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Abstract Due to surgery duration variability and ar-
rivals of emergency surgeries, the planned Operation

Room (OR) schedule is disrupted throughout the day

which may lead to a change in the start time of the

elective surgeries. These changes may result in unde-

sirable situations for patients, wards or other involved
departments, and therefore, the OR schedule has to be

adjusted. In this paper, we develop a decision support

system which assists the OR manager in this decision

by providing the three best adjusted OR schedules. The
system considers the preferences of all involved stake-

holders and only evaluates the OR schedules that sat-

isfy the imposed resource constraints. The decision rules

used for this system are based on a thorough analysis

of the OR rescheduling problem. We model this prob-
lem as an Integer Linear Program (ILP) which objec-

tive is to minimize the deviation from the preferences

of the considered stakeholders. By applying this ILP to

instances from practice, we determined that the given
preferences mainly lead to (i) shifting a surgery and

(ii) scheduling a break between two surgeries. By us-

ing these changes in the decision support system, less
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surgeries are canceled and the perceived workload of all
departments is reduced. The system can also be used to

judge the acceptability of a proposed initial OR sched-

ule.
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Programming · Decision Support System

1 Introduction

The Operating Room (OR) department is one of the

most expensive resources of a hospital. However, man-
aging the OR department is hard due to conflicting pri-

orities and preferences of stakeholders. Therefore, plan-

ning and scheduling methods are needed to increase the

efficiency in OR departments. See Cardoen et al. [2] and

Hulshof et al. [10] for an overview on OR planning and
scheduling.

In this paper, we focus on the rescheduling of surg-
eries, or more precisely, on the rescheduling of surgeries

throughout the day. On the one hand, emergency pa-

tients who need surgery arrive throughout the day. In

many hospitals, these surgeries are scheduled in one of
the elective ORs which disrupts the OR schedule. On

the other hand, a change in the surgery duration of elec-

tive surgeries may also disrupt the OR schedule. There-

fore, the initial OR schedule may have to be adjusted

throughout the day to ensure that it is still possible to
execute the schedule. The new OR schedule must fulfil

quite a number of restrictions, and in addition, there

are several stakeholders whose preferences and priori-

ties must be met. Since it is hard for an OR manager
to consider all these restrictions and preferences simul-

taneously, we develop a decision support system which

supports the OR manager with rescheduling the ORs.
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Most existing literature focuses on operational off-

line scheduling instead of operational on-line schedul-

ing. The papers concerning operational off-line schedul-

ing mainly focus on two methods. The first method

is reserving time for emergency surgeries to minimize
overtime and maximize OR utilization (see e.g. [1], [8]

[11]). The second method is sequencing the elective

surgeries such that the overtime caused by surgeries

with a longer duration than expected is minimized (see
e.g. [3], [12], [13]).

One of the papers concerning operational on-line

scheduling is the paper by Dexter [4] who examined

whether moving the last surgery of the day to another

OR could decrease overtime labour costs. The devel-
oped statistical strategy was based on historical data.

However, in practice, often one surgeon operates in an

OR on a day or part of the day and therefore, it is not

allowed to move a surgery to another OR.

Dexter et al. [6] introduce four ordered priorities on

which an ORmanagement decision for changing the OR

schedule can be based. The first and most important

priority is patient’s safety. The second priority states

that a surgery can only be canceled if the patient safety
is not accounted for. The third priority is to maximize

OR utilization, and the fourth and last priority is to re-

duce patient waiting times. These priorities, however,

put maximizing OR utilization above patients satisfac-
tion. For patients it is not preferred to schedule their

surgery earlier and certainly not later in the day. In

addition, no priority considers the workload level on

other departments like wards, the holding department,

and the recovery department.

Another paper of Dexter et al. [5] considers the se-

quencing of urgent surgical cases. They proposed a se-

quencing which is based on the following three objec-

tives: (i) minimize the average waiting time of surgeons

and patients, (ii) sequence the surgeries in order of ap-
pearance, and (iii) schedule the surgeries in order of

medical urgency. However, none of these objectives con-

sider the preferences of the elective patients and other

departments.

It seems that none of the existing papers on OR

rescheduling considers the preferences and priorities of

all the stakeholders. This paper tries to fill this gap.

In Section 2, we discuss the stakeholders and their re-

strictions and preferences which are based on a survey
performed at the Isala Clinics, a hospital in the Nether-

lands. Although these restrictions and preferences may

differ between hospitals, the principle ideas of the

method developed in this paper should be applicable
for other hospitals too. The resulting restrictions and

preferences are incorporated in an Integer Linear Pro-

gram (ILP) for the OR rescheduling problem, which

has as goal to minimize the deviation from the pref-

erences of the stakeholders. To justify the approach to

model the problem as an ILP, we prove that the OR

rescheduling problem is NP-hard for two or more ORs.

Due to long computing times the developed ILP model
cannot be used as part of a decision support system

where schedules have to be generated within a short

amount of time. However, we use this ILP to derive

decision rules for the OR rescheduling problem based
on instances of the Isala Clinics. The achieved decision

rules are incorporated in the decision support system

which is described in Section 4. Section 5 draws conclu-

sions and gives recommendations for further research.

2 Problem Formulation

In this section, we give an introduction to the OR re-

scheduling problem and we introduce an ILP model

which can be used to determine a new OR schedule
throughout the day. The ILP includes all relevant con-

straints that are imposed on the OR schedule; e.g. the

availability of a patient, as well as the availability of an

OR with OR assistants, a surgeon and an anesthetist.
In addition, the capacity of the holding and recovery

department are considered. A detailed description of

the constraints is given in the following subsections.

