].

Fig. 1. Henshin GUI with tree view (1), transformation unit editor (2) and (3), and rule editor (4).

Fig. 1 shows the preliminary GUI of our Henshin tool. The tree view 1 allows the mod-
eler to define the needed EPackages for source, target and mapping models of the transformation
and the Henshin model itself. Moreover, new rules and transformation units can be created here.

2

Ecore to GenModel

154

Transformation units can be defined in a visual editor 2 and may be of type IndependentU-
nit (all contained units are applied in arbitrary order), SequentialUnit (all its units are applied
sequentially), CountedUnit (its units are applied sequentially, each a given number of times), Pri-
orityUnit (a child unit of highest priority is applied next) and AmalgamatedUnit (for transforming
multi-object structures in one step where the number of actually occurring object structures in the
instance model is variable). The transformation unit shown in Fig. 1 2 is an IndependentUnit
(symbolized by a die as icon in the upper left corner) which contains rules as child units. The unit
has two input ports and one output port. When the uppermost child unit (rule createGenModel)

is double-clicked, a view for this unit opens 3 showing its own child units and its ports. Since

rule createGenModel has no further child units, this compartment in 3 is empty. However, colors
of the ports of rule createGenModel indicate a connection to ports of its parent unit. The rule
view 4 shows the visual rule editor which comprises three parts for the left-hand side LHS, the
right-hand side RHS and optional conditions Cond restricting matches into instance models.

Henshin rules and transformation units can be used in other Java projects by instantiating the
class RuleApplication or UnitApplication, respectively. The class RuleApplication requires a
Rule instance from the Henshin meta-model. Once instantiated, the rule can be applied by calling
the execute()-method of RuleApplication. Transformation units can be executed in a similar
way by using the class UnitApplication.

3 The Ecore2GenModel Transformation

Fig. 2 shows our self-defined mapping model used to connect a source EMF model Ecore with a tar-
get EMFmodelGenModel. In detail, in the center of Fig. 2 class Marker is depicted, whose instances
mark annotation entries (EStringToStringMapEntry) of the source model that are processed dur-
ing the transformation. Instances of class Rel keep track of Ecore objects (EModelElement) and
their corresponding GenModel objects (GenBase).

Fig. 2. Mapping model for the Ecore2Genmodel transformation and its connections to the source and
target meta models

Please note that we actually do not need any mapping model at all for the basic Ecore2GenModel
transformation since the GenModel model already contains references to the Ecore model. How-
ever, here we already prepare our solution of Extension 2 (see Section 4) by creating additional
helper structures for translating also annotated EMF models.

3

Ecore to GenModel

155

An EMF model conforming to the Ecore meta-model is now translated by applying the rules
in the independent unit generateGenModel (see Fig. 1, 2). In the very beginning, only rule

createGenModel is applicable (see Fig. 1, 4). The rule has a nested application condition. The

structure of this condition can be seen in the tree view in Fig. 1, 1 , where below the LHS part
of rule createGenModel, there is an AND node connecting two application conditions (graph con-
straints on the rule’s LHS) which require that there are no super-packages of the EPackage in
the LHS and that there is no GenModel existing already. The rule creates a new GenModel node
with default values for various attributes. Similarly, GenModel structures are created for EClasses,
EPackages, EAttributes and EReferences by applying rules createGenClass, createGenPackage,

createGenFeatureForAttributes and createGenFeatureForReference. Screenshots of these rules
contained in unit generateGenModel can be found in Appendix B.

Our model transformation transforming an Ecore model to a GenModel (without annotations
yet) is applied exemplarily to an Ecore model of a flowchart language4 from within a Java appli-
cation by a call to the main transformation unit generateGenModel’s execute method with the
source model’s file and its URI as input parameters (see lines 89–91 in the complete listing of the
Java class file in Appendix A).

4 Extension 2: Transforming GenModel annotations in the source
Ecore model by using reflection

We deal with this task by making use of Henshin’s ability to create a transformation rule by
applying another transformation rule. This is a sort of reflection mechanism in Henshin which is
possible because the Henshin transformation system, i.e. rules, transformation units and so on,
are defined by an Ecore model as well. Hence, transformation rules can be applied also to Henshin
instance models, i.e. to transformation systems and structures within transformation systems such
as rules. Depending on the annotations in the source Ecore model, in a first step we create a
customized transformation rule which is tailored to the type of attributes used in the annotation
to be processed. In the second step, we apply this customized rule and change the GenModel model
accordingly by setting the value of the particular attribute in the corresponding GenModel class.

Fig. 3 shows the main unit prepareCustomizationUnit to be executed for realizing the ex-
tended transformation. Rule createCustomizationUnit is called once and creates a container (a
SequentialUnit) for the customized rule (see Fig. 3). Unit singleProcessUnit is applied as long
as possible (collecting all EAnnotations) and contains two rules to be applied sequentially: rule
processAnnotationEntries looking for an EAnnotation (connected to a class EStringToString-
MapEntry which contains a (key, value) pair of an attribute type and its value) in the Ecore
model. The (key, value) data together with two more parameters genType and UId become input
parameters to rule createCustomizedRule. The input parameter UId is an attribute of the Rel

node connecting the EModelElement to the GenBase element. The parameter genType denotes the
type name of the GenModel class (e.g. "GenClass", "GenPackage" or "GenFeature") the created
customized rule is supposed to match. With the help of the input parameters key and value, the
generated rule is able to select the attribute with name key and to set its value to value.

All rules are shown in detail in Appendix C. In our Java application we first execute the main
transformation unit prepareCustomizationUnit (see lines 97–101 in the listing in Appendix A),
and afterwards apply the generated rules (see lines 103-108 in Appendix A).

4 http://is.ieis.tue.nl/staff/pvgorp/events/TTC2010/cases/ttc2010_attachment_5_

v2010-04-15.zip

4

Ecore to GenModel

156

Fig. 3. Transformation units for processing annotated Ecore models

5 Conclusion

We presented a transformation from Ecore models to the GenModel format using the EMF trans-
formation toolHenshin. Our solution is made available under SHARE via link http://is.tm.tue.
nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC10_Henshin.vdi. We pro-
pose a solution for the basic case study and for Extension 2 considering also GenModel annotations
in the source Ecore model and using Henshin’s reflection ability to generate customized rules to
set attributes of different GenModel classes. Being able with Henshin to work directly on EMF
models and to define visual rules and control units helped a lot to come up with a straightforward
translation algorithm.

References

1. TFS-Group, TU Berlin: EMF Tiger. (2009) http://tfs.cs.tu-berlin.de/emftrans.
2. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical definition of in-place

transformations in the Eclipse Modeling Framework. In: Proc. MoDELS’06. Volume 4199 of LNCS.
Springer, Berlin (2006) 425–439

3. Biermann, E., Ermel, C., Lambers, L., Prange, U., Taentzer, G.: Introduction to AGG and EMF Tiger
by modeling a conference scheduling system. Software Tools for Technology Transfer (2010) To appear.

4. TFS-Group, TU Berlin: AGG. (2009) http://tfs.cs.tu-berlin.de/agg.
5. Biermann, E., Ermel, C., Taentzer, G.: Precise semantics of EMF model transformations by graph

transformation. In: Proc. MoDELS’08. Volume 5301 of LNCS., Springer (2008) 53–67

5

Ecore to GenModel

157

A Java Code of the Transformation Application

1

2 package tcc10 ;
3

4 import java . i o . F i l e ;
5 import java . i o . IOException ;
6

7 import org . e c l i p s e . emf . codegen . eco re . genmodel . GenModel ;
8 import org . e c l i p s e . emf . codegen . eco re . genmodel . GenModelPackage ;
9 import org . e c l i p s e . emf . codegen . eco re . genmodel . impl . GenModelPackageImpl ;

10 import org . e c l i p s e . emf . common . u t i l .URI ;
11 import org . e c l i p s e . emf . e co re . EObject ;
12 import org . e c l i p s e . emf . e co re . EPackage ;
13 import org . e c l i p s e . emf . e co re . r e s ou r c e . Resource ;
14 import org . e c l i p s e . emf . e co re . r e s ou r c e . ResourceSet ;
15 import org . e c l i p s e . emf . e co re . r e s ou r c e . impl . ResourceSetImpl ;
16 import org . e c l i p s e . emf . e co re . xmi . impl . EcoreResourceFactoryImpl ;
17 import org . e c l i p s e . emf . e co re . xmi . impl . XMIResourceFactoryImpl ;
18 import org . e c l i p s e . emf . henshin . common . u t i l . EmfGraph ;
19 import org . e c l i p s e . emf . henshin . i n t e r p r e t e r . EmfEngine ;
20 import org . e c l i p s e . emf . henshin . i n t e r p r e t e r . Uni tAppl i cat ion ;
21 import org . e c l i p s e . emf . henshin . model . Sequent ia lUn i t ;
22 import org . e c l i p s e . emf . henshin . model . TransformationSystem ;
23 import org . e c l i p s e . emf . henshin . model . TransformationUnit ;
24 import org . e c l i p s e . emf . henshin . model . impl . HenshinPackageImpl ;
25 import org . e c l i p s e . emf . henshin . model . r e s ou r c e . HenshinResourceFactory ;
26

27 /∗∗
28 ∗ This implementation o f an Ecore to Genmodel t rans fo rmat ion by <a
29 ∗ h r e f=”http ://www. e c l i p s e . org /modeling/emft/ henshin/”>Henshin was

crea ted
30 ∗ along the <a
31 ∗ hr e f=”http :// i s . i e i s . tue . n l / s t a f f /pvgorp/ events /TTC2010/”>Transformation

Tool
32 ∗ Contest 2010 organ ized as s a t e l l i t e workshop to <a
33 ∗ hr e f=”http :// malaga2010 . l c c . uma . es/”>TOOLS 2010.

34 ∗ Authors are (in a l phab e t i c a l order) :
35 ∗
36 ∗ < l i>Enrico Biermann
37 ∗ < l i>Claudia Ermel
38 ∗ < l i>Ste fan Jurack
39 ∗
40 ∗
41 ∗ <i>Remark:</ i> As proo f o f concept only , in the f o l l ow i n g source

(. e co re) and
42 ∗ t a r g e t (. gemodel) model f i l e s are hard−coded . However , an adaption to a
43 ∗ f u l l −f l e dg ed p lug in prov id ing a context menu entry f o r eco re f i l e s i s
44 ∗ s t r a i gh t f o rwa rd .
45 ∗/
46 public class Ecore2GenmodelTrafo {

6

Ecore to GenModel

158

47

48 /∗∗ De f i n i t i o n o f a number o f f i l e paths ∗/
49 private stat ic f ina l St r ing BASE = "model/" ;
50

51 /∗∗ Mapping model ∗/
52 private stat ic f ina l St r ing ECORE E2G = "ecore2gen.ecore" ;
53 private stat ic f ina l St r ing ECORE E2G FULL = BASE + ECORE E2G;
54 /∗∗ Henshin f i l e conta in ing r e l e van t r u l e s ∗/
55 private stat ic f ina l St r ing HENSHIN E2G FULL = BASE
56 + "Ecore2Genmodel.henshin" ;
57 /∗∗ Ecore source model to be transformed ∗/
58 private stat ic f ina l St r ing ECORE SOURCE = "flowchartdsl.ecore" ;
59 private stat ic f ina l St r ing ECORE SOURCE FULL = BASE + ECORE SOURCE;
60 /∗∗ Genmodel t a r g e t model ∗/
61 private stat ic f ina l St r ing GENMODELTARGETFULL = BASE
62 + "flowchartdsl2.genmodel" ;
63

64 /∗∗ Common re sou r c e s e t ∗/
65 ResourceSet r e s ou r c eSe t = new ResourceSetImpl () ;
66

67 /∗∗
68 ∗ Method compr is ing the main con t r o l f low f o r the t rans fo rmat ion .
69 ∗/
70 public void generateEcore2Genmodel () {
71

72 i n i t i a l i z eR e s o u r c eF a c t o r i e s () ;
73

74 TransformationSystem t s = (TransformationSystem)
loadModel (HENSHIN E2G FULL) ;

75 EPackage mappingModel = (EPackage)
loadModel (ECORE E2G FULL) ;

76

77 EPackage ecoreModel = (EPackage)
loadModel (ECORE SOURCE FULL) ;

78

79 // Create Henshin i n t e r p r e t e r ob j e c t s
80 EmfGraph graphM = new EmfGraph () ;
81 graphM . addRoot (ecoreModel) ;
82 EmfEngine engineM = new EmfEngine (graphM) ;
83

84 // Generate genmodel from ecore model (without annotat ions) .
85 TransformationUnit un i t1 =

t s . findUnitByName ("generateGenModel" , true) ;
86 UnitAppl i cat ion unitApp1 = new UnitAppl i cat ion (engineM ,

uni t1) ;
87 // f i l e name and p lug in name cannot be r e l i a b l y deduced by

the model
88 // e lements thus need to be s e t .
89 unitApp1 . setPortValue ("inModelFileName" , ECORE SOURCE) ;
90 unitApp1 . setPortValue ("inPluginName" , ecoreModel . getName ()) ;
91 boolean r e s u l t = unitApp1 . execute () ;

7

Ecore to GenModel

159

92

93 graphM . addRoot (t s) ;
94 graphM . addRoot (GenModelPackage . eINSTANCE) ;
95 graphM . addRoot (mappingModel) ;
96

97 // Process annotat ions and generate r e l a t e d Henshin r u l e s .
98 TransformationUnit un i t2 = t s . findUnitByName (
99 "prepareCustomizationUnit" , true) ;

100 UnitAppl i cat ion unitApp2 = new UnitAppl i cat ion (engineM ,
uni t2) ;

101 unitApp2 . execute () ;
102

103 // Apply generated r u l e s to t r a n s f e r annotat ions to the
genmodel .

