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Abstract—We introduce Iterative Perceptual Learning (IPL),
a novel approach for learning computational models for social
behavior synthesis from corpora of human-human interactions.
The IPL approach combines perceptual evaluation with iterative
model refinement. Human observers rate the appropriateness of
synthesized individual behaviors in the context of a conversation.
These ratings are in turn used to refine the machine learning
models. As the ratings correspond to those moments in the
conversation where the production of a specific social behavior
is inappropriate, we can regard features extracted at these
moments as negative samples for the training of a machine
learning classifier. This is an advantage over traditional corpus-
based approaches, in which negative samples at extracted at
random from moments in the conversation where the specific
social behavior does not occur.

We perform a comparison between the IPL approach and the
traditional corpus-based approach on the timing of backchannels
for a listener in speaker-listener dialogs. While both models
perform similarly in terms of precision and recall scores, the
results of the IPL model are rated as more appropriate in the
perceptual evaluation. We additionally investigate the effect of the
amount of available training data and the variation of training
data on the outcome of the models.

Index Terms—Social behavior synthesis, Machine learning,
Perceptual evaluation, Backchannel

I. INTRODUCTION

In this paper, we address the learning of computation
models for the synthesis of human behavior. We target the
setting where a human interacts verbally and nonverbally
with an intelligent virtual agent (IVA, or virtual human). The
aim is to make this human-machine interaction as close as
possible to natural human-human interaction. From a machine
perspective, this requires that appropriate responsive behavior
is displayed to the human (see Figure 1(top)). One common
approach to endow IVAs with this ability is to learn conditional
responsive behaviors from a corpus of human-human dialogs.
The verbal and nonverbal behavior of a dialog partner is
continuously encoded as features, e.g. speech activity, gaze
direction or body movement. In addition, discrete social behav-
iors are identified in time. Examples are smiles as a reaction
to observed facial movements or backchannels as a reaction
to a speaker’s speech and gaze. The task of the classifier is
to associate (probability) scores for the synthesis of specific
behaviors to feature instances of the dialog partner’s behavior.

The application of this corpus-based learning approach for
human behavior synthesis is widespread, but suffers from
two main drawbacks. First, the evaluation of the synthesized
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Fig. 1. Schematic overview of social behavior synthesis for an artificial

listing agent (top) and the setting of our IPL framework (bottom).

behavior is typically measured by comparing it to the actually
performed behavior in the corpus. While this is an objective
measure, it does not take into account the optionality (or
individuality) of social behavior. We argue that social behavior
performed differently from the dialog partner’s in the corpus
can also be appropriate. However, objective measures will
discredit such altenative behavior which hinders generalization
of behavior synthesis models.

Second, a classifier is trained with feature instances ex-
tracted slightly before the occurrence of a social behavior.
These instances are considered positive samples. Typically,
random feature instances that do not overlap with positive
samples are used as negative samples. However, while a
social behavior was not performed in the actual dialog, there
is no guarantee that if it had been performed, it would be
inappropriate. Consequently, some of the negative samples can
also be regarded as positive samples. Again, this hinders the
learning of behavior synthesis models.

In this paper, we describe a novel approach that addresses
these drawbacks. Instead of relying on objective measures,
we obtain subjective ratings regarding the appropriateness of
the synthesized behavior. Subsequently, we use these ratings
not only to evaluate the quality of the behavior but also to
iteratively improve the classifier. We have termed our proposed
approach Iterative Perceptual Learning (IPL). Figure 1 shows
a coarse schematic overview of the IPL approach. IPL is
general in the sense that it can be applied to the learning and
synthesis of a broad range of social behaviors in dialogs. In
addition, the approach is independent of the choice of machine
learning classifier and features.



The contributions of this paper are:

1) Perceptual evaluation: we use subjective, perceptual
ratings to measure the appropriateness of individual
instances of social behavior. We thus avoid comparing
the synthesized behavior with the specific behavior that
was performed in the corpus. This allows us to evaluate
the quality of the synthesized behavior in a more general
sense. In addition, we obtain samples (moments in
the dialog) where the production of a specific social
behavior is regarded as inappropriate.

2) Iterative learning: given the availability of positive and
negative samples, we learn a classifier for the synthesis
of the timings of social behaviors. By iteratively training
and evaluating the resulting synthesized behavior, we
refine the performance of the classifier. This approach
allows us to focus the negative samples on those feature
instances that are relevant.