The objective of the ILP is to minimize the devi-

ation of the preferences for the involved stakeholders.
When the OR schedule deviates from these preferences

some penalty costs are incurred and the weighted sum

of these penalty costs is minimized. There can be, for

example, penalty costs for deviating from the scheduled
start time of a surgery or for the amount of resulting

overtime. In addition, we minimize the number of can-

celed patients, as this is not preferred by any of the

stakeholders. The developed ILP can also be used to

determine whether a proposed OR schedule is feasible
or not, and in case it is feasible, to calculate the devia-

tion from the preferences of the stakeholders.

Before we introduce the model, we first give a short

description of the process a patient follows on the day of
surgery (see Figure 1). On or before the day of surgery,

the patient is admitted on a ward where he/she is pre-

pared for surgery. Some time before surgery, the pa-

tient is transported to the holding department where

the patient is further prepared for surgery. Then, the
patient is transported to the operating room where the

anesthetist administers anesthesia. After this, the sur-

geon performs the surgical procedure. When the sur-

gical procedure is finished, the anesthetist reverses the
anesthesia, and then, the patient is transported to the

recovery department where he/she recovers from the ef-

fects of the anesthesia. At the time these effects have
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Ward Holding ProcedureAnesthesia Anesthesia Recovery Ward

Surgery

Fig. 1 Patient process

completely worn off and the patient’s condition is con-

sidered stable, he/she is transported back to the ward.

For the modeling, we discretize an OR-day into T

time periods which have a length of δ minutes. The

length of one OR-day is therefore δT minutes. We de-
note by time t ∈ T the period ((t − 1)δ, tδ]. The set of

ORs is given by set J and consists ofM ORs. The start

time of OR j ∈ J is denoted by Sj and the end time by

Fj . The set of surgeries is given by set I and consists
of N surgeries. The subset Ij ⊆ I denotes the surgeries

that are scheduled in OR j ∈ J and Oi ∈ J denotes the

assigned OR for surgery i ∈ I.

The initial OR schedule, which is given at the be-

ginning of the day, is defined by the assignment of the

elective surgeries to an OR and the initially planned

start times Pi of the elective surgeries. Each surgery
has an expected duration Ei which includes the time

for administering and reversing anesthesia, however, in

practice, the duration of a surgery generally deviates

from this duration and takes longer or shorter than ex-

pected. When a surgery takes less time than expected,
and the next surgery starts at its assigned time Pi, the

initial OR schedule is not disrupted. However, it may be

beneficial for the OR and other departments to schedule

this next surgery earlier. When a surgery takes longer
than expected, the next surgery may have to start later.

This results in a shift of the not yet started surgeries

in this OR. Because of this, some resource constraints

may be violated. In addition to these deviations of the

durations of the elective surgeries, emergency surgeries
may arrive which also disrupt the initial OR schedule.

Therefore, throughout the day, a new OR schedule may

have to be created for all not started elective and emer-

gency surgeries. In the following, we denote by set I the
set of all these surgeries. The rescheduling is done by

assigning a new start time to each surgery i ∈ I. For-

mally, this is expressed by binary variables sit, which

are one when surgery i ∈ I starts at time t ∈ T , and

zero otherwise. It is important to note that we do not
allow the elective surgeries to be assigned to another

OR, because each surgery has to be performed by the

surgeon operating in the OR assigned to the surgery

in the initial OR schedule. Thus, all elective surgeries
have to be scheduled in the same OR as in the ini-

tial schedule. Because we only reschedule the not yet

started surgeries, the start time of OR j ∈ J for the

rescheduling problem is either given by the start time

of the OR in the morning or the expected end time of

the last started surgery in this OR.
Within the rescheduling, it may be necessary to can-

cel an elective surgery, for example because of an arriv-

ing emergency surgery. The decision variable ui denotes

whether elective surgery i ∈ I is canceled or not, i.e.,
the variable is one when the surgery is canceled and

zero otherwise. When ui is zero, the surgery is not can-

celed and therefore a new start time must be assigned,

i.e.,
∑

t∈T sit must be one in this case. When a surgery

is canceled, the opposite holds, i.e., if ui = 1 we must
have

∑

t∈T sit = 0. This is ensured by the following

constraint.

∑

t∈T

sit = 1− ui, ∀i ∈ I (1)

The new start time of surgery i ∈ I should fulfil

a number of constraints. It should be greater than or

equal to (i) the ready time of the patient which is given
by Yi, (ii) the start time of the assigned surgeon Ci
which is given by DCi

, and (iii) the start time of the

assigned OR Oi. The following constraint ensures this.

sit = 0, ∀i ∈ I, t < max(SOi
, Yi, DCi

) (2)

The subset IMD ⊂ I denotes the set of surgeries

that should start before a certain time because of med-

ical reasons. This medical deadline of surgery i ∈ I

is given by Li. Furthermore, it is not allowed to can-

cel these surgeries, i.e., we must have ui = 0 and the

surgery has to start before Li.

Li
∑

t=0

sit = 1, ∀i ∈ IMD

ui = 0, ∀i ∈ IMD

(3)

The decision variable sit and ui completely deter-
mine the new OR schedule. However, to model the other

restrictions and preferences some extra variables have

to be defined which are introduced at the places where

they are needed.
In each OR, only one surgery can be performed at a

time. To model this, we need to determine if a surgery

is ongoing at time t ∈ T . For this, we introduce the
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sit sit + Ei

t̂t̂− Ei

Fig. 2 Determine bit

binary variables bit which are one when surgery i ∈ I is

performed on time t ∈ T and zero otherwise. A surgery
is ongoing on time t ∈ T when the start time of surgery

i ∈ I is between time t and time t− Ei. This is shown

in Figure 2 and expressed by the following constraint.

bit =

t
∑

t̂=t−Ei+1

sit̂, ∀i ∈ I, t ∈ T (4)

The following constraint ensures that for each OR
only one surgery can be performed at a time.