104 Sequent ia lUn i t customizat ionUnit = (Sequent ia lUn i t) unitApp2
105 . getPortValue ("seqUnit") ;
106 UnitAppl i cat ion unitApp3 = new UnitAppl i cat ion (engineM ,
107 customizat ionUnit) ;
108 unitApp3 . execute () ;
109

110 // Save r e s u l t i n g genmodel .
111 i f (r e s u l t) {
112 System . out . p r i n t l n ("Successful") ;
113 GenModel gm = (GenModel)

unitApp1 . getPortValue ("outGenModel") ;
114 saveGenModel (gm) ;
115 } else {
116 System . out . p r i n t l n ("Not successful") ;
117 }// i f e l s e
118

119 }// generateEcore2Genmodel
120

121 /∗∗
122 ∗ Saves the content o f the genmodel to the s p e c i f i e d f i l e (s e e
123 ∗ {@link #createGenModelResource () }) .
124 ∗
125 ∗ @param gen
126 ∗/
127 private void saveGenModel (GenModel gen) {
128 URI modelUri = URI . createFi l eURI (new

F i l e (GENMODELTARGETFULL)
129 . getAbsolutePath ()) ;
130 Resource r e s = re sou r c eSe t . c reateResource (modelUri ,

"genmodel") ;
131 try {
132 r e s . getContents () . add (gen) ;
133 r e s . save (null) ;
134 } catch (IOException e) {
135 e . pr intStackTrace () ;
136 }// try catch
137 }// saveGenModel

8

Ecore to GenModel

160

138

139 /∗∗
140 ∗ Loads the model at the g iven path and re tu rn s the root element .
141 ∗
142 ∗ @param modelPath
143 ∗ @return
144 ∗/
145 private EObject loadModel (S t r ing modelPath) {
146 URI modelUri = URI . createFi l eURI (new

F i l e (modelPath) . getAbsolutePath ()) ;
147 Resource resourceModel = re sou r c eSe t . getResource (modelUri ,

true) ;
148 return resourceModel . getContents () . get (0) ;
149 }// loadEmfModel
150

151 /∗∗
152 ∗ Reg i s t e r s appropr ia t e r e s ou r c e f a c t o r i e s f o r ecore,
153 ∗ genmodel and henshin f i l e s .
154 ∗/
155 private void i n i t i a l i z eR e s o u r c eF a c t o r i e s () {
156 Resource . Factory . Reg i s t ry .INSTANCE. getExtensionToFactoryMap () . put (
157 "ecore" , new EcoreResourceFactoryImpl ()) ;
158 Resource . Factory . Reg i s t ry .INSTANCE. getExtensionToFactoryMap () . put (
159 "genmodel" , new XMIResourceFactoryImpl ()) ;
160 Resource . Factory . Reg i s t ry .INSTANCE. getExtensionToFactoryMap () . put (
161 "henshin" , new HenshinResourceFactory ()) ;
162

163 // I n i t i a l i z e packages
164 GenModelPackageImpl . i n i t () ;
165 HenshinPackageImpl . i n i t () ;
166 }// i n i t i a l i z eR e s o u r c eF a c t o r i e s
167

168 /∗∗
169 ∗ @param args
170 ∗/
171 public stat ic void main (S t r ing [] a rgs) {
172 Ecore2GenmodelTrafo s = new Ecore2GenmodelTrafo () ;
173 s . generateEcore2Genmodel () ;
174 }// main
175

176 }// c l a s s

9

Ecore to GenModel

161

B Rules contained in Unit generateGenModel

Fig. 4. Rule createGenModel

Fig. 5. Rule createGenClass

10

Ecore to GenModel

162

Fig. 6. Rule createGenPackage

Fig. 7. Rule createGenFeatureForAttribute

11

Ecore to GenModel

163

Fig. 8. Rule createGenFeatureForReference

C Rules contained in Unit singleProcessUnit

Fig. 9. Rule processAnnotationEntries

12

Ecore to GenModel

164

Fig. 10. Rule createCustomizedRule

Fig. 11. Rule GeneratedRule: Example for a generated rule

13

Ecore to GenModel

165

��������	
����
����

����
�	�
�����
��	�
��	
�������

��	����	�����������	�	�� ���	���

���	�	�������!�
�	
 ���	

����������	
���
��
�����������������	������ ����������	���	���������	������ ����������������	������������� ��������

	��
�

��	��	������	
������ �	������������������	�� ���������	�����
��
����	��
�������	�	����� �������
	�������������

������ ��	�����
�����	��	��	�	�����!
��
���"���	���������	�������"
�"�������� ������ #������� �����	����	�������������

�����
�����	���
���"�"����������������$���� %����������	������������
���	��������

�� �����	�
�	�
���

���� ���"
�"��
���� ��� 	���� ���
	���� ��� ���������	��� ������	����������� �������	���������	���� ��	��� ��� ��
��
���	�������"
�"���
	���&������ ���

	��'�����	���	���������	��� ()*��� 	��	������	���������	����%����
�
�������������	����������$������	���
�����
	�� ��
	��������	���������	������"����+� ,�����	���
���������"���
������������	���	���������	����
������� 	���
������	������������
��	��	� ������������
������ ������-�����
-�����
���	 (�--� �������
���&���%�	����"��
���������	� � ��"�� .�/ ������������"����� 0
�	��������
�����'	�'����� (�+�� 	���������	�������	����
���	������
�	�
���������� ��"�� ����
����������	��"�	�������
��
�� ���
���&��"������"������"���������	��
�������	� ���	�����
�	�
������"���������	��������
������ 0���	��	
������� ��	���������������%�	� ��01-1�� �������%��$��������"�1- ���"�������	���� � ��	��"�+- ���	�������
�������������
	��� �������1-'����� ���������	�����
�������1-2�	���+- �
	

	��� �	��������	�������
��3��	�����	�
��
��������	���1- ������4�

�%����������	�
������	������������
	�������

����� ��
�����"����	���
�����	������ �	���	���������	�����
��
����	%�������
	���������
�	��	����� 0�"
�� � ��� 0�"
�� +�

��������	������
	���������� ���	
��������� ������	����������� ����"'���'���
'���'	��������� 5����
���
�������
���	������
	����	�������������������������	���� .�/2

������ ���	
� ��������	
�����

���
� ��
��������� �� ���
 �	
�������� �� � �	�
��
 �	
������ ��

����
������	������������
���	�	���
�����	�������������(����� ������ ���������	����	�������	�����"
���	�

�����������	���
���� 0����	���
���6��
���	��� ����%� 	���	���������	�������$����$�������
������"'���'���

�
���	���� �������""���������������(�� ����
�����	����������
������

�����	��	���.�/
��$�"��(��
����
�����	���� ����	�����%�.�/ �������������	������	���	���������	����

��-���	�����,���������� /�
������7���� 7�������0��8��"�� ����9
������/���� ������	��"��������������	
��� ��
����
���������
���
������������� +:�:
+��������	� ��� ���	������!
�	����������	��9���� � ��
	���������������������	��������������%�	��	���$��%��� 	
�� ������	���	�	��9����
�
�	�
��� ��	
���
�����	�������������������� ��%����� 	���� ���	
��� �����	�
���� ��� 	���� ��
�������� 5	���� �
������ ���	
���� ���
�
����������	��������%��"�
1������������	
���
	������	���
4����	������
	���� 1-'���������������� �	������������������	�������.�/+����������	��������
���� �������������������
��	��� ���01-6�
� ��
���
�
"���

Ecore to GenModel

166

�� ���������������

dragged
elementdrop

target

created
element

auto
parameter

clicked
element

created
element

0�"
�� �2 -��
�����	��� 0�"
�� +2 ;
��$�����	���

����������������
	���������� �����
��������� ���	��������� ���������	���������""��� ���	���������������"
���	
���
�����������	���
����������
�������$��"����	���������	����	������"���� ���������%��"��
�������	������$���
��������	�����������������	�2

������ ���	
� ������� ������	��������	
���

���
� ��
���������� ��� ���� ���
 	�������	�����	
��� �����	
�����

�	�
��
 	�������	����� ������

,����������������"
���	�(�� ����
�����	�������
�������� 	����	������"
���	�����	������
����������������	���
���	���� ��
��� 	����������
�����	���(�� ����
�����	�������������������� ����� �����!��"�	��������� <�������
��!
��$�����	�������� 	������ ��
	��� 	�����"��������	��������������	���������	�� ����	���� �	� 	����� 	������
������"�
�����	����
���"��
���������
	��
�����	����=�

�������"����
�����	�	������� �	�������������
�
����������
���
������
������� �	���	���������	���� %�����	����'
�����	����������
������"�	�
������%��$��"�%�	������
�����	�	������ �	������	���	����	� �	���� ��"��
�������
���	������
������������������	��� 0���	��	�

�
���� ��	���
������������������� ������������� ���%� 9
�	������
	���-��
�����	�������%� �
����������������	�������	����������������������������������	��� ���	������ �
���"
���
'����!
��$'�����	����� �
���
�����	��������
�����	��������	����� ����
�����	�������������	�������
��
���""��"�������	�������	������������������	�����	��	���
�����	�����%�

=����	������$���� ��
��� 	������$�����������
���������������������
	���	�������
���"�	����������	��""������������������ �
����'
	��� +�1� �����
	��
�����	����������������
��������������������������	��	����

�
�����

+

Ecore to GenModel

167

�� #���������
 ��$���������������������

�� �������
	��	���	
�������
�����	����

���� ���
�	�

������
�

*�	��
"����	�������
������&����������'�
	���	���	���������	����� �	��������
���������
�����
	���	���	����'
�����	��������%���� ��������	�	���������	����������2����
���� �	�� ��/ 	���������	�����		������	��	�������
�	
��� 9
�	����
��
��������	���������	
��� 	��������	�	���������	������
�������
������������������	�	�����	��	��
���������������	�� *���	�	��������������	�
���"�	���
��
��	�������%��� �	������������������	���(��������
��	��	���1- ���	����

����	���������	�����	���� ����$��������
�����$��	�� �
����������������	����/��"
�"� (��/� �������� ��	��
��������	��	���	�����
���	���� 	�
���
�����
�	����	���������	��	������������	������������	�����	���������	���
�����	�	����������
	���	������� ���������%��"����
����%�������

�	������	���
��$�"���
��2

�
���	� ���� ��
���������!"!�� ������!"!�� �� ��������!"!���� #

������!"!������������!"!����������!"!��� ��$

%

<�����	���������	�����
�	����	���������
��"�����	������� �����������$

��������	���������)��	����������

�������� ����'
�����	���� %�����
����������$���	���������
�����������������������9�����
���������
��'
"�������� 9
�	�������9���� �
��������������������� ��������	
������
�������������	�����������	����
���	����'
������"������������2

	���
� ������� ������!"!������������!"!������
� ��
���������!"!�� ��

���
 ���	
�������������� ������������ ��
���� ���	
������������!"!�� �� ���

	���
� ������������������
� ��
��������� �� ���
 ���	
�������������� ������������

�	�
��
 ���	
������������ ��

�
��
��� ������!"!������������!"!������
���������!"!�� �� ���	
��������������

������������ ����	
������������!"!�� �� ���

	���
� ���& ������& ���
� ��
������& �� ���
 ���	
�������������� ������������

�	�
��
 ���	
���������& ��

�
��
��� ������!"!������������!"!������
���������!"!�� �� ���	
��������������

������������ ����	
������������!"!�� �� ���

���� �� �����

��������	�	�����������
����
���"�	���������	�������	
������ ���	��� ���������%��"�(���
�����������

�	����%�
��%����	
����������	�
���"�������	���� ��������������������������������"�����	������	��� ������� (%��������
����

������������	�
����>�

>���	������	��"
��������	%��� 	��
�	����	
�� ��� 	��
�	������	
����� ���	�������	������ ���	
�� ���	���������� ��������� %����
���	��������������� �����	
���� �������
�������� *���� 5�3��	�)���	����	�/��"
�"� (5)/�� ��	������	��"
��������	%�������������
��������	�
��(
���"�	�����	���	�	�����������	������	�����(
���"�	�������%���	�	�����

1

Ecore to GenModel

168

�� #���������
 ��$���������������������

� �����	 	���
� ���'���&������ ������� ������ "���&��� ��� (��&�� #

+ �� ��������))"���&��**−*!�+��!������'�
 �(��&��� # �������))"���&��** , (��&�$ %

1
��
 #

4 ��� ��� ������ , �������))"���&��**−*�-����−*������(��&��$

= �� �������.,����� # �������))"���&��** , ������$ %

> %

? %

���� ���!���

*���	�	�����������������
������ �	�����
�����������

��	��	���� .����	
��	���� 	���������	���%����	��������
��
��%���
""��	������	����	�������
	����
���"����$�������	������ �����	�	����� ���������	��
������$���� ����	��
�����$�������������	���������	���
���"���	���������	�����
������%���� ����� ��%����$�����������������	�
������������	��
���"�!
��$�����	������������������������(��� 0�"
�� +�� ���������	��
�����������������	���
	��	���
�������
	�%��	����	
�������������	� ���$��������
�

��	���%�	���������	
�������������� ���	���	��"�	
���������������	�� ������������������%�	��������	���2

� 	���
� �
�&����	������&�� ���
 �-��� ���
 	�������	����� ������ #

+ �
���	����� ������ "���&��/� � �� �-��−*"!���/� ����� #

1 �� ��-��−*"!��������������"���&��/� ��� #

4 ��� ���
 "!���0-�� , �-��−*"!���0-���"���&��/� ��$
= �� �"!���0-��−*����������� # �����
����-� ������ "���&��/� �� �����$ %

> % % %

��������� 	�� �������� �����$��� �������	��� 	�� �� �
������� ������	� ��	���
��� ���%%���� ���""���� �����
��� ��$�
��	������	��""���� ��%�����	����������	���	���	����������������"����
	�������	�����	�	����� �	���	���������	����
��	�����	�������

��	��
�����	�����	������ %���������
�
�����
�������������"�	����	�	���� �	���	���������	���
���������	������%��
�	�'���������%��������'�
	���	�������	����������"��������?� ������	����������
����	�
	��""����
�����
	���	������� ���������%��"���������

�	����%�����
���%���������
	���	�������	��""�����%���
���������������	����	�����������	�������������������	 ��� �����$��������������	�������2

� ���
 �
�-	�������
����!�����
� 	�������	����� ������ ���
 ��� �������

+ �����
� �

1 ��
��0
���	
������� ��� ���� ��� ���
���1�
���!����� ���� ��������

4 ������	��������	
������
���������� ��� ���� 	�������	�����	
��� �����	
�����

= �	�������	����� ������

> � # �� ������	
 �
�
��
� �
�	��
� ��	�
���
� ����
�	�
� �� %

���""�������������	��
��	���������������	����� 	�������	��	����	���%������
���	�������"
�"�� ����
�����	���
�� �	����
�������	�������	����	���	��""���(�������
	����� ����'���
���� ���	���� ��
��� 	���
�����	��� ������
��� 	��
�	 ������
���	�����
���
�����������	����
�����
�����������	���	��""��� *����
����	�%���'���
������
��
����������������������
�����	��������� %�������
������!
������
���(�
	�������� ����
����	 ��
�'���
���������
���������

?����������	������	����	����� ���
����
�	��������	�	���%�	��	����������� ��
�
�� ��������
�������������������� 	��	����%������	�����
�
�������������%�	��	����������

	�
�����	�����
�	�
���	����� �	���������� ��
	��������

4

Ecore to GenModel

169

�� ����������

��"� �� #�
�$��

,������
���"�1- ���	���"��
���������%���"�	����������
	��	������	������������������ ���	������ �����	��"�1-
�
���� ���$������
����������������
���&���%�	����
�����	��"���������+- ���%����%���� *��%����	����� ���	��� ��
��	��6����������
������������'�
	���	�� �+�'	���������	����%����������
���&�	������ ��
�	�
������"�������
��!
����� #�������1-� ��01- �����
���������
������	�����!
���������������"��
�	�
������	���� ��������������
������������"�	������������������	�������	������$������	��� ���"���������
���������� �	���������	���� �1-�
��������	���������	����� ��
����������
��������	����������"���������������	��.�/ ��������(��� 0�"
�� ���
�����	���������	�����������	���������%���	�
����)*�� �
	��������%�	�������������
���&���%�	� ��01- (���
0�"
�� 1��

0�"
�� 12 @��
���&�	������ �	�����

�� ���������

.���"�	���������	�������	
������ ���	��� 	���������	
���� ��
�����
��������
�����	�������������	��	������
	���

��
�����������������	���� 5
�����
	�����������	�
���	����������

��	��"�	���	��"�	��������
	���	�������
��%�����	����������
�������	���	���������	�����	����� *�	��
"��������	���������
�%���
������������ �	���������
	�
������$��"� ��"��
���"�	������'������	������	������ ���		��"����������������	�������%������������� �	��
%���"���������������
���� ����������	
�����������������%��$��������� ���	���%�����������"�������	����
(5)/ �

��	����
��������
	���	���	������&����������
����	�����

8�������"���"����	���������	�������"
�"��������������������� �	����	���� �����	����������� �	����	�������	�

���������"����
������	������� ,�����������������"����"
�"���
�����"��
��������	�	���� 	���������	����	����
���
���(��'��
���	���������	����	�	���� ���� ���"����� ���%���� ��01-
������������	��� ��������������������
	�����
�����	���1-'����	������ �� ��	��"����	����(��	��	��	�	���+-'���"����������	�����
�������	������ A�%�����
�����"� 	���������	�����

��	� �����������������"�� ��"�� 	������������������	����������	��
	���	������
������	������� ����"���%����� 	���.�/+������� ���	������� B�	�� 	��	� 	��� �
���		��� 	����
������������� �
C��%D����
'�����!
��$�����	����
������	������� 0����
��������

����	����� �������		��"����
�������������
�
	���	������ �
������
�����������	������������ ����	������	������ ��
����(���������	���
�����	���	�
������
�	�������	� 	��������	����� ����	������������
���������
������	��E�

E�*��� ��
����� �����������
��������

����	���� ��"��
���������	�������	�� ��0 ��

��"�������
���"���	������ ��01- ���������
��
�	 ��������	��	
���
	���������
��	�����������������������
���	������������	����������������	���

=

Ecore to GenModel

170

�%%�
��&

�� '����
�	
�������
�����

���������	����	��"����%��	���	���������	��������
������� �
����	��� +��� �	�������������	���� �	%��
��	�2

F �
����	����������"�������������	��	��"��������������	�

F ���
����
���

����� ��� �� ��	���� ���"� ���	��"� ����
�
����� 	����%�
������ �
��	�

� ��	�� �����������
���� (��	��� �

��	�� ��'
��
��G��
��	��� ����
�����

� ��

+ ��������
�	��� ���� ���	
�	 ����

1 ����
 	� �
����
� ��� � � !���� "���	�	����#

4 ��

= �
���
 �����"
� ��!
�����
������	
��� #

>

? �� $
�����	��� ��

	�
��
�� ��

E �
���
�
� ��
�����
�� �����!,2�����33444����!����
��3� "3�55�3��
��2�$

H �
���
�
� ��
������	
��� �����!,2�����33444����!����
��3� "3�55�3���	
���2�$

�:

�� �� %�
 ��� ���& �"'!"(���
) ����� �� 	� *
 ��+��
�
������& ����� 	�
 ,�������
�	���

�+

������

�1 -

����.

�4 − 	�
 ����

	
�
�����
� ��
�	
 �
	 ��	�� ��	�
�	�����& ��
�	
 � �
� ���	���
/ �	�
�

�= ���	���
� ��
 	� *
 ��
�	
� ����� � 0�+�−���
 ����	���	��

�> − ��	�� ������	�
���	��
 �
	��� ����

	
��) ���
+
� �� 	���
1�
��
 	��� �� ��	 ��
�

�? �*�	 �	 �� �
����� �� � �����

�

�	� ��
 	�������

� 	�
 	���
	
�

�	�#

�E ��

�H ������ �����������	
������
� ��
����������� �� � �	�
��
 ���	
�������	
��� ���	
���� #

+: ��� ���	
�������������� ���������� , ���������������������� ���	
����$

+� ���	
��������������� 6, ����������$ �� ��� �
��& ��
�	
� ������
 	� ���	���
�

++

+1 �� �
	 ��	� �
����	�

+4 ���+��
���!
���� ���	
���� 2�
 ��!����
�(��2� 7���	
�������89:
�(���89:;5�$

+= ���+��
���!
���� ���	
���� 2�
�-�!���'!����2� ����
�$

+> ���+��
���!
���� ���	
���� 2
�����&�!�<92� ���� ��$

+? ���+��
���!
���� ���	
���� 2
���9!����
�-2� 232 6 ���� � 6 23���2�$

+E ���+��
���!
���� ���	
���� 2
���/� �2� ���� �−*"!���0
������������$
+H ���+��
���!
���� ���	
���� 2! �
����<92� 2
������!����� "�! �
�������
��2�$

1:

1� �� ���& �	�
��

1+ �
�-+��
���!
����� ���	
����$

11 %

14

1=

1>

>

Ecore to GenModel

171

&� '�����%���������������

1? 	���
� ����������������������
� ��
����������� �� ���
 ���	
�������	
��� ���	
�����

1E �	�
��
 ���	
�������������� �� #

1H ���	
��������������� 6, �$

4: ����
��������� , �$

4� ���+��
���!
���� �� 2�!��
�������
(!���'���
�-2� ���
�$

4+ ���+��
���!
���� �� 2���"!=2� ���� �−*"!���0
������������$
41 �
�-+��
���!
����� ��$

44

4= �
���	� ���� ��
���������!"!�� ������!"!�� �� ��������!"!���� #

4> ������!"!������������!"!����������!"!��� ��$

4? %

4E %

4H

=: �� " +��	��� ���
 ��� *
 �+
�����
� 2���
 ���������
� �� �� �*�	���	 �����) 	��� ���
 ��
�

=� ��	 �
	 ��+��
� ���
�	�&

=+ ��

=1 	���
� ������� ������!"!������������!"!������
� ��
���������!"!�� ��

=4 ���
 ���	
�������������� ������������ ��
���� ���	
������������!"!�� �� #

== %

=>

=? �� ���� ���
 �+
������ 	�
 ����
 �
���
� ���
 3� ��	��) �+
�������� � ���
 ���

=E �
��

�	��� �*�	���	 ���
�# ��
��
 ��
1�*
� �� �� �	�
� %% �������
�.

=H ��
 ���
 ��

� ��� �+
�����
���
��

�	
� ��� �+
����������
��

�	��� ���
#

>:
�& ����
�) ��� �	 ��
+
� �����*�
 	� �+
�������
��

�	 � ���
 ��	�

>� � ���
 ��+��� � ����
�
�	 ��
*
� �� ����

	
�� 4��
+
�) 	��� ��
���� �
�	��
 ��

>+ ��	 ��
� �� 	�

1�
��

>1 ��

>4 	���
� ������������������
� ��
��������� �� ���
 ���	
�������������� ������������

>= �	�
��
 ���	
������������ ��

>>
�
��
��� ������!"!������������!"!������
���������!"!�� ��

>? ���	
�������������� ������������ ����	
������������!"!�� ��

>E #

>H ��������������������� 6, �$

?: ����
������� , �$

?�

?+ ���+��
���!
���� �� 2! ���2� . ��>������	��$

?1 �
�-+��
���!
����� ��$

?4

?= �
���	� ���� ��
����?��&��&���'���&�� �?��&��&���'���&�� �� ���?��&��&���'���&���� #

?> �?��&��&���'���&������'���&����?��&��&���'���&��� ��$

?? %

?E �
���	� ���� ��
����������!
� �������!
� �� ���������!
��� #

?H �������!
�����������!
���������!
�� ��$

E: %

E� %

E+

E1 	���
� ������� �?��&��&���'���&������'���&�����
� ��
����?��&��&���'���&�� ��

E4 ���
 ���	
������������ ���������� �	�
��
 ���	
�������'���&�� �� #

E= ������������'���&��� 6, �$

E> ����
��'���&�� , �$

E? %

?

Ecore to GenModel

172

&� '�����%���������������

EE

EH �� ���� ���
� �+
������ 	�
 +��	��� ���
 �*�+
 ��
 �+
�����
� ���
 ��� *
 ����
� ���
 ��

H: �+
�������� ���
 *& ����� 	�
 �	�	

�	 5���
�5 0��	 �� �� 0�+� ����	���	���) 	�

H� �+
�����
� ���

��	 *
 ����
� �	 	�
 +
�& *
������� �� 	�
 *��& �� 	�
 �+
��������

H+ ���
 3� ���	���	 	� ����	���	��� �� 0�+�) 	�
 �+
�������� ���
 �� ���& ����
� ��	�

H1 ���
� ��� ��	 ��	�
�	�����&

H4

H= 565 �
�
�� 	� 	�
 	&�
 ��
1��
������ � �) 56�
����
� �
�7���
�	&8���5 �
�
�� 	� 	�

H> 	&�
 �	�
�� ���� ��&) �	�	�� ��
��� ���

	���� ��� *
 ����
� 3	 ��
+
� �����*�
 	�

H? �	��
 	�
 	&�
 �� � +����*�
) �� �

���	��	
� ��	
� ��

HE ��

HH 	���
� �+���!�&������'���&�����
� ��
����+���!�&�� �� ���
 ���	
������������ ����������

�:: �	�
��
 ���	
�������'���&�� ��

�:�
�
��
��� �?��&��&���'���&������'���&�����
����?��&��&���'���&�� ��

�:+ ���	
������������ ���������� ����	
�������'���&�� ��

�:1 #

�:4 ���
�$ �� ����� �+
�����
� ���

�:=

�:> ��� ���	
���������
����-:!�� ��"�&����
����-$

�:? �� �������������� #

�:E ��"�&����
����- , 7���	
���������
����-:!�����!�����$ �� �	�	�� ���
��

�:H %
��
 #

��: ��"�&����
����- , 7���	
���������
����-:!���@���
��-$

��� %

��+

��1 ���+��
���!
���� �� 2��!�����2� ����
�$

��4 ���+��
���!
���� �� 2��������!��2� ����
�$

��= ���+��
���!
���� �� 2�
�!"-2� ���
�$

��> ���+��
���!
���� �� 2��
����-?
����
!���2� ����
�$

��? ���+��
���!
���� �� 2��
����-2� ��"�&����
����-�$

��E �
�-+��
���!
����� ��$

��H %

�+:

�+� 	���
� �@�"����������'���&�����
� ��
����@�"������ �� ���
 ���	
������������ ����������

�++ �	�
��
 ���	
�������'���&�� ��

�+1
�
��
��� �?��&��&���'���&������'���&�����
����?��&��&���'���&�� ��

�+4 ���	
������������ ���������� ����	
�������'���&�� ��

�+= #

�+> ���
�$

�+?

�+E ��� ���	
���������
����-:!�� ��"�&����
����-$

�+H �� �. ���
���!��� AA . ���
���!� ���� #

�1: �� �������������� #

�1� ��"�&����
����- , 7���	
���������
����-:!�����!�����$

�1+ %

�11
��
 #

�14 ��"�&����
����- , 7���	
���������
����-:!���@���
��-$

�1= %

�1> %

�1?
��
 #

�1E ��"�&����
����- , 7���	
���������
����-:!���/
��$

E

Ecore to GenModel

173

&� '�����%���������������

�1H %

�4:

�4� ���+��
���!
���� �� 2��!�����2� ���
���!� ����$

�4+ ���+��
���!
���� �� 2��������!��2� ����!����� AA �������������$

�41 ���+��
���!
���� �� 2�
�!"-2� ����!������$

�44 ���+��
���!
���� �� 2��
����-?
����
!���2�

�4= ��"�&����
����- ,, 7���	
���������
����-:!�����!������$

�4> ���+��
���!
���� �� 2��
����-2� ��"�&����
����-�$

�4? �
�-+��
���!
����� ��$

�4E %

�4H

�=: 	���
� �������!
�����������!
����
� ��
����������!
� �� ���
 ���	
������������ ����������

�=� �	�
��
 ���	
�������������!
� �� #

�=+ ������������������!
�� 6, �$

�=1 ����
��������!
� , �$

�=4 �
�-+��
���!
����� ��$

�==

�=> �
���	� ���� ��
�������� ���� ����� ��� �� ������� ������ #

�=? ����� ������������ ���������� ���� ��$

�=E %

�=H %

�>:

�>� 	���
� ����� ������������ �������
� ��
�������� ���� ��

�>+ ���
 ���	
�������������!
� ���������!
��� �	�
��
 ���	
����������� ���� �� #

�>1 ���������!
��������� ����� 6, �$

�>4 ����
������ ���� , �$

�>= �
�-+��
���!
����� ��$

�>> %

�>?

�>E 	���
� ���& ������& ���
� ��
������& �� ���
 ���	
�������������� ������������

�>H �	�
��
 ���	
���������& ��

�?:
�
��
��� ������!"!������������!"!������
���������!"!�� ��

�?� ���	
�������������� ������������ ����	
������������!"!�� ��

�?+ #

�?1 ����������������& � 6, �$

�?4 ����
����& , �$

�?=

�?> ���+��
���!
���� �� 2�-��?�"���& �
 ���!���2� ����
�$

�?? �
�-+��
���!
����� ��$

�?E

�?H �
���	� ���� ��
������&
!����� �
!����� �� ���
!������� #

�E: ���&
!�����������&
!�������
!������ ��$

�E� %

�E+ %

�E1

�E4 	���
� ���&
!�����������&
!��������
� ��
������&
!����� ��

�E= ���
 ���	
���������& �����& �� �	�
��
 ���	
���������&
!����� �� #

�E> �����& ������&
!������ 6, �$

�E? ����
����&
!����� , �$

�EE �
�-+��
���!
����� ��$

�EH %

H

Ecore to GenModel

174

&� '�����%���������������

�H:

�H� 	���
� �9���0-������9���0-�����
� ��
����9���0-�� ��

�H+ ���
 ���	
�������������� ������������ �	�
��
 ���	
�������9���0-�� ��

�H1
�
��
��� ������!"!������������!"!������
���������!"!�� ��

�H4 ���	
�������������� ������������ ����	
������������!"!�� ��

�H= #

�H> ��������������9���0-��� 6, �$

�H? ����
��9���0-�� , �$

�HE �
�-+��
���!
����� ��$

�HH %

+::

+:� ��−−−
+:+ 4
��
� ���
�) ����
� *& 	�
 ���
� �*�+
.