3) Experiment on the synthesis of backchannel timings:
we evaluate the merits of the IPL approach for the syn-
thesis of backchannel timings in speaker-listener dialogs.
We compare IPL to the common corpus-based approach
where negative samples are obtained from the pool of
non-positive samples. Our experiment involves several
hours of dialog. We analyze the influence of the type of
negative samples and the amount of available data on
both the objectively and subjectively measured quality
of the synthesized listening behavior.

The remainder of this paper is organized as follows. In
the next section, we discuss related work on learning social
behavior synthesis models. We introduce the IPL approach in
Section III. In Sections IV and V, we describe, respectively,
the setup and the results of an experiment on the synthesis of
backchannel timings. We conclude with Section VI.

II. RELATED WORK

The field of social signal processing [1], [2] addresses com-
putational approaches towards the automatic understanding,
modeling and generation of human social behavior in artificial
agents and robots. In this work, we focus on the synthesis of
nonverbal behavioral cues. Previous work on this topic has
addressed, among others, the synthesis of backchannels [3],
[4], [5], eye gaze [6], [7], smiles [8], [9] or head gestures
during speech [10], [11].

These synthesis models are typically based either on hand-
crafted rules [7], [12] or on machine learning algorithms [5],
[9]. Both give a (probability) score for the production of a
social signal, given a feature instance at a selected moment.
Due to the real-time nature of interactions, the methods use
shallow features in the sense that they are non-semantic and are
derived directly from the audio or video signal. While hand-
crafted rules are usually intuitive and can be based on known
patterns in human social behavior, specifying these rules based
on shallow features is not trivial. Therefore, recent work has
increasingly addressed employing machine learning algorithms
to learn behavior synthesis models.

Machine learning models are trained by providing samples
to a learning algorithm. For social behavior modeling, positive

samples correspond to feature instances extracted at moments
in a dialog where the production of a specific behavior is
appropriate. The dominant approach to obtain these samples is
to record a corpus of human-human interactions in a similar
conversational setting and to identify the moments in time
where a specific behavior is displayed. In general, the number
of such moments is relatively small and there are probably
many appropriate moments where no social behavior has been
produced. This is due to individual differences in behavior
between subjects (e.g. in the amount and timing), which is a
consequence of the optional nature of social signals.

Negative samples are usually extracted at random moments
within the conversation with the constraint that they should
not overlap with positive samples. As a consequence, these
negative samples could be extracted at moments in time where
the production of a social signal is appropriate, but was not
produced in the corpus. The classifier will therefore try to
label these positive samples as negative, which is likely to
reduce the quality of the classifications. To prevent this form
of overfitting and deal with this type of noise, much more data
is needed.

Currently, this optional nature of social signals is also not
reflected in the evaluation practice of machine learning models
that generate their timings. In general, the quality of a behavior
synthesis model is evaluated in terms of precision and recall of
the generated social behaviors compared to those performed
by the actual subject in the corpus. Any deviation from the
actually performed behavior results in lower scores. This is
an undesired effect as there is no guarantee that the generated
listening behavior is also perceived as less appropriate.

In sum, one of the key challenges in social behavior syn-
thesis is to obtain appropriate positive and negative samples.
This will help in learning behavior synthesis models that are
better able to generalize. In addition, it allows for perceptual
evaluation of the synthesized social behavior.

Several studies have addressed this challenge. To obtain
more samples, De Kok and Heylen [4] recorded three listeners
that interacted in parallel with the same speaker. The result of
their Paralel Listener Consensus approach is a larger pool of
positive samples compared to the setting where only a single
listener interacted with the speaker. In addition, by analyzing
when multiple listeners produced a social signal, moments in
time can be identified where this production is more likely
to occur. The method also allows for the investigation of the
variation in timing and differences between human observers.

To overcome the complex recording setting of [4], Huang
et al. [13] introduced Parasocial Consensus Sampling (PCS).
With this method, human observers watch a video of a
conversational partner and act as if they were in the con-
versation. Every time they would produce a social signal,
they are to press a button. The approach has been used to
collect positive samples of backchannels [13] and speaker turn
endings [14]. Despite the fact that the observers are not part of
the conversation and pressing a button is artificial, the results
of PCS in terms of quantity and timing of social signals was
comparable to those produced by the actual subjects in the
corpus. For social behavior synthesis, increased generalization
was observed when considering as positive samples only the



moments in time where the majority of the human observers
indicated they would produce a social signal.