∑

i∈Ij

bit ≤ 1, ∀j ∈ J, t ∈ T (5)

The above constraints describe some of the hard

constraints for the rescheduling process resulting from

the situation in the OR. In the following subsections,
we describe and model the involved stakeholders. For

each stakeholder, we describe the tasks the stakeholder

has to perform during the day, the restrictions they

impose on the OR schedule, the impact a change in

the OR schedule has on the stakeholder and the pref-
erences of the stakeholder. The impacts are modeled

by linear constraints, and penalty costs for deviating

from the preferences are incorporated in the objective

function. The preferences of the stakeholders and the
penalty costs are determined based on a questionnaire

at the Isala Clinics (see Hartholt [9]).

2.1 Patient

The key stakeholder is the patient. For patients it is im-

portant that the surgery takes place at the scheduled

time. Penalty costs are incurred when the new start

time deviates from this preference. In order to deter-

mine the total penalty costs, we need to know the new
start time of the surgery in the OR schedule. This time

is denoted by the variable wi, and in case surgery i ∈ I

is canceled, we define wi to be equal to the start time

of surgery i ∈ I in the initial OR schedule.

wi =
∑

t

tsit+uiPi, ∀i ∈ I (6)

If we now denote by yi the difference of the initial

and new start time of surgery i ∈ I,

yi = wi − Pi, ∀i ∈ I (7)

this variable yi is zero when surgery i ∈ I is canceled

or when the start time of surgery i ∈ I has not changed.

The variable yi is negative when surgery i ∈ I starts
earlier in the new OR schedule and when yi is positive,

surgery i ∈ I starts later. As patients judge earliness

and tardiness different, we split the variable yi in two

cases by introducing variables ylateri and yearlieri . The

variable ylateri takes value yi when yi is positive, and
variable yearlieri takes value −yi when yi is negative,

which is ensured by the following constraints and the

fact that the objective tries to minimize these variables.

yearlieri ≥ Pi − wi, ∀i ∈ I

yearlieri ≥ 0, ∀i ∈ I

ylateri ≥ wi − Pi, ∀i ∈ I

ylateri ≥ 0, ∀i ∈ I

(8)

Based on the survey in the hospital, we concluded
that patients assign different penalty costs to different

values of yi. To model this, a function fPT (yi), denoting

the penalty costs when surgery i ∈ I is shifted yi time

periods, is introduced. This function is also split into

two parts, namely fearlierPT (yearlieri ) and f laterPT (ylateri ).

Based on the patient survey, the penalty cost func-

tions can be modeled best by step functions which are
combinations of linear functions, see Figure 3. The spe-

cific value of the steps are also given by the question-

naire. To determine the correct value of the function

fearlierPT for a specific value of yearlieri , we introduce two

parameters. The first is fk, which denotes the function
value in interval k, and the second is γk, which denotes

the right endpoint of interval k.

Interval 1 Interval 2 Interval 3

f1

f2

f3

γ1 γ3γ2

Fig. 3 Step function

To be able to incorporate these step functions in

an ILP model, we introduce binary variables λik which
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are one when yearlieri is in interval k and zero otherwise.

This is ensured by the following two constraints.

∑

k

λikγk ≥ yearlieri , ∀i ∈ I

∑

k

λik = 1, ∀i ∈ I
(9)

The value of the penalty function is now determined
by:

fearlierPT (yearlieri ) =
∑

k

λikfk, ∀i ∈ I. (10)

The total penalty costs of the patient group is given

by pPT , and is defined as the sum of the penalty costs

of each patient.

pPT =
∑

i∈I

(

fearlierPT (yearlieri ) + f laterPT (ylateri )
)

(11)

Because we minimize the total penalty costs, this

method is only applicable for non-decreasing step func-

tions.

2.2 Ward

Prior to surgery, the patient is admitted to a ward.

On this ward, the patient is prepared for surgery. The

survey showed that when a surgery starts earlier than
scheduled, the workload on the ward increases if the

patient is not ready yet. When a surgery starts later

than scheduled, the workload can also increase. There-

fore, penalty costs are incurred when there is a change
in the start time of a surgery. The total penalty costs

are calculated in the same way as for the patient. Based

on the outcome of the survey a step function fW (yi) is

defined, which denotes the penalty costs for the wards

if the start time of a surgery is shifted for yi time peri-
ods. Note, that we do not distinguish between a surgery

being scheduled earlier or later. The total penalty costs

for wards is then given by pW =
∑

i∈I fW (yi).

2.3 Holding Department

After the preparation on the ward, the patient is trans-

ported to the holding department where he/she is pre-

pared further. The length of stay of patients on the
holding department is given by V which can be longer

than the preparation time needed. The holding depart-

ment has a limited number of beds O1 which provides a

maximum for the number of patients treated at this de-

partment at the same time. Another limit on the num-

ber of patients who can be treated simultaneously is

given by the available number of nurses at time t ∈ T

which is denoted by Xt. A nurse needs ρ minutes to
prepare a patient, implying that Xt nurses can pre-

pare at most δ
ρ
Xt patients in time period t. Conclud-

ing, we define the capacity of the holding at time t by

min
(

O1,
δ
ρ
Xt

)

. The number of patients present on the

holding on time t ∈ T is denoted by lt and is given by:

lt =
∑

i∈I

∑t+V
t̂=t+1 sit̂, ∀t ∈ T (12)

This number should be smaller than or equal to the

capacity of the holding which is ensured by the follow-

ing constraint.

lt ≤ min
(

O1,
δ
ρ
Xt

)

, ∀t ∈ T (13)

Note that when δ
ρ
Xt ≤ O1 for some t ∈ T , con-

straint (13) may exclude some feasible solutions (for
an example, see Figure 4). If we want to prohibit this,

we also need to schedule the preparation time of the

patients. However, this increases the complexity of our

problem. Note that this issue does not occur when the
length of stay V equals δ which is the case for the in-

stances used.