+:1 ��

+:4

+:= 	���
� ���+��
���!
����
� ��
����	
������ ��� �
&���� ���
 ��� ������� ������ ������

+:> ��� ��"�&��� #

+:? ��� ��� (��&� , ���+��
���!
���
&���� ������$

+:E �� �(��&�,,����� (��&� , ��"�&��$

+:H ���'���&���������� ������ (��&��$

+�: %

+��

+�+ �� ���� ���
 ��
� �
��
�	��� �� ���
� 	� �
	 � �
�	��
 �� � 	���
	

+�1 − 599 ::5 ������	
� ��
1��
����� ��	��� � �
�	��
 ���
�� �	�	

�	

+�4 − 5−:5 ������	
� � ��	�+

	��� ����) �� ���	���	 	� ��
��	��� ����� �����

+�= 	�
 ��	 ��	�	��� ���� �� ��
���� 	� %�(

+�> ��

+�? �����	 	���
� ���'���&������ ������� ������ "���&��� ��� (��&�� #

+�E �� ��������))"���&��**−*!�+��!������'�
 �(��&��� #

+�H �������))"���&��** , (��&�$

++: %
��
 #

++� �� ��������))"���&��**−*!�	��-��� #

+++ �
���	� ���� ������ ���� �� (��&�−*���!��2�2�� #

++1 �������))"���&��**6, ����$

++4 %

++= %
��
 #

++> ��� ��� ������ , �������))"���&��**−*�-����−*������(��&��$

++? �� �������.,����� # �������))"���&��** , ������$ %

++E %

++H %

+1: %

+1�

+1+ 	���
� �
�-+��
���!
�����
� ��
����	
������ ��� �
&���� ���
 ��� ������� #

+11 �
���	� ���� ������ "���&�� �� ������−*"!���/� ����� #

+14 ��� ��� (��&� , ���+��
���!
���
&���� "���&���$

+1= �� �(��&�.,����� #

+1> ���'���&���������� "���&��� (��&��$

+1? %

+1E %

+1H %

+4:

�:

Ecore to GenModel

175

(� '�����%���������������)��$�������

+4� �� ��
 �
�
�	 �	�	

�	 ��
� �� 	��� ���
 ����� ;��	
 ��
���� 	� �
�
�	 ��

+4+ %�(�� 2,(

+41 ��

+44 	���
� ���+��
���!
����
����	
������ ��� ��� ���� ������ ������ � ��
���� ��� ���� #

+4= ��� ��
����+��
���!
� ��� , �
�
	� ����� �

+4> ��� ��
����+��
���!
� � �� ��� �����+��
���!
�� ��
�
 ���
&��� ,, 2� "����2�$

+4? �� ����.,����� #

+4E ��� ��
����?��!��0
?��!��	������- ��� , �
�
	� ����� �

+4H ��� ��
����?��!��0
?��!��	������- � �� ��������!�� ��
�
 ����- ,, ������$

+=: �� ����.,�����

+=� �
���� ����(��&�$

+=+ %

+=1 �
���� ����$

+=4 %

+== %

#� '����
�	
�������
�����(������!���

���������������	��"����%��	���	���������	��������
������� �
����	��� +�1� �	�������������	���� ������
��	�2

F �
��������	��"�	������$���

F ���
����
������������	��"����$���

F 	��""������
����	��
�

��	�����	
������ ����������������	�%�	�����
����� ����$���
��
��	���

F �
����	����������"�������������	��	��"��������������	�

F ���
����
��������	���������	���

� ��

+ ��������
�	��� ���� ���	
�	 ����

1 ����
 	� �
����
� ��	�
���
�� ��� � < ����
��#

4 ��

= �
���
 �����"
� ��!
�����
������	
���B!��	������ #

> �
���
�
� ��
�����
�� �����!,2�����33444����!����
��3� "3�55�3��
��2�$

? �
���
�
� ��
������	
��� �����!,2�����33444����!����
��3� "3�55�3���	
���2�$

E �
���
�
� ��
���	������ �����!,2�����33"�&���3 �����2�$

H

�: �� ���� ���
 ��
��& ��
�	
� 	�

���
�
��
� '�	
 	��	 �� 	�
 ��*
������) 	���

�� ���
 �� ����
�
������& ��� 	�
 ��
�	
�
���
�
��
� �� ��
����
� �� �� ��	�

�+ ����

	
� 2���
 	���
� ���
� ��
 ����
� �	��	 �� 	�
& ��
 ���&
1
��	
� 	�

�1 ����	 	�

 ��
� ����
�
��	���
 	�

� ��	� 	�
 ��

 ����	 ����

	
��#)

�4 �	 ����� ��+
 *

� �����*�
 	� ���� 	��� ���
 ���
 	�
 ��������� ���
� �� ���
�

�= 	� ��	�
�	����& �
	��
+
 	�

���
�
��
�

�> ��

�? ������ ���	
� ������	�����	
����&�� ��
���������� ��� �����

�E �	�
��
 	�������	�����	
��� �����	
���� #

�H �����	
������� ��� , ��� ���$

+: %

��

Ecore to GenModel

176

(� '�����%���������������)��$�������

+� ��

++ ���� +����� ���
 �� �+
�����
� *& ���
� ��� ��
����� 	&�
�

+1 =��
 	�
 ��
�5� ����	 �� +�
�) ���&
����� ���
� ��
 +���*�
) 	��	 �� ���& 	���

+4 +��	��� ���
 ��� *
 �
�
�	
� �� 	�
 ��
� ��	
����
 "���) ���& 	��� *��
 ���
 �� ��
�

+= ��	
� �� �� 	�
 	����
�

+> ��

+? ������ ���	
� ������� ������	��������	
������
� ��
���������� ��� ����

+E ���
 	�������	�����	
��� �����	
����� �	�
��
 	�������	����� ������

+H #

1: ��������� ��� , ��� ���$

1� �����	
���� ������ 6, �����$

1+ %

11

14 ��

1= %+
������ ����
 �
����
� +��	��� ���
) ��
� 5���
�5 	� ���� 	�
 �+
�������� ���

1> ��

1? 	���
� ���	
� ������	��������	
����&�� ��
����������� ��������

1E ���
 	�������	�����	
��� �����	
����� �	�
��
 	�������	����� ������

1H
�
��
��� ������	��������	
������
���������� ��������

4: 	�������	�����	
��� �����	
����� �	�������	����� ������

4� #

4+ ���
�$ �� ���� �+
�������� ���

41

44 �� '�	
. 6�
����
� �
�7�����
 �
	���� 	�
 	&�
 �	�
��

4= �
�&����	������7���	
��������������� ������$ �� ������	

���
� ����
�	�
�

4> �
�&����	������7���	
�������	
���� ������$ �� ���� ��	�
��
� �
�	��
�

4?

4E �� �
	 �
����	 +���
�

4H �����
����-� ������ 2�
 ��!����
�(��2� 7���	
�������89:
�(���89:;5�$

=: �����
����-� ������ 2�
�-�!���'!����2� ����
�$

=� �����
����-� ������ 2
�����&�!�<92� ���������� ��$

=+ �����
����-� ������ 2
���9!����
�-2� 232 6 ���������� � 6 23���2�$

=1 �����
����-� ������ 2
���/� �2� ���������� �−*"!���0
������������$
=4 �����
����-� ������ 2! �
����<92� 2
������!����� "�! �
�������
��2�$

== %

=>

=? 	���
� ���	
� ������	��������	
����&�� ��
��������� ��

=E ���
 	�������	�����	
��� �����	
����� �	�
��
 	�������	����� ������

=H
�
��
��� ������	��������	
������
����������� 	�������	�����	
�����

>: �	�������	������

>� #

>+ ���
�$

>1 �
�&����	������7���	
������������� ������$

>4 �����
����-� ������ 2! ���2� . ��>������	��$

>= %

>>

>?

>E

>H

?:

?�

�+

Ecore to GenModel

177

(� '�����%���������������)��$�������

?+ 	���
� ���	
� ������	��������	
����&�� ��
����+���!�&�� ��

?1 ���
 	�������	�����	
��� �����	
����� �	�
��
 	�������	����� ������

?4
�
��
��� ������	��������	
������
����������� 	�������	�����	
�����

?= �	�������	������

?> #

?? ���
�$

?E �
�&����	������7���	
�������'���&��� ������$

?H

E: ��� ���	
���������
����-:!�� ��"�&����
����-$

E� �� �������������� #

E+ ��"�&����
����- , 7���	
���������
����-:!�����!�����$

E1 %
��
 #

E4 ��"�&����
����- , 7���	
���������
����-:!���@���
��-$

E= %

E> �����
����-� ������ 2��!�����2� ����
�$

E? �����
����-� ������ 2��������!��2� ����
�$

EE �����
����-� ������ 2�
�!"-2� ���
�$

EH �����
����-� ������ 2��
����-?
����
!���2� ����
�$

H: �����
����-� ������ 2��
����-2� ��"�&����
����-�$

H� %

H+

H1 	���
� ���	
� ������	��������	
����&�� ��
����@�"������ ��

H4 ���
 	�������	�����	
��� �����	
����� �	�
��
 	�������	����� ������

H=
�
��
��� ������	��������	
������
����������� 	�������	�����	
�����

H> �	�������	������

H? #

HE ���
�$

HH �
�&����	������7���	
�������'���&��� ������$

�::

�:� ��� ���	
���������
����-:!�� ��"�&����
����-$

�:+ �� �. ���
���!��� AA . ���
���!� ���� #

�:1 �� �������������� #

�:4 ��"�&����
����- , 7���	
���������
����-:!�����!�����$

�:= %

�:>
��
 #

�:? ��"�&����
����- , 7���	
���������
����-:!���@���
��-$

�:E %

�:H %

��:
��
 #

��� ��"�&����
����- , 7���	
���������
����-:!���/
��$

��+ %

��1

��4 �����
����-� ������ 2��!�����2� ���
���!� ����$

��= �����
����-� ������ 2��������!��2� ���
���!� ��� AA �������������$

��> �����
����-� ������ 2�
�!"-2� ���
���!� ����$

��? �����
����-� ������ 2��
����-?
����
!���2�

��E ��"�&����
����- ,, 7���	
���������
����-:!�����!������$

��H �����
����-� ������ 2��
����-2� ��"�&����
����-�$

�+: %

�+�

�++

�1

Ecore to GenModel

178

(� '�����%���������������)��$�������

�+1 	���
� ���	
� ������	��������	
����&�� ��
����������!
� ��

�+4 ���
 	�������	�����	
��� �����	
����� �	�
��
 	�������	����� ������

�+=
�
��
��� ������	��������	
������
����������� 	�������	�����	
�����

�+> �	�������	������

�+? #

�+E ���
�$

�+H �
�&����	������7���	
�������������!
�� ������$

�1: %

�1�

�1+ 	���
� ���	
� ������	��������	
����&�� ��
�������� ���� ��

�11 ���
 	�������	�����	
��� �����	
����� �	�
��
 	�������	����� ������

�14
�
��
��� ������	��������	
������
����������� 	�������	�����	
����� �	�������	������

�1= #

�1> ���
�$

�1? �
�&����	������7���	
����������� ����� ������$

�1E %

�1H

�4: 	���
� ���	
� ������	��������	
����&�� ��
������& ��

�4� ���
 	�������	�����	
��� �����	
����� �	�
��
 	�������	����� ������

�4+
�
��
��� ������	��������	
������
����������� 	�������	�����	
�����

�41 �	�������	������

�44 #

�4= ���
�$

�4> �
�&����	������7���	
���������& � ������$

�4? �����
����-� ������ 2�-��?�"���& �
 ���!���2� ����
�$

�4E %

�4H

�=: 	���
� ���	
� ������	��������	
����&�� ��
����9���0-�� ��

�=� ���
 	�������	�����	
��� �����	
����� �	�
��
 	�������	����� ������

�=+
�
��
��� ������	��������	
������
����������� 	�������	�����	
�����

�=1 �	�������	������

�=4 #

�== ���
�$

�=> �
�&����	������7���	
�������9���0-��� ������$

�=? %

�=E

�=H

�>: ��−−−
�>� 4
��
� ���
� ��� �		������
���
��.

�>+ ��

�>1

�>4 	���
� �
�&����	������&�� ���
 �-��� ���
 	�������	����� ������ #

�>= �
���	����� ������ "���&��/� � �� �-��−*"!���/� ����� #

�>> �� ��-��−*"!��������������"���&��/� ��� #

�>? ��� ���
 "!���0-�� , �-��−*"!���0-���"���&��/� ��$
�>E �� �"!���0-��−*����������� #

�>H �����
����-� ������ "���&��/� �� �����$

�?: %

�?� %

�?+ %

�?1 %

�4

Ecore to GenModel

179

(� '�����%���������������)��$�������

�?4 ��−−−
�?= "�	�
�	�����& 	����
�
� ���
�) 	�
�
 ���
� ������	
 	�
 �
����
�
�

�	5�

�?> �
�	��
� ��	� 	�
 ����
�	& +���
� �� 	�

���
�

�?? ��

�?E

�?H �� ���� ���
 �� 	����
�
� *& 	�
 ���
� �
���
� �� 	�
 	����
�−�
�	��� 2���
 	��� ���
 ��

�E: ����
� ��	�
�	�����&) ��� ����

	
��
��	 *
 *��� *& �� 	�
 	����
� ���	 ��)

�E� −
���
� �� *���� ����� 	�
 �
	��� +���
 �� �		�������
��
����
�� #

�E+ − 	���
	 �� *���� ����� 	�
 �
	��� +���
 �� ����
���
����
�� #

�E1 '�	
 	��	 *�	� 	����
� ���
� ��+
 � ����

	
� 5
�

�	5 ���	 ��) 	�
 +���
� ��

�E4 	��� ����

	
�
��	 *

;���>

�E= ��

�E> ���
 �
�-	�������
����!�����
� 	�������	����� ������ ���
 ��� �������

�E? �����
� �

�EE ��
��0
���	
������� ��� ���� ��� ���
���1�
���!����� ���� ��������

�EH ������	��������	
������
���������� ��� ���� 	�������	�����	
��� �����	
�����

�H: �	�������	����� ������

�H� � #

�H+
&��2�
�- ����� ��
����!�� !��
 2 6 �������$ �� ���& ��� �
*������ ������
�

�H1 �
���	� ���� ������ "���&�� �� ������−*"!���/� ����� #

�H4 ��� 	�������?��!����
����- ��
����- , �
�
	� ����� �

�H= ��� 	�������?��!����
����- � �� ��������
����!�� ��
�
 ���� �,,"���&���$

�H>

�H?
&��2��
����- "
� "���&�� 2 6 "���&�� 6 2 !� 2 6 ��
����-�$

�HE

�HH �� ���
����-.,���� AA ��
����-����!��C��&�.,����� #

+::
&��2��� "���&�� 2 6 "���&�� 6 2 "�
 ����� 2 6 ��
����-����!��C��&��$

+:�

+:+ ���'���&���������� "���&��� ��
����-����!��C��&��$

+:1 %

+:4 %

+:= %

+:>

+:? �� " �
���� ��	�
�	�����& ����
� ���
 '�	
 	��	 	�
 �
���� ���
 �� 	�
 	����
�
;���� 	�

+:E �
���� ���
 �� 	�
 	����
� �
���
� �� 	�
 ���
 �*�+
 " �����
 	���
� ���
 ��� ��
� ��

+:H �
+
��� 	����
�� "��� ��	
 	��	 	�
 ���
� �� 	�

1
��	��� �� 	�
 	����
���� ���
� ���

+�: 	�
 ���
� �� 	�
 �
����	��� �� 	�
 	����
�# ��
� ��	
�		
�

+�� ��

+�+ ���
 �
�-	�������
����!��	
������
� 	�������	����� ������ ���
 ���	
�������	
��� ���	
����

+�1 �����
� �

+�4 ����������������������
����������� ��������� ���	
�������	
��� ���	
�����

+�= ����	
�������������� ���

+�> ������	��������	
������
����������� ��������� 	�������	�����	
��� �����	
�����

+�? �	�������	����� ������

+�E � #

+�H
&��2�=���� 	
���� �
�- ����� ��
����!�� !��
 2 6 ���	
����$

++: �
���	� ���� ������ "���&�� �� ���	
���−*"!���/� ����� #

++� ��� 	�������?��!����
����- ��
����- ,

+++ �
�
	� ����� ���� 	�������?��!����
����- � �� ��������
����!�� ��
�
 ���� �,,