Both of the above methods address obtaining more positive
samples, which reduces the moments in time where negative
samples can be extracted. Still, there is no guarantee that a
negative sample corresponds to a moment in time where the
production of a social signal is inappropriate. To this end,
Poppe et al. [15] had human observers watch a video of
a speaker and an animation of a listener side-by-side. The
listener was a virtual human that produced specific social
signals at predetermined moments in time. Motivated by the
observation that humans are sensitive to flaws in animated
social behavior, the human observers were instructed to press
a button when they judged the produced social behavior
as inappropriate. This approach was used as a subjective,
perceptual evaluation measure for synthesized social behavior.
However, it can also be used to obtain negative samples as we
do in this research.

III. ITERATIVE PERCEPTUAL LEARNING

We target a dyadic conversational setting where we aim at
generating appropriate social signals for a virtual human in
real-time, based on the observed social behavior of a human
conversational participant. We consider social signals that (1)
are performed as a reaction to the observable behavior of
the conversational partner and (2) have an optional nature.
We further assume that the observations can be described
as feature vectors. This allows us to use machine learning
techniques that output a probability or score for the production
of a social signal based on a feature vector instance. These
assumptions are common for learning social signal models.
Examples of this application setting are the animation of head
movement as a reaction to the speech of the conversational
partner, or backchannels as a reaction to a speaker’s speech
and gaze (see Section IV).

In this research, we learn social behavior synthesis models
in an iterative manner. The basis is a machine learning model
which we will treat as a black box. At each iteration, we learn
the model given the available positive and negative samples.
As we cannot obtain negative samples from the corpus directly,
we resort to a generate-and-test approach. We use a virtual,
computer-animated, copy of the conversant and animate social
signals according to a trained classifier. We then have human
subjects rate the (in)appropriateness of the displayed social
signals in the context of the conversation. Based on these
ratings, we obtain negative samples which are used to train
the models in the next iteration. In addition to an increased
number of available samples, both positive and negative, we
expect that the models are progressively more accurate. The
subjective ratings double as perceptual evaluation measures.
This allows us to determine, at each iteration, the subjective
quality of the generated listening behavior.

A schematic representation of the IPL framework appears
in Figure 2. In the following, we discuss the generation,
evaluation and learning stages of the framework, respectively.
We also address the bootstrapping of the approach. For the
sake of simplicitly, we consider a dialog with a sender and a

Fig. 2.

Schematic representation of the Iterative Perceptual Learning
framework. The generation, evaluation and learning stage are shown in pink,
blue and green, respectively. Please refer to the text for details. Best viewed
in color.

receiver. Social behaviors will be synthesized for the receiver,
as a response to features extracted from the behavior of the
sender.

A. Generation

An iteration starts with the generation of the stimuli. Each
stimulus is a video of the sender, combined with an animation
of the receiver, placed side-by-side. There are three steps
involved in the generation stage (see also Figure 2): feature
extraction, feature classification and stimulus generation.

The sender is observed, for example using microphone or
camera. From these recordings, we calculate feature vectors
at each time step. These can be audio features such as pitch
and intensity, video features such as amount of movement or
head orientation, or any combination of features.

We then classify each feature vector with the model that
was trained in the previous iteration (see Section III-C). This
results in a numerical output, for example a probability or a
score. Given an entire video, we thus obtain a score for each
time instant.

The next step is to convert the sequence of scores into a
set of social signal timings. To this end, one can apply a
threshold, or select the moments corresponding to the top n
scores. Additional constraints such as minimum time between
two social signal timings, or a minimum or maximum number



of social signals per minute can be enforced at this stage as
well. Computer animation software is used to generate a virtual
copy of the receiver, where social signals are synthesized at
the determined timings. Finally, we place this animation of the
receiver side-by-side with the video of the sender and make
sure both are synchronized in time.

B. Evaluation

In the evaluation stage (blue areas in Figure 2), human
subjects rate the (in)appropriateness of the animated social
signals. Similar to [16], [15], human raters watch the stimuli
and press a button (the yuck button) whenever they think an
animated social signal of the receiver is inappropriate.

After watching and rating a stimulus, the raters’ yucks are
matched to the animated social signals, and a typical response
delay is taken into account. When several raters watched the
same stimuli, their yucks can be aggregated. This results in a
percentage of raters that judged a certain social signal instance
as (in)appropriate. These numbers can be thresholded to filter
out accidental mis-presses, or used directly to determine which
social signal samples are to be considered negative ones.
The social signal instances that received no or only a few
yucks can be regarded as positive samples, in addition to the
social signals performed by the human listener in the recorded
conversation.

C. Learning

A trained machine learning model is the result after the
learning stage (green areas in Figure 2). In this stage, all
positive and negative samples are used to train the classifier.
As mentioned before, the specifics of the classifier are not
important at this point.