0 15 30

V = 30 minutes

ρ = 5 minutes

δ = 15 minutes
O1 = 4 beds

Xt = 1 nurse

Fig. 4 Excluded feasible solution

The survey at the Isala Clinics showed that the
holding department prefers a levelled amount of pa-

tients that are present at each point of time. Therefore,

penalty costs given by the step function fHD(lt), are in-

curred when the number of patients lt exceeds a certain

threshold. The penalty costs for different values of lt are
specified by the staff of the holding department. As at

the beginning of the day (until a prespecified time ψ),

personnel from the recovery department assist on the

holding department (no patients are present at the re-
covery department at this time), penalty costs are only

incurred from time ψ on. The total penalty costs pHD
are given by

∑T
t=ψ+1 fHD(lt).
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2.4 Anesthetist

The anesthetist is responsible for administering and

reversing anesthesia on one or more ORs. Therefore,
he/she has to administer and reverse all anesthesias

in these ORs. However, during the surgical procedure,

the anesthetist does not have to be present in the OR.

Therefore, similar to constraints (4) and (5), we include
constraints which prohibits that more than one anes-

thesia is administered or reversed at a time in the ORs

to which the anesthetist is assigned. For more details,

see [9].

However, there are a few exceptions. When a surgery

is complex, for example when the patient is younger
than 6 months, the anesthetist must be present during

the complete surgery which includes the surgical pro-

cedure. This means that during this time no anesthesia

can be administered or reversed in one of the other as-
signed ORs. This is also ensured by constraints similar

to constraint (5).

2.5 Surgeon

The surgeon is assigned to one OR and only has to

perform the surgical procedure. This means that he/she

does not have to be present during administering and

reversing anesthesia. The constraints that ensure this
are of the same structure as constraints (4) and (5).

2.6 OR Assistants

The OR assistants do not impose any restrictions on
the OR schedule. Their only preference is that over-

time is minimized. Overtime can occur because of arriv-

ing emergency surgeries and surgeries whose duration

is longer than expected. Therefore, penalty costs are in-
curred when there is overtime. The amount of overtime

in OR j ∈ J is denoted by variable oj . The value of this

variable oj is calculated by the following constraint.

oj =
∑

i∈Ij

T
∑

t=Fj+1

bit, ∀j ∈ J (14)

The step function fOS(oj) provides the penalty costs

for OR j ∈ J when overtime of oj time periods is in-
curred. The OR assistants specified the penalty costs

for different values of oj . The total penalty costs for

the OR assistants is given by pOS =
∑

j∈J fOS(oj).

2.7 Recovery Department

After surgery, the patient is transported to the recov-

ery department. Here, the patient is monitored while
he/she recovers from surgery. The length of stay on

this department varies with the expected duration of

the surgery and is given by max(U, 12Ei), where U is

the minimum length of stay on this department. The

number of patients present at the recovery department
at time t ∈ T is denoted by zt and can be determined

in the same way as for the holding department. The ca-

pacity of the recovery department is restricted by the

number of beds O2.

Another restriction is given by the number of pa-

tients who can be treated simultaneously, which de-
pends on the number of available nurses Rt at time

t ∈ T . Each nurse can monitor ϕ patients at a time,

and therefore, ϕRt patients can be treated simulta-

neously. Combining this with the number of beds O2,

the capacity of the recovery at time t ∈ T is given by
min (O2, ϕRt). The number of patients present on the

recovery department at time t ∈ T should be less than

or equal to this capacity. This is ensured by constraints

that are of the same structure as constraints (5).

Like the holding department, the recovery depart-

ment also prefers a levelled amount of patients that
are present at each point of time. Therefore, penalty

costs are incurred when the number of patients ex-

ceeds a certain threshold. This is modeled by the step

function fRC(zt) which provides the penalty costs in-

curred when zt patients are present at time t ∈ T . The
total penalty costs for the recovery is then given by

pRC =
∑

t∈T fRC(zt).

2.8 Radiology Department

For some surgeries, an X-ray machine is needed dur-

ing surgery. These surgeries are given by the set IRL ⊆
I. For these surgeries a radiologist should be present

during administering anesthesia and the surgical pro-

cedure. This means that he/she does not have to be

present during reversing anesthesia. We restrict the num-

ber of required radiologist dt at time t ∈ T to be smaller
than or equal to the number of available radiologists

χ. The constraints that ensure this are similar to con-

straints (4) and (5).

The survey showed that it is important for the ra-

diology department that their employees at the OR

department finish as early as possible such that they
can carry out other work at the radiology department.

Therefore, penalty costs are incurred when a radiolo-

gist finishes later than needed, i.e., when the time the
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radiologists are present is longer than the time the radi-

ologists are needed. In the following, we show how this

is incorporated in the ILP when two radiologists are

working in the OR. This method can easily be extended

to the situation where more than two radiologists are
available.

For each of the two radiologists, it has to be deter-

mined when their work is finished at the OR. These

times are denoted by d̂1 and d̂2. The time the first ra-
diologist finishes is equal to the latest time period both

radiologists are needed. This is given by the following

constraint.

d̂1 ≥ t (dt − 1) , ∀t ∈ T (15)

To determine the time the second radiologist fin-
ishes, we introduce binary variable d̃t which is one,

when one or two radiologists are present on the OR

at time t ∈ T . The value of this variable is given by the

following constraints, where χ denotes the number of

radiologists available during the day, in our case two.

d̃t ≥
dt
χ
, ∀t ∈ T (16)

The time the second radiologist finishes is now given

by the latest time period that d̃t is equal to one.

d̂2 ≥ td̃t, ∀t ∈ T (17)

Using the above constraints and the fact that we

minimize the working time of the radiologists, d̂1 and
d̂2 denote the time the first and second radiologist fin-

ishes. However, this value does not equal the number

of time periods they are actually present at the OR. To

obtain this value, the start time and break time should
be subtracted. The start time of the radiologists is given

by minj Sj . All radiologists have a break of 45 minutes,

i.e., 45
δ

time periods. The amount of periods the radi-

ologists are having a break is thus given by υ = 45χ
δ
.