"���&���$

++1

�=

Ecore to GenModel

180

(� '�����%���������������)��$�������

++4
&��2��
����- "
� "���&�� 2 6 "���&�� 6 2 !� 2 6 ��
����-�$

++=

++> �� ���
����-.,���� AA ��
����-����!��C��&�.,����� #

++?
&��2��� "���&�� 2 6 "���&�� 6 2 "�
 ����� 2 6 ��
����-����!��C��&��$

++E

++H ���'���&������	
���� "���&��� ��
����-����!��C��&��$

+1: %

+1� %

+1+ %

+11

+14 	���
� �����
����-����
 	�������	����� ������ ������ �� �� ��� (��&�� #

+1= ��� 	�������?��!����
����- ��
����- , �
�
	� ����� �

+1> ��� 	�������?��!����
����- � �� ��������
����!�� ��
�
 ���� �,,�� ��$

+1? �� ���
����-,,����� #

+1E ��
����- , �
� 	�������?��!����
����-��$

+1H ��
����-��� � , �� �$

+4: ��������
����!�� 6, ��
����-$

+4� %

+4+ �� �(��&�.,�����

+41 ��
����-����!��C��&� , (��&�−*�
?��!����$
+44

+4= %

+4>

+4? �����	 	���
� ���'���&������ ������� ������ "���&��� ��� (��&�� #

+4E �� ��������))"���&��**−*!�+��!������'�
 �(��&��� #

+4H �������))"���&��** , (��&�$

+=: %
��
 #

+=� �� ��������))"���&��**−*!�	��-��� #

+=+ �
���	� ���� ������ ���� �� (��&�−*���!��2�2�� #

+=1 �������))"���&��**6, ����$

+=4 %

+== %
��
 #

+=> ��� ��� ������ , �������))"���&��**−*�-����−*������(��&��$

+=? �� �������.,����� #

+=E �������))"���&��** , ������$

+=H %

+>: %

+>� %

+>+ %

+>1

+>4

+>= ��−−−
+>> ��������
�	��� ���
�) ;��	
 ��
���� 	� ����	 	�������
�	���)
1�
�	 	��	

+>?
���
�� ��
 ��
� ���	
�� �� ����	�	����

+>E ��

+>H

+?: �� "*�	���	 ���
) �� �
��

�	
� *& �����
	
 ���
� ��	
� �� ���� �*�	���	 ���
 �� �
���
�

+?� �� ���
� 	� ��
����& 	�
 �
����	��� �� 	�
 	����
��

+?+ ��

+?1 ������	� ���	
� ��
��0
���	
������
� ��� ��
��1��� ���� ���
 ��� ���
���1�
���!�����

+?4 ��
���� ��� ���
���1��� ����$

�>

Ecore to GenModel

181

(� '�����%���������������)��$�������

+?= �� 0��	 �� �� 	�
 ����	
1�
��
 	�
 ���
 	� ��	����& ��
�	
 	�
 �
����
� ��

+?> ������ �����������	
������
� ��
����������� �� � �	�
��
 ���	
�������	
��� ���	
���� #

+?? ��� ���	
�������������� ���������� , ���������������������� ���	
����$

+?E ���	
��������������� 6, ����������$

+?H

+E: �� �
	 ��	� �
����	�

+E� ���	
�����
 ��!����
�(�� , 7���	
�������89:
�(���89:;5$

+E+ ���	
�����
�-�!���'!���� , ����
$

+E1 ���	
����
�����&�!�<9 , ���� �$

+E4 ���	
����
���9!����
�- , 232 6 ���� � 6 23���2$

+E= ���	
����
���/� � , ���� �−*"!���0
�����������$
+E> ���	
����! �
����<9 , 2
������!����� "�! �
�������
��2$

+E? %

+EE

+EH �� ����
� ���
 ����
 �
���
� ���
 ��
 ���
� �
��

�	� 	�
 �*�	���	 ���
 �� ���
� 	�

+H: 	����
� 	�
 ��	� ���
� ���� ��		
�� �� 	��
 ��� ��� ��������� ���
�

+H� ��

+H+ 	���
� ���	
� ����������������������
� ��
����������� �� ���
 ���	
�������	
��� ���	
�����

+H1 �	�
��
 ���	
�������������� ��

+H4 ����
�
��� ��
��0
���	
�������� ��� �� �����

+H= #

+H> ���	
��������������� 6, �$

+H? ����
��������� , �$

+HE ���!��
�������
(!���'���
�- , ���
$

+HH �����"!= , ���� �−*"!���0
�����������$
1:: �
���	� ���� ��
���������!"!�� ������!"!�� �� ��������!"!���� #

1:� ������!"!������������!"!����������!"!��� ��$

1:+ %

1:1 %

1:4

1:= �� 0��	 �� �� 	�
 ��
+���� ���	���) 	��� +��	��� ���
 �����	 *
 ����
� �� ���������
� ��

1:> �*�	���	

1:? ��

1:E 	���
� ���	
� ������� ������!"!������������!"!������
� ��
���������!"!�� ��

1:H ���
 ���	
�������������� ������������ ��
���� ���	
������������!"!�� ��

1�: ����
�
��� ��
��0
���	
�������� ��� �� �����

1�� #

1�+ ��
��	 ��	 *
 ����
�

1�1 %

1�4

1�= 	���
� ������������������
� ��
��������� �� ���
 ���	
�������������� ������������

1�> �	�
��
 ���	
������������ ��

1�?
�
��
��� ������!"!������������!"!������
���������!"!�� ��

1�E ���	
�������������� ������������ ����	
������������!"!�� ��

1�H #

1+: ��������������������� 6, �$

1+� ����
������� , �$

1++ ��! ��� , . ��>������	�$

1+1

1+4 �
���	� ���� ��
����?��&��&���'���&�� �?��&��&���'���&�� �� ���?��&��&���'���&���� #

1+= �?��&��&���'���&������'���&����?��&��&���'���&��� ��$

�?

Ecore to GenModel

182

(� '�����%���������������)��$�������

1+> %

1+? �
���	� ���� ��
����������!
� �������!
� �� ���������!
��� #

1+E �������!
�����������!
���������!
�� ��$

1+H %

11: %

11�

11+ 	���
� ���	
� ������� �?��&��&���'���&������'���&�����
� ��
����?��&��&���'���&�� ��

111 ���
 ���	
������������ ���������� �	�
��
 ���	
�������'���&�� ��

114 ����
�
��� ��
��0
���	
�������� ��� �� �����

11= #

11> ������������'���&��� 6, �$

11? ����
��'���&�� , �$

11E %

11H

14: 	���
� �+���!�&������'���&�����
� ��
����+���!�&�� �� ���
 ���	
������������ ����������

14� �	�
��
 ���	
�������'���&�� ��

14+
�
��
��� �?��&��&���'���&������'���&�����
����?��&��&���'���&�� ��

141 ���	
������������ ���������� ����	
�������'���&�� ��

144 #

14= ���
�$

14>

14? ��� ���	
���������
����-:!�� ��"�&����
����-$

14E �� �������������� #

14H ��"�&����
����- , 7���	
���������
����-:!�����!�����$

1=: %
��
 #

1=� ��"�&����
����- , 7���	
���������
����-:!���@���
��-$

1=+ %

1=1

1=4 ����!����� , ����
$

1== ����������!�� , ����
$

1=> ���
�!"- , ���
$

1=? ����
����-?
����
!��� , ����
$

1=E ����
����- , ��"�&����
����-$

1=H %

1>:

1>� 	���
� �@�"����������'���&�����
� ��
����@�"������ �� ���
 ���	
������������ ����������

1>+ �	�
��
 ���	
�������'���&�� ��

1>1
�
��
��� �?��&��&���'���&������'���&�����
����?��&��&���'���&�� ��

1>4 ���	
������������ ���������� ����	
�������'���&�� ��

1>= #

1>> ���
�$

1>?

1>E ��� ���	
���������
����-:!�� ��"�&����
����-$

1>H �� �. ���
���!��� AA . ���
���!� ���� #

1?: �� �������������� #

1?� ��"�&����
����- , 7���	
���������
����-:!�����!�����$

1?+ %

1?1
��
 #

1?4 ��"�&����
����- , 7���	
���������
����-:!���@���
��-$

1?= %

1?> %

�E

Ecore to GenModel

183

(� '�����%���������������)��$�������

1??
��
 #

1?E ��"�&����
����- , 7���	
���������
����-:!���/
��$

1?H %

1E:

1E� ����!����� , ���
���!� ���$

1E+ ����������!�� , ����!����� AA ������������$

1E1 ���
�!"- , ����!�����$

1E4 ����
����-?
����
!��� , ��"�&����
����- ,, 7���	
���������
����-:!�����!�����$

1E= ����
����- , ��"�&����
����-$

1E>

1E? %

1EE

1EH 	���
� ���	
� �������!
�����������!
����
� ��
����������!
� ��

1H: ���
 ���	
������������ ���������� �	�
��
 ���	
�������������!
� ��

1H� ����
�
��� ��
��0
���	
�������� ��� �� �����

1H+ #

1H1 ������������������!
�� 6, �$

1H4 ����
��������!
� , �$

1H= �
���	� ���� ��
�������� ���� ����� ��� �� ������� ������ #

1H> ����� ������������ ���������� ���� ��$

1H? %

1HE %

1HH

4:: 	���
� ���	
� ����� ������������ �������
� ��
�������� ���� ��

4:� ���
 ���	
�������������!
� ���������!
��� �	�
��
 ���	
����������� ���� ��

4:+ ����
�
��� ��
��0
���	
�������� ��� �� �����

4:1 #

4:4 ���������!
��������� ����� 6, �$

4:= ����
������ ���� , �$

4:> %

4:?

4:E 	���
� ���	
� ���& ������& ���
� ��
������& �� ���
 ���	
�������������� ������������

4:H �	�
��
 ���	
���������& ��

4�:
�
��
��� ������!"!������������!"!������
���������!"!�� ��

4�� ���	
�������������� ������������ ����	
������������!"!�� ��

4�+ #

4�1 ����������������& � 6, �$

4�4 ����
����& , �$

4�= ���-��?�"���& �
 ���!��� , ����
$

4�> �
���	� ���� ��
������&
!����� �
!����� �� ���
!������� #

4�? ���&
!�����������&
!�������
!������ ��$

4�E %

4�H %

4+:

4+� 	���
� ���	
� ���&
!�����������&
!��������
� ��
������&
!����� ��

4++ ���
 ���	
���������& �����& �� �	�
��
 ���	
���������&
!����� ��

4+1 ����
�
��� ��
��0
���	
�������� ��� �� �����

4+4 #

4+= �����& ������&
!������ 6, �$

4+> ����
����&
!����� , �$

4+? %

�H

Ecore to GenModel

184

�� '�����%���������������)��$�������

4+E 	���
� �9���0-������9���0-�����
� ��
����9���0-�� ��

4+H ���
 ���	
�������������� ������������ �	�
��
 ���	
�������9���0-�� ��

41:
�
��
��� ������!"!������������!"!������
���������!"!�� ��

41� ���	
�������������� ������������ ����	
������������!"!�� ��

41+ #

411 ��������������9���0-��� 6, �$

414 ����
��9���0-�� , �$

41= %

41>

41? �� $
����	��� �� � ��	�+
 �?0�+�#

	���

41E ��

41H 	���
�
&�������� ������� �����
������,2 !����

�2�$

44: %

�� '����
�	
�������
�����(������!���

���������������	��"����%��	���	���������	��������
������� �
����	��� +�4� �����$������ �	���������	������

������� ���	
���������� ���	������������
���� ��
��� ������������
�������������
�������������� A�%����� 	��
�	���"	���� ���	������	���������	���������	������ ���������	����
����
���� ���������	������%���������������	��	�
���	�������������������	���%�	��
	�	���������������$�����������	�	����� .���"����	���	��
���� ��������	��
���
����	�������
����������������	��	��""���	��������������
	���
���� *�����	����� ��
��� 	����
	���
����������

����	��	�������������	�������	%���������������	���
	���	�������

� ��

+ ��������
�	��� ���� ���	
�	 ����

1 ����
�!�(��� � @ <$ A
�
��	�#

4 ��

= �
���
 �����"
� ��!
�����
����	
 #

>

? �
���
�
� ��
�����
�� �����!,2�����33444����!����
��3� "3�55�3��
��2�$

E �
���
�
� & ����	
 ��$

H

�: �� ��

����� ���
 ��
� �� � �������
�	��� 3	 ���� 	����
�
� 	�
 ��������� ���

�� ��

�+ ������ ���	
� ��������	
��������
� ��
��������� �� ���
 �	
�������� �� � �	�
��
 �	
������

�� #

�1 ���� � , ���� �$

�4 ������������� ��� 6, �$

�= %

�>

�?

�E

�H

+:

+�

++

+1

+4

+:

Ecore to GenModel

185

�� '�����%���������������)��$�������

+= �� �����
�
� *& ����
 �
���
� ���
 ��
 ��	�−*���� �
���
� 	�
 ����	 ����

	
�) 	�
 �
����

+> ����

	
� �� *���� 	� 	�
 ����

�	� �� 	�
 	����
� ���
�

+? ��

+E ���
 ���	
� �@�"��������	
+��
����
� ��
����@�"������ �@�"� ���
 �	
�������� ���

+H �	�
��
 �	
�+��
�!��!
� ���
��

1: �����
� �

1� ��������	
��������
��������� ������'�
 � �	
�������� �� � ��	
������ "�
 �������

1+ ��������	
��������
��������� ������0
� �	
�������� �� � ��	
������ �
������

11 � ���� #

14 �@�" , �
�
	� ����� ���� ��
����@�"������ � �� ������'�
 ��@�"������� ��
�

1= ���0-�� ,, ������0
�$

1> %

1? ��
� ��@�".,���� � ��
1�����	 ��
� �����

1E #

1H ���
���� � , �@�"��� �$

4: ���+��
���������
�� "�
 ������ �
������$

4� ������������� ��� 6, ���
�$

4+ %

41

44 �� 4
��
� ���

4= ��

4> 	���
� ���+��
�������	
�+��
�!��!
� ���
�� �	
������ ��������� �	
������ ��������� #

4? ��� �	
���
����- ��� , �
� �	
���
����-��$

4E ������ � , 2���2$

4H �����-�� , ��������$

=: ���
��
4������ 6, ���$

=�

=+ ��� �	
���
����- ��� , �
� �	
���
����-��$

=1 ������ � , 2���2$

=4 �����-�� , ��������$

== ���
��
4������ 6, ���$

=> %

=? %

+�

Ecore to GenModel

186

Ecore to Genmodel case study solution
using the Viatra2 framework

Ábel Hegedüs, Zoltán Ujhelyi, Gábor Bergmann, and Ákos Horváth

Budapest University of Technology and Economics, Hungary
{hegedusa,ujhelyiz,bergmann,ahorvath}@mit.bme.hu

Abstract. The paper presents a solution of the Ecore to GenModel
case study of the Transformation Tool Contest 2010, using the model
transformation tool Viatra2.

This work was partially supported by the EC FP6 DIANA (AERO1-030985) and
ICT FP7 SecureChange (ICT-FET-231101) European Projects.