In each iteration (except for the first, as we discuss below),
the positive and negative samples are added to those of the
previous iteration. There is thus an increasing amount of
data available for training at each subsequent iteration. As
more positive and negative training samples are available, we
expect that our classifier will improve. As a result, we will
generate social signals at more appropriate moments. Still,
some of these instances will be perceived as inappropriate and
these end up as negative samples for the next iteration. This
approach can therefore be seen as a form of reinforcement
learning. It allows us to fine-tune the model by focusing on
those feature instances that are relevant.

D. Bootstrap

As we do not have access to negative samples in the
first iteration, we bootstrap the process by learning a model
with negative samples extracted at random moments where
no positive samples occur. This is the exact same approach
as is typical for corpus-based learning. After the generation
and evaluation phases, we then obtain positive and negative
samples, which are then used at each following iteration. The
initial samples are discarded.
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Fig. 3. Schematic representation of the Baseline approach. Please refer to
the text for details.

IV. ITERATIVE PERCEPTUAL LEARNING FOR THE TIMING
OF BACKCHANNELS

To illustrate the use of the Iterative Perceptual Learning
framework for social behavior synthesis we target the scenario
of a face-to-face conversation with a speaker and a listener.
In this setting, the listener is to signal continued attention,
interest and understanding to the speaker, for example with
a nod, a short vocalization (“uh-huh”) or a smile. These
social signals are commonly referred to as backchannels [17],
listener responses [18] or continuers [19]. Our aim is to
learn computational models to synthesize listening behavior,
conditioned on the observed behavior of a human speaker [20].
Specifically, we predict here the timing of backchannels in
these speaker-listener dialogs.

We present an experiment in which we learned a backchan-
nel prediction model for the listener using the IPL approach
(IPL) and compare this to a model learned using the standard
corpus-based approach (baseline). We evaluate the influence of
several factors on both the objectively and perceptual quality
of the models.

In the following, we will explain the data on which the mod-
els are learned and evaluated. Subsequently, the two models
are explained in more detail. Finally, the experimental setup
is presented. The results and discussion of the experiment are
discussed in Section V.

A. Corpus

We used the Dutch-spoken MultiLis corpus [21] for learning
and the evaluation of our models. The corpus consists of
mediated human-human interactions between pairs of subjects.
In the first interaction, one subject assumed the role of speaker
and one subject was assigned the role of listener. In a second
interaction, the roles were switched. Figure 4(left) shows a
still of a speaker in the conversation. In total, 32 subjects (29
male, 3 female, mean age 25) participated in 32 recordings,
with a total duration of 131 minutes.

The speakers were instructed to either summarize a short
video they just saw before the interaction or to provide the
instructions of a recipe they had just studied for 10 minutes.



Fig. 4. Example stimulus presented to the participants during the evaluation.

Listeners had to remember as many details as possible, because
questions were asked afterwards about the video or the recipe.
A pair of subjects was assigned either the video task or the
recipe task.

Subjects were seated in cubicles and interacted through
a remote videoconferencing system. The camera was placed
behind an interrogation mirror on which the other subject was
projected. This allowed subjects to look directly at the camera
and this created the feeling of eye contact. In addition, this
setting allowed us to robustly analyze mutual gaze.

B. Feature Preprocessing

From the audio and the video of the MultiLis corpus
we extracted three types of features: prosody (112 features),
speaking (1 feature) and looking (1 feature). We subsequently
explain the procedure for the extraction and processing of each
feature type.

From each speaker’s audio channel, we extracted prosody
features pitch, intensity and the first 12 mel-frequency ceptrum
coefficients (MFCC) at a frequency of 100Hz using OpenEAR
[22]. Pitch detection is typically noisy and can fail for a
few frames during speech. To solve this issue, we linearly
interpolated the pitch values for gaps smaller than 8 frames,
which is in line with [23]. Between subjects, prosodic signals
can vary significantly. For instance, pitch is higher in females
than in males, people speak with different volume and/or
had the microphone closer to their mouth. We normalized
these signals to account for these differences between speakers
by converting each signal into the z-score equivalent. The
means and standard deviations needed for calculating the z-
score were calculated on the first 10 seconds of each session.
Therefore, the first 10 seconds of each interaction are excluded
from the training data.

As we assume that a classifier is applied to each frame of
data independently (see Section IV-D3), we need to capture
the temporal aspect to some extent. To this end, we calculated
the mean and the slope of each signal over a period of 50ms,
100ms, 200ms and 500ms. The slope was calculated by fitting
a first order polynomial (linear regression) to the signal.