Therefore, the amount of time periods the radiologists
are present at the OR is given by d̂1+ d̂2−χSj−υ. This

is an underestimation in case one or more radiologists

finish before their break. However, we expect that this

will rarely happen in practice.
The amount of time periods the radiologists are ac-

tually working at the OR is given by
∑

i∈IRL
(Ei−Q2),

where Q2 is the amount of time it takes to reverse anes-

thesia and Ei is the duration of surgery i ∈ IRL. Now,

the variable x defined by

x = 100

(

d̂1 + d̂2 − χSj − υ
∑

i∈IRL
(Ei −Q2) + 1

)

(18)

denotes the inverse of the fraction of time the radi-

ologists are busy. The step function fRL(x) denotes the

penalty costs incurred for a value of x, specified by the

radiology department, and gives the total penalty costs

pRL incurred.

2.9 Pathology Department

During some surgeries, tissue is removed from a patient

which needs to be examined by a pathologist. These

surgeries are denoted by the set IPA ⊆ I. After the

surgical procedure, the tissue is transported from the

OR to the pathology department. When tissue arrives
after closing time, overtime is incurred. Let qi be an

integer variable which denotes the amount of overtime

which would be created by a single surgery i ∈ I, i.e.,

the number of time periods the tissue arrives late plus
the examination duration W .

As after closing time only one pathologist is avail-

able at the pathology department, the available pathol-

ogist has to successively process the tissues that arrive
late. In most cases this means that the pathologists

has to work
∑

i∈I,qi>0

W periods in overtime. However,

sometimes tissue will arrive so late, that the amount

of overtime equals maxi∈I qi. Therefore, the amount of

overtime qtotal is estimated as follows:

qtotal = max



max
i∈I

qi,
∑

i∈I,qi>0

W



 (19)

When two sets of tissue arrive really late at approx-

imately the same time, this number is a lowerbound on

the amount of overtime. However, this situation is not

likely to occur in practice.

Again, a step function fPA(qtotal) is used to ex-
press the penalty costs incurred for a value of qtotal
and represents the total penalty costs pPA incurred for

the pathology department.

2.10 Logistic Department

The logistic department is responsible for preparing

materials needed during surgery. The materials are laid
out in the order in which the surgeries are scheduled.

When two surgeries are interchanged, the logistic assis-

tant incurs penalty costs, because they have to change

the order in which the materials are laid out. Two
surgeries i ∈ I and î ∈ I can only be interchanged

when they are scheduled in the same OR, i.e., when

Oi = Oî. These two surgeries are interchanged when
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(Pi−Pî)(wî−wi) > 0, where Pi is the start time in the

initial OR schedule and wi is the start time in the new

OR schedule. When this holds, we either have that both

(Pi−Pî) and (wî−wi) are positive or that both are neg-

ative. When both are positive, we have that Pi > Pî and
wi < wî. This means that in the initial OR schedule,

surgery i ∈ I was scheduled later than surgery î ∈ I

and that in the new OR schedule, surgery i ∈ I was

scheduled earlier than surgery î ∈ I. When both are
negative, we have the opposite case.

We introduce binary variables κîi which are one

when surgery i ∈ I and î ∈ I are interchanged and zero

otherwise. This is ensured by constraints (20), where T

is the number of time periods per day. When
(Pi−Pî)(wî−wi) > 0, the variable κîi is set to one, how-

ever, when (Pi−Pî)(wî−wi) ≤ 0 the variable κîi could

be set to either one or zero. But because we want to

minimize the number of exchanged surgeries, the vari-
able κîi gets the value zero.

(Pi − Pî)(wî − wi) ≤ T 2κîi, ∀(i > î) ∈ I, Oi = Oî (20)

Let fLD be the penalty cost incurred when two surg-

eries are interchanged, which value is specified by the

logistic department. Then the total amount of penalty

cost pLD incurred for the logistic department is given
by

pLD =
∑

j∈J

∑

(i,̂i)∈Ij ,i>î

κîifLD. (21)

2.11 Objective Function

The goal of our model is to minimize the deviation from

the preferences of the stakeholders. We denote the set

of stakeholders by Π and we consider each stakeholder
to be equally important. Since the order of magnitude

of the cost functions introduced for the different stake-

holders may differ, we have to introduce a weighted

sum of the penalty costs pπ to compensate these dif-
ferences. In this function, the priority βπ assigned to

stakeholder π ∈ Π is determined such that all stake-

holders contribute approximately the same amount to

the objective function value. The general concept of the

weighted sum of penalties has furthermore the advan-
tage that by varying the priorities, we can develop, for

example, also a more patient centred OR schedule.

Next to the penalty costs for deviation from the

preferences of stakeholders, we also include penalty costs
η for canceling a surgery. These penalty costs are set

such that they contribute more than the combined to-

tal penalty costs of the stakeholders in case surgeries are

canceled. This way, it is clear that canceling a surgery

is not preferred, however, if needed it is possible to do

it. Summarizing, the objective function is given by

min
∑

π∈Π

βπpπ +
∑

i∈I

ηui. (22)

2.12 Problem Complexity

The problem introduced in the previous subsections has

been modeled as an ILP. The following theorem justi-
fies this approach, since it shows that efficient exact

approaches are unlikely to exist.

Theorem 1 The OR rescheduling problem is strongly

NP-hard for two or more operating rooms.

Proof We prove the theorem by reducing 3-partition to

the OR rescheduling problem. The 3-partition problem

can be formulated as follows. Given positive integers
a1, . . . , a3t, and b with

∑3t
j=1 aj = tb, do there exist

t pairwise disjoint subsets Rk ⊂ {1, . . . , 3t} such that
∑

j∈Rk
aj = b for k = 1, . . . , t? The 3-partition prob-

lem is proven to be strongly NP-hard (see Garey and

Johnson [7]).
The reduction is based on the following transforma-

tion, where we set the priorities for the patient, ward,

and the holding, recovery, radiology, pathology and lo-

gistic department to zero. Therefore, we only aim to
minimize overtime and the number of cancellations.