1 Introduction

Automated model transformations play an important role in modern model-driven
system engineering in order to query, derive and manipulate large, industrial models.
Since such transformations are frequently integrated to design environments, they need
to provide short reaction time to support software engineers.

The objective of the Viatra2 (VIsual Automated model TRAnsformations [1])
framework is to support the entire life-cycle, i.e. the specification, design, execution,
validation and maintenance of model transformations.

Model representation. Viatra2 uses the VPM metamodeling approach [2] for de-
scribing modeling languages and models. The main reason for selecting VPM instead
of a MOF-based metamodeling approach is that VPM supports arbitrary metalevels
in the model space. As a direct consequence, models taken from conceptually different
domains (and/or technological spaces) can be easily integrated into the VPM model
space. The flexibility of VPM is demonstrated by a large number of already existing
model importers accepting the models of different BPM formalisms, UML models of
various tools, XSD descriptions, and EMF models.

Graph transformation (GT) [3] based tools have been frequently used for specifying
and executing complex model transformations. In GT tools, graph patterns capture
structural conditions and type constraints in a compact visual way. At execution time,
these conditions need to be evaluated by graph pattern matching, which aims to retrieve
one or all matches of a given pattern to execute a transformation rule.

Transformation description. Specification of model transformations in Viatra2
combines the visual, declarative rule and pattern based paradigm of graph transfor-
mation (GT) [3] and the very general, high-level formal paradigm of abstract state
machines (ASM) [4] into a single framework for capturing transformations within and
between modeling languages.

Transformation Execution. Transformations are executed within the framework by
using the Viatra2 interpreter. For pattern matching both (i) local search based pat-
tern matching (LS) and (ii) incremental pattern matching (INC) are available. This

Ecore to GenModel

187

2

feature provides the transformation designer additional opportunities to fine tune the
transformation either for faster execution (INC) or lower memory consumption (LS) [5].

The rest of the paper is structured as follows. Sec. 2 introduces the Case Study
problem which is solved in this paper. Sec. 3 gives an architectural overview of the
transformation, while Sec. 4 highlights the interesting parts of our implementation and
finally Sec. 5 concludes the paper.

2 Case study

In the Eclipse Modeling Framework (EMF) [6] the Ecore metamodeling language is
used for defining arbitrary metamodels. Conforming instance models can be handled
by reflection or code generation, the latter is performed by a toolkit provided by EMF.
The toolkit first transforms the Ecore metamodel into a GenModel model that stores
implementation-specific information and also refers back to the original Ecore meta-
model. Then the functional Java classes are generated using a JET-based model-to-text
transformation that consumes the GenModel.

As a challenge, [7] proposes the reimplementation of the Ecore to GenModel trans-
formation within a model transformation framework. To overcome the reconciliation
problem in the existing transformation (i.e. major changes in the Ecore model can lead
to the loss of customised attributes in the existing GenModel) the case study specifies
GenModel options as annotations in the source Ecore metamodel. These annotations
are populated in the generated GenModel by the transformation.

Furthermore, the case study proposes the application of reflection for handling
annotations using a generic function instead of explicit one-by-one mapping for each
annotation/attribute pair.

The proposed transformation demonstrates two useful features of transformation
languages: (1) ability to establish cross-model references and (2) support for reflection.

3 Solution Architecture

We implemented our solution for the case study using the Viatra2 model transforma-
tion framework. Fig. 1 shows the complete architecture with both preexisting and newly
created components. The Transformation Controller is an extension to the Eclipse
framework that provides an easy-to-use graphical interface for executing the underly-
ing transformation (i.e. it appears as a command in the pop-up menu of Ecore EMF
files). From the user perspective, the controller is invoked on an input Ecore file and
the result is an output GenModel file.

Note that the transformation is performed on models inside the VPM modelspace of
Viatra2 rather than on in-memory EMF models. Although Viatra2 does not manip-
ulate EMF models directly, it includes a generic support for handling EMF metamodels
and instance models.

In order to understand the transformation we briefly outline the metamodeling
approach of our solution. The Ecore metametamodel is the base of this support, which
was defined in accordance with the actual EMF metamodel of Ecore.

Both the Ecore and GenModel metamodels are defined as instances of this metameta-
model, and are imported into Viatra2 with the generic Ecore metamodel importer.
Then the input file is used to import the Ecore file into Viatra2 and create the Ecore
model which is the instance of the Ecore metamodel.

Ecore to GenModel

188

3

Fig. 1. Solution Architecture

By executing our implemented transformation, we can transform the Ecore model
to a GenModel model which is an instance of the GenModel metamodel. This GenModel
model is then exported to create the output GenModel file.

Note that currently we have limited generic support for exporting cross-resource
references, thus the exporter plugin provided for this case study is GenModel-specific,
but we plan to resolve this over time by improving the generic Ecore instance exporter.

4 Transforming Ecore models to GenModels (E2GM)

The E2GM transformation generates the GenModel model from the Ecore model in
the Viatra2 framework and is implemented in the Viatra2 Textual Command Lan-
guage (VTCL) [8]. E2GM can be separated into two parts, (1) the construction of the
GenModel model based on the Ecore model, (2) parsing annotations and creating the
corresponding attributes reflectively.

The complete transformation is only 700 lines of VTCL code including whitespaces
and comments (see Appendix B). It includes 26 simple type-checking graph patterns
(i.e. entityX is type Y , see lines 73-103) and 20 complex patterns (e.g. Ecore annotation
that does not have a corresponding GenModel attribute). The type-checking patterns
and 10 complex patterns are handled by INC, the other complex patterns by LS. Finally,
the actual manipulation is executed by 8 declarative rules (e.g. create GenModel entity
for given Ecore entity).

Ecore model traversal is done by navigating through the tree structure of the model
and creating GenModel elements with the correct type using a set of mapping key-value
pairs (see lines 11-23). The key of the map is the Ecore type (e.g. EClass) and the
value is the corresponding GenModel type (GenClass). Although the Ecore metamodel
includes a complex type hierarchy (using generalisation), the mapping takes advantage
of the fact that for any type in the Ecore model, at most one of its supertypes (or itself)
is mapped to a GenModel type (i.e. there is no ambiguity). Therefore, we can define a
generic graph pattern that returns the mappable type of any given Ecore element, and
this type is used as a key to retrieve the appropriate GenModel type that is instantiated
(see lines 172-177).

Ecore to GenModel

189

4

Fig. 2. Pattern for GenModel references

GenModel and cross-model references.
The type of the references between gener-
ated GenModel elements are handled sim-
ilarly to the generic pattern for mapping.
Instead of an explicit declaration for ev-
ery reference type, the Ecore and GenModel
metamodels are used (as instances of the
Ecore metametamodel) to find the appro-
priate reference type definition in the Gen-
Model metamodel. Fig. 2 illustrates a graph
pattern to find reference type GenRefType
for containing GenChild in GenParent (see
also lines 208-245).

Furthermore, the created GenModel elements have references to the elements in the
Ecore model to store the connection between the two models. For example, an EClass
is transformed into a GenClass element in the GenModel with an ecoreClass reference
between them (see lines 388-399). The transformation creates these references using
a generic approach as well (i.e. by retrieving the reference type from the GenModel
metamodel).

External Ecore models. EMF provides a capability to create complex interconnected
models from more than one Ecore model. Ecore models that are referenced from a
source Ecore model are called external as their definition is not inside the actual model.
Such models are transformed to GenModel models in two different ways: (1) if they
already have their own GenModels, then these models are references with the used-
GenPackages from the generated GenModel; (2) otherwise the generated GenModel
will include the packages corresponding to the referenced Ecore models as well. In our
E2GM transformation we only support the second case, where new GenPackages are
created for external Ecore models (see lines 202-206).

Parsing annotations. In our solution we used a reflective approach for parsing an-
notations in the Ecore model, by retrieving the attributes of GenModel entities from
the metamodels using the key of Ecore annotations. Apart from implementing a sim-
ilar technique proposed in [7] we extended that solution using generic graph patterns
to decide the appropriate type for the attributes defined by the annotations. These
patterns find the attribute type using the GenModel metamodel, and declarative rules
create the attributes themselves (see lines 574-650).

We also implemented type checking for the attributes to ensure that boolean and
enumeration values are correct to avoid the generation of a syntactically incorrect
GenModel (e.g. boolean with a value other than “true” or “false”, see lines 694-724).
Furthermore, to provide a GenModel that is usable for code generation without further
editing, several default attributes are set even if no annotation is defined for them in
the Ecore model (e.g see line 130).

Performance. We used several Ecore models with varying size and complexity to test
the performance of our implementation. We tested stand-alone metamodels such as
Ecore, XSD, OCL and GTASM (the metamodel for the transformation language of
Viatra2), and metamodels with external Ecore models (e.g. BPEL, UML, WSDL).

Ecore to GenModel

190

5

As a comparison, we measured1 the performance of the built-in EMF generator
on the same metamodels. This generator is a headless Eclipse application which can
be invoked from a command prompt. We found that our implementation is faster on
smaller models, even though we only measured the time the built-in EMF generator
required to perform the actual transformation, not the whole time from start up. How-
ever, our solution was slower on larger models by one order of magnitude (see Fig. 3).
The main factors for these results are: (1) presumably, the built-in generator includes
an initialisation part with constant time independent of the size of the models; (2)
the Viatra2 framework including a generic pattern matching engine supports a wider
range of transformation applications resulting in slower overall execution, compared to
the explicit template-based built-in EMF generator.

��������	�
��	�
�
 �����������
� �	���	����
� �����
��
������	�
�

��	�
 ���� ���� �	���	����
�
 !" #�$� �%�� ��&" ��#�
'�& #��� �$�� �(�" #���
)*+�, �$%% -#%�� .," �#���

Fig. 3. Performance results

It is important to note, that this built-in, headless generator can not handle external
Ecore models, therefore we could only test with stand-alone metamodels. Furthermore,
we also measured the performance of the transformation in our solution, without the
import-export. We found that the execution time is directly proportional to model size,
therefore it scales well.

5 Conclusion

In the current paper we have presented our Viatra2 based implementation for the
Ecore to Genmodel case study [7].

Relying on the high-level metamodeling features of Viatra2, we have presented
relatively simple solutions to all optional parts and more. Our implementation is able
to handle cross-model references both between several Ecore models and between the
generated GenModel and the original Ecore models. We used reflection when dealing
with annotations in Ecore models.

The high points of our transformation are the generic rules for mapping Ecore
elements to GenModel, which are easily customisable for changes in GenModel meta-
model. We exploited the incremental matching feature of Viatra2 and employed type
checking of boolean and enumeration values in annotations. The implementation is
able to handle nested packages and external models as well.

On the other hand, import-export of models is required and referenced GenModels
(for external Ecore models) are not handled at the moment.

References

1. VIATRA2 Framework: An Eclipse GMT Subproject: (http://www.eclipse.org/
gmt/)

1 All measurements were carried out on a computer with Intel Centrino Duo 1.66 GHz
processor, 3 GB DDR2 memory, Windows XP, Eclipse 3.5.2 and EMF 2.5.

Ecore to GenModel

191

6

2. Varró, D., Pataricza, A.: VPM: A visual, precise and multilevel metamodeling
framework for describing mathematical domains and UML. Journal of Software
and Systems Modeling 2(3) (2003) 187–210

3. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook on Graph
Grammars and Computing by Graph Transformation. Volume 2: Applications, Lan-
guages and Tools. World Scientific (1999)

4. Börger, E., Stärk, R.: Abstract State Machines. A method for High-Level System
Design and Analysis. Springer-Verlag (2003)

5. Bergmann, G., Horváth, A., Ráth, I., Varró, D.: Experimental assessment of com-
bining pattern matching strategies with VIATRA2. Journal of Software Tools in
Technology Transfer (2009) Accepted.

6. The Eclipse Modeling Framework project: (http://www.eclipse.org/emf/)
7. Kolovos, D.S., Rose, L.M., Paige, R.F., de Lara, J.: Ecore to GenModel Case Study

for TTC2010 (2010)
8. Balogh, A., Varró, D.: Advanced model transformation language constructs in the

VIATRA2 framework. In: ACM Symposium on Applied Computing —Model Trans-
formation Track (SAC 2006), Dijon, France, ACM Press (2006) 1280–1287

A Solution demo and implementation

The deployable implementation and source code is available as an Eclipse online update
site (http://mit.bme.hu/~ujhelyiz/viatra/ttc10-site/) and as an archive (http:
//mit.bme.hu/~ujhelyiz/viatra/ttc10.zip)

The SHARE image for demonstration purposes is available at http://is.ieis.

tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TTC10_TTC10%

3A%3AXP-Ec2Gm_Viatra_i.vdi

B Appendix - Ecore to GenModel transformation

// metamodel imports
import nemf.packages.ecore;
import nemf.packages.genmodel;
import datatypes;

// Ecore -to -GenModel transformation
@incremental
machine ecore2genmodel {

10 // mapping rules for corresponding Ecore and GenModel types
asmfunction mapping /1 {
(nemf.packages.ecore.EPackage) = nemf.packages.genmodel.GenPackage;
(nemf.packages.ecore.ETypeParameter) =
nemf.packages.genmodel.GenTypeParameter;

(nemf.packages.ecore.EEnumLiteral) = nemf.packages.genmodel.GenEnumLiteral;
(nemf.packages.ecore.EDataType) = nemf.packages.genmodel.GenDataType;
(nemf.packages.ecore.EClass) = nemf.packages.genmodel.GenClass;
(nemf.packages.ecore.EStructuralFeature) =
nemf.packages.genmodel.GenFeature;

20 (nemf.packages.ecore.EOperation) = nemf.packages.genmodel.GenOperation;
(nemf.packages.ecore.EParameter) = nemf.packages.genmodel.GenParameter;
(nemf.packages.ecore.EEnum) = nemf.packages.genmodel.GenEnum;

}

// temporal values and entity references

Ecore to GenModel

192

7

asmfunction temp /1;
// reference to ecore input model
asmfunction ecore /0;
// reference to output genmodel

30 asmfunction genmodel /0;

// entry point of transformation
// EcoreModel : fully qualified name of the input model
// GenModel: local name of GenModel
// PluginID: plugin identifier of GenModel
rule main(in EcoreModel , in GenModelName , in PluginID) = seq{
println("[INFO] >>>Ecore2Genmodel Transformation started on " + EcoreModel);
// find Ecore model in modelspace
if(ref(EcoreModel) != undef && find EPackage(ref(EcoreModel))) seq{

40 update ecore () = ref(EcoreModel);
} else seq{
println("[ERROR] EcoreModel not found!");
fail;

}
update temp("pluginID") = PluginID;

let GenModelRef = "nemf.resources."+GenModelName+"_genmodel" in
// if GenModel already exists
if(ref(GenModelRef) != undef &&

50 find GenModel(ref(GenModelRef))) seq{
println("[Warning] Existing GenModel");
// delete previous GenModel
delete(ref(GenModelRef));

}
let NewGenModel = undef , R = undef in seq{
// create new model
new(GenModel(NewGenModel) in nemf.resources);
rename(NewGenModel , GenModelName+"_genmodel");
update genmodel () = NewGenModel;