The speaking feature indicates if and for how long the
speaker is talking and is extracted using SHoUT automatic
speech recognizer [24]. The looking feature indicates if and
for how long the speaker is looking at the listener and is based
on the manual annotations provided with the MultiLis corpus.

Both signals are initially binary, but we wanted our features
to represent sequentiality. To achieve this, for both the speak-

ing and looking features, we calculated the relative offset to
the moment where the speaker starts talking or starts looking
at the listener, respectively. Specifically, the first frame the
speaker is talking will be denoted 1 and this increases by 1
each frame he continues to speak. The first frame the speaker
stops talking is -1 and this decreased by 1 each frame until
the speaker starts speaking. For looking, a similar processing
was applied.

In summary, we extracted 14 prosodic signals, calculated
their z-scores and obtained their means and slopes for four
different window lengths. This resulted in a total of 112
prosodic features. In addition, we used one speaking feature
and one looking feature, which gave a total of 114 features.
We concatenated all these features into one 114-dimensional
vector per time instance.

C. Baseline Model

In the experiment, the baseline model represents the com-
mon corpus-based approach for social behavior synthesis. We
will use this model as a means to illustrate the shortcomings of
this traditional approach and the benefits of the IPL approach
for social behavior synthesis. A schematic representation of
the baseline model is shown in Figure 3.

In the traditional approach, feature vectors together with
their corresponding ground truth labels are presented to a
classifier. Based on the vectors, the classifier learns a model
that approximates the ground truth labels. For our experiment,
we use a Support Vector Machine (SVM) as a classifier. SVMs
are commonly used in (social) signal processing, are well-
known to the general public and output a (confidence) score
for each input feature vector. We are interested in the relative
performance of both approaches and do not focus on obtaining
an optimally performing model. Therefore, we used the default
settings of the 1ibSVM library [25] without optimization of
the parameters involved. These settings are a SVM with the
RBF kernel with ¢ = 1 and v = 1/|z|, where |z| is the
dimensionality of the input vector.

The ground truth labels are divided into two classes: positive
and negative samples of backchannel opportunities. The pos-
itive samples correspond to the first frame of each annotated
backchannel in the corpus. The negative samples are randomly
selected frames from moments where no backchannel is anno-
tated in the corpus. Note that these negative samples possibly
included false negatives, due to the optionality of the social
behavior. Typically, there is only a small number of positive
samples available in a corpus. To increase the amount of
training data and to make the models less dependent on these
single frames, we selected four additional frames around the
positive frame. We sample these frames from a normalized
Gaussian distribution with a o such that 95% of the samples
falls within 250ms of the positive sample. Finally, we made
sure that we selected an equal number of negative samples.

In order to obtain backchannel timing predictions, we apply
the trained SVM to each input vector, sampled at 100Hz.
Instead of the per-frame binary classifications of the SVM,
we used the numerical decision values, which can be regarded
as confidence scores for the synthesis of a backchannel. By se-
quencing these decision values over time, we obtained curves



representing the appropriateness to provide a backchannel.
To remove artifacts due to the potentially highly non-linear
output of the SVM, we smoothed these curves with a 10 frame
moving average. After this filtering, we consider the highest
peaks in this curve to correspond to the most likely moments to
predict a backchannel. A threshold can be used to determine
at which peaks a backchannel should be synthesized in the
listener, similar to [5].

D. Iterative Perceptual Learning Model

The IPL model is learned according to the framework
presented in Section III. In the following we will explain the
details of the design decisions for each of the steps generation,
evaluation and learning.

1) Generation: For each stimulus video, we synthesized
for the listener shallow head nods as backchannels at the
timings predicted by our trained SVM. For this, we used
the Elckerlyc virtual human platform [26]. To control the
number of backchannels, we determined the mean backchannel
rate over all interactions in the MultiLis corpus, which was
approximately 7.7 backchannels per minute. We decided to
generate 25% extra backchannels (corresponding to a rate
of 9.6 backchannels per minute) with the aim of potentially
collecting more negative samples to be used in subsequent
iterations. Based on these numbers, we determined the value
of the treshold for the peak selection. The only restriction that
we applied was that two backchannels could not be within
2 seconds from each other. Stimuli were obtained by putting
side-by-side the video of the actual speaker and the animation
of the virtual listener.

2) Evaluation: Each stimulus was evaluated perceptually
by a number of participants in the experiment. Participants had
to press the yuck button whenever they perceived an individual
backchannel from the virtual listener as inappropriate. We
matched these presses to the last preceeding backchannels
if they occurred within 5000 ms of the onset. Finally, we
determined for each synthesized backchannel the number of
yucks, which we used as a measure of inappropriateness of
the backchannel.