Furthermore, we consider 2 ORs which have their own

anesthetist and 6t− 2 surgeries with the following pro-

cessing times and ready times:

Ei = b, Yi = 0 ∀1 ≤ i ≤ t− 1, i ∈ I1, IRL,

Ei = ai−t+1, Yi = 0 ∀t ≤ i ≤ 4t− 1, i ∈ I1,

Ei = b, Yi = 2b(i− 4t) ∀4t ≤ i ≤ 5t− 1, i ∈ I2, IRL,

Ei = b, Yi = b(i− (5t− 1)) ∀5t ≤ i ≤ 6t− 2, i ∈ I2.

The end and start times of the 2 ORs are:

Sj = 0, Fj = (2t− 1)b for j ∈ J.

The capacities of the holding and recovery depart-

ments are assumed to be larger than 6t − 2, thus we

do not have to consider the given constraints for these

departments. Furthermore, only one radiologist is avail-
able, and therefore, we have to consider the given con-

straints for the radiology department. Our goal is to

create an OR schedule with objective value less than or

equal to zero.
First note that, because of their ready times, the

surgeries from {4t, 4t+ 1, . . . , 6t − 2} in OR 2 have to

be scheduled as in Figure 5 to achieve an objective value
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4t 5t 4t+ 1 5t− 3 6t− 3 5t− 2

1 t− 2OR 1

OR 2 5t+ 1 4t+ 2

2

6t− 2 5t− 1

t− 1

Fig. 5 Reduction of 3-partition problem to the OR Rescheduling problem

of zero, i.e., no overtime and cancellations may occur.

In Figure 5, the grey blocks denote surgeries that need

a radiologist and the white blocks denote surgeries that

do not need a radiologist. Because the surgeries from

{1, 2, . . . t− 1} in OR 1 need a radiologist, they have to
be scheduled in the time intervals where the radiologist

is not busy in OR 2, i.e., as in Figure 5. This leaves

us with t blocks of length b in OR 1 which have to

be filled with the surgeries from {t, t+1, . . . , 4t− 1} to
achieve zero overtime with zero cancellations, and thus,

an objective value of zero. Therefore, our problem has

a solution with objective value zero if and only if there

exists a solution to the 3-partition problem.

The proof of this theorem shows that already a very

restricted version of the OR rescheduling problem is

strongly NP-hard.

3 Computational Results

We tested our ILP on data from the Isala Clinics, a

hospital in the Netherlands. The data consists of 1168
surgeries scheduled over 27 days. The surgeries consist

of 354 emergency surgeries, 193 surgeries who need X-

ray, 79 surgeries during which tissue is removed, and

7 complex surgeries. The average expected duration
of the surgeries is 103 minutes, and the average real-

ized duration of the surgeries is 91 minutes. Because

rescheduling is only performed during working hours,

we removed the emergency surgeries that start before

07:30 and after 18:00. We implemented our model in
AIMMS 3.10 and solved it with CPLEX 12.1 on an

AMD Ahtlon X2 Dual Core L310 1.2 GHz processor

with 4 GB RAM.

In the first two subsections, we discuss the parame-

ter settings for the ILP model and the achieved results

which are used to derive the decision rules for the de-
cision support system. In the last subsection, we deter-

mine the penalty costs for the initial OR schedule used

at the Isala Clinics and the OR schedule realized at the

end of the day. In addition, we optimize both the initial
and realized OR schedule to show what improvements

potentially can be realized when the developed method

is used.

3.1 Parameter Settings

In this subsection, we discuss the parameter settings for

the time periods and the priorities for each stakeholder.

To determine the appropriate length δ of the time
periods, we solved the model for time periods of 5, 10,

15 and 20 minutes. We interrupted the ILP solver after

10 minutes of computation time. If after this time no

optimal solution was found, we took the best solution
found as our final solution. In Figure 6, the runtime for

each combination of day and δ is given.

We would expect that a smaller value of δ would

increase the runtime of our model. For most days in

our instance this holds, however, in some cases, the

runtime for our model with δ equal to 15 minutes is
shorter than the runtime for our model with δ equal

to 20 minutes. Furthermore, Figure 6 shows that for δ

equal to 5 minutes, an optimal solution was only found

for 2 of the 27 days. For δ equal to 10 and 20 minutes,
this number increased to 13. The model with δ equal

to 15 minutes performs the best, because an optimal

solution was found for 15 of the 27 days. This result

seems to be the consequence of the input data, since

most of the data is given in multiples of 15 minutes, for
example, the expected surgery duration and the length

of stay on the holding department.

In Figure 7, we give the objective function value for

each combination of δ and day. If solved to optimality,

the objective value should increase when δ increases,

because there is more flexibility in the OR schedule
when δ is lower, i.e., the model with δ = 5, should be

able to provide the same or even a better solution than

the model with δ set to 10, 15 or 20 minutes. How-

ever, Figure 7 shows that the worst objective values
are achieved when δ equals 5. This is because for most

days no optimal solution was found within 10 minutes.

From Figure 7, we can conclude that our model with δ

set to 15 minutes results in the lowest objective func-

tion value. Combining the results for the runtime and
objective function, we choose to set δ to 15 minutes for

further tests.

For each of the stakeholders, we have to determine

its priority in the objective function. In the objective

function, the total penalty costs of each stakeholder is
multiplied by this priority. Our goal is that each stake-

holder has approximately the same contribution in the

objective function. In the following, we describe how we
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have determined the priority of each of the stakehold-

ers.

First, we solve our model where all stakeholders
have priority one. Next, we adjust the priorities in such

a way that the weighted cost of each of the stakehold-

ers for the achieved solution is approximately the same.

This is done by setting the priority of the stakeholder

with the lowest total penalty costs to one and the prior-
ities of the other stakeholders such that their weighted

costs equals the lowest total penalty costs. Table 1 shows

the results if this method is applied to our data, where

the total penalty costs are the average total penalty
costs incurred per day.