60 // initialize GenModel using annotations
new(relation(R,genmodel(),ecore ()));
call initialiseGenmodel(genmodel(),ecore ());
delete(R);

}

let GenType = nemf.packages.genmodel.GenModel in seq{
// create GenModel equivalent of main EPackage
call parseEcoreEntity(ecore(), genmodel(), GenType);

}
70 println("[INFO] >>> Ecore2Genmodel Transformation finished.");

}

// -------------------Type checking patterns --------------
pattern EcoreBoolean(EBoolean) = {nemf.ecore.datatypes.EBoolean(EBoolean);}
pattern EcoreString(EString) = {nemf.ecore.datatypes.EString(EString);}
pattern EcoreEnum(EEnum) = {nemf.ecore.datatypes.EEnum(EEnum);}
pattern EcoreEnumLiteral(EEnumLiteral) =
{nemf.ecore.datatypes.EEnumLiteral(EEnumLiteral);}

80 pattern EPackage(EPackage) = {EPackage(EPackage);}
pattern ETypeParameter(ETypeParameter) = {ETypeParameter(ETypeParameter);}
pattern EEnumLiteral(EEnumLiteral) = {EEnumLiteral(EEnumLiteral);}
pattern EDataType(EDataType) = {EDataType(EDataType);}
pattern EClass(EClass) = {EClass(EClass);}
pattern EStructuralFeature(EStructuralFeature) =
{EStructuralFeature(EStructuralFeature);}

pattern EOperation(EOperation) = {EOperation(EOperation);}
pattern EParameter(EParameter) = {EParameter(EParameter);}
pattern EEnum(EEnum) = {EEnum(EEnum);}

90 pattern EObject(EObject) = {EObject(EObject);}
pattern EReference(EReference) = {EReference(EReference);}

pattern GenPackage(GenPackage) = {GenPackage(GenPackage);}

Ecore to GenModel

193

8

pattern GenModel(GenModel) = {GenModel(GenModel);}
pattern GenClass(GenClass) = {GenClass(GenClass);}
pattern GenTypeParameter(GenTypeParameter) =
{GenTypeParameter(GenTypeParameter);}

pattern GenEnumLiteral(GenEnumLiteral) = {GenEnumLiteral(GenEnumLiteral);}
pattern GenDataType(GenDataType) = {GenDataType(GenDataType);}

100 pattern GenFeature(GenFeature) = {GenFeature(GenFeature);}
pattern GenOperation(GenOperation) = {GenOperation(GenOperation);}
pattern GenParameter(GenParameter) = {GenParameter(GenParameter);}
pattern GenEnum(GenEnum) = {GenEnum(GenEnum);}

// --

// initialize GenModel
rule initialiseGenmodel(in GenModel , in EcoreModel) = let R = undef in seq{

110 // create default attributes required for a proper GenModel
call parseAnnotation(GenModel ,"copyrightFields",EcoreModel ,"false","value");
call parseAnnotation(GenModel ,"complianceLevel",EcoreModel ,
nemf.packages.genmodel.GenJDKLevel.JDK60 , "entity");

call parseAnnotation(GenModel ,"importerID",EcoreModel ,
"org.eclipse.emf.importer.ecore","value");

// find modelname
let Name = nemf.packages.ecore.ENamedElement.name in
try choose ModelName with

120 find AttributeForType(EcoreModel ,Name ,ModelName) do
let NewName = value(ModelName) in seq{
update NewName = str.toUpperCase(str.substring(NewName ,0,1))
+str.substring(NewName ,1);

call parseAnnotation(GenModel ,"modelName",EcoreModel ,NewName ,"value");
// set foreign model reference
let ForeignModel = undef in seq{
new(nemf.ecore.datatypes.EString(ForeignModel) in GenModel);
rename(ForeignModel , "foreignModel_"+value(ModelName));
setValue(ForeignModel ,value(ModelName));

130 new(GenModel.foreignModel(R,GenModel ,ForeignModel));
}

}

call parseAnnotation(GenModel ,"modelDirectory",EcoreModel ,
"/"+temp("pluginID")+"/src", "value");

call parseAnnotation(GenModel ,"modelPluginID",EcoreModel ,
temp("pluginID"), "value");

// parse remaining annotations
call parseAnnotationList(EcoreModel ,GenModel);

140 }

// pattern for restricting datatypes
@localsearch
pattern EcoreDataType(EDataType) =
{nemf.ecore.datatypes.EBoolean(EDataType);} or
{nemf.ecore.datatypes.EString(EDataType);} or

{nemf.ecore.datatypes.EEnum(EDataType);} or
{nemf.ecore.datatypes.EEnumLiteral(EDataType);} or
{nemf.ecore.datatypes.EInt(EDataType);}

150
// pattern for finding the type of an attribute
@localsearch
pattern AttributeForType(EcoreEntity ,FeatureRel ,Attribute) = {
EModelElement(EcoreEntity);
find MappedEcoreTypedEntity(EcoreEntity);
nemf.ecore.EClass(EcoreType);
instanceOf(EcoreEntity ,EcoreType);
nemf.ecore.EDataType(AttributeType);
nemf.ecore.EClass.EAttribute(FeatureRel ,EcoreType ,AttributeType);

160 entity(Attribute);
find EcoreDataType(Attribute);

Ecore to GenModel

194

9

instanceOf(Attribute ,AttributeType);
relation(Rel ,EcoreEntity ,Attribute);
instanceOf(Rel ,FeatureRel);

}

// create Ecore equivalent of EcoreEntity in GenModel
// under GenmodelParent which has type GenParentType
rule parseEcoreEntity(in EcoreEntity , in GenmodelParent , in GenParentType) =

170 let GenmodelType = undef , NewGenmodelEntity = undef in seq{

// find Ecore type from metamodel
try choose EcoreType below nemf.packages.ecore with
find EcoreType(EcoreEntity ,EcoreType) do seq{
// find GenModel type using mapping

update GenmodelType = mapping(EcoreType);
}
else seq{
println("[ERROR] Can ’t find Genmodel type!");

180 fail;
}

if(GenmodelType != undef) let GenRefType = undef ,
PreviousRef = undef in seq{

// create new entity
new(entity(NewGenmodelEntity) in GenmodelParent);
rename(NewGenmodelEntity ,name(EcoreEntity));
// set type of entity
new(instanceOf(NewGenmodelEntity ,GenmodelType));

190 // create reference between GenModel and Ecore entity
call createGenmodel2EcoreReference(NewGenmodelEntity ,
EcoreEntity ,GenmodelType);

// initialize Genmodel entity
call initialiseGenmodelEntity(NewGenmodelEntity ,EcoreEntity);

// create GenModel entities for children
forall EcoreChildEntity in EcoreEntity with

find MappedEcoreTypedEntity(EcoreChildEntity) do seq{
call parseEcoreEntity(EcoreChildEntity , NewGenmodelEntity , GenmodelType);

200 }

// handle external models (parsing is started from root EPackage)
if(find EReference(EcoreEntity))
try choose ExternalModel below nemf.resources with

find ExternalEcoreEntityReference(EcoreEntity ,ecore(), ExternalModel) do
call parseEcoreEntity(ExternalModel , genmodel(), GenmodelType);

// ordered relations are handled
// for reference between same types

210 if(GenmodelType == GenParentType)
// find reference type
try choose GenRefTypeT with
find GenmodelEntitySelfReferenceType(GenmodelParent ,NewGenmodelEntity ,

GenRefTypeT) do seq{
update GenRefType = GenRefTypeT;
// find last relation in the ordered list
try choose PreviousRefT in GenmodelParent with
find LastOrderedSelfRelationRef(GenParentType , GenmodelParent ,

GenRefType ,PreviousRefT) do
220 update PreviousRef = PreviousRefT;

}
// for reference between different types
else // find reference type

try choose GenRefTypeT with
find GenmodelEntityReferenceType(GenmodelParent ,
NewGenmodelEntity ,GenRefTypeT) do seq{

update GenRefType = GenRefTypeT;
// find last relation in the ordered list
try choose PreviousRefT in GenmodelParent with

Ecore to GenModel

195

10

230 find LastOrderedRelationRef(GenParentType ,GenmodelType ,
GenmodelParent ,GenRefType ,PreviousRefT) do

update PreviousRef = PreviousRefT;
}

if (GenRefType != undef) let R = undef in seq{
// create reference between parent and child GenModel entities
if (PreviousRef != undef) let RR = undef in seq{
new(relation(R,GenmodelParent ,NewGenmodelEntity));
new(instanceOf(R,GenRefType));
// create ordered relation

240 new(nemf.ecore.EObject.orderedRelation.next(RR ,PreviousRef ,R));
} else seq{
new(relation(R,GenmodelParent ,NewGenmodelEntity));
new(instanceOf(R,GenRefType));
}

}
// parse annotations for entity
call parseAnnotationList(EcoreEntity ,NewGenmodelEntity);

}
}

250
// pattern for finding type for entity
@localsearch
pattern EcoreType(EcoreEntity , EcoreType) = {
EModelElement(EcoreEntity);
nemf.ecore.EClass(EcoreType) below nemf.packages.ecore;
instanceOf(EcoreEntity ,EcoreType);
check(mapping(EcoreType) != undef);

}

260 // pattern for restricting entities to mapped types
@localsearch
pattern MappedEcoreTypedEntity(EcoreEntity) =
{EPackage(EcoreEntity);} or
{ETypeParameter(EcoreEntity);} or
{EEnumLiteral(EcoreEntity);} or
{EDataType(EcoreEntity);} or
{EClass(EcoreEntity);} or
{EStructuralFeature(EcoreEntity);} or
{EOperation(EcoreEntity);} or

270 {EParameter(EcoreEntity);} or
{EEnum(EcoreEntity);

}

// pattern for checking already mapped Ecore entities
pattern MappedEcoreEntityInGenmodel(EcoreEntity) = {
EModelElement(EcoreEntity);
GenBase(GenmodelEntity);
relation(R,GenmodelEntity ,EcoreEntity);

}
280

// pattern for checking external model reference
@localsearch
pattern ExternalEcoreEntityReference(EReference , EcoreModel , ExternalModel)={
EPackage(EcoreModel) below nemf.resources;
EReference(EReference) below EcoreModel;
EPackage(ExternalModel) below nemf.resources;
EClass(ERefType) below ExternalModel;
EReference.eReferenceType(R,EReference ,ERefType);
// check if the entity is not inside the model

290 neg find MappedEcoreEntityInGenmodel(ExternalModel);
}

// pattern for finding reference type of GenModel entity and parent
// with the same entity type
pattern GenmodelEntitySelfReferenceType(GenParent ,GenEntity ,GenRefType) = {
GenBase(GenParent);
nemf.ecore.EClass(GenParentType);

Ecore to GenModel

196

11

instanceOf(GenParent ,GenParentType);
GenBase(GenEntity) in GenParent;

300 instanceOf(GenEntity ,GenParentType);
nemf.ecore.EClass.EReference(GenRefType ,GenParentType ,GenParentType);
Boolean(True);
check(True == datatypes.Boolean.true);
nemf.ecore.EClass.EReference.containment(Containment ,GenRefType ,True);

}

// pattern for finding reference type of GenModel entity and parent
// with different entity types
pattern GenmodelEntityReferenceType(GenParent ,GenEntity ,GenRefType) = {

310 GenBase(GenParent);
GenBase(GenEntity) in GenParent;
nemf.ecore.EClass(GenParentType);
instanceOf(GenParent ,GenParentType);
nemf.ecore.EClass(GenmodelType);
instanceOf(GenEntity ,GenmodelType);
nemf.ecore.EClass.EReference(GenRefType ,GenParentType ,GenmodelType);
Boolean(True);
check(True == datatypes.Boolean.true);
nemf.ecore.EClass.EReference.containment(Containment ,GenRefType ,True);

320 }

// pattern for finding last relation among ordered relations of GenRefType
// (between same entity types)
pattern LastOrderedSelfRelationRef(GenParentType , GenParent ,

GenRefType ,PreviousRef) = {
GenBase(GenParent);
nemf.ecore.EClass(GenParentType);
nemf.ecore.EClass.EReference(GenRefType ,GenParentType ,GenParentType);
instanceOf(GenParent ,GenParentType);

330 instanceOf(GenEntity ,GenParentType);
relation(PreviousRef ,GenParent ,GenEntity);
instanceOf(PreviousRef ,GenRefType);
GenBase(GenEntity);
find GenmodelEntitySelfReferenceType(GenParent ,GenEntity ,GenRefType);
// match only if there is no next relation from the found reference
neg pattern HasNextRelation(GenParent ,GenEntity ,PreviousRef ,GenRefType) = {
GenBase(GenParent);
nemf.ecore.EClass(GenParentType);
nemf.ecore.EClass.EReference(GenRefType ,GenParentType ,GenParentType);

340 instanceOf(GenParent ,GenParentType);
instanceOf(GenEntity ,GenParentType);
relation(PreviousRef ,GenParent ,GenEntity);
instanceOf(PreviousRef ,GenRefType);
GenBase(GenEntity);
find GenmodelEntitySelfReferenceType(GenParent ,GenEntity ,GenRefType);
// --------------------------------------
GenBase(OtherEntity);
relation(R2,GenParent ,OtherEntity);
instanceOf(R2,GenRefType);

350 nemf.ecore.EObject.orderedRelation.next(Rx,PreviousRef ,R2);
}

}

// pattern for finding last relation among ordered relations of GenRefType
// (between same entity types)
pattern LastOrderedRelationRef(GenParentType ,GenmodelType , GenParent ,

GenRefType ,PreviousRef) = {
GenBase(GenParent);
nemf.ecore.EClass.EReference(GenRefType ,GenParentType ,GenmodelType);

360 instanceOf(GenParent ,GenParentType);
nemf.ecore.EClass(GenmodelType);
nemf.ecore.EClass(GenParentType);
instanceOf(GenEntity ,GenmodelType);
relation(PreviousRef ,GenParent ,GenEntity);
instanceOf(PreviousRef ,GenRefType);

Ecore to GenModel

197

12

GenBase(GenEntity);// in GenParent;
find GenmodelEntityReferenceType(GenParent ,GenEntity ,GenRefType);
// match only if there is no next relation from the found reference
neg pattern HasNextRelation(GenParent ,GenEntity ,PreviousRef ,GenRefType) = {

370 GenBase(GenParent);
nemf.ecore.EClass.EReference(GenRefType ,GenParentType ,GenmodelType);
instanceOf(GenParent ,GenParentType);
nemf.ecore.EClass(GenmodelType);
nemf.ecore.EClass(GenParentType);
instanceOf(GenEntity ,GenmodelType);
relation(PreviousRef ,GenParent ,GenEntity);
instanceOf(PreviousRef ,GenRefType);
GenBase(GenEntity);
find GenmodelEntityReferenceType(GenParent ,GenEntity ,GenRefType);

380 // --------------------------------------
GenBase(OtherEntity);
relation(R2,GenParent ,OtherEntity);
instanceOf(R2,GenRefType);
nemf.ecore.EObject.orderedRelation.next(Rx,PreviousRef ,R2);

}
}

// create cross -model reference from GenModel to Ecore
rule createGenmodel2EcoreReference(in GenmodelEntity ,