3) Learning: We used the exact same machine learning
classifier as for the baseline model. The only difference
between the two is the way the negative samples were selected.
Instead of randomly selecting negative samples from moments
where no backchannel was annotated, we used the timings
of the generated backchannels which were yucked during the
evaluation of the previous iteration as negative samples.

Again, we balanced the number of positive samples and
number of negative samples. The number of positive samples
was multiplied by five, in line with the baseline model. Next,
we calculated the sampling factor for the negative samples.
We determined this factor by dividing the increased number
of positive samples by the number of individual yucks. The
sampling of both the positive and negative samples was
performed in the same way as in the baseline model, using a
normalized Gaussian distribution. For individual backchannel
moments, this meant that more yucks would result in a higher
number of negative samples around this moment.

TABLE I
OVERVIEW OF THE SETS USED IN EACH ITERATION AND EACH PHASE OF
THE IPL PROCESS.

Phase \ Learned on # Interact. Evaluated on # Interact.
Bootstrap Boot set 1 Set 1 1
Iteration 1 Set 1 1 Set 2 2
Iteration 2 | Sets 1, 2 3 Set 3 3
Iteration 3 | Sets 1, 2, 3 6 Set 4 6
Iteration 4 | Sets 1, 2, 3, 4 12 Test set 6

E. Experiment

We describe the experiment for the prediction of backchan-
nel timings, where we compared a model learned using the
Iterative Perceptual Learning framework proposed in this paper
(IPL) to the common corpus-based model (baseline). IPL can
be applied iteratively and here we used one bootstrap phase
and four iterations. At each iteration of the IPL model, we
learned a model using the baseline approach to allow for
comparison between the two approaches. After each phase,
we evaluated the results of the IPL and baseline models using
both objective and subjective measures.

1) Stimuli: Participants of the experiment were shown a
video of a speaker from the MultiLis corpus side-by-side
with an animated listener, see Figure 4. The virtual listener
nodded her head, while making an utterance (“‘uh-huh”) each
time the model controlling the virtual listener predicted a
backchannel. Other behaviors such as head movement, posture
shifts, facial expressions and eye blinks were not animated
to prevent these factors to contribute to the perception. As a
result, the synthesized listening behavior was rather minimal.
For each interaction in a set we created an animation of the
virtual listener based on the IPL model and a virtual listener
based on the baseline model. The mean duration of a stimulus
was approximately 4 minutes.

2) Procedure: The experiment consisted of five phases. We
started with a bootstrap phase, followed by four iterations of
IPL in which novel stimuli were presented to the participants.
In the bootstrap phase, a baseline model was learned on a
single interaction. This model was then evaluated perceptually
on one other interaction.

For each subsequent iteration, all positive and negative
samples obtained from all previous iterations were used to
learn the IPL model. Only for the first iteration, the sam-
ples used to learn the bootstrap model were discarded. This
was because the negative samples were selected at random
and were not perceptually rated as inappropriate. In each
subsequent iteration, there were more positive and negative
samples available to learn the IPL model (see also Figure 2). In
addition, we evaluated the model on a larger set of stimuli. An
overview of the number of stimuli used to learn and evaluate
the IPL models in each iteration is given in Table L.

In the fourth and final iteration, we learn the IPL model
based on 12 interactions, and test it’s performance on a test
set of six interactions. This test set is never used for training.

To compare the performance of the IPL model with that
of the baseline approach, we also perceptually evaluated the
performance of the baseline approach after each iteration. We
learned models on the same interactions according to Table I,
but with negative samples selected randomly without overlap



with positive samples, as explained before. As both models,
after each iteration, were trained on the same interactions, we
can make a fair comparison. To this end, we perceptually
evaluate the resulting IPL and baseline models after each
iteration on the test set. The evaluation results for the IPL
model double as negative samples for model learning in the
subsequent iteration.

To evaluate the quality of the models, participants of the
experiment were shown stimuli through a webpage. It was
explained to them that they would be participating in an exper-
iment to determine the quality of synthesized listening behav-
ior. After entering their name, gender and age, the participants
were presented a set of (at most) 6 stimuli. They were asked
to press the spacebar each time the virtual listener performed a
backchannel they judged as inappropriate. Participants could
replay the stimulus from the start, which would discard all
previously issued yucks for that stimulus. Each participant
was shown the same interaction twice in succession, once with
the virtual listener based on IPL, once based on the baseline
model. The order of the models was varied systematically. This
design choice allowed us to evaluate the difference between the
two models pair-wise. This is essential as there are typically
differences in the amount of yucks between participants. In
total, the experiment lasts around 30 minutes.