Note, that the holding department does not incur

any penalty costs, because penalty costs are only in-

curred when four patients are treated simultaneously.

The constraints imposed, however, limit the number of

patients present on the holding department to three.
This means that the holding department is not a bot-

tleneck in the current situation.

We conducted some further tests where we varied
these priorities slightly. The results from these tests

show that patients, wards, and OR assistants have op-

posite interests compared to the recovery, radiology,

pathology, and logistic department.

3.2 Deriving Decision Rules

The main goal of our model is to determine which ad-

justments to the initial OR schedule are allowed and

preferred by the stakeholders. To determine this, we
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Table 1 Total Penalty Costs and Priorities

Patient Ward Holding OR assistants Recovery Radiology Pathology Logistics

Total Penalty Costs 7.45 5.26 0.00 1.11 1.91 1.00 0.56 0.91

Priority 0.08 0.11 1.00 0.50 0.29 0.56 1.00 0.62

Weighted Costs 0.56 0.56 0.00 0.56 0.56 0.56 0.56 0.56

use our ILP model to create at three point t ∈ T a new

OR schedule which minimizes the deviation from the

preferences of the stakeholders. For each of these three

scenario’s, the initial OR schedule is given as input as

well as the realization of the duration of the surgeries
that started before time t. These realized durations may

change the initial OR schedule, because this schedule

was based on the expected durations. Since we cannot

change the OR schedule for the already started surg-
eries, we start rescheduling at the new start time Sj
of OR j, which we define as the end time of the last

started surgery before time t. In addition, we schedule

not yet started emergency surgeries that arrived before

time t. We assign a new start time sit to each elective
and emergency surgery that has not started at time t

or, when allowed, cancel this surgery such that the re-

source constraints are fulfilled and the deviation from

the preferences is minimized. The three scenario’s are
summarized below.

Scenario 1 After 10 a.m.: In this scenario, the real-

ized durations of the surgery that started
before 10 a.m. are known. An emergency

surgery is only included if it arrived before

10 a.m..

Scenario 2 After 12 p.m.: In this scenario, the real-
ized durations of the surgery that started

before 12 p.m. are known. An emergency

surgery is only included if it arrived before

12 p.m..

Scenario 3 After 2 p.m.: In this scenario, the real-
ized durations of the surgery that started

before 2 p.m. are known. An emergency

surgery is only included if it arrived be-

fore 2 p.m..

These three scenario’s are used to determine what

adjustments our model makes to the OR schedule. For

each of the scenario’s, we determine how often one of
the following adjustments occurred: (i) shifting a surgery,

(ii) exchanging two surgeries, and (iii) canceling a

surgery. In addition, we determine how often a break of

a certain length was scheduled between two surgeries.
The results are shown in Table 2.

Table 2 shows that shifting a surgery is the most fre-

quent adjustment used, and often we see that a break

Table 2 Results Scenario 1, 2, and 3

10 a.m. 12 p.m. 2 p.m.

Rescheduled surgeries 566 416 213

Shifted surgeries 375 297 176

Exchanged surgeries 1 0 0

Canceled surgeries 0 0 1

No break 264 183 71
Break 15 min. 166 112 66

Break 30 min. 62 33 21

Break 45 min. 22 19 11

Break > 45 min. 38 37 13

Mean break 15.84 18.71 19.78

is scheduled between two surgeries. The average length
of a break is 15 to 20 minutes. When we only consider

OR utilization, this may not seem to be optimal, how-

ever, these breaks can improve the perceived workload

of other departments or may be necessary to fulfil the

resource constraints. From the results we conclude that
only two types of adjustments are preferred to be used.

A surgery can be shifted or a break can be scheduled

between two surgeries. This means that the order of

surgeries stays the same during the day. So when we
only allow these two adjustments, the number of fea-

sible solutions decreases significantly, because we only

have to consider one sequence of the surgeries instead of

all possible sequences. This makes it possible to develop

a simple heuristic to determine a good OR schedule. A
further benefit of this is that we do not need an expen-

sive ILP solver to implement our approach.

Based on this, we have incorporated this simple
heuristic in a decision support system which is described

in Section 4.

3.3 Potential Improvements

To determine what improvements the decision support
system could potentially make compared to the OR

schedules used at the Isala Clinics, we calculated, using

the ILP model, the optimal initial OR schedule based
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Table 3 Results Scenario 4 and 5

Initial OR Schedule Realized OR Schedule

Total Penalty Costs Original Optimal Original Optimal

Cancellation 0.00 0.00 66.67 22.22
Patient 0.00 0.00 40.91 36.50

Ward 0.00 0.00 34.40 28.56

Holding 0.00 0.00 0.00 0.00

OR assistants 0.00 0.68 6.43 4.20
Recovery 4.93 0.74 8.85 3.11

Radiology 1.63 0.56 2.41 1.07

Pathology 0.64 0.15 0.70 0.51

Logistics 0.00 0.00 9.26 5.93

Total Costs 3.00 1.03 87.03 35.82

on the expected surgery durations. Note, that for this

optimization the assignment of the surgeries to an OR

is given as in the given initial OR schedule. Thus, we
only change the sequences of the surgeries in each OR.

None of the surgeries can be canceled, and because it is

an initial OR schedule, the change in the start time of

the surgeries is zero. This implies that the penalty costs

for the patients, wards and logistic department are zero.
Also, there are no emergency surgeries to be scheduled,

because they have not arrived yet. This resulting fourth

scenario is summarized below.

Scenario 4 Initial OR schedule: In this scenario, we

compare the initial OR schedule used at
the Isala Clinics with a new OR schedule

determined by the ILP model, where we

rescheduled all elective surgeries. There-

fore, there are no emergency surgeries to

be scheduled, and only the expected dura-
tion of each surgery is given.