390 in EcoreEntity , in GenmodelType) = seq{
// find reference type
choose Gen2EcRefType with
find Genmodel2EcoreReferenceType(GenmodelType ,Gen2EcRefType) do
let R = undef in seq{
// create reference
new(relation(R,GenmodelEntity ,EcoreEntity));
new(instanceOf(R,Gen2EcRefType));

}
}

400
// pattern for finding reference type between GenModel and Ecore entities
@localsearch
pattern Genmodel2EcoreReferenceType(GenmodelType ,Gen2EcRefType) = {
nemf.ecore.EClass(GenmodelType) below nemf.packages.genmodel;
nemf.ecore.EClass(EcoreType) below nemf.packages.ecore;
nemf.ecore.EClass.EReference(Gen2EcRefType ,GenmodelType ,EcoreType);

}

// initialize GenModel entity (not GenModel typed) using annotations
410 rule initialiseGenmodelEntity(in GenmodelEntity , in EcoreEntity) = seq{

// GenPackage -specific attributes needed for proper GenModel
if(find GenPackage(GenmodelEntity)) seq{
call parseAnnotation(GenmodelEntity ,"disposableProviderFactory",
EcoreEntity ,"true", "value");

let Name = nemf.packages.ecore.ENamedElement.name in
try choose ModelName with

find AttributeForType(EcoreEntity ,Name ,ModelName) do seq{
call parseAnnotation(GenmodelEntity ,"prefix",EcoreEntity ,

420 value(ModelName), "value");
}

}
// GenClass -specific attributes needed for proper GenModel
else if(find GenClass(GenmodelEntity)) seq{
let AbstractRel = nemf.packages.ecore.EClass.abstract in
try choose Abstract with find AttributeForType(EcoreEntity ,

AbstractRel ,Abstract) do seq{
call parseAnnotation(GenmodelEntity ,"image",EcoreEntity ,
toString (!(toBoolean(value(Abstract)))), "value");

430 }
}
// GenEnum -specific attributes needed for proper GenModel
else if(find GenEnum(GenmodelEntity)) seq{

Ecore to GenModel

198

13

call parseAnnotation(GenmodelEntity ,"typeSafeEnumCompatible",EcoreEntity ,
"false", "value");

}
// GenFeature -specific attributes needed for proper GenModel
else if(find GenFeature(GenmodelEntity)) let DefaultProperty = undef in seq{
// EReference -specific attributes

440 if(find EReference(EcoreEntity)) seq{
let ContainerFeature = nemf.packages.ecore.EReference.container ,
ContainmentFeature = nemf.packages.ecore.EReference.containment ,
ChangeableFeature = nemf.packages.ecore.EStructuralFeature.changeable ,
Children = "false" in

// find container , containment , children attribute types
try choose Container with
find AttributeForType(EcoreEntity ,ContainerFeature ,Container) do
try choose Containment with
find AttributeForType(EcoreEntity ,ContainmentFeature ,Containment) do

450 try choose Changeable with
find AttributeForType(EcoreEntity ,ChangeableFeature ,Changeable) do seq{
// default property decided based on attributes
if(! toBoolean(value(Container)) && !toBoolean(value(Containment))) seq{
if(toBoolean(value(Changeable))) seq{
update DefaultProperty =
nemf.packages.genmodel.GenPropertyKind.Editable;

}
else seq{
update DefaultProperty =

460 nemf.packages.genmodel.GenPropertyKind.Readonly;
}

} else seq{
update DefaultProperty = nemf.packages.genmodel.GenPropertyKind.None;

}
// children attribute created
if(toBoolean(value(Containment)))
call parseAnnotation(GenmodelEntity ,"children",EcoreEntity ,
toString(toBoolean(value(Containment))), "value");

else
470 call parseAnnotation(GenmodelEntity ,"children",

EcoreEntity ,"","value");
try choose ChildrenT with

find ChildrenAttribute(GenmodelEntity ,ChildrenT) do seq{
update Children = value(ChildrenT);

}
call parseAnnotation(GenmodelEntity ,"createChild",
EcoreEntity ,toString ((toBoolean(Children)
&& toBoolean(value(Changeable)))), "value");

call parseAnnotation(GenmodelEntity ,"notify",
480 EcoreEntity ,toString(toBoolean(Children)), "value");

}
}// otherwise (EAttribute)
else seq{
let ChangeableRel = nemf.packages.ecore.EStructuralFeature.changeable in
// default property decided based on attributes
try choose Changeable with
find AttributeForType(EcoreEntity ,ChangeableRel ,Changeable) do seq{
if(toBoolean(value(Changeable))) seq{
update DefaultProperty =

490 nemf.packages.genmodel.GenPropertyKind.Editable;
}
else seq{
update DefaultProperty =
nemf.packages.genmodel.GenPropertyKind.Readonly;

}
}

call parseAnnotation(GenmodelEntity ,"createChild",
EcoreEntity ,"false","value");

call parseAnnotation(GenmodelEntity ,"notify",EcoreEntity ,"true","value");
500 }

if(find EReference(EcoreEntity)

Ecore to GenModel

199

14

&& DefaultProperty ==
nemf.packages.genmodel.GenPropertyKind.Editable) seq{

call parseAnnotation(GenmodelEntity ,"propertySortChoices",
EcoreEntity ,"true", "value");

} else call parseAnnotation(GenmodelEntity ,"propertySortChoices",
EcoreEntity ,"false", "value");

call parseAnnotation(GenmodelEntity ,"property",
EcoreEntity ,DefaultProperty , "entity");

510 }
}

// pattern to find children attribute for GenFeature entity
pattern ChildrenAttribute(GenEntity , ChildrenAttr) = {
GenFeature(GenEntity);
nemf.packages.genmodel.GenFeature.children(ChRel ,GenEntity ,ChildrenAttr);
entity(ChildrenAttr);
find EcoreDataType(ChildrenAttr);

}
520

// parse annotations for EcoreEntity , create attributes for GenModel entity
rule parseAnnotationList(in EcoreEntity , in GenmodelEntity) = seq{
// forall annotation
forall AnnotationKey below EcoreEntity with

find UnmappedAnnotation(EcoreEntity ,GenmodelEntity ,AnnotationKey) do seq{
// copy annotation value to attribute
call parseAnnotation(GenmodelEntity ,
value(AnnotationKey),EcoreEntity ,"","");

}
530 }

// pattern to find annotations not yet handled
@localsearch
pattern UnmappedAnnotation(EcoreEntity ,GenmodelEntity ,AnnotationKey) = {
EModelElement(EcoreEntity);
GenBase(GenmodelEntity);
relation(Re2g ,GenmodelEntity ,EcoreEntity);
EModelElement.eAnnotations(Ra ,EcoreEntity ,EAnnotation);
EAnnotation(EAnnotation);

540 nemf.ecore.datatypes.EString(Source);
EAnnotation.source(R,EAnnotation ,Source);
check(value(Source) == "emf.gen");
EStringToStringMapEntry(Details);
EAnnotation.details(R2 ,EAnnotation ,Details);
nemf.ecore.datatypes.EString(AnnotationKey);
EStringToStringMapEntry.key(R3 ,Details ,AnnotationKey);
neg find ExistingAttributeForName(GenmodelEntity , AnnotationKey);

}

550 // pattern for checking existing attribute by its name
pattern ExistingAttributeForName(GenmodelEntity , AttributeName) = {
EModelElement(EcoreEntity);
relation(Re2g ,GenmodelEntity ,EcoreEntity);
EModelElement.eAnnotations(Ra ,EcoreEntity ,EAnnotation);
EAnnotation(EAnnotation);
EStringToStringMapEntry(Details);
EAnnotation.details(R2 ,EAnnotation ,Details);
nemf.ecore.datatypes.EString(AttributeName);
EStringToStringMapEntry.key(R3 ,Details ,AttributeName);

560 GenBase(GenmodelEntity);
nemf.ecore.EClass(GenmodelType);
instanceOf(GenmodelEntity ,GenmodelType);
nemf.ecore.EDataType(AttributeType);
nemf.ecore.EClass.EAttribute(AttributeRel ,GenmodelType ,AttributeType);
String(Name);
nemf.ecore.EClass.EStructuralFeature.name(Rn ,AttributeRel ,Name);
check(value(Name)== value(AttributeName));
entity(Attribute);
instanceOf(Attribute ,AttributeType);

Ecore to GenModel

200

15

570 relation(Rel ,GenmodelEntity ,Attribute);
instanceOf(Rel ,AttributeRel);

}

// if annotation with given name exist , parse it , otherwise use default
rule parseAnnotation(in GenmodelEntity , in AnnotationKey ,

in EcoreEntity , in Default , in DefaultType) =
let AnnValue = undef , DefUsed = false in seq{

// find value from annotation
580 try choose AnnValueT with

find AnnotationValue(EcoreEntity , AnnotationKey , AnnValueT) do seq{
update AnnValue = value(AnnValueT);

// use default value otherwise
} else seq{
if (Default != "") seq{
update AnnValue = Default;
update DefUsed = true;

}
}

590
if(AnnValue != undef) seq{
// find attribute type and relation
try choose AttributeType , AttributeRel with
find AttributeTypeForName(GenmodelEntity ,AnnotationKey ,AttributeType ,
AttributeRel) do let Attribute = undef , AttrR = undef in seq{
// create relation to default entity
if (DefUsed == true && DefaultType == "entity") seq{
new(relation(AttrR ,GenmodelEntity ,Default));

new(instanceOf(AttrR ,AttributeRel));
600 }else let Value = str.trim(AnnValue), Rest = str.trim(AnnValue) in

// handle EReference .many (iterate always finds Many)
iterate choose Many in datatypes.Boolean with
find IsAttributeRelMany(AttributeRel ,Many) do
// update params
let Start = 0, End = str.indexOf(Rest ,",") in seq{

// if many relation and has more values , parse single value
if(Many == datatypes.Boolean.true && End > Start) seq{
update Value = str.substring(Rest ,Start ,End);

} else seq{
610 update Value = Rest;

}
// checking value for type safety (Boolean , Enum)
let Result = undef , Target = undef in seq{
// handle EBoolean true/false , EEnum values , reference to enums

call checkAttributeTypeInAnnotationValue(Value ,
AttributeType ,Result ,Target);

if(Result == "ok") seq{
if(Target == undef) seq{
// create attribute

620 new(entity(Attribute) in GenmodelEntity);
new(instanceOf(Attribute ,AttributeType));
rename(Attribute ,AnnotationKey);
setValue(Attribute ,Value);
// create Attribute relation
new(relation(AttrR ,GenmodelEntity ,Attribute));
new(instanceOf(AttrR ,AttributeRel));
} else if(find EcoreEnumLiteral(Target)) seq{
// create Attribute relation

new(relation(AttrR ,GenmodelEntity ,Target));
630 new(instanceOf(AttrR ,AttributeRel));

}
}// return fault
else if(str.startsWith(Result ,"fault_")) seq{
println("[ERROR] Annotation Value is wrong: "
+ str.substring(Result ,6));

}
}

Ecore to GenModel

201

16

// update Rest if there is more of it (or comma is the last char)
if(End > 0 && End < str.length(Rest)-1)

640 update Rest = str.substring(Rest ,End +1);
// otherwise exit loop
else fail;
}

}
else seq{
println("[Warning] No such attribute (" + AnnotationKey
+ ") in genmodel for (" + GenmodelEntity + ")");

}
}

650 }

// pattern for finding annotation value for given key
@localsearch
pattern AnnotationValue(EcoreEntity , AnnotationKey , AnnotationValue) = {
EAnnotation(EAnnotation) in EcoreEntity;
nemf.ecore.datatypes.EString(Source) in EAnnotation;
EAnnotation.source(R,EAnnotation ,Source);
check(value(Source) == "emf.gen");
EStringToStringMapEntry(Details) in EAnnotation;

660 EAnnotation.details(R2 ,EAnnotation ,Details);
nemf.ecore.datatypes.EString(Key) in Details;
EStringToStringMapEntry.key(R3 ,Details ,Key);
check(value(Key) == AnnotationKey);
nemf.ecore.datatypes.EString(AnnotationValue) in Details;
EStringToStringMapEntry.value(R4,Details ,AnnotationValue);

}

// pattern for retrieving "many" value of relation
pattern IsAttributeRelMany(AttributeRel ,Many) = {

670 nemf.ecore.EClass(EcoreType);
nemf.ecore.EDataType(AttributeType);
nemf.ecore.EClass.EAttribute(AttributeRel ,EcoreType ,AttributeType);
Boolean(Many);
nemf.ecore.EClass.EStructuralFeature.many(ManyRel ,AttributeRel ,Many);

}

// pattern for finding attribute type and relation by name
@localsearch
pattern AttributeTypeForName(GenmodelEntity , AttributeName ,

680 AttributeType , AttributeRel) = {
GenBase(GenmodelEntity);
nemf.ecore.EClass(GenmodelType);
instanceOf(GenmodelEntity ,GenmodelType);
nemf.ecore.EDataType(AttributeType);
nemf.ecore.EClass.EAttribute(AttributeRel ,GenmodelType ,AttributeType);
String(Name) in GenmodelType;
nemf.ecore.EClass.EStructuralFeature.name(R,AttributeRel ,Name);
check(value(Name)== AttributeName);

}
690

// Result is "ok" if type is in order , otherwise another string starting
// with "fault_" followed by the reason.
// Target is an EEnumLiteral entity
// if such an attributetype and value is given
rule checkAttributeTypeInAnnotationValue(in Value , in AttributeType ,

out Result , out Target) = seq{
update Result = "ok";
update Target = undef;
// handle EBoolean true/false

700 if(find EcoreBoolean(AttributeType)) seq{
if(Value != "true" && Value != "false") seq{
update Result = "fault_Not Boolean value: "+Value+", expected true/false";
// update Target = undef;

}
}

Ecore to GenModel

202

17

// handle EEnum values
if(find EcoreEnum(AttributeType)) seq{
// handle reference to enums
try choose EnumValue in AttributeType with

710 find EnumLiteralInEnumType(EnumValue ,Value ,AttributeType) do seq{
// update Result = "ok";
update Target = EnumValue;

} else seq{
// update Target = undef;
update Result = "fault_Value "+Value+" is not "
+ name(AttributeType) + ", expected |";

forall EnumValue in AttributeType with
find EnumLiteralsInEnumType(EnumValue ,AttributeType) do seq{

update Result = Result + name(EnumValue) + "|";
720 }

update Result = Result;
}

}
}

// pattern for finding EnumLiteral type in Enum by its name
@localsearch
pattern EnumLiteralInEnumType(EnumValue ,Value ,AttributeType) = {
nemf.ecore.datatypes.EEnum(AttributeType);

730 nemf.ecore.datatypes.EEnumLiteral(EnumValue);
instanceOf(EnumValue ,AttributeType);
check(value(EnumValue) == Value);

}

// pattern for finding EnumLiterals for an Enum
pattern EnumLiteralsInEnumType(EnumValue ,AttributeType) = {
nemf.ecore.datatypes.EEnum(AttributeType);
nemf.ecore.datatypes.EEnumLiteral(EnumValue);
instanceOf(EnumValue ,AttributeType);

740 }
}

Listing 1.1. Transformation code

Ecore to GenModel

203