3) Participants: Each stimulus was rated by 5 participants.
As set 4 and the test set contained six stimuli, we decided
to split these sets into two. Including the evaluation on the
test set for iterations 1 - 4, this gives us 13 groups of stimuli.
Consequently, we required 65 participants to rate the stimuli,
25 for the evaluation of sets 1 - 4 and 40 for the evaluation
of the test sets. Participants were requited among colleagues
and students. Several persons participated more than once. As
we perform a pair-wise comparison of the two models per
iteration, this does not bias the results. Of the 65 trials, 8 and
57 were completed by females and males, respectively (mean
age of 28, min. 18, max. 47).

4) Evaluation Measures: In the experiment, we used two
performance measures: one objective measure and one novel
subjective measure. For the objective measure, we compared
the predicted timing of the backchannels with those performed
by the actual listener in the MultiLis corpus, as is common for
corpus-based learning. We calculated the precision and recall
and combined these by taking the weighted harmonic mean
of the two into the F; measure: F} = Qpirr, with p and r the
precision and recall scores, respectively.

For the subjective measure, we used the yucks collected
in the perceptual evaluation. We calculated the percentage of
backchannels that did not receive any yucks. In addition, we
calculated the average number of yucks per backchannel.

V. RESULTS AND DISCUSSION

First, we analyzed the performance of both models on the
test set after the fourth and final iteration. On the objective
measure, both approaches performed the same with F; scores
of 0.323, see Figure 5 (left). However, the subjective measures
show a slightly different effect. In total, 239 backchannels
are generated with each of the models. The number of yucks
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Fig. 5. Performances of the two models we trained on F; measure and
percentage of generated head nods that are yucked by at least 1 subject.

obtained from five participants per stimulus is lower for IPL
than for the baseline (219 and 238, respectively). On average,
a backchannel synthesized with the IPL model received 0.92
yucks from all participants, whereas this number was 1.0 for a
backchannel generated from the baseline model. A breakdown
of the number of yucks per backchannel is given in Figure 6.

50
- :

20 - Baseline|
H|PL

30

20 -

0 - T T T T -_\

1 2 3 4 5

Fig. 6. Frequency histogram for number of yucks per synthesized backchan-
nel on the test set, for baseline and IPL models after iteration 4.

When we looked at the number of backchannels that did
not receive any yucks, these numbers are even more in favor
of the IPL model. For IPL, 149 (62.3%) did not receive any
yucks, compared to only 137 (57.3%) for the baseline model.

This means that both models generate behavior which repli-
cates the original listener similarly in terms of co-occurring
backchannels, but that the behavior generated based on the
IPL model is perceived as more natural. In the following, we
look at the amount of available data on the subjective and
objective performance, and at the variation of the performance
on different sets.

A. Effect of Amount of Data

Typically, as more data comes available for training, one
would expect that the performance of the resulting learned
model improves. This is due to the fact that models typically
generalize better when they have been trained on a wider
variety of positive and negative samples.

We have learned models for both IPL and the baseline
approach after each iteration, which we tested on the test
set. The results of the evaluation are shown in Figure 7
for the percentage of backchannels that did not receive any
yucks. From this figure, a couple of observations can be
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Fig. 7.  Percentage of synthesized backchannels that did not receive any

yucks on the test set, for the baseline and IPL models after each iteration.

made. First, the performance is not monotonically increasing
for an increasing number of available training interactions.
Even though these numbers are calculated on the same set
of interactions, they are not completely comparable as they
are obtained from different participants. More evaluations, or
a within-subject design for iterations, are needed to make a
more definitive conclusion whether there is a trend or not.
Still, as model (IPL or baseline) was a within-subject factor,
we can compare the results pair-wise. It becomes clear that
the IPL model learned after the first and fourth iterations is
better than the baseline approach.
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Fig. 8. Fi measure on the test set, for the baseline and IPL models after

each iteration.

To gain more insight into this observation, we turn to the
objective F; measure. In Figure 8, a positive trend can be
observed for the amount of training data on the F; measure.
Howeyver, in the final iteration, the scores are lower for both
models, which is again unexpected. Apart from the first itera-
tion, differences between the two models are relatively small.
Surprisingly, after the first iteration, the baseline approach out-
performs the IPL approach on the objective measure, whereas
this effect is reversed for the subjective measure.