We also optimized the realized OR schedule and

compared it to the realized schedule provided by the

Isala Clinics. For the realized OR schedule, all real-

ized durations of the elective and emergency surgeries
are considered to be known in advance, and also the

canceled surgeries are taken into account. More pre-

cisely, we take as as input all elective surgeries with

their realized duration that were planned in the ini-

tial OR schedule, and in addition, we include all per-
formed emergency surgeries with their realized dura-

tion. For the canceled surgeries, we use the given ex-

pected surgery durations. For this scenario, it can hap-

pen that surgeries are canceled or that their start time
changes, which results in penalty costs for patients,

ward, and the logistic department. Note that the im-

provements made to the realized OR schedule can prob-

ably not be achieved in practice because not all relevant

information is known beforehand. This fifth scenario is

summarized below.

Scenario 5 Realization: This scenario consists of all

the elective surgeries scheduled in the ini-

tial OR schedule and all emergency surg-
eries that arrived during the day. The re-

alized duration of all surgeries is known.

Table 3 provides the average total penalty costs per
day for each of the stakeholders and compares the initial

and realized OR schedule of the Isala Clinics to the

optimal OR schedules created by our ILP model. In

the total costs, the priorities of the stakeholders are
included.

Table 3 shows that in Scenario 4, the initial OR

schedule, the total penalty costs for the recovery and

radiology department decreases significantly. However,

this can only be achieved by scheduling some surgeries
in overtime. This follows from the slight increase of the

total penalty costs for the OR assistants. For Scenario

5, the realization, the results show that the objective

function value is reduced with more than 50%. The ma-
jor decrease is caused by the reduction of the number

of cancellations. Also, the total penalty costs for the re-

covery department decreases significantly. In practice,

the penalty costs for the realized OR schedule will lay

somewhere between 35.82 en 87.03 when the decision
support system, discussed in the next section, is used.

Concluding, our model can potentially improve the

initial and realized OR schedule significantly.

4 Decision Support System

To make our method applicable in practice, we have

developed a decision support system which can be used
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Fig. 8 Decision Support System

by the OR manager. We incorporated the two decision

rules that are derived from the results in Subsection

3.2. The first decision rule is that the order of surgeries

must be maintained, but that a surgery can be shifted
in time. In addition, the second decision rule states that

it is allowed to schedule a break of at most one hour

between two surgeries. This may help to decrease the

perceived workload of several stakeholders and may be

necessary to fulfil the resource constraints.

During the day, the OR schedule must be adjusted,

because of arriving emergency surgeries and elective
surgeries that take shorter or longer than expected.

The user can indicate for which OR the schedule should

be adjusted. The system evaluates, by means of com-

plete enumeration, all possible solutions for this OR

with respect to the two decisions rules. This means that
between each two surgeries a break is scheduled with

a duration that varies between 0 and 4 time periods.

After all possible solutions are evaluated, the decision

support system presents the three best options to the
user. Only feasible solutions with respect to the con-

straints described in Section 2 are considered. A screen-

shot of the decision support system is shown in Figure

8. The first column of the screen-shot gives the speci-

fied priorities of all stakeholders. These values can be
changed to create, for example, a patient centred OR

schedule. The next column shows the penalty costs and

weighted costs of the current OR schedule. The last

three columns show the three best OR schedules with
their penalty costs and weighted costs from which the

user can choose.

The decision support system gives insight in how
other departments are influenced by a change in the OR

schedule by denoting the penalty costs and weighted

costs incurred for each stakeholder. This can convince

surgeons that it can be useful to schedule a break be-

tween two surgeries. In addition, the decision support

system can determine whether the initial OR schedule

is feasible or not by checking all constraints given in
Section 2. The system denotes for each constraint how

many times it is violated in the proposed OR sched-

ule. It furthermore can be used to adjust the schedule

such that it is feasible. Also, the penalty costs for the

proposed OR schedule are calculated which gives an in-
dication of how good the schedule is. The last advantage

of the decision support system is that the realized OR

schedule can be evaluated. This way, the OR manager

can learn from his decisions made in the past.

5 Conclusions

In this paper, we formulated an ILP which determines
the best adjusted OR schedule at a given point in time.

The results show that patients, wards, and OR assis-

tants have opposite interests compared to the recovery,

radiology, pathology, and logistic department. Further-
more, the achieved results show that, without the few

exceptions, the only used adjustments are (i) shifting

surgeries, and (ii) scheduling breaks between two surg-

eries. These two decision rules are incorporated in the

developed decision support system. This system deter-
mines the best adjusted schedule for one OR with re-

spect to the given constraints and gives insight in how

the workload of stakeholders is influenced by adjusting

the OR schedule throughout the day. By using this de-
cision support system, less surgeries are canceled and

the perceived workload of all departments is reduced.

A drawback of the developed decision support sys-

tem is that the decision rules may not be applicable
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when the priorities of the stakeholders change. A change

in these priorities for the ILP can result in, for example,

more exchanges or cancellations of surgeries. However,

this is not expected in practice, because these two ad-

justments are less preferred than shifting a surgery.

Another drawback is that the decision support sys-
tem can only improve the OR schedule for one OR

at a time. This may result in a suboptimal solution.

However, when the schedules of two or more ORs are

improved simultaneously, the process of optimization

may be unclear to the user and the acceptance of the
achieved results may decrease.

Further research could focus on including the Cen-

tral Sterile Supply Department (CSSD) into the model.

This department prepares the instrument sets needed

for a surgery. When a surgery is added to the OR sched-

ule during the day, this may influence the workload on
the CSSD. In addition, the CSSD may impose some

extra constraints on the OR schedule.

There are several ways in which the developed deci-

sion support system can be used, for example, resched-

ule an OR immediately when it is disturbed or resched-
ule all ORs at some moments in time. The last example

also raises the question in what order the ORs should

be rescheduled. Therefore, it would be interesting to

investigate the best way to use the decision support

system.
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