In summary, there is no evidence from our data that an
increasing amount of training data will lead to better models.
We might attribute this finding to two causes. First, the features
that we use do not contain sufficiently detailed information

TABLE 11
THE F1 MEASURES OBTAINED FOR IPL / BASELINE MODELS AND
EVALUATED ON SUBSEQUENT (TEST) SETS.

IPL / baseline evaluated on

Model Set 2 Set 3 Set 4 Test

Iter. 1 0.165 /7 0.154 0.206 / 0.222 0.152/0.216 0.230 / 0.263
Tter. 2 - 0.222/0.222 0.158 /0.191 0.300 / 0.313
Iter. 3 - - 0.189 7/ 0.222 0.336 / 0.332
Iter. 4 - - - 0.323 /7 0.323

to clearly differentiate between appropriate and inappropriate
moments to produce a backchannel. In our experiment, it
might cause the learning of the models to saturate quickly. In
this case, more meaningful features related to what has been
said or the inclusion of features that have a known relation
to turn-taking and backchanneling (e.g. mutual gaze, head
orientation, smiling) might give better results.

A second explanation is the variation among the different
training sets. There is typically a substantial variation in the
amount and timing of backchannels between listeners [21]. It
might be that certain patterns in backchannel placement are
learned from one set that do not occur in another set, and
vice versa. To investigate whether there are such differences
between the sets, we conduct additional analyses in the next
section.

B. Effect of Variation in Training Set

To gain more insight into the variation in backchannel
placement between training sets, we evaluate models trained
after a certain iteration on all training sets that are to be
used in subsequent iterations. These tests are explicitly not
part of the common IPL or baseline procedure. We calculated
the F} measures for all combinations as we did not have
subjective evaluations for the output of the models. Results
are summarized in Table II.

It immediately becomes clear that all models perform rather
poorly on set 4. Potentially, the backchannel behavior of the
listener or the backchannel inviting behavior of the speaker in
this set are different from that in other sets. We expect that this
poor performance is the reason why the performance drops in
the following iteration. This can be explained as follows. Both
IPL and the baseline approach aim at learning a generalized
model for predicting backchannel opportunities, applicable to
every speaker and every listener. But individuals differ in
their interaction styles (ways to deliver information, construct
sentences and produce them), and the models are not capable
of attuning to each individual. During training, they converge
to the behavior of the average speaker paired with the average
listener. Apparently, the models are better at generalizing to the
behavior of the interactions in the test set using the interactions
used so far than including the interactions from set 4. The
interactions in set 4 might deviate more from the average
behavior in the test set, and the models might be attuned to
behavior not present in the test set. It is an interesting and
needed avenue for future research to develop models that can
adapt to different interaction styles.



VI. CONCLUSION AND FUTURE WORK

We introduced Iterative Perceptual Learning (IPL), a novel
approach for learning computational models for social behav-
ior synthesis. The approach combines two innovative com-
ponents to deal with the optionality of social behavior and
individual differences in their production in interactions.

First, IPL uses subjective, perceptual evaluation measures
instead of the common corpus-based metric such as precision
and recall. Human observers rate the quality of stimuli of
synthesized behavior, based on the output of trained models.
These ratings are given at the level of individual synthesized
behaviors. Specifically, observers press a button to indicate that
the behavior is inappropriate in the context of the conversation.
By analyzing the ratings of several observers, we can measure
the appropriateness of individual behavior instances.

Second, the behavior synthesis model of IPL is refined
iteratively using the perceptual ratings. Instead of a random
selection of samples where no positive sample is recorded,
we use these ratings as negative samples of social behavior in
the model learning phase. This creates a more reliable ground
truth. By iteratively applying this technique, we are able to
tune our models to social behavior that is rated as appropriate.

We have demonstrated these innovations in a case study
on the timing of backchannels in speaker-listener dialogs.
We compared IPL to the traditional corpus-based approach.
While both models performed similarly in terms of precision
and recall, the results of the IPL model were rated as more
appropriate in the perceptual evaluation. Differences between
IPL and baseline model were small and varied between sets
of stimuli. We expect the features did not contain sufficiently
detailed information to clearly differentiate between appro-
priate and inappropriate moments to produce a backchannel.
This might have caused the learning of the models to saturate
quickly.

There are several ways in which we intend to improve our
work. First, several design choices in the experiment were
suboptimal from a performance point of view. The SVM
model, not being a sequential model, might not have been
the most suitable machine learning technique. Furthermore,
we consider the use of semantic and lexical features for the
prediction of backchannel opportunities [27]. Finally, future
work should address the use of adaptive models to attune to
different interaction styles.
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